nommu: make the initial mmap allocation excess behaviour Kconfig configurable
[safe/jmp/linux-2.6] / mm / nommu.c
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
14  */
15
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include "internal.h"
37
38 static inline __attribute__((format(printf, 1, 2)))
39 void no_printk(const char *fmt, ...)
40 {
41 }
42
43 #if 0
44 #define kenter(FMT, ...) \
45         printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
46 #define kleave(FMT, ...) \
47         printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
48 #define kdebug(FMT, ...) \
49         printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
50 #else
51 #define kenter(FMT, ...) \
52         no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
53 #define kleave(FMT, ...) \
54         no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
55 #define kdebug(FMT, ...) \
56         no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
57 #endif
58
59 #include "internal.h"
60
61 void *high_memory;
62 struct page *mem_map;
63 unsigned long max_mapnr;
64 unsigned long num_physpages;
65 struct percpu_counter vm_committed_as;
66 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
67 int sysctl_overcommit_ratio = 50; /* default is 50% */
68 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
69 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
70 int heap_stack_gap = 0;
71
72 atomic_long_t mmap_pages_allocated;
73
74 EXPORT_SYMBOL(mem_map);
75 EXPORT_SYMBOL(num_physpages);
76
77 /* list of mapped, potentially shareable regions */
78 static struct kmem_cache *vm_region_jar;
79 struct rb_root nommu_region_tree = RB_ROOT;
80 DECLARE_RWSEM(nommu_region_sem);
81
82 struct vm_operations_struct generic_file_vm_ops = {
83 };
84
85 /*
86  * Handle all mappings that got truncated by a "truncate()"
87  * system call.
88  *
89  * NOTE! We have to be ready to update the memory sharing
90  * between the file and the memory map for a potential last
91  * incomplete page.  Ugly, but necessary.
92  */
93 int vmtruncate(struct inode *inode, loff_t offset)
94 {
95         struct address_space *mapping = inode->i_mapping;
96         unsigned long limit;
97
98         if (inode->i_size < offset)
99                 goto do_expand;
100         i_size_write(inode, offset);
101
102         truncate_inode_pages(mapping, offset);
103         goto out_truncate;
104
105 do_expand:
106         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
107         if (limit != RLIM_INFINITY && offset > limit)
108                 goto out_sig;
109         if (offset > inode->i_sb->s_maxbytes)
110                 goto out;
111         i_size_write(inode, offset);
112
113 out_truncate:
114         if (inode->i_op->truncate)
115                 inode->i_op->truncate(inode);
116         return 0;
117 out_sig:
118         send_sig(SIGXFSZ, current, 0);
119 out:
120         return -EFBIG;
121 }
122
123 EXPORT_SYMBOL(vmtruncate);
124
125 /*
126  * Return the total memory allocated for this pointer, not
127  * just what the caller asked for.
128  *
129  * Doesn't have to be accurate, i.e. may have races.
130  */
131 unsigned int kobjsize(const void *objp)
132 {
133         struct page *page;
134
135         /*
136          * If the object we have should not have ksize performed on it,
137          * return size of 0
138          */
139         if (!objp || !virt_addr_valid(objp))
140                 return 0;
141
142         page = virt_to_head_page(objp);
143
144         /*
145          * If the allocator sets PageSlab, we know the pointer came from
146          * kmalloc().
147          */
148         if (PageSlab(page))
149                 return ksize(objp);
150
151         /*
152          * If it's not a compound page, see if we have a matching VMA
153          * region. This test is intentionally done in reverse order,
154          * so if there's no VMA, we still fall through and hand back
155          * PAGE_SIZE for 0-order pages.
156          */
157         if (!PageCompound(page)) {
158                 struct vm_area_struct *vma;
159
160                 vma = find_vma(current->mm, (unsigned long)objp);
161                 if (vma)
162                         return vma->vm_end - vma->vm_start;
163         }
164
165         /*
166          * The ksize() function is only guaranteed to work for pointers
167          * returned by kmalloc(). So handle arbitrary pointers here.
168          */
169         return PAGE_SIZE << compound_order(page);
170 }
171
172 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
173                      unsigned long start, int len, int flags,
174                 struct page **pages, struct vm_area_struct **vmas)
175 {
176         struct vm_area_struct *vma;
177         unsigned long vm_flags;
178         int i;
179         int write = !!(flags & GUP_FLAGS_WRITE);
180         int force = !!(flags & GUP_FLAGS_FORCE);
181         int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
182
183         /* calculate required read or write permissions.
184          * - if 'force' is set, we only require the "MAY" flags.
185          */
186         vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
187         vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
188
189         for (i = 0; i < len; i++) {
190                 vma = find_vma(mm, start);
191                 if (!vma)
192                         goto finish_or_fault;
193
194                 /* protect what we can, including chardevs */
195                 if (vma->vm_flags & (VM_IO | VM_PFNMAP) ||
196                     (!ignore && !(vm_flags & vma->vm_flags)))
197                         goto finish_or_fault;
198
199                 if (pages) {
200                         pages[i] = virt_to_page(start);
201                         if (pages[i])
202                                 page_cache_get(pages[i]);
203                 }
204                 if (vmas)
205                         vmas[i] = vma;
206                 start += PAGE_SIZE;
207         }
208
209         return i;
210
211 finish_or_fault:
212         return i ? : -EFAULT;
213 }
214
215
216 /*
217  * get a list of pages in an address range belonging to the specified process
218  * and indicate the VMA that covers each page
219  * - this is potentially dodgy as we may end incrementing the page count of a
220  *   slab page or a secondary page from a compound page
221  * - don't permit access to VMAs that don't support it, such as I/O mappings
222  */
223 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
224         unsigned long start, int len, int write, int force,
225         struct page **pages, struct vm_area_struct **vmas)
226 {
227         int flags = 0;
228
229         if (write)
230                 flags |= GUP_FLAGS_WRITE;
231         if (force)
232                 flags |= GUP_FLAGS_FORCE;
233
234         return __get_user_pages(tsk, mm,
235                                 start, len, flags,
236                                 pages, vmas);
237 }
238 EXPORT_SYMBOL(get_user_pages);
239
240 DEFINE_RWLOCK(vmlist_lock);
241 struct vm_struct *vmlist;
242
243 void vfree(const void *addr)
244 {
245         kfree(addr);
246 }
247 EXPORT_SYMBOL(vfree);
248
249 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
250 {
251         /*
252          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
253          * returns only a logical address.
