mm: bdi: allow setting a minimum for the bdi dirty limit
[safe/jmp/linux-2.6] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    akpm@zip.com.au
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37
38 /*
39  * The maximum number of pages to writeout in a single bdflush/kupdate
40  * operation.  We do this so we don't hold I_SYNC against an inode for
41  * enormous amounts of time, which would block a userspace task which has
42  * been forced to throttle against that inode.  Also, the code reevaluates
43  * the dirty each time it has written this many pages.
44  */
45 #define MAX_WRITEBACK_PAGES     1024
46
47 /*
48  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
49  * will look to see if it needs to force writeback or throttling.
50  */
51 static long ratelimit_pages = 32;
52
53 /*
54  * When balance_dirty_pages decides that the caller needs to perform some
55  * non-background writeback, this is how many pages it will attempt to write.
56  * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57  * large amounts of I/O are submitted.
58  */
59 static inline long sync_writeback_pages(void)
60 {
61         return ratelimit_pages + ratelimit_pages / 2;
62 }
63
64 /* The following parameters are exported via /proc/sys/vm */
65
66 /*
67  * Start background writeback (via pdflush) at this percentage
68  */
69 int dirty_background_ratio = 5;
70
71 /*
72  * free highmem will not be subtracted from the total free memory
73  * for calculating free ratios if vm_highmem_is_dirtyable is true
74  */
75 int vm_highmem_is_dirtyable;
76
77 /*
78  * The generator of dirty data starts writeback at this percentage
79  */
80 int vm_dirty_ratio = 10;
81
82 /*
83  * The interval between `kupdate'-style writebacks, in jiffies
84  */
85 int dirty_writeback_interval = 5 * HZ;
86
87 /*
88  * The longest number of jiffies for which data is allowed to remain dirty
89  */
90 int dirty_expire_interval = 30 * HZ;
91
92 /*
93  * Flag that makes the machine dump writes/reads and block dirtyings.
94  */
95 int block_dump;
96
97 /*
98  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
99  * a full sync is triggered after this time elapses without any disk activity.
100  */
101 int laptop_mode;
102
103 EXPORT_SYMBOL(laptop_mode);
104
105 /* End of sysctl-exported parameters */
106
107
108 static void background_writeout(unsigned long _min_pages);
109
110 /*
111  * Scale the writeback cache size proportional to the relative writeout speeds.
112  *
113  * We do this by keeping a floating proportion between BDIs, based on page
114  * writeback completions [end_page_writeback()]. Those devices that write out
115  * pages fastest will get the larger share, while the slower will get a smaller
116  * share.
117  *
118  * We use page writeout completions because we are interested in getting rid of
119  * dirty pages. Having them written out is the primary goal.
120  *
121  * We introduce a concept of time, a period over which we measure these events,
122  * because demand can/will vary over time. The length of this period itself is
123  * measured in page writeback completions.
124  *
125  */
126 static struct prop_descriptor vm_completions;
127 static struct prop_descriptor vm_dirties;
128
129 static unsigned long determine_dirtyable_memory(void);
130
131 /*
132  * couple the period to the dirty_ratio:
133  *
134  *   period/2 ~ roundup_pow_of_two(dirty limit)
135  */
136 static int calc_period_shift(void)
137 {
138         unsigned long dirty_total;
139
140         dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100;
141         return 2 + ilog2(dirty_total - 1);
142 }
143
144 /*
145  * update the period when the dirty ratio changes.
146  */
147 int dirty_ratio_handler(struct ctl_table *table, int write,
148                 struct file *filp, void __user *buffer, size_t *lenp,
149                 loff_t *ppos)
150 {
151         int old_ratio = vm_dirty_ratio;
152         int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
153         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
154                 int shift = calc_period_shift();
155                 prop_change_shift(&vm_completions, shift);
156                 prop_change_shift(&vm_dirties, shift);
157         }
158         return ret;
159 }
160
161 /*
162  * Increment the BDI's writeout completion count and the global writeout
163  * completion count. Called from test_clear_page_writeback().
164  */
165 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
166 {
167         __prop_inc_percpu(&vm_completions, &bdi->completions);
168 }
169
170 static inline void task_dirty_inc(struct task_struct *tsk)
171 {
172         prop_inc_single(&vm_dirties, &tsk->dirties);
173 }
174
175 /*
176  * Obtain an accurate fraction of the BDI's portion.
177  */
178 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
179                 long *numerator, long *denominator)
180 {
181         if (bdi_cap_writeback_dirty(bdi)) {
182                 prop_fraction_percpu(&vm_completions, &bdi->completions,
183                                 numerator, denominator);
184         } else {
185                 *numerator = 0;
186                 *denominator = 1;
187         }
188 }
189
190 /*
191  * Clip the earned share of dirty pages to that which is actually available.
192  * This avoids exceeding the total dirty_limit when the floating averages
193  * fluctuate too quickly.
