NOMMU: Delete askedalloc and realalloc variables
[safe/jmp/linux-2.6] / mm / nommu.c
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2005 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007      Paul Mundt <lethal@linux-sh.org>
14  */
15
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36
37 #include "internal.h"
38
39 void *high_memory;
40 struct page *mem_map;
41 unsigned long max_mapnr;
42 unsigned long num_physpages;
43 atomic_long_t vm_committed_space = ATOMIC_LONG_INIT(0);
44 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
45 int sysctl_overcommit_ratio = 50; /* default is 50% */
46 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
47 int heap_stack_gap = 0;
48
49 EXPORT_SYMBOL(mem_map);
50 EXPORT_SYMBOL(num_physpages);
51
52 /* list of shareable VMAs */
53 struct rb_root nommu_vma_tree = RB_ROOT;
54 DECLARE_RWSEM(nommu_vma_sem);
55
56 struct vm_operations_struct generic_file_vm_ops = {
57 };
58
59 /*
60  * Handle all mappings that got truncated by a "truncate()"
61  * system call.
62  *
63  * NOTE! We have to be ready to update the memory sharing
64  * between the file and the memory map for a potential last
65  * incomplete page.  Ugly, but necessary.
66  */
67 int vmtruncate(struct inode *inode, loff_t offset)
68 {
69         struct address_space *mapping = inode->i_mapping;
70         unsigned long limit;
71
72         if (inode->i_size < offset)
73                 goto do_expand;
74         i_size_write(inode, offset);
75
76         truncate_inode_pages(mapping, offset);
77         goto out_truncate;
78
79 do_expand:
80         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
81         if (limit != RLIM_INFINITY && offset > limit)
82                 goto out_sig;
83         if (offset > inode->i_sb->s_maxbytes)
84                 goto out;
85         i_size_write(inode, offset);
86
87 out_truncate:
88         if (inode->i_op->truncate)
89                 inode->i_op->truncate(inode);
90         return 0;
91 out_sig:
92         send_sig(SIGXFSZ, current, 0);
93 out:
94         return -EFBIG;
95 }
96
97 EXPORT_SYMBOL(vmtruncate);
98
99 /*
100  * Return the total memory allocated for this pointer, not
101  * just what the caller asked for.
102  *
103  * Doesn't have to be accurate, i.e. may have races.
104  */
105 unsigned int kobjsize(const void *objp)
106 {
107         struct page *page;
108
109         /*
110          * If the object we have should not have ksize performed on it,
111          * return size of 0
112          */
113         if (!objp || !virt_addr_valid(objp))
114                 return 0;
115
116         page = virt_to_head_page(objp);
117
118         /*
119          * If the allocator sets PageSlab, we know the pointer came from
120          * kmalloc().
121          */
122         if (PageSlab(page))
123                 return ksize(objp);
124
125         /*
126          * The ksize() function is only guaranteed to work for pointers
127          * returned by kmalloc(). So handle arbitrary pointers here.
128          */
129         return PAGE_SIZE << compound_order(page);
130 }
131
132 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
133                      unsigned long start, int len, int flags,
134                 struct page **pages, struct vm_area_struct **vmas)
135 {
136         struct vm_area_struct *vma;
137         unsigned long vm_flags;
138         int i;
139         int write = !!(flags & GUP_FLAGS_WRITE);
140         int force = !!(flags & GUP_FLAGS_FORCE);
141         int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
142
143         /* calculate required read or write permissions.
144          * - if 'force' is set, we only require the "MAY" flags.
145          */
146         vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
147         vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
148
149         for (i = 0; i < len; i++) {
150                 vma = find_vma(mm, start);
151                 if (!vma)
152                         goto finish_or_fault;
153
154                 /* protect what we can, including chardevs */
155                 if (vma->vm_flags & (VM_IO | VM_PFNMAP) ||
156                     (!ignore && !(vm_flags & vma->vm_flags)))
157                         goto finish_or_fault;
158
159                 if (pages) {
160                         pages[i] = virt_to_page(start);
161                         if (pages[i])
162                                 page_cache_get(pages[i]);
163                 }
164                 if (vmas)
165                         vmas[i] = vma;
166                 start += PAGE_SIZE;
167         }
168
169         return i;
170
171 finish_or_fault:
172         return i ? : -EFAULT;
173 }
174
175
176 /*
177  * get a list of pages in an address range belonging to the specified process
178  * and indicate the VMA that covers each page
179  * - this is potentially dodgy as we may end incrementing the page count of a
180  *   slab page or a secondary page from a compound page
181  * - don't permit access to VMAs that don't support it, such as I/O mappings
182  */
183 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
184         unsigned long start, int len, int write, int force,
185         struct page **pages, struct vm_area_struct **vmas)
186 {
187         int flags = 0;
188
189         if (write)
190                 flags |= GUP_FLAGS_WRITE;
191         if (force)
192                 flags |= GUP_FLAGS_FORCE;
193
194         return __get_user_pages(tsk, mm,
195                                 start, len, flags,
196                                 pages, vmas);
197 }
198 EXPORT_SYMBOL(get_user_pages);
199
200 DEFINE_RWLOCK(vmlist_lock);
201 struct vm_struct *vmlist;
202
203 void vfree(const void *addr)
204 {
205         kfree(addr);
206 }
207 EXPORT_SYMBOL(vfree);
208
209 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
210 {
211         /*
212          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
213          * returns only a logical address.