254          */
255         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
256 }
257 EXPORT_SYMBOL(__vmalloc);
258
259 void *vmalloc_user(unsigned long size)
260 {
261         void *ret;
262
263         ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
264                         PAGE_KERNEL);
265         if (ret) {
266                 struct vm_area_struct *vma;
267
268                 down_write(&current->mm->mmap_sem);
269                 vma = find_vma(current->mm, (unsigned long)ret);
270                 if (vma)
271                         vma->vm_flags |= VM_USERMAP;
272                 up_write(&current->mm->mmap_sem);
273         }
274
275         return ret;
276 }
277 EXPORT_SYMBOL(vmalloc_user);
278
279 struct page *vmalloc_to_page(const void *addr)
280 {
281         return virt_to_page(addr);
282 }
283 EXPORT_SYMBOL(vmalloc_to_page);
284
285 unsigned long vmalloc_to_pfn(const void *addr)
286 {
287         return page_to_pfn(virt_to_page(addr));
288 }
289 EXPORT_SYMBOL(vmalloc_to_pfn);
290
291 long vread(char *buf, char *addr, unsigned long count)
292 {
293         memcpy(buf, addr, count);
294         return count;
295 }
296
297 long vwrite(char *buf, char *addr, unsigned long count)
298 {
299         /* Don't allow overflow */
300         if ((unsigned long) addr + count < count)
301                 count = -(unsigned long) addr;
302
303         memcpy(addr, buf, count);
304         return(count);
305 }
306
307 /*
308  *      vmalloc  -  allocate virtually continguos memory
309  *
310  *      @size:          allocation size
311  *
312  *      Allocate enough pages to cover @size from the page level
313  *      allocator and map them into continguos kernel virtual space.
314  *
315  *      For tight control over page level allocator and protection flags
316  *      use __vmalloc() instead.
317  */
318 void *vmalloc(unsigned long size)
319 {
320        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
321 }
322 EXPORT_SYMBOL(vmalloc);
323
324 void *vmalloc_node(unsigned long size, int node)
325 {
326         return vmalloc(size);
327 }
328 EXPORT_SYMBOL(vmalloc_node);
329
330 #ifndef PAGE_KERNEL_EXEC
331 # define PAGE_KERNEL_EXEC PAGE_KERNEL
332 #endif
333
334 /**
335  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
336  *      @size:          allocation size
337  *
338  *      Kernel-internal function to allocate enough pages to cover @size
339  *      the page level allocator and map them into contiguous and
340  *      executable kernel virtual space.
341  *
342  *      For tight control over page level allocator and protection flags
343  *      use __vmalloc() instead.
344  */
345
346 void *vmalloc_exec(unsigned long size)
347 {
348         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
349 }
350
351 /**
352  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
353  *      @size:          allocation size
354  *
355  *      Allocate enough 32bit PA addressable pages to cover @size from the
356  *      page level allocator and map them into continguos kernel virtual space.
357  */
358 void *vmalloc_32(unsigned long size)
359 {
360         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
361 }
362 EXPORT_SYMBOL(vmalloc_32);
363
364 /**
365  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
366  *      @size:          allocation size
367  *
368  * The resulting memory area is 32bit addressable and zeroed so it can be
369  * mapped to userspace without leaking data.
370  *
371  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
372  * remap_vmalloc_range() are permissible.
373  */
374 void *vmalloc_32_user(unsigned long size)
375 {
376         /*
377          * We'll have to sort out the ZONE_DMA bits for 64-bit,
378          * but for now this can simply use vmalloc_user() directly.
379          */
380         return vmalloc_user(size);
381 }
382 EXPORT_SYMBOL(vmalloc_32_user);
383
384 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
385 {
386         BUG();
387         return NULL;
388 }
389 EXPORT_SYMBOL(vmap);
390
391 void vunmap(const void *addr)
392 {
393         BUG();
394 }
395 EXPORT_SYMBOL(vunmap);
396
397 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
398 {
399         BUG();
400         return NULL;
401 }
402 EXPORT_SYMBOL(vm_map_ram);
403
404 void vm_unmap_ram(const void *mem, unsigned int count)
405 {
406         BUG();
407 }
408 EXPORT_SYMBOL(vm_unmap_ram);
409
410 void vm_unmap_aliases(void)
411 {
412 }
413 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
414
415 /*
416  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
417  * have one.
418  */
419 void  __attribute__((weak)) vmalloc_sync_all(void)
420 {
421 }
422
423 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
424                    struct page *page)
425 {
426         return -EINVAL;
427 }
428 EXPORT_SYMBOL(vm_insert_page);
429
430 /*
431  *  sys_brk() for the most part doesn't need the global kernel
432  *  lock, except when an application is doing something nasty
433  *  like trying to un-brk an area that has already been mapped
434  *  to a regular file.  in this case, the unmapping will need
435  *  to invoke file system routines that need the global lock.
436  */
437 SYSCALL_DEFINE1(brk, unsigned long, brk)
438 {
439         struct mm_struct *mm = current->mm;
440
441         if (brk < mm->start_brk || brk > mm->context.end_brk)
442                 return mm->brk;
443
444         if (mm->brk == brk)
445                 return mm->brk;
446
447         /*
448          * Always allow shrinking brk
449          */
450         if (brk <= mm->brk) {
451                 mm->brk = brk;
452                 return brk;
453         }
454
455         /*
456          * Ok, looks good - let it rip.
457          */
458         return mm->brk = brk;
459 }
460
461 /*
462  * initialise the VMA and region record slabs
463  */
464 void __init mmap_init(void)
465 {
466         int ret;
467
468         ret = percpu_counter_init(&vm_committed_as, 0);
469         VM_BUG_ON(ret);
470         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
471 }
472
473 /*
474  * validate the region tree
475  * - the caller must hold the region lock
476  */
477 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
478 static noinline void validate_nommu_regions(void)
479 {
480         struct vm_region *region, *last;
481         struct rb_node *p, *lastp;
482
483         lastp = rb_first(&nommu_region_tree);
484         if (!lastp)
485                 return;
486
487         last = rb_entry(lastp, struct vm_region, vm_rb);
488         BUG_ON(unlikely(last->vm_end <= last->vm_start));
489         BUG_ON(unlikely(last->vm_top < last->vm_end));
490
491         while ((p = rb_next(lastp))) {
492                 region = rb_entry(p, struct vm_region, vm_rb);
493                 last = rb_entry(lastp, struct vm_region, vm_rb);
494
495                 BUG_ON(unlikely(region->vm_end <= region->vm_start));
496                 BUG_ON(unlikely(region->vm_top < region->vm_end));
497                 BUG_ON(unlikely(region->vm_start < last->vm_top));
498
499                 lastp = p;
500         }
501 }
502 #else
503 static void validate_nommu_regions(void)
504 {
505 }
506 #endif
507
508 /*
509  * add a region into the global tree
510  */
511 static void add_nommu_region(struct vm_region *region)
512 {
513         struct vm_region *pregion;
514         struct rb_node **p, *parent;
515
516         validate_nommu_regions();
517
518         BUG_ON(region->vm_start & ~PAGE_MASK);
519
520         parent = NULL;
521         p = &nommu_region_tree.rb_node;
522         while (*p) {
523                 parent = *p;
524                 pregion = rb_entry(parent, struct vm_region, vm_rb);
525                 if (region->vm_start < pregion->vm_start)
526                         p = &(*p)->rb_left;
527                 else if (region->vm_start > pregion->vm_start)
528                         p = &(*p)->rb_right;
529                 else if (pregion == region)
530                         return;
531                 else
532                         BUG();
533         }
534
535         rb_link_node(&region->vm_rb, parent, p);
536         rb_insert_color(&region->vm_rb, &nommu_region_tree);
537
538         validate_nommu_regions();
539 }
540
541 /*
542  * delete a region from the global tree
543  */
544 static void delete_nommu_region(struct vm_region *region)
545 {
546         BUG_ON(!nommu_region_tree.rb_node);
547
548         validate_nommu_regions();
549         rb_erase(&region->vm_rb, &nommu_region_tree);
550         validate_nommu_regions();