194  */
195 static void
196 clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
197 {
198         long avail_dirty;
199
200         avail_dirty = dirty -
201                 (global_page_state(NR_FILE_DIRTY) +
202                  global_page_state(NR_WRITEBACK) +
203                  global_page_state(NR_UNSTABLE_NFS));
204
205         if (avail_dirty < 0)
206                 avail_dirty = 0;
207
208         avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
209                 bdi_stat(bdi, BDI_WRITEBACK);
210
211         *pbdi_dirty = min(*pbdi_dirty, avail_dirty);
212 }
213
214 static inline void task_dirties_fraction(struct task_struct *tsk,
215                 long *numerator, long *denominator)
216 {
217         prop_fraction_single(&vm_dirties, &tsk->dirties,
218                                 numerator, denominator);
219 }
220
221 /*
222  * scale the dirty limit
223  *
224  * task specific dirty limit:
225  *
226  *   dirty -= (dirty/8) * p_{t}
227  */
228 static void task_dirty_limit(struct task_struct *tsk, long *pdirty)
229 {
230         long numerator, denominator;
231         long dirty = *pdirty;
232         u64 inv = dirty >> 3;
233
234         task_dirties_fraction(tsk, &numerator, &denominator);
235         inv *= numerator;
236         do_div(inv, denominator);
237
238         dirty -= inv;
239         if (dirty < *pdirty/2)
240                 dirty = *pdirty/2;
241
242         *pdirty = dirty;
243 }
244
245 /*
246  *
247  */
248 static DEFINE_SPINLOCK(bdi_lock);
249 static unsigned int bdi_min_ratio;
250
251 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
252 {
253         int ret = 0;
254         unsigned long flags;
255
256         spin_lock_irqsave(&bdi_lock, flags);
257         min_ratio -= bdi->min_ratio;
258         if (bdi_min_ratio + min_ratio < 100) {
259                 bdi_min_ratio += min_ratio;
260                 bdi->min_ratio += min_ratio;
261         } else
262                 ret = -EINVAL;
263         spin_unlock_irqrestore(&bdi_lock, flags);
264
265         return ret;
266 }
267
268 /*
269  * Work out the current dirty-memory clamping and background writeout
270  * thresholds.
271  *
272  * The main aim here is to lower them aggressively if there is a lot of mapped
273  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
274  * pages.  It is better to clamp down on writers than to start swapping, and
275  * performing lots of scanning.
276  *
277  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
278  *
279  * We don't permit the clamping level to fall below 5% - that is getting rather
280  * excessive.
281  *
282  * We make sure that the background writeout level is below the adjusted
283  * clamping level.
284  */
285
286 static unsigned long highmem_dirtyable_memory(unsigned long total)
287 {
288 #ifdef CONFIG_HIGHMEM
289         int node;
290         unsigned long x = 0;
291
292         for_each_node_state(node, N_HIGH_MEMORY) {
293                 struct zone *z =
294                         &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
295
296                 x += zone_page_state(z, NR_FREE_PAGES)
297                         + zone_page_state(z, NR_INACTIVE)
298                         + zone_page_state(z, NR_ACTIVE);
299         }
300         /*
301          * Make sure that the number of highmem pages is never larger
302          * than the number of the total dirtyable memory. This can only
303          * occur in very strange VM situations but we want to make sure
304          * that this does not occur.
305          */
306         return min(x, total);
307 #else
308         return 0;
309 #endif
310 }
311
312 static unsigned long determine_dirtyable_memory(void)
313 {
314         unsigned long x;
315
316         x = global_page_state(NR_FREE_PAGES)
317                 + global_page_state(NR_INACTIVE)
318                 + global_page_state(NR_ACTIVE);
319
320         if (!vm_highmem_is_dirtyable)
321                 x -= highmem_dirtyable_memory(x);
322
323         return x + 1;   /* Ensure that we never return 0 */
324 }
325
326 void
327 get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty,
328                  struct backing_dev_info *bdi)
329 {
330         int background_ratio;           /* Percentages */
331         int dirty_ratio;
332         long background;
333         long dirty;
334         unsigned long available_memory = determine_dirtyable_memory();
335         struct task_struct *tsk;
336
337         dirty_ratio = vm_dirty_ratio;
338         if (dirty_ratio < 5)
339                 dirty_ratio = 5;
340
341         background_ratio = dirty_background_ratio;
342         if (background_ratio >= dirty_ratio)
343                 background_ratio = dirty_ratio / 2;
344
345         background = (background_ratio * available_memory) / 100;
346         dirty = (dirty_ratio * available_memory) / 100;
347         tsk = current;
348         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
349                 background += background / 4;
350                 dirty += dirty / 4;
351         }
352         *pbackground = background;
353         *pdirty = dirty;
354
355         if (bdi) {
356                 u64 bdi_dirty;
357                 long numerator, denominator;
358
359                 /*
360                  * Calculate this BDI's share of the dirty ratio.