214          */
215         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
216 }
217 EXPORT_SYMBOL(__vmalloc);
218
219 void *vmalloc_user(unsigned long size)
220 {
221         void *ret;
222
223         ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
224                         PAGE_KERNEL);
225         if (ret) {
226                 struct vm_area_struct *vma;
227
228                 down_write(&current->mm->mmap_sem);
229                 vma = find_vma(current->mm, (unsigned long)ret);
230                 if (vma)
231                         vma->vm_flags |= VM_USERMAP;
232                 up_write(&current->mm->mmap_sem);
233         }
234
235         return ret;
236 }
237 EXPORT_SYMBOL(vmalloc_user);
238
239 struct page *vmalloc_to_page(const void *addr)
240 {
241         return virt_to_page(addr);
242 }
243 EXPORT_SYMBOL(vmalloc_to_page);
244
245 unsigned long vmalloc_to_pfn(const void *addr)
246 {
247         return page_to_pfn(virt_to_page(addr));
248 }
249 EXPORT_SYMBOL(vmalloc_to_pfn);
250
251 long vread(char *buf, char *addr, unsigned long count)
252 {
253         memcpy(buf, addr, count);
254         return count;
255 }
256
257 long vwrite(char *buf, char *addr, unsigned long count)
258 {
259         /* Don't allow overflow */
260         if ((unsigned long) addr + count < count)
261                 count = -(unsigned long) addr;
262
263         memcpy(addr, buf, count);
264         return(count);
265 }
266
267 /*
268  *      vmalloc  -  allocate virtually continguos memory
269  *
270  *      @size:          allocation size
271  *
272  *      Allocate enough pages to cover @size from the page level
273  *      allocator and map them into continguos kernel virtual space.
274  *
275  *      For tight control over page level allocator and protection flags
276  *      use __vmalloc() instead.
277  */
278 void *vmalloc(unsigned long size)
279 {
280        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
281 }
282 EXPORT_SYMBOL(vmalloc);
283
284 void *vmalloc_node(unsigned long size, int node)
285 {
286         return vmalloc(size);
287 }
288 EXPORT_SYMBOL(vmalloc_node);
289
290 #ifndef PAGE_KERNEL_EXEC
291 # define PAGE_KERNEL_EXEC PAGE_KERNEL
292 #endif
293
294 /**
295  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
296  *      @size:          allocation size
297  *
298  *      Kernel-internal function to allocate enough pages to cover @size
299  *      the page level allocator and map them into contiguous and
300  *      executable kernel virtual space.
301  *
302  *      For tight control over page level allocator and protection flags
303  *      use __vmalloc() instead.
304  */
305
306 void *vmalloc_exec(unsigned long size)
307 {
308         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
309 }
310
311 /**
312  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
313  *      @size:          allocation size
314  *
315  *      Allocate enough 32bit PA addressable pages to cover @size from the
316  *      page level allocator and map them into continguos kernel virtual space.
317  */
318 void *vmalloc_32(unsigned long size)
319 {
320         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
321 }
322 EXPORT_SYMBOL(vmalloc_32);
323
324 /**
325  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
326  *      @size:          allocation size
327  *
328  * The resulting memory area is 32bit addressable and zeroed so it can be
329  * mapped to userspace without leaking data.
330  *
331  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
332  * remap_vmalloc_range() are permissible.
333  */
334 void *vmalloc_32_user(unsigned long size)
335 {
336         /*
337          * We'll have to sort out the ZONE_DMA bits for 64-bit,
338          * but for now this can simply use vmalloc_user() directly.
339          */
340         return vmalloc_user(size);
341 }
342 EXPORT_SYMBOL(vmalloc_32_user);
343
344 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
345 {
346         BUG();
347         return NULL;
348 }
349 EXPORT_SYMBOL(vmap);
350
351 void vunmap(const void *addr)
352 {
353         BUG();
354 }
355 EXPORT_SYMBOL(vunmap);
356
357 /*
358  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
359  * have one.
360  */
361 void  __attribute__((weak)) vmalloc_sync_all(void)
362 {
363 }
364
365 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
366                    struct page *page)
367 {
368         return -EINVAL;
369 }
370 EXPORT_SYMBOL(vm_insert_page);
371
372 /*
373  *  sys_brk() for the most part doesn't need the global kernel
374  *  lock, except when an application is doing something nasty
375  *  like trying to un-brk an area that has already been mapped
376  *  to a regular file.  in this case, the unmapping will need
377  *  to invoke file system routines that need the global lock.
378  */
379 asmlinkage unsigned long sys_brk(unsigned long brk)
380 {
381         struct mm_struct *mm = current->mm;
382
383         if (brk < mm->start_brk || brk > mm->context.end_brk)
384                 return mm->brk;
385
386         if (mm->brk == brk)
387                 return mm->brk;
388
389         /*
390          * Always allow shrinking brk
391          */
392         if (brk <= mm->brk) {
393                 mm->brk = brk;
394                 return brk;
395         }
396
397         /*
398          * Ok, looks good - let it rip.