551 }
552
553 /*
554  * free a contiguous series of pages
555  */
556 static void free_page_series(unsigned long from, unsigned long to)
557 {
558         for (; from < to; from += PAGE_SIZE) {
559                 struct page *page = virt_to_page(from);
560
561                 kdebug("- free %lx", from);
562                 atomic_long_dec(&mmap_pages_allocated);
563                 if (page_count(page) != 1)
564                         kdebug("free page %p: refcount not one: %d",
565                                page, page_count(page));
566                 put_page(page);
567         }
568 }
569
570 /*
571  * release a reference to a region
572  * - the caller must hold the region semaphore for writing, which this releases
573  * - the region may not have been added to the tree yet, in which case vm_top
574  *   will equal vm_start
575  */
576 static void __put_nommu_region(struct vm_region *region)
577         __releases(nommu_region_sem)
578 {
579         kenter("%p{%d}", region, atomic_read(&region->vm_usage));
580
581         BUG_ON(!nommu_region_tree.rb_node);
582
583         if (atomic_dec_and_test(&region->vm_usage)) {
584                 if (region->vm_top > region->vm_start)
585                         delete_nommu_region(region);
586                 up_write(&nommu_region_sem);
587
588                 if (region->vm_file)
589                         fput(region->vm_file);
590
591                 /* IO memory and memory shared directly out of the pagecache
592                  * from ramfs/tmpfs mustn't be released here */
593                 if (region->vm_flags & VM_MAPPED_COPY) {
594                         kdebug("free series");
595                         free_page_series(region->vm_start, region->vm_top);
596                 }
597                 kmem_cache_free(vm_region_jar, region);
598         } else {
599                 up_write(&nommu_region_sem);
600         }
601 }
602
603 /*
604  * release a reference to a region
605  */
606 static void put_nommu_region(struct vm_region *region)
607 {
608         down_write(&nommu_region_sem);
609         __put_nommu_region(region);
610 }
611
612 /*
613  * add a VMA into a process's mm_struct in the appropriate place in the list
614  * and tree and add to the address space's page tree also if not an anonymous
615  * page
616  * - should be called with mm->mmap_sem held writelocked
617  */
618 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
619 {
620         struct vm_area_struct *pvma, **pp;
621         struct address_space *mapping;
622         struct rb_node **p, *parent;
623
624         kenter(",%p", vma);
625
626         BUG_ON(!vma->vm_region);
627
628         mm->map_count++;
629         vma->vm_mm = mm;
630
631         /* add the VMA to the mapping */
632         if (vma->vm_file) {
633                 mapping = vma->vm_file->f_mapping;
634
635                 flush_dcache_mmap_lock(mapping);
636                 vma_prio_tree_insert(vma, &mapping->i_mmap);
637                 flush_dcache_mmap_unlock(mapping);
638         }
639
640         /* add the VMA to the tree */
641         parent = NULL;
642         p = &mm->mm_rb.rb_node;
643         while (*p) {
644                 parent = *p;
645                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
646
647                 /* sort by: start addr, end addr, VMA struct addr in that order
648                  * (the latter is necessary as we may get identical VMAs) */
649                 if (vma->vm_start < pvma->vm_start)
650                         p = &(*p)->rb_left;
651                 else if (vma->vm_start > pvma->vm_start)
652                         p = &(*p)->rb_right;
653                 else if (vma->vm_end < pvma->vm_end)
654                         p = &(*p)->rb_left;
655                 else if (vma->vm_end > pvma->vm_end)
656                         p = &(*p)->rb_right;
657                 else if (vma < pvma)
658                         p = &(*p)->rb_left;
659                 else if (vma > pvma)
660                         p = &(*p)->rb_right;
661                 else
662                         BUG();
663         }
664
665         rb_link_node(&vma->vm_rb, parent, p);
666         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
667
668         /* add VMA to the VMA list also */
669         for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
670                 if (pvma->vm_start > vma->vm_start)
671                         break;
672                 if (pvma->vm_start < vma->vm_start)
673                         continue;
674                 if (pvma->vm_end < vma->vm_end)
675                         break;
676         }
677
678         vma->vm_next = *pp;
679         *pp = vma;
680 }
681
682 /*
683  * delete a VMA from its owning mm_struct and address space
684  */
685 static void delete_vma_from_mm(struct vm_area_struct *vma)
686 {
687         struct vm_area_struct **pp;
688         struct address_space *mapping;
689         struct mm_struct *mm = vma->vm_mm;
690
691         kenter("%p", vma);
692
693         mm->map_count--;
694         if (mm->mmap_cache == vma)
695                 mm->mmap_cache = NULL;
696
697         /* remove the VMA from the mapping */
698         if (vma->vm_file) {
699                 mapping = vma->vm_file->f_mapping;
700
701                 flush_dcache_mmap_lock(mapping);
702                 vma_prio_tree_remove(vma, &mapping->i_mmap);
703                 flush_dcache_mmap_unlock(mapping);
704         }
705
706         /* remove from the MM's tree and list */
707         rb_erase(&vma->vm_rb, &mm->mm_rb);
708         for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
709                 if (*pp == vma) {
710                         *pp = vma->vm_next;
711                         break;
712                 }
713         }
714
715         vma->vm_mm = NULL;
716 }
717
718 /*
719  * destroy a VMA record
720  */
721 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
722 {
723         kenter("%p", vma);
724         if (vma->vm_ops && vma->vm_ops->close)
725                 vma->vm_ops->close(vma);
726         if (vma->vm_file) {
727                 fput(vma->vm_file);
728                 if (vma->vm_flags & VM_EXECUTABLE)
729                         removed_exe_file_vma(mm);
730         }
731         put_nommu_region(vma->vm_region);
732         kmem_cache_free(vm_area_cachep, vma);
733 }
734
735 /*
736  * look up the first VMA in which addr resides, NULL if none
737  * - should be called with mm->mmap_sem at least held readlocked
738  */
739 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
740 {
741         struct vm_area_struct *vma;
742         struct rb_node *n = mm->mm_rb.rb_node;
743
744         /* check the cache first */
745         vma = mm->mmap_cache;
746         if (vma && vma->vm_start <= addr && vma->vm_end > addr)
747                 return vma;
748
749         /* trawl the tree (there may be multiple mappings in which addr
750          * resides) */
751         for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
752                 vma = rb_entry(n, struct vm_area_struct, vm_rb);
753                 if (vma->vm_start > addr)
754                         return NULL;
755                 if (vma->vm_end > addr) {
756                         mm->mmap_cache = vma;
757                         return vma;
758                 }
759         }
760
761         return NULL;
762 }
763 EXPORT_SYMBOL(find_vma);
764
765 /*
766  * find a VMA
767  * - we don't extend stack VMAs under NOMMU conditions
768  */
769 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
770 {
771         return find_vma(mm, addr);
772 }
773
774 /*
775  * expand a stack to a given address
776  * - not supported under NOMMU conditions
777  */
778 int expand_stack(struct vm_area_struct *vma, unsigned long address)
779 {
780         return -ENOMEM;
781 }
782
783 /*
784  * look up the first VMA exactly that exactly matches addr
785  * - should be called with mm->mmap_sem at least held readlocked
786  */
787 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
788                                              unsigned long addr,
789                                              unsigned long len)
790 {
791         struct vm_area_struct *vma;
792         struct rb_node *n = mm->mm_rb.rb_node;
793         unsigned long end = addr + len;
794
795         /* check the cache first */
796         vma = mm->mmap_cache;
797         if (vma && vma->vm_start == addr && vma->vm_end == end)
798                 return vma;
799