361                  */
362                 bdi_writeout_fraction(bdi, &numerator, &denominator);
363
364                 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
365                 bdi_dirty *= numerator;
366                 do_div(bdi_dirty, denominator);
367                 bdi_dirty += (dirty * bdi->min_ratio) / 100;
368
369                 *pbdi_dirty = bdi_dirty;
370                 clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
371                 task_dirty_limit(current, pbdi_dirty);
372         }
373 }
374
375 /*
376  * balance_dirty_pages() must be called by processes which are generating dirty
377  * data.  It looks at the number of dirty pages in the machine and will force
378  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
379  * If we're over `background_thresh' then pdflush is woken to perform some
380  * writeout.
381  */
382 static void balance_dirty_pages(struct address_space *mapping)
383 {
384         long nr_reclaimable, bdi_nr_reclaimable;
385         long nr_writeback, bdi_nr_writeback;
386         long background_thresh;
387         long dirty_thresh;
388         long bdi_thresh;
389         unsigned long pages_written = 0;
390         unsigned long write_chunk = sync_writeback_pages();
391
392         struct backing_dev_info *bdi = mapping->backing_dev_info;
393
394         for (;;) {
395                 struct writeback_control wbc = {
396                         .bdi            = bdi,
397                         .sync_mode      = WB_SYNC_NONE,
398                         .older_than_this = NULL,
399                         .nr_to_write    = write_chunk,
400                         .range_cyclic   = 1,
401                 };
402
403                 get_dirty_limits(&background_thresh, &dirty_thresh,
404                                 &bdi_thresh, bdi);
405
406                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
407                                         global_page_state(NR_UNSTABLE_NFS);
408                 nr_writeback = global_page_state(NR_WRITEBACK);
409
410                 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
411                 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
412
413                 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
414                         break;
415
416                 /*
417                  * Throttle it only when the background writeback cannot
418                  * catch-up. This avoids (excessively) small writeouts
419                  * when the bdi limits are ramping up.
420                  */
421                 if (nr_reclaimable + nr_writeback <
422                                 (background_thresh + dirty_thresh) / 2)
423                         break;
424
425                 if (!bdi->dirty_exceeded)
426                         bdi->dirty_exceeded = 1;
427
428                 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
429                  * Unstable writes are a feature of certain networked
430                  * filesystems (i.e. NFS) in which data may have been
431                  * written to the server's write cache, but has not yet
432                  * been flushed to permanent storage.
433                  */
434                 if (bdi_nr_reclaimable) {
435                         writeback_inodes(&wbc);
436                         pages_written += write_chunk - wbc.nr_to_write;
437                         get_dirty_limits(&background_thresh, &dirty_thresh,
438                                        &bdi_thresh, bdi);
439                 }
440
441                 /*
442                  * In order to avoid the stacked BDI deadlock we need
443                  * to ensure we accurately count the 'dirty' pages when
444                  * the threshold is low.
445                  *
446                  * Otherwise it would be possible to get thresh+n pages
447                  * reported dirty, even though there are thresh-m pages
448                  * actually dirty; with m+n sitting in the percpu
449                  * deltas.
450                  */
451                 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
452                         bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
453                         bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
454                 } else if (bdi_nr_reclaimable) {
455                         bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
456                         bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
457                 }
458
459                 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
460                         break;
461                 if (pages_written >= write_chunk)
462                         break;          /* We've done our duty */
463
464                 congestion_wait(WRITE, HZ/10);
465         }
466
467         if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
468                         bdi->dirty_exceeded)
469                 bdi->dirty_exceeded = 0;
470
471         if (writeback_in_progress(bdi))
472                 return;         /* pdflush is already working this queue */
473
474         /*
475          * In laptop mode, we wait until hitting the higher threshold before
476          * starting background writeout, and then write out all the way down
477          * to the lower threshold.  So slow writers cause minimal disk activity.
478          *
479          * In normal mode, we start background writeout at the lower
480          * background_thresh, to keep the amount of dirty memory low.
481          */
482         if ((laptop_mode && pages_written) ||
483                         (!laptop_mode && (global_page_state(NR_FILE_DIRTY)
484                                           + global_page_state(NR_UNSTABLE_NFS)
485                                           > background_thresh)))
486                 pdflush_operation(background_writeout, 0);
487 }
488
489 void set_page_dirty_balance(struct page *page, int page_mkwrite)
490 {
491         if (set_page_dirty(page) || page_mkwrite) {
492                 struct address_space *mapping = page_mapping(page);
493
494                 if (mapping)
495                         balance_dirty_pages_ratelimited(mapping);
496         }
497 }
498
499 /**
500  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
501  * @mapping: address_space which was dirtied
502  * @nr_pages_dirtied: number of pages which the caller has just dirtied
503  *
504  * Processes which are dirtying memory should call in here once for each page
505  * which was newly dirtied.  The function will periodically check the system's
506  * dirty state and will initiate writeback if needed.
507  *
508  * On really big machines, get_writeback_state is expensive, so try to avoid
509  * calling it too often (ratelimiting).  But once we're over the dirty memory
510  * limit we decrease the ratelimiting by a lot, to prevent individual processes
511  * from overshooting the limit by (ratelimit_pages) each.