399          */
400         return mm->brk = brk;
401 }
402
403 #ifdef DEBUG
404 static void show_process_blocks(void)
405 {
406         struct vm_list_struct *vml;
407
408         printk("Process blocks %d:", current->pid);
409
410         for (vml = &current->mm->context.vmlist; vml; vml = vml->next) {
411                 printk(" %p: %p", vml, vml->vma);
412                 if (vml->vma)
413                         printk(" (%d @%lx #%d)",
414                                kobjsize((void *) vml->vma->vm_start),
415                                vml->vma->vm_start,
416                                atomic_read(&vml->vma->vm_usage));
417                 printk(vml->next ? " ->" : ".\n");
418         }
419 }
420 #endif /* DEBUG */
421
422 /*
423  * add a VMA into a process's mm_struct in the appropriate place in the list
424  * - should be called with mm->mmap_sem held writelocked
425  */
426 static void add_vma_to_mm(struct mm_struct *mm, struct vm_list_struct *vml)
427 {
428         struct vm_list_struct **ppv;
429
430         for (ppv = &current->mm->context.vmlist; *ppv; ppv = &(*ppv)->next)
431                 if ((*ppv)->vma->vm_start > vml->vma->vm_start)
432                         break;
433
434         vml->next = *ppv;
435         *ppv = vml;
436 }
437
438 /*
439  * look up the first VMA in which addr resides, NULL if none
440  * - should be called with mm->mmap_sem at least held readlocked
441  */
442 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
443 {
444         struct vm_list_struct *loop, *vml;
445
446         /* search the vm_start ordered list */
447         vml = NULL;
448         for (loop = mm->context.vmlist; loop; loop = loop->next) {
449                 if (loop->vma->vm_start > addr)
450                         break;
451                 vml = loop;
452         }
453
454         if (vml && vml->vma->vm_end > addr)
455                 return vml->vma;
456
457         return NULL;
458 }
459 EXPORT_SYMBOL(find_vma);
460
461 /*
462  * find a VMA
463  * - we don't extend stack VMAs under NOMMU conditions
464  */
465 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
466 {
467         return find_vma(mm, addr);
468 }
469
470 int expand_stack(struct vm_area_struct *vma, unsigned long address)
471 {
472         return -ENOMEM;
473 }
474
475 /*
476  * look up the first VMA exactly that exactly matches addr
477  * - should be called with mm->mmap_sem at least held readlocked
478  */
479 static inline struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
480                                                     unsigned long addr)
481 {
482         struct vm_list_struct *vml;
483
484         /* search the vm_start ordered list */
485         for (vml = mm->context.vmlist; vml; vml = vml->next) {
486                 if (vml->vma->vm_start == addr)
487                         return vml->vma;
488                 if (vml->vma->vm_start > addr)
489                         break;
490         }
491
492         return NULL;
493 }
494
495 /*
496  * find a VMA in the global tree
497  */
498 static inline struct vm_area_struct *find_nommu_vma(unsigned long start)
499 {
500         struct vm_area_struct *vma;
501         struct rb_node *n = nommu_vma_tree.rb_node;
502
503         while (n) {
504                 vma = rb_entry(n, struct vm_area_struct, vm_rb);
505
506                 if (start < vma->vm_start)
507                         n = n->rb_left;
508                 else if (start > vma->vm_start)
509                         n = n->rb_right;
510                 else
511                         return vma;
512         }
513
514         return NULL;
515 }
516
517 /*
518  * add a VMA in the global tree
519  */
520 static void add_nommu_vma(struct vm_area_struct *vma)
521 {
522         struct vm_area_struct *pvma;
523         struct address_space *mapping;
524         struct rb_node **p = &nommu_vma_tree.rb_node;
525         struct rb_node *parent = NULL;
526
527         /* add the VMA to the mapping */
528         if (vma->vm_file) {
529                 mapping = vma->vm_file->f_mapping;
530
531                 flush_dcache_mmap_lock(mapping);
532                 vma_prio_tree_insert(vma, &mapping->i_mmap);
533                 flush_dcache_mmap_unlock(mapping);
534         }
535
536         /* add the VMA to the master list */
537         while (*p) {
538                 parent = *p;
539                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
540
541                 if (vma->vm_start < pvma->vm_start) {
542                         p = &(*p)->rb_left;
543                 }
544                 else if (vma->vm_start > pvma->vm_start) {
545                         p = &(*p)->rb_right;
546                 }
547                 else {
548                         /* mappings are at the same address - this can only
549                          * happen for shared-mem chardevs and shared file
550                          * mappings backed by ramfs/tmpfs */
551                         BUG_ON(!(pvma->vm_flags & VM_SHARED));
552
553                         if (vma < pvma)
554                                 p = &(*p)->rb_left;
555                         else if (vma > pvma)
556                                 p = &(*p)->rb_right;
557                         else
558                                 BUG();
559                 }
560         }
561
562         rb_link_node(&vma->vm_rb, parent, p);
563         rb_insert_color(&vma->vm_rb, &nommu_vma_tree);
564 }
565
566 /*
567  * delete a VMA from the global list
568  */
569 static void delete_nommu_vma(struct vm_area_struct *vma)
570 {
571         struct address_space *mapping;
572
573         /* remove the VMA from the mapping */
574         if (vma->vm_file) {
575                 mapping = vma->vm_file->f_mapping;
576
577                 flush_dcache_mmap_lock(mapping);
578                 vma_prio_tree_remove(vma, &mapping->i_mmap);
579                 flush_dcache_mmap_unlock(mapping);
580         }
581
582         /* remove from the master list */
583         rb_erase(&vma->vm_rb, &nommu_vma_tree);
584 }
585
586 /*
587  * determine whether a mapping should be permitted and, if so, what sort of
588  * mapping we're capable of supporting
589  */
590 static int validate_mmap_request(struct file *file,
591                                  unsigned long addr,
592                                  unsigned long len,
593                                  unsigned long prot,
594                                  unsigned long flags,
595                                  unsigned long pgoff,
596                                  unsigned long *_capabilities)
597 {
598         unsigned long capabilities;
599         unsigned long reqprot = prot;
600         int ret;
601
602         /* do the simple checks first */
603         if (flags & MAP_FIXED || addr) {
604                 printk(KERN_DEBUG
605                        "%d: Can't do fixed-address/overlay mmap of RAM\n",
606                        current->pid);
607                 return -EINVAL;