800         /* trawl the tree (there may be multiple mappings in which addr
801          * resides) */
802         for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
803                 vma = rb_entry(n, struct vm_area_struct, vm_rb);
804                 if (vma->vm_start < addr)
805                         continue;
806                 if (vma->vm_start > addr)
807                         return NULL;
808                 if (vma->vm_end == end) {
809                         mm->mmap_cache = vma;
810                         return vma;
811                 }
812         }
813
814         return NULL;
815 }
816
817 /*
818  * determine whether a mapping should be permitted and, if so, what sort of
819  * mapping we're capable of supporting
820  */
821 static int validate_mmap_request(struct file *file,
822                                  unsigned long addr,
823                                  unsigned long len,
824                                  unsigned long prot,
825                                  unsigned long flags,
826                                  unsigned long pgoff,
827                                  unsigned long *_capabilities)
828 {
829         unsigned long capabilities, rlen;
830         unsigned long reqprot = prot;
831         int ret;
832
833         /* do the simple checks first */
834         if (flags & MAP_FIXED || addr) {
835                 printk(KERN_DEBUG
836                        "%d: Can't do fixed-address/overlay mmap of RAM\n",
837                        current->pid);
838                 return -EINVAL;
839         }
840
841         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
842             (flags & MAP_TYPE) != MAP_SHARED)
843                 return -EINVAL;
844
845         if (!len)
846                 return -EINVAL;
847
848         /* Careful about overflows.. */
849         rlen = PAGE_ALIGN(len);
850         if (!rlen || rlen > TASK_SIZE)
851                 return -ENOMEM;
852
853         /* offset overflow? */
854         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
855                 return -EOVERFLOW;
856
857         if (file) {
858                 /* validate file mapping requests */
859                 struct address_space *mapping;
860
861                 /* files must support mmap */
862                 if (!file->f_op || !file->f_op->mmap)
863                         return -ENODEV;
864
865                 /* work out if what we've got could possibly be shared
866                  * - we support chardevs that provide their own "memory"
867                  * - we support files/blockdevs that are memory backed
868                  */
869                 mapping = file->f_mapping;
870                 if (!mapping)
871                         mapping = file->f_path.dentry->d_inode->i_mapping;
872
873                 capabilities = 0;
874                 if (mapping && mapping->backing_dev_info)
875                         capabilities = mapping->backing_dev_info->capabilities;
876
877                 if (!capabilities) {
878                         /* no explicit capabilities set, so assume some
879                          * defaults */
880                         switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
881                         case S_IFREG:
882                         case S_IFBLK:
883                                 capabilities = BDI_CAP_MAP_COPY;
884                                 break;
885
886                         case S_IFCHR:
887                                 capabilities =
888                                         BDI_CAP_MAP_DIRECT |
889                                         BDI_CAP_READ_MAP |
890                                         BDI_CAP_WRITE_MAP;
891                                 break;
892
893                         default:
894                                 return -EINVAL;
895                         }
896                 }
897
898                 /* eliminate any capabilities that we can't support on this
899                  * device */
900                 if (!file->f_op->get_unmapped_area)
901                         capabilities &= ~BDI_CAP_MAP_DIRECT;
902                 if (!file->f_op->read)
903                         capabilities &= ~BDI_CAP_MAP_COPY;
904
905                 if (flags & MAP_SHARED) {
906                         /* do checks for writing, appending and locking */
907                         if ((prot & PROT_WRITE) &&
908                             !(file->f_mode & FMODE_WRITE))
909                                 return -EACCES;
910
911                         if (IS_APPEND(file->f_path.dentry->d_inode) &&
912                             (file->f_mode & FMODE_WRITE))
913                                 return -EACCES;
914
915                         if (locks_verify_locked(file->f_path.dentry->d_inode))
916                                 return -EAGAIN;
917
918                         if (!(capabilities & BDI_CAP_MAP_DIRECT))
919                                 return -ENODEV;
920
921                         if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
922                             ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
923                             ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
924                             ) {
925                                 printk("MAP_SHARED not completely supported on !MMU\n");
926                                 return -EINVAL;
927                         }
928
929                         /* we mustn't privatise shared mappings */
930                         capabilities &= ~BDI_CAP_MAP_COPY;
931                 }
932                 else {
933                         /* we're going to read the file into private memory we
934                          * allocate */
935                         if (!(capabilities & BDI_CAP_MAP_COPY))
936                                 return -ENODEV;
937
938                         /* we don't permit a private writable mapping to be
939                          * shared with the backing device */
940                         if (prot & PROT_WRITE)
941                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
942                 }
943
944                 /* handle executable mappings and implied executable
945                  * mappings */
946                 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
947                         if (prot & PROT_EXEC)
948                                 return -EPERM;
949                 }
950                 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
951                         /* handle implication of PROT_EXEC by PROT_READ */
952                         if (current->personality & READ_IMPLIES_EXEC) {
953                                 if (capabilities & BDI_CAP_EXEC_MAP)
954                                         prot |= PROT_EXEC;
955                         }
956                 }
957                 else if ((prot & PROT_READ) &&
958                          (prot & PROT_EXEC) &&
959                          !(capabilities & BDI_CAP_EXEC_MAP)
960                          ) {
961                         /* backing file is not executable, try to copy */
962                         capabilities &= ~BDI_CAP_MAP_DIRECT;
963                 }
964         }
965         else {
966                 /* anonymous mappings are always memory backed and can be
967                  * privately mapped
968                  */
969                 capabilities = BDI_CAP_MAP_COPY;
970
971                 /* handle PROT_EXEC implication by PROT_READ */
972                 if ((prot & PROT_READ) &&
973                     (current->personality & READ_IMPLIES_EXEC))
974                         prot |= PROT_EXEC;
975         }
976
977         /* allow the security API to have its say */
978         ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
979         if (ret < 0)
980                 return ret;
981
982         /* looks okay */
983         *_capabilities = capabilities;
984         return 0;
985 }
986
987 /*
988  * we've determined that we can make the mapping, now translate what we
989  * now know into VMA flags
990  */
991 static unsigned long determine_vm_flags(struct file *file,
992                                         unsigned long prot,
993                                         unsigned long flags,
994                                         unsigned long capabilities)
995 {
996         unsigned long vm_flags;
997
998         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