512  */
513 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
514                                         unsigned long nr_pages_dirtied)
515 {
516         static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
517         unsigned long ratelimit;
518         unsigned long *p;
519
520         ratelimit = ratelimit_pages;
521         if (mapping->backing_dev_info->dirty_exceeded)
522                 ratelimit = 8;
523
524         /*
525          * Check the rate limiting. Also, we do not want to throttle real-time
526          * tasks in balance_dirty_pages(). Period.
527          */
528         preempt_disable();
529         p =  &__get_cpu_var(ratelimits);
530         *p += nr_pages_dirtied;
531         if (unlikely(*p >= ratelimit)) {
532                 *p = 0;
533                 preempt_enable();
534                 balance_dirty_pages(mapping);
535                 return;
536         }
537         preempt_enable();
538 }
539 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
540
541 void throttle_vm_writeout(gfp_t gfp_mask)
542 {
543         long background_thresh;
544         long dirty_thresh;
545
546         for ( ; ; ) {
547                 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
548
549                 /*
550                  * Boost the allowable dirty threshold a bit for page
551                  * allocators so they don't get DoS'ed by heavy writers
552                  */
553                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
554
555                 if (global_page_state(NR_UNSTABLE_NFS) +
556                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
557                                 break;
558                 congestion_wait(WRITE, HZ/10);
559
560                 /*
561                  * The caller might hold locks which can prevent IO completion
562                  * or progress in the filesystem.  So we cannot just sit here
563                  * waiting for IO to complete.
564                  */
565                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
566                         break;
567         }
568 }
569
570 /*
571  * writeback at least _min_pages, and keep writing until the amount of dirty
572  * memory is less than the background threshold, or until we're all clean.
573  */
574 static void background_writeout(unsigned long _min_pages)
575 {
576         long min_pages = _min_pages;
577         struct writeback_control wbc = {
578                 .bdi            = NULL,
579                 .sync_mode      = WB_SYNC_NONE,
580                 .older_than_this = NULL,
581                 .nr_to_write    = 0,
582                 .nonblocking    = 1,
583                 .range_cyclic   = 1,
584         };
585
586         for ( ; ; ) {
587                 long background_thresh;
588                 long dirty_thresh;
589
590                 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
591                 if (global_page_state(NR_FILE_DIRTY) +
592                         global_page_state(NR_UNSTABLE_NFS) < background_thresh
593                                 && min_pages <= 0)
594                         break;
595                 wbc.more_io = 0;
596                 wbc.encountered_congestion = 0;
597                 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
598                 wbc.pages_skipped = 0;
599                 writeback_inodes(&wbc);
600                 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
601                 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
602                         /* Wrote less than expected */
603                         if (wbc.encountered_congestion || wbc.more_io)
604                                 congestion_wait(WRITE, HZ/10);
605                         else
606                                 break;
607                 }
608         }
609 }
610
611 /*
612  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
613  * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
614  * -1 if all pdflush threads were busy.
615  */
616 int wakeup_pdflush(long nr_pages)
617 {
618         if (nr_pages == 0)
619                 nr_pages = global_page_state(NR_FILE_DIRTY) +
620                                 global_page_state(NR_UNSTABLE_NFS);
621         return pdflush_operation(background_writeout, nr_pages);
622 }
623
624 static void wb_timer_fn(unsigned long unused);
625 static void laptop_timer_fn(unsigned long unused);
626
627 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
628 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
629
630 /*
631  * Periodic writeback of "old" data.
632  *
633  * Define "old": the first time one of an inode's pages is dirtied, we mark the
634  * dirtying-time in the inode's address_space.  So this periodic writeback code
635  * just walks the superblock inode list, writing back any inodes which are
636  * older than a specific point in time.
637  *
638  * Try to run once per dirty_writeback_interval.  But if a writeback event
639  * takes longer than a dirty_writeback_interval interval, then leave a
640  * one-second gap.
641  *
642  * older_than_this takes precedence over nr_to_write.  So we'll only write back
643  * all dirty pages if they are all attached to "old" mappings.