608         }
609
610         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
611             (flags & MAP_TYPE) != MAP_SHARED)
612                 return -EINVAL;
613
614         if (!len)
615                 return -EINVAL;
616
617         /* Careful about overflows.. */
618         len = PAGE_ALIGN(len);
619         if (!len || len > TASK_SIZE)
620                 return -ENOMEM;
621
622         /* offset overflow? */
623         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
624                 return -EOVERFLOW;
625
626         if (file) {
627                 /* validate file mapping requests */
628                 struct address_space *mapping;
629
630                 /* files must support mmap */
631                 if (!file->f_op || !file->f_op->mmap)
632                         return -ENODEV;
633
634                 /* work out if what we've got could possibly be shared
635                  * - we support chardevs that provide their own "memory"
636                  * - we support files/blockdevs that are memory backed
637                  */
638                 mapping = file->f_mapping;
639                 if (!mapping)
640                         mapping = file->f_path.dentry->d_inode->i_mapping;
641
642                 capabilities = 0;
643                 if (mapping && mapping->backing_dev_info)
644                         capabilities = mapping->backing_dev_info->capabilities;
645
646                 if (!capabilities) {
647                         /* no explicit capabilities set, so assume some
648                          * defaults */
649                         switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
650                         case S_IFREG:
651                         case S_IFBLK:
652                                 capabilities = BDI_CAP_MAP_COPY;
653                                 break;
654
655                         case S_IFCHR:
656                                 capabilities =
657                                         BDI_CAP_MAP_DIRECT |
658                                         BDI_CAP_READ_MAP |
659                                         BDI_CAP_WRITE_MAP;
660                                 break;
661
662                         default:
663                                 return -EINVAL;
664                         }
665                 }
666
667                 /* eliminate any capabilities that we can't support on this
668                  * device */
669                 if (!file->f_op->get_unmapped_area)
670                         capabilities &= ~BDI_CAP_MAP_DIRECT;
671                 if (!file->f_op->read)
672                         capabilities &= ~BDI_CAP_MAP_COPY;
673
674                 if (flags & MAP_SHARED) {
675                         /* do checks for writing, appending and locking */
676                         if ((prot & PROT_WRITE) &&
677                             !(file->f_mode & FMODE_WRITE))
678                                 return -EACCES;
679
680                         if (IS_APPEND(file->f_path.dentry->d_inode) &&
681                             (file->f_mode & FMODE_WRITE))
682                                 return -EACCES;
683
684                         if (locks_verify_locked(file->f_path.dentry->d_inode))
685                                 return -EAGAIN;
686
687                         if (!(capabilities & BDI_CAP_MAP_DIRECT))
688                                 return -ENODEV;
689
690                         if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
691                             ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
692                             ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
693                             ) {
694                                 printk("MAP_SHARED not completely supported on !MMU\n");
695                                 return -EINVAL;
696                         }
697
698                         /* we mustn't privatise shared mappings */
699                         capabilities &= ~BDI_CAP_MAP_COPY;
700                 }
701                 else {
702                         /* we're going to read the file into private memory we
703                          * allocate */
704                         if (!(capabilities & BDI_CAP_MAP_COPY))
705                                 return -ENODEV;
706
707                         /* we don't permit a private writable mapping to be
708                          * shared with the backing device */
709                         if (prot & PROT_WRITE)
710                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
711                 }
712
713                 /* handle executable mappings and implied executable
714                  * mappings */
715                 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
716                         if (prot & PROT_EXEC)
717                                 return -EPERM;
718                 }
719                 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
720                         /* handle implication of PROT_EXEC by PROT_READ */
721                         if (current->personality & READ_IMPLIES_EXEC) {
722                                 if (capabilities & BDI_CAP_EXEC_MAP)
723                                         prot |= PROT_EXEC;
724                         }
725                 }
726                 else if ((prot & PROT_READ) &&
727                          (prot & PROT_EXEC) &&
728                          !(capabilities & BDI_CAP_EXEC_MAP)
729                          ) {
730                         /* backing file is not executable, try to copy */
731                         capabilities &= ~BDI_CAP_MAP_DIRECT;
732                 }
733         }
734         else {
735                 /* anonymous mappings are always memory backed and can be
736                  * privately mapped
737                  */
738                 capabilities = BDI_CAP_MAP_COPY;
739
740                 /* handle PROT_EXEC implication by PROT_READ */
741                 if ((prot & PROT_READ) &&
742                     (current->personality & READ_IMPLIES_EXEC))
743                         prot |= PROT_EXEC;
744         }
745
746         /* allow the security API to have its say */
747         ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
748         if (ret < 0)
749                 return ret;
750
751         /* looks okay */
752         *_capabilities = capabilities;
753         return 0;
754 }
755
756 /*
757  * we've determined that we can make the mapping, now translate what we
758  * now know into VMA flags
759  */
760 static unsigned long determine_vm_flags(struct file *file,
761                                         unsigned long prot,
762                                         unsigned long flags,
763                                         unsigned long capabilities)
764 {
765         unsigned long vm_flags;
766
767         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