999         vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1000         /* vm_flags |= mm->def_flags; */
1001
1002         if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1003                 /* attempt to share read-only copies of mapped file chunks */
1004                 if (file && !(prot & PROT_WRITE))
1005                         vm_flags |= VM_MAYSHARE;
1006         }
1007         else {
1008                 /* overlay a shareable mapping on the backing device or inode
1009                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1010                  * romfs/cramfs */
1011                 if (flags & MAP_SHARED)
1012                         vm_flags |= VM_MAYSHARE | VM_SHARED;
1013                 else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0)
1014                         vm_flags |= VM_MAYSHARE;
1015         }
1016
1017         /* refuse to let anyone share private mappings with this process if
1018          * it's being traced - otherwise breakpoints set in it may interfere
1019          * with another untraced process
1020          */
1021         if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1022                 vm_flags &= ~VM_MAYSHARE;
1023
1024         return vm_flags;
1025 }
1026
1027 /*
1028  * set up a shared mapping on a file (the driver or filesystem provides and
1029  * pins the storage)
1030  */
1031 static int do_mmap_shared_file(struct vm_area_struct *vma)
1032 {
1033         int ret;
1034
1035         ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1036         if (ret == 0) {
1037                 vma->vm_region->vm_top = vma->vm_region->vm_end;
1038                 return ret;
1039         }
1040         if (ret != -ENOSYS)
1041                 return ret;
1042
1043         /* getting an ENOSYS error indicates that direct mmap isn't
1044          * possible (as opposed to tried but failed) so we'll fall
1045          * through to making a private copy of the data and mapping
1046          * that if we can */
1047         return -ENODEV;
1048 }
1049
1050 /*
1051  * set up a private mapping or an anonymous shared mapping
1052  */
1053 static int do_mmap_private(struct vm_area_struct *vma,
1054                            struct vm_region *region,
1055                            unsigned long len)
1056 {
1057         struct page *pages;
1058         unsigned long total, point, n, rlen;
1059         void *base;
1060         int ret, order;
1061
1062         /* invoke the file's mapping function so that it can keep track of
1063          * shared mappings on devices or memory
1064          * - VM_MAYSHARE will be set if it may attempt to share
1065          */
1066         if (vma->vm_file) {
1067                 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1068                 if (ret == 0) {
1069                         /* shouldn't return success if we're not sharing */
1070                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1071                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1072                         return ret;
1073                 }
1074                 if (ret != -ENOSYS)
1075                         return ret;
1076
1077                 /* getting an ENOSYS error indicates that direct mmap isn't
1078                  * possible (as opposed to tried but failed) so we'll try to
1079                  * make a private copy of the data and map that instead */
1080         }
1081
1082         rlen = PAGE_ALIGN(len);
1083
1084         /* allocate some memory to hold the mapping
1085          * - note that this may not return a page-aligned address if the object
1086          *   we're allocating is smaller than a page
1087          */
1088         order = get_order(rlen);
1089         kdebug("alloc order %d for %lx", order, len);
1090
1091         pages = alloc_pages(GFP_KERNEL, order);
1092         if (!pages)
1093                 goto enomem;
1094
1095         total = 1 << order;
1096         atomic_long_add(total, &mmap_pages_allocated);
1097
1098         point = rlen >> PAGE_SHIFT;
1099
1100         /* we allocated a power-of-2 sized page set, so we may want to trim off
1101          * the excess */
1102         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1103                 while (total > point) {
1104                         order = ilog2(total - point);
1105                         n = 1 << order;
1106                         kdebug("shave %lu/%lu @%lu", n, total - point, total);
1107                         atomic_long_sub(n, &mmap_pages_allocated);
1108                         total -= n;
1109                         set_page_refcounted(pages + total);
1110                         __free_pages(pages + total, order);
1111                 }
1112         }
1113
1114         for (point = 1; point < total; point++)
1115                 set_page_refcounted(&pages[point]);
1116
1117         base = page_address(pages);
1118         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1119         region->vm_start = (unsigned long) base;
1120         region->vm_end   = region->vm_start + rlen;
1121         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1122
1123         vma->vm_start = region->vm_start;
1124         vma->vm_end   = region->vm_start + len;
1125
1126         if (vma->vm_file) {
1127                 /* read the contents of a file into the copy */
1128                 mm_segment_t old_fs;
1129                 loff_t fpos;
1130
1131                 fpos = vma->vm_pgoff;
1132                 fpos <<= PAGE_SHIFT;
1133
1134                 old_fs = get_fs();
1135                 set_fs(KERNEL_DS);
1136                 ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1137                 set_fs(old_fs);
1138
1139                 if (ret < 0)
1140                         goto error_free;
1141
1142                 /* clear the last little bit */
1143                 if (ret < rlen)
1144                         memset(base + ret, 0, rlen - ret);
1145
1146         } else {
1147                 /* if it's an anonymous mapping, then just clear it */
1148                 memset(base, 0, rlen);
1149         }
1150
1151         return 0;
1152
1153 error_free:
1154         free_page_series(region->vm_start, region->vm_end);
1155         region->vm_start = vma->vm_start = 0;
1156         region->vm_end   = vma->vm_end = 0;
1157         region->vm_top   = 0;
1158         return ret;
1159
1160 enomem:
1161         printk("Allocation of length %lu from process %d (%s) failed\n",
1162                len, current->pid, current->comm);
1163         show_free_areas();
1164         return -ENOMEM;
1165 }
1166
1167 /*
1168  * handle mapping creation for uClinux
1169  */
1170 unsigned long do_mmap_pgoff(struct file *file,
1171                             unsigned long addr,
1172                             unsigned long len,
1173                             unsigned long prot,
1174                             unsigned long flags,
1175                             unsigned long pgoff)
1176 {
1177         struct vm_area_struct *vma;
1178         struct vm_region *region;
1179         struct rb_node *rb;
1180         unsigned long capabilities, vm_flags, result;
1181         int ret;
1182
1183         kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1184
1185         if (!(flags & MAP_FIXED))
1186                 addr = round_hint_to_min(addr);
1187
1188         /* decide whether we should attempt the mapping, and if so what sort of
1189          * mapping */
1190         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1191                                     &capabilities);
1192         if (ret < 0) {
1193                 kleave(" = %d [val]", ret);
1194                 return ret;
1195         }
1196
1197         /* we've determined that we can make the mapping, now translate what we
1198          * now know into VMA flags */
1199         vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1200
1201         /* we're going to need to record the mapping */
1202         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1203         if (!region)
1204                 goto error_getting_region;
1205
1206         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1207         if (!vma)
1208                 goto error_getting_vma;
1209
1210         atomic_set(&region->vm_usage, 1);
1211         region->vm_flags = vm_flags;
1212         region->vm_pgoff = pgoff;
1213
1214         INIT_LIST_HEAD(&vma->anon_vma_node);
1215         vma->vm_flags = vm_flags;
1216         vma->vm_pgoff = pgoff;
1217
1218         if (file) {