644  */
645 static void wb_kupdate(unsigned long arg)
646 {
647         unsigned long oldest_jif;
648         unsigned long start_jif;
649         unsigned long next_jif;
650         long nr_to_write;
651         struct writeback_control wbc = {
652                 .bdi            = NULL,
653                 .sync_mode      = WB_SYNC_NONE,
654                 .older_than_this = &oldest_jif,
655                 .nr_to_write    = 0,
656                 .nonblocking    = 1,
657                 .for_kupdate    = 1,
658                 .range_cyclic   = 1,
659         };
660
661         sync_supers();
662
663         oldest_jif = jiffies - dirty_expire_interval;
664         start_jif = jiffies;
665         next_jif = start_jif + dirty_writeback_interval;
666         nr_to_write = global_page_state(NR_FILE_DIRTY) +
667                         global_page_state(NR_UNSTABLE_NFS) +
668                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
669         while (nr_to_write > 0) {
670                 wbc.more_io = 0;
671                 wbc.encountered_congestion = 0;
672                 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
673                 writeback_inodes(&wbc);
674                 if (wbc.nr_to_write > 0) {
675                         if (wbc.encountered_congestion || wbc.more_io)
676                                 congestion_wait(WRITE, HZ/10);
677                         else
678                                 break;  /* All the old data is written */
679                 }
680                 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
681         }
682         if (time_before(next_jif, jiffies + HZ))
683                 next_jif = jiffies + HZ;
684         if (dirty_writeback_interval)
685                 mod_timer(&wb_timer, next_jif);
686 }
687
688 /*
689  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
690  */
691 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
692         struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
693 {
694         proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
695         if (dirty_writeback_interval)
696                 mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
697         else
698                 del_timer(&wb_timer);
699         return 0;
700 }
701
702 static void wb_timer_fn(unsigned long unused)
703 {
704         if (pdflush_operation(wb_kupdate, 0) < 0)
705                 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
706 }
707
708 static void laptop_flush(unsigned long unused)
709 {
710         sys_sync();
711 }
712
713 static void laptop_timer_fn(unsigned long unused)
714 {
715         pdflush_operation(laptop_flush, 0);
716 }
717
718 /*
719  * We've spun up the disk and we're in laptop mode: schedule writeback
720  * of all dirty data a few seconds from now.  If the flush is already scheduled
721  * then push it back - the user is still using the disk.
722  */
723 void laptop_io_completion(void)
724 {
725         mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
726 }
727
728 /*
729  * We're in laptop mode and we've just synced. The sync's writes will have
730  * caused another writeback to be scheduled by laptop_io_completion.
731  * Nothing needs to be written back anymore, so we unschedule the writeback.
732  */
733 void laptop_sync_completion(void)
734 {
735         del_timer(&laptop_mode_wb_timer);
736 }
737
738 /*
739  * If ratelimit_pages is too high then we can get into dirty-data overload
740  * if a large number of processes all perform writes at the same time.
741  * If it is too low then SMP machines will call the (expensive)
742  * get_writeback_state too often.
743  *
744  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
745  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
746  * thresholds before writeback cuts in.
747  *
748  * But the limit should not be set too high.  Because it also controls the
749  * amount of memory which the balance_dirty_pages() caller has to write back.
750  * If this is too large then the caller will block on the IO queue all the
751  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
752  * will write six megabyte chunks, max.
753  */
754
755 void writeback_set_ratelimit(void)
756 {
757         ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
758         if (ratelimit_pages < 16)
759                 ratelimit_pages = 16;
760         if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
761                 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
762 }
763
764 static int __cpuinit
765 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
766 {
767         writeback_set_ratelimit();
768         return NOTIFY_DONE;
769 }
770
771 static struct notifier_block __cpuinitdata ratelimit_nb = {
772         .notifier_call  = ratelimit_handler,
773         .next           = NULL,
774 };
775
776 /*
777  * Called early on to tune the page writeback dirty limits.
778  *
779  * We used to scale dirty pages according to how total memory
780  * related to pages that could be allocated for buffers (by
781  * comparing nr_free_buffer_pages() to vm_total_pages.
782  *
783  * However, that was when we used "dirty_ratio" to scale with
784  * all memory, and we don't do that any more. "dirty_ratio"
785  * is now applied to total non-HIGHPAGE memory (by subtracting
786  * totalhigh_pages from vm_total_pages), and as such we can't
787  * get into the old insane situation any more where we had
788  * large amounts of dirty pages compared to a small amount of
789  * non-HIGHMEM memory.
790  *
791  * But we might still want to scale the dirty_ratio by how
792  * much memory the box has..
793  */
794 void __init page_writeback_init(void)
795 {
796         int shift;
797
798         mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
799         writeback_set_ratelimit();
800         register_cpu_notifier(&ratelimit_nb);
801
802         shift = calc_period_shift();
803         prop_descriptor_init(&vm_completions, shift);
804         prop_descriptor_init(&vm_dirties, shift);
805 }
806
807 /**
808  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
809  * @mapping: address space structure to write
810  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
811  * @writepage: function called for each page
812  * @data: data passed to writepage function
813  *
814  * If a page is already under I/O, write_cache_pages() skips it, even
815  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
816  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
817  * and msync() need to guarantee that all the data which was dirty at the time
818  * the call was made get new I/O started against them.  If wbc->sync_mode is
819  * WB_SYNC_ALL then we were called for data integrity and we must wait for
820  * existing IO to complete.