768         vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
769         /* vm_flags |= mm->def_flags; */
770
771         if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
772                 /* attempt to share read-only copies of mapped file chunks */
773                 if (file && !(prot & PROT_WRITE))
774                         vm_flags |= VM_MAYSHARE;
775         }
776         else {
777                 /* overlay a shareable mapping on the backing device or inode
778                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
779                  * romfs/cramfs */
780                 if (flags & MAP_SHARED)
781                         vm_flags |= VM_MAYSHARE | VM_SHARED;
782                 else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0)
783                         vm_flags |= VM_MAYSHARE;
784         }
785
786         /* refuse to let anyone share private mappings with this process if
787          * it's being traced - otherwise breakpoints set in it may interfere
788          * with another untraced process
789          */
790         if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
791                 vm_flags &= ~VM_MAYSHARE;
792
793         return vm_flags;
794 }
795
796 /*
797  * set up a shared mapping on a file
798  */
799 static int do_mmap_shared_file(struct vm_area_struct *vma, unsigned long len)
800 {
801         int ret;
802
803         ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
804         if (ret != -ENOSYS)
805                 return ret;
806
807         /* getting an ENOSYS error indicates that direct mmap isn't
808          * possible (as opposed to tried but failed) so we'll fall
809          * through to making a private copy of the data and mapping
810          * that if we can */
811         return -ENODEV;
812 }
813
814 /*
815  * set up a private mapping or an anonymous shared mapping
816  */
817 static int do_mmap_private(struct vm_area_struct *vma, unsigned long len)
818 {
819         void *base;
820         int ret;
821
822         /* invoke the file's mapping function so that it can keep track of
823          * shared mappings on devices or memory
824          * - VM_MAYSHARE will be set if it may attempt to share
825          */
826         if (vma->vm_file) {
827                 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
828                 if (ret != -ENOSYS) {
829                         /* shouldn't return success if we're not sharing */
830                         BUG_ON(ret == 0 && !(vma->vm_flags & VM_MAYSHARE));
831                         return ret; /* success or a real error */
832                 }
833
834                 /* getting an ENOSYS error indicates that direct mmap isn't
835                  * possible (as opposed to tried but failed) so we'll try to
836                  * make a private copy of the data and map that instead */
837         }
838
839         /* allocate some memory to hold the mapping
840          * - note that this may not return a page-aligned address if the object
841          *   we're allocating is smaller than a page
842          */
843         base = kmalloc(len, GFP_KERNEL|__GFP_COMP);
844         if (!base)
845                 goto enomem;
846
847         vma->vm_start = (unsigned long) base;
848         vma->vm_end = vma->vm_start + len;
849         vma->vm_flags |= VM_MAPPED_COPY;
850
851 #ifdef WARN_ON_SLACK
852         if (len + WARN_ON_SLACK <= kobjsize(result))
853                 printk("Allocation of %lu bytes from process %d has %lu bytes of slack\n",
854                        len, current->pid, kobjsize(result) - len);
855 #endif
856
857         if (vma->vm_file) {
858                 /* read the contents of a file into the copy */
859                 mm_segment_t old_fs;
860                 loff_t fpos;
861
862                 fpos = vma->vm_pgoff;
863                 fpos <<= PAGE_SHIFT;
864
865                 old_fs = get_fs();
866                 set_fs(KERNEL_DS);
867                 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
868                 set_fs(old_fs);
869
870                 if (ret < 0)
871                         goto error_free;
872
873                 /* clear the last little bit */
874                 if (ret < len)
875                         memset(base + ret, 0, len - ret);
876
877         } else {
878                 /* if it's an anonymous mapping, then just clear it */
879                 memset(base, 0, len);
880         }
881
882         return 0;
883
884 error_free:
885         kfree(base);
886         vma->vm_start = 0;
887         return ret;
888
889 enomem:
890         printk("Allocation of length %lu from process %d failed\n",
891                len, current->pid);
892         show_free_areas();
893         return -ENOMEM;
894 }
895
896 /*
897  * handle mapping creation for uClinux
898  */
899 unsigned long do_mmap_pgoff(struct file *file,
900                             unsigned long addr,
901                             unsigned long len,
902                             unsigned long prot,
903                             unsigned long flags,
904                             unsigned long pgoff)
905 {
906         struct vm_list_struct *vml = NULL;
907         struct vm_area_struct *vma = NULL;
908         struct rb_node *rb;
909         unsigned long capabilities, vm_flags;
910         void *result;
911         int ret;
912
913         if (!(flags & MAP_FIXED))
914                 addr = round_hint_to_min(addr);
915
916         /* decide whether we should attempt the mapping, and if so what sort of
917          * mapping */
918         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
919                                     &capabilities);
920         if (ret < 0)
921                 return ret;
922
923         /* we've determined that we can make the mapping, now translate what we
924          * now know into VMA flags */
925         vm_flags = determine_vm_flags(file, prot, flags, capabilities);
926
927         /* we're going to need to record the mapping if it works */
928         vml = kzalloc(sizeof(struct vm_list_struct), GFP_KERNEL);
929         if (!vml)
930                 goto error_getting_vml;
931
932         down_write(&nommu_vma_sem);
933
934         /* if we want to share, we need to check for VMAs created by other
935          * mmap() calls that overlap with our proposed mapping
936          * - we can only share with an exact match on most regular files
937          * - shared mappings on character devices and memory backed files are
938          *   permitted to overlap inexactly as far as we are concerned for in
939          *   these cases, sharing is handled in the driver or filesystem rather
940          *   than here
941          */
942         if (vm_flags & VM_MAYSHARE) {
943                 unsigned long pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
944                 unsigned long vmpglen;
945
946                 /* suppress VMA sharing for shared regions */
947                 if (vm_flags & VM_SHARED &&