1219                 region->vm_file = file;
1220                 get_file(file);
1221                 vma->vm_file = file;
1222                 get_file(file);
1223                 if (vm_flags & VM_EXECUTABLE) {
1224                         added_exe_file_vma(current->mm);
1225                         vma->vm_mm = current->mm;
1226                 }
1227         }
1228
1229         down_write(&nommu_region_sem);
1230
1231         /* if we want to share, we need to check for regions created by other
1232          * mmap() calls that overlap with our proposed mapping
1233          * - we can only share with a superset match on most regular files
1234          * - shared mappings on character devices and memory backed files are
1235          *   permitted to overlap inexactly as far as we are concerned for in
1236          *   these cases, sharing is handled in the driver or filesystem rather
1237          *   than here
1238          */
1239         if (vm_flags & VM_MAYSHARE) {
1240                 struct vm_region *pregion;
1241                 unsigned long pglen, rpglen, pgend, rpgend, start;
1242
1243                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1244                 pgend = pgoff + pglen;
1245
1246                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1247                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1248
1249                         if (!(pregion->vm_flags & VM_MAYSHARE))
1250                                 continue;
1251
1252                         /* search for overlapping mappings on the same file */
1253                         if (pregion->vm_file->f_path.dentry->d_inode !=
1254                             file->f_path.dentry->d_inode)
1255                                 continue;
1256
1257                         if (pregion->vm_pgoff >= pgend)
1258                                 continue;
1259
1260                         rpglen = pregion->vm_end - pregion->vm_start;
1261                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1262                         rpgend = pregion->vm_pgoff + rpglen;
1263                         if (pgoff >= rpgend)
1264                                 continue;
1265
1266                         /* handle inexactly overlapping matches between
1267                          * mappings */
1268                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1269                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1270                                 /* new mapping is not a subset of the region */
1271                                 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1272                                         goto sharing_violation;
1273                                 continue;
1274                         }
1275
1276                         /* we've found a region we can share */
1277                         atomic_inc(&pregion->vm_usage);
1278                         vma->vm_region = pregion;
1279                         start = pregion->vm_start;
1280                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1281                         vma->vm_start = start;
1282                         vma->vm_end = start + len;
1283
1284                         if (pregion->vm_flags & VM_MAPPED_COPY) {
1285                                 kdebug("share copy");
1286                                 vma->vm_flags |= VM_MAPPED_COPY;
1287                         } else {
1288                                 kdebug("share mmap");
1289                                 ret = do_mmap_shared_file(vma);
1290                                 if (ret < 0) {
1291                                         vma->vm_region = NULL;
1292                                         vma->vm_start = 0;
1293                                         vma->vm_end = 0;
1294                                         atomic_dec(&pregion->vm_usage);
1295                                         pregion = NULL;
1296                                         goto error_just_free;
1297                                 }
1298                         }
1299                         fput(region->vm_file);
1300                         kmem_cache_free(vm_region_jar, region);
1301                         region = pregion;
1302                         result = start;
1303                         goto share;
1304                 }
1305
1306                 /* obtain the address at which to make a shared mapping
1307                  * - this is the hook for quasi-memory character devices to
1308                  *   tell us the location of a shared mapping
1309                  */
1310                 if (file && file->f_op->get_unmapped_area) {
1311                         addr = file->f_op->get_unmapped_area(file, addr, len,
1312                                                              pgoff, flags);
1313                         if (IS_ERR((void *) addr)) {
1314                                 ret = addr;
1315                                 if (ret != (unsigned long) -ENOSYS)
1316                                         goto error_just_free;
1317
1318                                 /* the driver refused to tell us where to site
1319                                  * the mapping so we'll have to attempt to copy
1320                                  * it */
1321                                 ret = (unsigned long) -ENODEV;
1322                                 if (!(capabilities & BDI_CAP_MAP_COPY))
1323                                         goto error_just_free;
1324
1325                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1326                         } else {
1327                                 vma->vm_start = region->vm_start = addr;
1328                                 vma->vm_end = region->vm_end = addr + len;
1329                         }
1330                 }
1331         }
1332
1333         vma->vm_region = region;
1334
1335         /* set up the mapping */
1336         if (file && vma->vm_flags & VM_SHARED)
1337                 ret = do_mmap_shared_file(vma);
1338         else
1339                 ret = do_mmap_private(vma, region, len);
1340         if (ret < 0)
1341                 goto error_put_region;
1342
1343         add_nommu_region(region);
1344
1345         /* okay... we have a mapping; now we have to register it */
1346         result = vma->vm_start;
1347
1348         current->mm->total_vm += len >> PAGE_SHIFT;
1349
1350 share:
1351         add_vma_to_mm(current->mm, vma);
1352
1353         up_write(&nommu_region_sem);
1354
1355         if (prot & PROT_EXEC)
1356                 flush_icache_range(result, result + len);
1357
1358         kleave(" = %lx", result);
1359         return result;
1360
1361 error_put_region:
1362         __put_nommu_region(region);
1363         if (vma) {
1364                 if (vma->vm_file) {
1365                         fput(vma->vm_file);
1366                         if (vma->vm_flags & VM_EXECUTABLE)
1367                                 removed_exe_file_vma(vma->vm_mm);
1368                 }
1369                 kmem_cache_free(vm_area_cachep, vma);
1370         }
1371         kleave(" = %d [pr]", ret);
1372         return ret;
1373
1374 error_just_free:
1375         up_write(&nommu_region_sem);
1376 error:
1377         fput(region->vm_file);
1378         kmem_cache_free(vm_region_jar, region);
1379         fput(vma->vm_file);
1380         if (vma->vm_flags & VM_EXECUTABLE)
1381                 removed_exe_file_vma(vma->vm_mm);
1382         kmem_cache_free(vm_area_cachep, vma);
1383         kleave(" = %d", ret);
1384         return ret;
1385
1386 sharing_violation:
1387         up_write(&nommu_region_sem);
1388         printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1389         ret = -EINVAL;
1390         goto error;
1391
1392 error_getting_vma:
1393         kmem_cache_free(vm_region_jar, region);
1394         printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1395                " from process %d failed\n",
1396                len, current->pid);
1397         show_free_areas();
1398         return -ENOMEM;
1399
1400 error_getting_region:
1401         printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1402                " from process %d failed\n",
1403                len, current->pid);
1404         show_free_areas();
1405         return -ENOMEM;
1406 }
1407 EXPORT_SYMBOL(do_mmap_pgoff);
1408
1409 /*
1410  * split a vma into two pieces at address 'addr', a new vma is allocated either
1411  * for the first part or the tail.