821  */
822 int write_cache_pages(struct address_space *mapping,
823                       struct writeback_control *wbc, writepage_t writepage,
824                       void *data)
825 {
826         struct backing_dev_info *bdi = mapping->backing_dev_info;
827         int ret = 0;
828         int done = 0;
829         struct pagevec pvec;
830         int nr_pages;
831         pgoff_t index;
832         pgoff_t end;            /* Inclusive */
833         int scanned = 0;
834         int range_whole = 0;
835
836         if (wbc->nonblocking && bdi_write_congested(bdi)) {
837                 wbc->encountered_congestion = 1;
838                 return 0;
839         }
840
841         pagevec_init(&pvec, 0);
842         if (wbc->range_cyclic) {
843                 index = mapping->writeback_index; /* Start from prev offset */
844                 end = -1;
845         } else {
846                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
847                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
848                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
849                         range_whole = 1;
850                 scanned = 1;
851         }
852 retry:
853         while (!done && (index <= end) &&
854                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
855                                               PAGECACHE_TAG_DIRTY,
856                                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
857                 unsigned i;
858
859                 scanned = 1;
860                 for (i = 0; i < nr_pages; i++) {
861                         struct page *page = pvec.pages[i];
862
863                         /*
864                          * At this point we hold neither mapping->tree_lock nor
865                          * lock on the page itself: the page may be truncated or
866                          * invalidated (changing page->mapping to NULL), or even
867                          * swizzled back from swapper_space to tmpfs file
868                          * mapping
869                          */
870                         lock_page(page);
871
872                         if (unlikely(page->mapping != mapping)) {
873                                 unlock_page(page);
874                                 continue;
875                         }
876
877                         if (!wbc->range_cyclic && page->index > end) {
878                                 done = 1;
879                                 unlock_page(page);
880                                 continue;
881                         }
882
883                         if (wbc->sync_mode != WB_SYNC_NONE)
884                                 wait_on_page_writeback(page);
885
886                         if (PageWriteback(page) ||
887                             !clear_page_dirty_for_io(page)) {
888                                 unlock_page(page);
889                                 continue;
890                         }
891
892                         ret = (*writepage)(page, wbc, data);
893
894                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
895                                 unlock_page(page);
896                                 ret = 0;
897                         }
898                         if (ret || (--(wbc->nr_to_write) <= 0))
899                                 done = 1;
900                         if (wbc->nonblocking && bdi_write_congested(bdi)) {
901                                 wbc->encountered_congestion = 1;
902                                 done = 1;
903                         }
904                 }
905                 pagevec_release(&pvec);
906                 cond_resched();
907         }
908         if (!scanned && !done) {
909                 /*
910                  * We hit the last page and there is more work to be done: wrap
911                  * back to the start of the file
912                  */
913                 scanned = 1;
914                 index = 0;
915                 goto retry;
916         }
917         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
918                 mapping->writeback_index = index;
919         return ret;
920 }
921 EXPORT_SYMBOL(write_cache_pages);
922
923 /*
924  * Function used by generic_writepages to call the real writepage
925  * function and set the mapping flags on error
926  */
927 static int __writepage(struct page *page, struct writeback_control *wbc,
928                        void *data)
929 {
930         struct address_space *mapping = data;
931         int ret = mapping->a_ops->writepage(page, wbc);
932         mapping_set_error(mapping, ret);
933         return ret;
934 }
935
936 /**
937  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
938  * @mapping: address space structure to write
939  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
940  *
941  * This is a library function, which implements the writepages()
942  * address_space_operation.
943  */
944 int generic_writepages(struct address_space *mapping,
945                        struct writeback_control *wbc)
946 {
947         /* deal with chardevs and other special file */
948         if (!mapping->a_ops->writepage)
949                 return 0;
950
951         return write_cache_pages(mapping, wbc, __writepage, mapping);
952 }
953
954 EXPORT_SYMBOL(generic_writepages);
955
956 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
957 {
958         int ret;
959
960         if (wbc->nr_to_write <= 0)
961                 return 0;
962         wbc->for_writepages = 1;
963         if (mapping->a_ops->writepages)
964                 ret = mapping->a_ops->writepages(mapping, wbc);
965         else
966                 ret = generic_writepages(mapping, wbc);
967         wbc->for_writepages = 0;
968         return ret;
969 }
970
971 /**
972  * write_one_page - write out a single page and optionally wait on I/O
973  * @page: the page to write
974  * @wait: if true, wait on writeout
975  *
976  * The page must be locked by the caller and will be unlocked upon return.
977  *
978  * write_one_page() returns a negative error code if I/O failed.
979  */
980 int write_one_page(struct page *page, int wait)
981 {
982         struct address_space *mapping = page->mapping;
983         int ret = 0;
984         struct writeback_control wbc = {
985                 .sync_mode = WB_SYNC_ALL,
986                 .nr_to_write = 1,
987         };
988
989         BUG_ON(!PageLocked(page));
990
991         if (wait)
992                 wait_on_page_writeback(page);
993
994         if (clear_page_dirty_for_io(page)) {
995                 page_cache_get(page);
996                 ret = mapping->a_ops->writepage(page, &wbc);
997                 if (ret == 0 && wait) {
998                         wait_on_page_writeback(page);
999                         if (PageError(page))
1000                                 ret = -EIO;
1001                 }
1002                 page_cache_release(page);
1003         } else {
1004                 unlock_page(page);
1005         }
1006         return ret;
1007 }
1008 EXPORT_SYMBOL(write_one_page);
1009
1010 /*
1011  * For address_spaces which do not use buffers nor write back.