948                     capabilities & BDI_CAP_MAP_DIRECT)
949                         goto dont_share_VMAs;
950
951                 for (rb = rb_first(&nommu_vma_tree); rb; rb = rb_next(rb)) {
952                         vma = rb_entry(rb, struct vm_area_struct, vm_rb);
953
954                         if (!(vma->vm_flags & VM_MAYSHARE))
955                                 continue;
956
957                         /* search for overlapping mappings on the same file */
958                         if (vma->vm_file->f_path.dentry->d_inode != file->f_path.dentry->d_inode)
959                                 continue;
960
961                         if (vma->vm_pgoff >= pgoff + pglen)
962                                 continue;
963
964                         vmpglen = vma->vm_end - vma->vm_start + PAGE_SIZE - 1;
965                         vmpglen >>= PAGE_SHIFT;
966                         if (pgoff >= vma->vm_pgoff + vmpglen)
967                                 continue;
968
969                         /* handle inexactly overlapping matches between mappings */
970                         if (vma->vm_pgoff != pgoff || vmpglen != pglen) {
971                                 if (!(capabilities & BDI_CAP_MAP_DIRECT))
972                                         goto sharing_violation;
973                                 continue;
974                         }
975
976                         /* we've found a VMA we can share */
977                         atomic_inc(&vma->vm_usage);
978
979                         vml->vma = vma;
980                         result = (void *) vma->vm_start;
981                         goto shared;
982                 }
983
984         dont_share_VMAs:
985                 vma = NULL;
986
987                 /* obtain the address at which to make a shared mapping
988                  * - this is the hook for quasi-memory character devices to
989                  *   tell us the location of a shared mapping
990                  */
991                 if (file && file->f_op->get_unmapped_area) {
992                         addr = file->f_op->get_unmapped_area(file, addr, len,
993                                                              pgoff, flags);
994                         if (IS_ERR((void *) addr)) {
995                                 ret = addr;
996                                 if (ret != (unsigned long) -ENOSYS)
997                                         goto error;
998
999                                 /* the driver refused to tell us where to site
1000                                  * the mapping so we'll have to attempt to copy
1001                                  * it */
1002                                 ret = (unsigned long) -ENODEV;
1003                                 if (!(capabilities & BDI_CAP_MAP_COPY))
1004                                         goto error;
1005
1006                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1007                         }
1008                 }
1009         }
1010
1011         /* we're going to need a VMA struct as well */
1012         vma = kzalloc(sizeof(struct vm_area_struct), GFP_KERNEL);
1013         if (!vma)
1014                 goto error_getting_vma;
1015
1016         INIT_LIST_HEAD(&vma->anon_vma_node);
1017         atomic_set(&vma->vm_usage, 1);
1018         if (file) {
1019                 get_file(file);
1020                 if (vm_flags & VM_EXECUTABLE) {
1021                         added_exe_file_vma(current->mm);
1022                         vma->vm_mm = current->mm;
1023                 }
1024         }
1025         vma->vm_file    = file;
1026         vma->vm_flags   = vm_flags;
1027         vma->vm_start   = addr;
1028         vma->vm_end     = addr + len;
1029         vma->vm_pgoff   = pgoff;
1030
1031         vml->vma = vma;
1032
1033         /* set up the mapping */
1034         if (file && vma->vm_flags & VM_SHARED)
1035                 ret = do_mmap_shared_file(vma, len);
1036         else
1037                 ret = do_mmap_private(vma, len);
1038         if (ret < 0)
1039                 goto error;
1040
1041         /* okay... we have a mapping; now we have to register it */
1042         result = (void *) vma->vm_start;
1043
1044         current->mm->total_vm += len >> PAGE_SHIFT;
1045
1046         add_nommu_vma(vma);
1047
1048  shared:
1049         add_vma_to_mm(current->mm, vml);
1050
1051         up_write(&nommu_vma_sem);
1052
1053         if (prot & PROT_EXEC)
1054                 flush_icache_range((unsigned long) result,
1055                                    (unsigned long) result + len);
1056
1057 #ifdef DEBUG
1058         printk("do_mmap:\n");
1059         show_process_blocks();
1060 #endif
1061
1062         return (unsigned long) result;
1063
1064  error:
1065         up_write(&nommu_vma_sem);
1066         kfree(vml);
1067         if (vma) {
1068                 if (vma->vm_file) {
1069                         fput(vma->vm_file);
1070                         if (vma->vm_flags & VM_EXECUTABLE)
1071                                 removed_exe_file_vma(vma->vm_mm);
1072                 }
1073                 kfree(vma);
1074         }
1075         return ret;
1076
1077  sharing_violation:
1078         up_write(&nommu_vma_sem);
1079         printk("Attempt to share mismatched mappings\n");
1080         kfree(vml);
1081         return -EINVAL;
1082
1083  error_getting_vma:
1084         up_write(&nommu_vma_sem);
1085         kfree(vml);
1086         printk("Allocation of vma for %lu byte allocation from process %d failed\n",
1087                len, current->pid);
1088         show_free_areas();
1089         return -ENOMEM;
1090
1091  error_getting_vml:
1092         printk("Allocation of vml for %lu byte allocation from process %d failed\n",
1093                len, current->pid);
1094         show_free_areas();
1095         return -ENOMEM;
1096 }
1097 EXPORT_SYMBOL(do_mmap_pgoff);
1098
1099 /*
1100  * handle mapping disposal for uClinux
1101  */
1102 static void put_vma(struct mm_struct *mm, struct vm_area_struct *vma)
1103 {
1104         if (vma) {
1105                 down_write(&nommu_vma_sem);
1106
1107                 if (atomic_dec_and_test(&vma->vm_usage)) {
1108                         delete_nommu_vma(vma);
1109
1110                         if (vma->vm_ops && vma->vm_ops->close)
1111                                 vma->vm_ops->close(vma);
1112
1113                         /* IO memory and memory shared directly out of the pagecache from
1114                          * ramfs/tmpfs mustn't be released here */
1115                         if (vma->vm_flags & VM_MAPPED_COPY)
1116                                 kfree((void *) vma->vm_start);
1117
1118                         if (vma->vm_file) {
1119                                 fput(vma->vm_file);
1120                                 if (vma->vm_flags & VM_EXECUTABLE)
1121                                         removed_exe_file_vma(mm);
1122                         }
1123                         kfree(vma);