1412  */
1413 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1414               unsigned long addr, int new_below)
1415 {
1416         struct vm_area_struct *new;
1417         struct vm_region *region;
1418         unsigned long npages;
1419
1420         kenter("");
1421
1422         /* we're only permitted to split anonymous regions that have a single
1423          * owner */
1424         if (vma->vm_file ||
1425             atomic_read(&vma->vm_region->vm_usage) != 1)
1426                 return -ENOMEM;
1427
1428         if (mm->map_count >= sysctl_max_map_count)
1429                 return -ENOMEM;
1430
1431         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1432         if (!region)
1433                 return -ENOMEM;
1434
1435         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1436         if (!new) {
1437                 kmem_cache_free(vm_region_jar, region);
1438                 return -ENOMEM;
1439         }
1440
1441         /* most fields are the same, copy all, and then fixup */
1442         *new = *vma;
1443         *region = *vma->vm_region;
1444         new->vm_region = region;
1445
1446         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1447
1448         if (new_below) {
1449                 region->vm_top = region->vm_end = new->vm_end = addr;
1450         } else {
1451                 region->vm_start = new->vm_start = addr;
1452                 region->vm_pgoff = new->vm_pgoff += npages;
1453         }
1454
1455         if (new->vm_ops && new->vm_ops->open)
1456                 new->vm_ops->open(new);
1457
1458         delete_vma_from_mm(vma);
1459         down_write(&nommu_region_sem);
1460         delete_nommu_region(vma->vm_region);
1461         if (new_below) {
1462                 vma->vm_region->vm_start = vma->vm_start = addr;
1463                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1464         } else {
1465                 vma->vm_region->vm_end = vma->vm_end = addr;
1466                 vma->vm_region->vm_top = addr;
1467         }
1468         add_nommu_region(vma->vm_region);
1469         add_nommu_region(new->vm_region);
1470         up_write(&nommu_region_sem);
1471         add_vma_to_mm(mm, vma);
1472         add_vma_to_mm(mm, new);
1473         return 0;
1474 }
1475
1476 /*
1477  * shrink a VMA by removing the specified chunk from either the beginning or
1478  * the end
1479  */
1480 static int shrink_vma(struct mm_struct *mm,
1481                       struct vm_area_struct *vma,
1482                       unsigned long from, unsigned long to)
1483 {
1484         struct vm_region *region;
1485
1486         kenter("");
1487
1488         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1489          * and list */
1490         delete_vma_from_mm(vma);
1491         if (from > vma->vm_start)
1492                 vma->vm_end = from;
1493         else
1494                 vma->vm_start = to;
1495         add_vma_to_mm(mm, vma);
1496
1497         /* cut the backing region down to size */
1498         region = vma->vm_region;
1499         BUG_ON(atomic_read(&region->vm_usage) != 1);
1500
1501         down_write(&nommu_region_sem);
1502         delete_nommu_region(region);
1503         if (from > region->vm_start) {
1504                 to = region->vm_top;
1505                 region->vm_top = region->vm_end = from;
1506         } else {
1507                 region->vm_start = to;
1508         }
1509         add_nommu_region(region);
1510         up_write(&nommu_region_sem);
1511
1512         free_page_series(from, to);
1513         return 0;
1514 }
1515
1516 /*
1517  * release a mapping
1518  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1519  *   VMA, though it need not cover the whole VMA
1520  */
1521 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1522 {
1523         struct vm_area_struct *vma;
1524         struct rb_node *rb;
1525         unsigned long end = start + len;
1526         int ret;
1527
1528         kenter(",%lx,%zx", start, len);
1529
1530         if (len == 0)
1531                 return -EINVAL;
1532
1533         /* find the first potentially overlapping VMA */
1534         vma = find_vma(mm, start);
1535         if (!vma) {
1536                 static int limit = 0;
1537                 if (limit < 5) {
1538                         printk(KERN_WARNING
1539                                "munmap of memory not mmapped by process %d"
1540                                " (%s): 0x%lx-0x%lx\n",
1541                                current->pid, current->comm,
1542                                start, start + len - 1);
1543                         limit++;
1544                 }
1545                 return -EINVAL;
1546         }
1547
1548         /* we're allowed to split an anonymous VMA but not a file-backed one */
1549         if (vma->vm_file) {
1550                 do {
1551                         if (start > vma->vm_start) {
1552                                 kleave(" = -EINVAL [miss]");
1553                                 return -EINVAL;
1554                         }
1555                         if (end == vma->vm_end)
1556                                 goto erase_whole_vma;
1557                         rb = rb_next(&vma->vm_rb);
1558                         vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1559                 } while (rb);
1560                 kleave(" = -EINVAL [split file]");
1561                 return -EINVAL;
1562         } else {
1563                 /* the chunk must be a subset of the VMA found */
1564                 if (start == vma->vm_start && end == vma->vm_end)
1565                         goto erase_whole_vma;
1566                 if (start < vma->vm_start || end > vma->vm_end) {
1567                         kleave(" = -EINVAL [superset]");
1568                         return -EINVAL;
1569                 }
1570                 if (start & ~PAGE_MASK) {
1571                         kleave(" = -EINVAL [unaligned start]");
1572                         return -EINVAL;
1573                 }
1574                 if (end != vma->vm_end && end & ~PAGE_MASK) {
1575                         kleave(" = -EINVAL [unaligned split]");
1576                         return -EINVAL;
1577                 }
1578                 if (start != vma->vm_start && end != vma->vm_end) {
1579                         ret = split_vma(mm, vma, start, 1);
1580                         if (ret < 0) {
1581                                 kleave(" = %d [split]", ret);
1582                                 return ret;
1583                         }
1584                 }
1585                 return shrink_vma(mm, vma, start, end);
1586         }
1587
1588 erase_whole_vma:
1589         delete_vma_from_mm(vma);
1590         delete_vma(mm, vma);
1591         kleave(" = 0");
1592         return 0;
1593 }
1594 EXPORT_SYMBOL(do_munmap);
1595
1596 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1597 {
1598         int ret;
1599         struct mm_struct *mm = current->mm;
1600
1601         down_write(&mm->mmap_sem);
1602         ret = do_munmap(mm, addr, len);
1603         up_write(&mm->mmap_sem);
1604         return ret;
1605 }
1606
1607 /*
1608  * release all the mappings made in a process's VM space
1609  */
1610 void exit_mmap(struct mm_struct *mm)
1611 {
1612         struct vm_area_struct *vma;
1613
1614         if (!mm)
1615                 return;
1616
1617         kenter("");
1618
1619         mm->total_vm = 0;
1620
1621         while ((vma = mm->mmap)) {
1622                 mm->mmap = vma->vm_next;
1623                 delete_vma_from_mm(vma);
1624                 delete_vma(mm, vma);
1625         }
1626
1627         kleave("");
1628 }
1629
1630 unsigned long do_brk(unsigned long addr, unsigned long len)
1631 {
1632         return -ENOMEM;
1633 }
1634
1635 /*
1636  * expand (or shrink) an existing mapping, potentially moving it at the same
1637  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1638  *
1639  * under NOMMU conditions, we only permit changing a mapping's size, and only
1640  * as long as it stays within the region allocated by do_mmap_private() and the
1641  * block is not shareable
1642  *
1643  * MREMAP_FIXED is not supported under NOMMU conditions
1644  */
1645 unsigned long do_mremap(unsigned long addr,
1646                         unsigned long old_len, unsigned long new_len,
1647                         unsigned long flags, unsigned long new_addr)
1648 {
1649         struct vm_area_struct *vma;
1650
1651         /* insanity checks first */
1652         if (old_len == 0 || new_len == 0)
1653                 return (unsigned long) -EINVAL;
1654
1655         if (addr & ~PAGE_MASK)