1012  */
1013 int __set_page_dirty_no_writeback(struct page *page)
1014 {
1015         if (!PageDirty(page))
1016                 SetPageDirty(page);
1017         return 0;
1018 }
1019
1020 /*
1021  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1022  * its radix tree.
1023  *
1024  * This is also used when a single buffer is being dirtied: we want to set the
1025  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1026  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1027  *
1028  * Most callers have locked the page, which pins the address_space in memory.
1029  * But zap_pte_range() does not lock the page, however in that case the
1030  * mapping is pinned by the vma's ->vm_file reference.
1031  *
1032  * We take care to handle the case where the page was truncated from the
1033  * mapping by re-checking page_mapping() inside tree_lock.
1034  */
1035 int __set_page_dirty_nobuffers(struct page *page)
1036 {
1037         if (!TestSetPageDirty(page)) {
1038                 struct address_space *mapping = page_mapping(page);
1039                 struct address_space *mapping2;
1040
1041                 if (!mapping)
1042                         return 1;
1043
1044                 write_lock_irq(&mapping->tree_lock);
1045                 mapping2 = page_mapping(page);
1046                 if (mapping2) { /* Race with truncate? */
1047                         BUG_ON(mapping2 != mapping);
1048                         WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1049                         if (mapping_cap_account_dirty(mapping)) {
1050                                 __inc_zone_page_state(page, NR_FILE_DIRTY);
1051                                 __inc_bdi_stat(mapping->backing_dev_info,
1052                                                 BDI_RECLAIMABLE);
1053                                 task_io_account_write(PAGE_CACHE_SIZE);
1054                         }
1055                         radix_tree_tag_set(&mapping->page_tree,
1056                                 page_index(page), PAGECACHE_TAG_DIRTY);
1057                 }
1058                 write_unlock_irq(&mapping->tree_lock);
1059                 if (mapping->host) {
1060                         /* !PageAnon && !swapper_space */
1061                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1062                 }
1063                 return 1;
1064         }
1065         return 0;
1066 }
1067 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1068
1069 /*
1070  * When a writepage implementation decides that it doesn't want to write this
1071  * page for some reason, it should redirty the locked page via
1072  * redirty_page_for_writepage() and it should then unlock the page and return 0
1073  */
1074 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1075 {
1076         wbc->pages_skipped++;
1077         return __set_page_dirty_nobuffers(page);
1078 }
1079 EXPORT_SYMBOL(redirty_page_for_writepage);
1080
1081 /*
1082  * If the mapping doesn't provide a set_page_dirty a_op, then
1083  * just fall through and assume that it wants buffer_heads.
1084  */
1085 static int __set_page_dirty(struct page *page)
1086 {
1087         struct address_space *mapping = page_mapping(page);
1088
1089         if (likely(mapping)) {
1090                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1091 #ifdef CONFIG_BLOCK
1092                 if (!spd)
1093                         spd = __set_page_dirty_buffers;
1094 #endif
1095                 return (*spd)(page);
1096         }
1097         if (!PageDirty(page)) {
1098                 if (!TestSetPageDirty(page))
1099                         return 1;
1100         }
1101         return 0;
1102 }
1103
1104 int set_page_dirty(struct page *page)
1105 {
1106         int ret = __set_page_dirty(page);
1107         if (ret)
1108                 task_dirty_inc(current);
1109         return ret;
1110 }
1111 EXPORT_SYMBOL(set_page_dirty);
1112
1113 /*
1114  * set_page_dirty() is racy if the caller has no reference against
1115  * page->mapping->host, and if the page is unlocked.  This is because another
1116  * CPU could truncate the page off the mapping and then free the mapping.
1117  *
1118  * Usually, the page _is_ locked, or the caller is a user-space process which
1119  * holds a reference on the inode by having an open file.
1120  *
1121  * In other cases, the page should be locked before running set_page_dirty().
1122  */
1123 int set_page_dirty_lock(struct page *page)
1124 {
1125         int ret;
1126
1127         lock_page_nosync(page);
1128         ret = set_page_dirty(page);
1129         unlock_page(page);
1130         return ret;
1131 }
1132 EXPORT_SYMBOL(set_page_dirty_lock);
1133
1134 /*
1135  * Clear a page's dirty flag, while caring for dirty memory accounting.
1136  * Returns true if the page was previously dirty.
1137  *
1138  * This is for preparing to put the page under writeout.  We leave the page
1139  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1140  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1141  * implementation will run either set_page_writeback() or set_page_dirty(),
1142  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1143  * back into sync.
1144  *
1145  * This incoherency between the page's dirty flag and radix-tree tag is
1146  * unfortunate, but it only exists while the page is locked.