1124                 }
1125
1126                 up_write(&nommu_vma_sem);
1127         }
1128 }
1129
1130 /*
1131  * release a mapping
1132  * - under NOMMU conditions the parameters must match exactly to the mapping to
1133  *   be removed
1134  */
1135 int do_munmap(struct mm_struct *mm, unsigned long addr, size_t len)
1136 {
1137         struct vm_list_struct *vml, **parent;
1138         unsigned long end = addr + len;
1139
1140 #ifdef DEBUG
1141         printk("do_munmap:\n");
1142 #endif
1143
1144         for (parent = &mm->context.vmlist; *parent; parent = &(*parent)->next) {
1145                 if ((*parent)->vma->vm_start > addr)
1146                         break;
1147                 if ((*parent)->vma->vm_start == addr &&
1148                     ((len == 0) || ((*parent)->vma->vm_end == end)))
1149                         goto found;
1150         }
1151
1152         printk("munmap of non-mmaped memory by process %d (%s): %p\n",
1153                current->pid, current->comm, (void *) addr);
1154         return -EINVAL;
1155
1156  found:
1157         vml = *parent;
1158
1159         put_vma(mm, vml->vma);
1160
1161         *parent = vml->next;
1162         kfree(vml);
1163
1164         update_hiwater_vm(mm);
1165         mm->total_vm -= len >> PAGE_SHIFT;
1166
1167 #ifdef DEBUG
1168         show_process_blocks();
1169 #endif
1170
1171         return 0;
1172 }
1173 EXPORT_SYMBOL(do_munmap);
1174
1175 asmlinkage long sys_munmap(unsigned long addr, size_t len)
1176 {
1177         int ret;
1178         struct mm_struct *mm = current->mm;
1179
1180         down_write(&mm->mmap_sem);
1181         ret = do_munmap(mm, addr, len);
1182         up_write(&mm->mmap_sem);
1183         return ret;
1184 }
1185
1186 /*
1187  * Release all mappings
1188  */
1189 void exit_mmap(struct mm_struct * mm)
1190 {
1191         struct vm_list_struct *tmp;
1192
1193         if (mm) {
1194 #ifdef DEBUG
1195                 printk("Exit_mmap:\n");
1196 #endif
1197
1198                 mm->total_vm = 0;
1199
1200                 while ((tmp = mm->context.vmlist)) {
1201                         mm->context.vmlist = tmp->next;
1202                         put_vma(mm, tmp->vma);
1203                         kfree(tmp);
1204                 }
1205
1206 #ifdef DEBUG
1207                 show_process_blocks();
1208 #endif
1209         }
1210 }
1211
1212 unsigned long do_brk(unsigned long addr, unsigned long len)
1213 {
1214         return -ENOMEM;
1215 }
1216
1217 /*
1218  * expand (or shrink) an existing mapping, potentially moving it at the same
1219  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1220  *
1221  * under NOMMU conditions, we only permit changing a mapping's size, and only
1222  * as long as it stays within the hole allocated by the kmalloc() call in
1223  * do_mmap_pgoff() and the block is not shareable
1224  *
1225  * MREMAP_FIXED is not supported under NOMMU conditions
1226  */
1227 unsigned long do_mremap(unsigned long addr,
1228                         unsigned long old_len, unsigned long new_len,
1229                         unsigned long flags, unsigned long new_addr)
1230 {
1231         struct vm_area_struct *vma;
1232
1233         /* insanity checks first */
1234         if (new_len == 0)
1235                 return (unsigned long) -EINVAL;
1236
1237         if (flags & MREMAP_FIXED && new_addr != addr)
1238                 return (unsigned long) -EINVAL;
1239
1240         vma = find_vma_exact(current->mm, addr);
1241         if (!vma)
1242                 return (unsigned long) -EINVAL;
1243
1244         if (vma->vm_end != vma->vm_start + old_len)
1245                 return (unsigned long) -EFAULT;
1246
1247         if (vma->vm_flags & VM_MAYSHARE)
1248                 return (unsigned long) -EPERM;
1249
1250         if (new_len > kobjsize((void *) addr))
1251                 return (unsigned long) -ENOMEM;
1252
1253         /* all checks complete - do it */
1254         vma->vm_end = vma->vm_start + new_len;
1255
1256         return vma->vm_start;
1257 }
1258 EXPORT_SYMBOL(do_mremap);
1259
1260 asmlinkage unsigned long sys_mremap(unsigned long addr,
1261         unsigned long old_len, unsigned long new_len,
1262         unsigned long flags, unsigned long new_addr)
1263 {
1264         unsigned long ret;
1265
1266         down_write(&current->mm->mmap_sem);
1267         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1268         up_write(&current->mm->mmap_sem);
1269         return ret;
1270 }
1271
1272 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1273                         unsigned int foll_flags)
1274 {
1275         return NULL;
1276 }
1277
1278 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1279                 unsigned long to, unsigned long size, pgprot_t prot)
1280 {
1281         vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1282         return 0;
1283 }
1284 EXPORT_SYMBOL(remap_pfn_range);
1285
1286 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1287                         unsigned long pgoff)
1288 {
1289         unsigned int size = vma->vm_end - vma->vm_start;
1290
1291         if (!(vma->vm_flags & VM_USERMAP))
1292                 return -EINVAL;
1293
1294         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1295         vma->vm_end = vma->vm_start + size;
1296
1297         return 0;
1298 }
1299 EXPORT_SYMBOL(remap_vmalloc_range);
1300
1301 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1302 {
1303 }
1304
1305 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1306         unsigned long len, unsigned long pgoff, unsigned long flags)
1307 {
1308         return -ENOMEM;
1309 }
1310
1311 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1312 {
1313 }
1314
1315 void unmap_mapping_range(struct address_space *mapping,
1316                          loff_t const holebegin, loff_t const holelen,
1317                          int even_cows)
1318 {
1319 }
1320 EXPORT_SYMBOL(unmap_mapping_range);
1321
1322 /*
1323  * ask for an unmapped area at which to create a mapping on a file
1324  */
1325 unsigned long get_unmapped_area(struct file *file, unsigned long addr,
1326                                 unsigned long len, unsigned long pgoff,
1327                                 unsigned long flags)
1328 {
1329         unsigned long (*get_area)(struct file *, unsigned long, unsigned long,
1330                                   unsigned long, unsigned long);
1331
1332         get_area = current->mm->get_unmapped_area;
1333         if (file && file->f_op && file->f_op->get_unmapped_area)
1334                 get_area = file->f_op->get_unmapped_area;
1335
1336         if (!get_area)
1337                 return -ENOSYS;
1338
1339         return get_area(file, addr, len, pgoff, flags);
1340 }
1341 EXPORT_SYMBOL(get_unmapped_area);
1342
1343 /*
1344  * Check that a process has enough memory to allocate a new virtual
1345  * mapping. 0 means there is enough memory for the allocation to
1346  * succeed and -ENOMEM implies there is not.