1656                 return -EINVAL;
1657
1658         if (flags & MREMAP_FIXED && new_addr != addr)
1659                 return (unsigned long) -EINVAL;
1660
1661         vma = find_vma_exact(current->mm, addr, old_len);
1662         if (!vma)
1663                 return (unsigned long) -EINVAL;
1664
1665         if (vma->vm_end != vma->vm_start + old_len)
1666                 return (unsigned long) -EFAULT;
1667
1668         if (vma->vm_flags & VM_MAYSHARE)
1669                 return (unsigned long) -EPERM;
1670
1671         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1672                 return (unsigned long) -ENOMEM;
1673
1674         /* all checks complete - do it */
1675         vma->vm_end = vma->vm_start + new_len;
1676         return vma->vm_start;
1677 }
1678 EXPORT_SYMBOL(do_mremap);
1679
1680 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1681                 unsigned long, new_len, unsigned long, flags,
1682                 unsigned long, new_addr)
1683 {
1684         unsigned long ret;
1685
1686         down_write(&current->mm->mmap_sem);
1687         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1688         up_write(&current->mm->mmap_sem);
1689         return ret;
1690 }
1691
1692 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1693                         unsigned int foll_flags)
1694 {
1695         return NULL;
1696 }
1697
1698 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1699                 unsigned long to, unsigned long size, pgprot_t prot)
1700 {
1701         vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1702         return 0;
1703 }
1704 EXPORT_SYMBOL(remap_pfn_range);
1705
1706 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1707                         unsigned long pgoff)
1708 {
1709         unsigned int size = vma->vm_end - vma->vm_start;
1710
1711         if (!(vma->vm_flags & VM_USERMAP))
1712                 return -EINVAL;
1713
1714         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1715         vma->vm_end = vma->vm_start + size;
1716
1717         return 0;
1718 }
1719 EXPORT_SYMBOL(remap_vmalloc_range);
1720
1721 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1722 {
1723 }
1724
1725 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1726         unsigned long len, unsigned long pgoff, unsigned long flags)
1727 {
1728         return -ENOMEM;
1729 }
1730
1731 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1732 {
1733 }
1734
1735 void unmap_mapping_range(struct address_space *mapping,
1736                          loff_t const holebegin, loff_t const holelen,
1737                          int even_cows)
1738 {
1739 }
1740 EXPORT_SYMBOL(unmap_mapping_range);
1741
1742 /*
1743  * ask for an unmapped area at which to create a mapping on a file
1744  */
1745 unsigned long get_unmapped_area(struct file *file, unsigned long addr,
1746                                 unsigned long len, unsigned long pgoff,
1747                                 unsigned long flags)
1748 {
1749         unsigned long (*get_area)(struct file *, unsigned long, unsigned long,
1750                                   unsigned long, unsigned long);
1751
1752         get_area = current->mm->get_unmapped_area;
1753         if (file && file->f_op && file->f_op->get_unmapped_area)
1754                 get_area = file->f_op->get_unmapped_area;
1755
1756         if (!get_area)
1757                 return -ENOSYS;
1758
1759         return get_area(file, addr, len, pgoff, flags);
1760 }
1761 EXPORT_SYMBOL(get_unmapped_area);
1762
1763 /*
1764  * Check that a process has enough memory to allocate a new virtual
1765  * mapping. 0 means there is enough memory for the allocation to
1766  * succeed and -ENOMEM implies there is not.
1767  *
1768  * We currently support three overcommit policies, which are set via the
1769  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1770  *
1771  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1772  * Additional code 2002 Jul 20 by Robert Love.
1773  *
1774  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1775  *
1776  * Note this is a helper function intended to be used by LSMs which
1777  * wish to use this logic.
1778  */
1779 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1780 {
1781         unsigned long free, allowed;
1782
1783         vm_acct_memory(pages);
1784
1785         /*
1786          * Sometimes we want to use more memory than we have
1787          */
1788         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1789                 return 0;
1790
1791         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1792                 unsigned long n;
1793
1794                 free = global_page_state(NR_FILE_PAGES);
1795                 free += nr_swap_pages;
1796
1797                 /*
1798                  * Any slabs which are created with the
1799                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1800                  * which are reclaimable, under pressure.  The dentry
1801                  * cache and most inode caches should fall into this
1802                  */
1803                 free += global_page_state(NR_SLAB_RECLAIMABLE);
1804
1805                 /*
1806                  * Leave the last 3% for root
1807                  */
1808                 if (!cap_sys_admin)
1809                         free -= free / 32;
1810
1811                 if (free > pages)
1812                         return 0;
1813
1814                 /*
1815                  * nr_free_pages() is very expensive on large systems,
1816                  * only call if we're about to fail.
1817                  */
1818                 n = nr_free_pages();
1819
1820                 /*
1821                  * Leave reserved pages. The pages are not for anonymous pages.
1822                  */
1823                 if (n <= totalreserve_pages)
1824                         goto error;
1825                 else
1826                         n -= totalreserve_pages;
1827
1828                 /*
1829                  * Leave the last 3% for root
1830                  */
1831                 if (!cap_sys_admin)
1832                         n -= n / 32;
1833                 free += n;
1834
1835                 if (free > pages)
1836                         return 0;
1837
1838                 goto error;
1839         }
1840
1841         allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1842         /*
1843          * Leave the last 3% for root
1844          */
1845         if (!cap_sys_admin)
1846                 allowed -= allowed / 32;
1847         allowed += total_swap_pages;
1848
1849         /* Don't let a single process grow too big:
1850            leave 3% of the size of this process for other processes */
1851         if (mm)
1852                 allowed -= mm->total_vm / 32;
1853
1854         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1855                 return 0;
1856
1857 error:
1858         vm_unacct_memory(pages);
1859
1860         return -ENOMEM;
1861 }
1862
1863 int in_gate_area_no_task(unsigned long addr)
1864 {
1865         return 0;
1866 }
1867
1868 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1869 {
1870         BUG();
1871         return 0;
1872 }
1873 EXPORT_SYMBOL(filemap_fault);
1874
1875 /*
1876  * Access another process' address space.
1877  * - source/target buffer must be kernel space
1878  */
1879 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1880 {
1881         struct vm_area_struct *vma;
1882         struct mm_struct *mm;
1883
1884         if (addr + len < addr)
1885                 return 0;
1886
1887         mm = get_task_mm(tsk);
1888         if (!mm)
1889                 return 0;
1890
1891         down_read(&mm->mmap_sem);
1892
1893         /* the access must start within one of the target process's mappings */
1894         vma = find_vma(mm, addr);
1895         if (vma) {
1896                 /* don't overrun this mapping */
1897                 if (addr + len >= vma->vm_end)
1898                         len = vma->vm_end - addr;
1899
1900                 /* only read or write mappings where it is permitted */
1901                 if (write && vma->vm_flags & VM_MAYWRITE)
1902                         len -= copy_to_user((void *) addr, buf, len);
1903                 else if (!write && vma->vm_flags & VM_MAYREAD)
1904                         len -= copy_from_user(buf, (void *) addr, len);
1905                 else
1906                         len = 0;
1907         } else {
1908                 len = 0;
1909         }
1910
1911         up_read(&mm->mmap_sem);
1912         mmput(mm);
1913         return len;
1914 }