1147  */
1148 int clear_page_dirty_for_io(struct page *page)
1149 {
1150         struct address_space *mapping = page_mapping(page);
1151
1152         BUG_ON(!PageLocked(page));
1153
1154         ClearPageReclaim(page);
1155         if (mapping && mapping_cap_account_dirty(mapping)) {
1156                 /*
1157                  * Yes, Virginia, this is indeed insane.
1158                  *
1159                  * We use this sequence to make sure that
1160                  *  (a) we account for dirty stats properly
1161                  *  (b) we tell the low-level filesystem to
1162                  *      mark the whole page dirty if it was
1163                  *      dirty in a pagetable. Only to then
1164                  *  (c) clean the page again and return 1 to
1165                  *      cause the writeback.
1166                  *
1167                  * This way we avoid all nasty races with the
1168                  * dirty bit in multiple places and clearing
1169                  * them concurrently from different threads.
1170                  *
1171                  * Note! Normally the "set_page_dirty(page)"
1172                  * has no effect on the actual dirty bit - since
1173                  * that will already usually be set. But we
1174                  * need the side effects, and it can help us
1175                  * avoid races.
1176                  *
1177                  * We basically use the page "master dirty bit"
1178                  * as a serialization point for all the different
1179                  * threads doing their things.
1180                  */
1181                 if (page_mkclean(page))
1182                         set_page_dirty(page);
1183                 /*
1184                  * We carefully synchronise fault handlers against
1185                  * installing a dirty pte and marking the page dirty
1186                  * at this point. We do this by having them hold the
1187                  * page lock at some point after installing their
1188                  * pte, but before marking the page dirty.
1189                  * Pages are always locked coming in here, so we get
1190                  * the desired exclusion. See mm/memory.c:do_wp_page()
1191                  * for more comments.
1192                  */
1193                 if (TestClearPageDirty(page)) {
1194                         dec_zone_page_state(page, NR_FILE_DIRTY);
1195                         dec_bdi_stat(mapping->backing_dev_info,
1196                                         BDI_RECLAIMABLE);
1197                         return 1;
1198                 }
1199                 return 0;
1200         }
1201         return TestClearPageDirty(page);
1202 }
1203 EXPORT_SYMBOL(clear_page_dirty_for_io);
1204
1205 int test_clear_page_writeback(struct page *page)
1206 {
1207         struct address_space *mapping = page_mapping(page);
1208         int ret;
1209
1210         if (mapping) {
1211                 struct backing_dev_info *bdi = mapping->backing_dev_info;
1212                 unsigned long flags;
1213
1214                 write_lock_irqsave(&mapping->tree_lock, flags);
1215                 ret = TestClearPageWriteback(page);
1216                 if (ret) {
1217                         radix_tree_tag_clear(&mapping->page_tree,
1218                                                 page_index(page),
1219                                                 PAGECACHE_TAG_WRITEBACK);
1220                         if (bdi_cap_writeback_dirty(bdi)) {
1221                                 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1222                                 __bdi_writeout_inc(bdi);
1223                         }
1224                 }
1225                 write_unlock_irqrestore(&mapping->tree_lock, flags);
1226         } else {
1227                 ret = TestClearPageWriteback(page);
1228         }
1229         if (ret)
1230                 dec_zone_page_state(page, NR_WRITEBACK);
1231         return ret;
1232 }
1233
1234 int test_set_page_writeback(struct page *page)
1235 {
1236         struct address_space *mapping = page_mapping(page);
1237         int ret;
1238
1239         if (mapping) {
1240                 struct backing_dev_info *bdi = mapping->backing_dev_info;
1241                 unsigned long flags;
1242
1243                 write_lock_irqsave(&mapping->tree_lock, flags);
1244                 ret = TestSetPageWriteback(page);
1245                 if (!ret) {
1246                         radix_tree_tag_set(&mapping->page_tree,
1247                                                 page_index(page),
1248                                                 PAGECACHE_TAG_WRITEBACK);
1249                         if (bdi_cap_writeback_dirty(bdi))
1250                                 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1251                 }
1252                 if (!PageDirty(page))
1253                         radix_tree_tag_clear(&mapping->page_tree,
1254                                                 page_index(page),
1255                                                 PAGECACHE_TAG_DIRTY);
1256                 write_unlock_irqrestore(&mapping->tree_lock, flags);
1257         } else {
1258                 ret = TestSetPageWriteback(page);
1259         }
1260         if (!ret)
1261                 inc_zone_page_state(page, NR_WRITEBACK);
1262         return ret;
1263
1264 }
1265 EXPORT_SYMBOL(test_set_page_writeback);
1266
1267 /*
1268  * Return true if any of the pages in the mapping are marked with the
1269  * passed tag.
1270  */
1271 int mapping_tagged(struct address_space *mapping, int tag)
1272 {
1273         int ret;
1274         rcu_read_lock();
1275         ret = radix_tree_tagged(&mapping->page_tree, tag);
1276         rcu_read_unlock();
1277         return ret;
1278 }
1279 EXPORT_SYMBOL(mapping_tagged);