1347  *
1348  * We currently support three overcommit policies, which are set via the
1349  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1350  *
1351  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1352  * Additional code 2002 Jul 20 by Robert Love.
1353  *
1354  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1355  *
1356  * Note this is a helper function intended to be used by LSMs which
1357  * wish to use this logic.
1358  */
1359 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1360 {
1361         unsigned long free, allowed;
1362
1363         vm_acct_memory(pages);
1364
1365         /*
1366          * Sometimes we want to use more memory than we have
1367          */
1368         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1369                 return 0;
1370
1371         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1372                 unsigned long n;
1373
1374                 free = global_page_state(NR_FILE_PAGES);
1375                 free += nr_swap_pages;
1376
1377                 /*
1378                  * Any slabs which are created with the
1379                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1380                  * which are reclaimable, under pressure.  The dentry
1381                  * cache and most inode caches should fall into this
1382                  */
1383                 free += global_page_state(NR_SLAB_RECLAIMABLE);
1384
1385                 /*
1386                  * Leave the last 3% for root
1387                  */
1388                 if (!cap_sys_admin)
1389                         free -= free / 32;
1390
1391                 if (free > pages)
1392                         return 0;
1393
1394                 /*
1395                  * nr_free_pages() is very expensive on large systems,
1396                  * only call if we're about to fail.
1397                  */
1398                 n = nr_free_pages();
1399
1400                 /*
1401                  * Leave reserved pages. The pages are not for anonymous pages.
1402                  */
1403                 if (n <= totalreserve_pages)
1404                         goto error;
1405                 else
1406                         n -= totalreserve_pages;
1407
1408                 /*
1409                  * Leave the last 3% for root
1410                  */
1411                 if (!cap_sys_admin)
1412                         n -= n / 32;
1413                 free += n;
1414
1415                 if (free > pages)
1416                         return 0;
1417
1418                 goto error;
1419         }
1420
1421         allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1422         /*
1423          * Leave the last 3% for root
1424          */
1425         if (!cap_sys_admin)
1426                 allowed -= allowed / 32;
1427         allowed += total_swap_pages;
1428
1429         /* Don't let a single process grow too big:
1430            leave 3% of the size of this process for other processes */
1431         if (mm)
1432                 allowed -= mm->total_vm / 32;
1433
1434         /*
1435          * cast `allowed' as a signed long because vm_committed_space
1436          * sometimes has a negative value
1437          */
1438         if (atomic_long_read(&vm_committed_space) < (long)allowed)
1439                 return 0;
1440 error:
1441         vm_unacct_memory(pages);
1442
1443         return -ENOMEM;
1444 }
1445
1446 int in_gate_area_no_task(unsigned long addr)
1447 {
1448         return 0;
1449 }
1450
1451 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1452 {
1453         BUG();
1454         return 0;
1455 }
1456 EXPORT_SYMBOL(filemap_fault);
1457
1458 /*
1459  * Access another process' address space.
1460  * - source/target buffer must be kernel space
1461  */
1462 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1463 {
1464         struct vm_area_struct *vma;
1465         struct mm_struct *mm;
1466
1467         if (addr + len < addr)
1468                 return 0;
1469
1470         mm = get_task_mm(tsk);
1471         if (!mm)
1472                 return 0;
1473
1474         down_read(&mm->mmap_sem);
1475
1476         /* the access must start within one of the target process's mappings */
1477         vma = find_vma(mm, addr);
1478         if (vma) {
1479                 /* don't overrun this mapping */
1480                 if (addr + len >= vma->vm_end)
1481                         len = vma->vm_end - addr;
1482
1483                 /* only read or write mappings where it is permitted */
1484                 if (write && vma->vm_flags & VM_MAYWRITE)
1485                         len -= copy_to_user((void *) addr, buf, len);
1486                 else if (!write && vma->vm_flags & VM_MAYREAD)
1487                         len -= copy_from_user(buf, (void *) addr, len);
1488                 else
1489                         len = 0;
1490         } else {
1491                 len = 0;
1492         }
1493
1494         up_read(&mm->mmap_sem);
1495         mmput(mm);
1496         return len;
1497 }