ksm: remove VM_MERGEABLE_FLAGS
[safe/jmp/linux-2.6] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/ima.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/ksm.h>
31 #include <linux/mmu_notifier.h>
32 #include <linux/perf_event.h>
33
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlb.h>
37 #include <asm/mmu_context.h>
38
39 #include "internal.h"
40
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags)       (0)
43 #endif
44
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len)              (addr)
47 #endif
48
49 static void unmap_region(struct mm_struct *mm,
50                 struct vm_area_struct *vma, struct vm_area_struct *prev,
51                 unsigned long start, unsigned long end);
52
53 /*
54  * WARNING: the debugging will use recursive algorithms so never enable this
55  * unless you know what you are doing.
56  */
57 #undef DEBUG_MM_RB
58
59 /* description of effects of mapping type and prot in current implementation.
60  * this is due to the limited x86 page protection hardware.  The expected
61  * behavior is in parens:
62  *
63  * map_type     prot
64  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
65  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
66  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
67  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
68  *              
69  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
70  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
71  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
72  *
73  */
74 pgprot_t protection_map[16] = {
75         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81         return __pgprot(pgprot_val(protection_map[vm_flags &
82                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86
87 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
88 int sysctl_overcommit_ratio = 50;       /* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 struct percpu_counter vm_committed_as;
91
92 /*
93  * Check that a process has enough memory to allocate a new virtual
94  * mapping. 0 means there is enough memory for the allocation to
95  * succeed and -ENOMEM implies there is not.
96  *
97  * We currently support three overcommit policies, which are set via the
98  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
99  *
100  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
101  * Additional code 2002 Jul 20 by Robert Love.
102  *
103  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
104  *
105  * Note this is a helper function intended to be used by LSMs which
106  * wish to use this logic.
107  */
108 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
109 {
110         unsigned long free, allowed;
111
112         vm_acct_memory(pages);
113
114         /*
115          * Sometimes we want to use more memory than we have
116          */
117         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
118                 return 0;
119
120         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
121                 unsigned long n;
122
123                 free = global_page_state(NR_FILE_PAGES);
124                 free += nr_swap_pages;
125
126                 /*
127                  * Any slabs which are created with the
128                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
129                  * which are reclaimable, under pressure.  The dentry
130                  * cache and most inode caches should fall into this
131                  */
132                 free += global_page_state(NR_SLAB_RECLAIMABLE);
133
134                 /*
135                  * Leave the last 3% for root
136                  */
137                 if (!cap_sys_admin)
138                         free -= free / 32;
139
140                 if (free > pages)
141                         return 0;
142
143                 /*
144                  * nr_free_pages() is very expensive on large systems,
145                  * only call if we're about to fail.
146                  */
147                 n = nr_free_pages();
148
149                 /*
150                  * Leave reserved pages. The pages are not for anonymous pages.
151                  */
152                 if (n <= totalreserve_pages)
153                         goto error;
154                 else
155                         n -= totalreserve_pages;
156
157                 /*
158                  * Leave the last 3% for root
159                  */
160                 if (!cap_sys_admin)
161                         n -= n / 32;
162                 free += n;
163
164                 if (free > pages)
165                         return 0;
166
167                 goto error;
168         }
169
170         allowed = (totalram_pages - hugetlb_total_pages())
171                 * sysctl_overcommit_ratio / 100;
172         /*
173          * Leave the last 3% for root
174          */
175         if (!cap_sys_admin)
176                 allowed -= allowed / 32;
177         allowed += total_swap_pages;
178
179         /* Don't let a single process grow too big:
180            leave 3% of the size of this process for other processes */
181         if (mm)
182                 allowed -= mm->total_vm / 32;
183
184         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
185                 return 0;
186 error:
187         vm_unacct_memory(pages);
188
189         return -ENOMEM;
190 }
191
192 /*
193  * Requires inode->i_mapping->i_mmap_lock
194  */
195 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
196                 struct file *file, struct address_space *mapping)
197 {
198         if (vma->vm_flags & VM_DENYWRITE)
199                 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
200         if (vma->vm_flags & VM_SHARED)
201                 mapping->i_mmap_writable--;
202
203         flush_dcache_mmap_lock(mapping);
204         if (unlikely(vma->vm_flags & VM_NONLINEAR))
205                 list_del_init(&vma->shared.vm_set.list);
206         else
207                 vma_prio_tree_remove(vma, &mapping->i_mmap);
208         flush_dcache_mmap_unlock(mapping);
209 }
210
211 /*
212  * Unlink a file-based vm structure from its prio_tree, to hide
213  * vma from rmap and vmtruncate before freeing its page tables.
214  */
215 void unlink_file_vma(struct vm_area_struct *vma)
216 {
217         struct file *file = vma->vm_file;
218
219         if (file) {
220                 struct address_space *mapping = file->f_mapping;
221                 spin_lock(&mapping->i_mmap_lock);
222                 __remove_shared_vm_struct(vma, file, mapping);
223                 spin_unlock(&mapping->i_mmap_lock);
224         }
225 }
226
227 /*
228  * Close a vm structure and free it, returning the next.
229  */
230 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
231 {
232         struct vm_area_struct *next = vma->vm_next;
233
234         might_sleep();
235         if (vma->vm_ops && vma->vm_ops->close)
236                 vma->vm_ops->close(vma);
237         if (vma->vm_file) {
238                 fput(vma->vm_file);
239                 if (vma->vm_flags & VM_EXECUTABLE)
240                         removed_exe_file_vma(vma->vm_mm);
241         }
242         mpol_put(vma_policy(vma));
243         kmem_cache_free(vm_area_cachep, vma);
244         return next;
245 }
246
247 SYSCALL_DEFINE1(brk, unsigned long, brk)
248 {
249         unsigned long rlim, retval;
250         unsigned long newbrk, oldbrk;
251         struct mm_struct *mm = current->mm;
252         unsigned long min_brk;
253
254         down_write(&mm->mmap_sem);
255
256 #ifdef CONFIG_COMPAT_BRK
257         min_brk = mm->end_code;
258 #else
259         min_brk = mm->start_brk;
260 #endif
261         if (brk < min_brk)
262                 goto out;
263
264         /*
265          * Check against rlimit here. If this check is done later after the test
266          * of oldbrk with newbrk then it can escape the test and let the data
267          * segment grow beyond its set limit the in case where the limit is
268          * not page aligned -Ram Gupta
269          */
270         rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
271         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
272                         (mm->end_data - mm->start_data) > rlim)
273                 goto out;
274
275         newbrk = PAGE_ALIGN(brk);
276         oldbrk = PAGE_ALIGN(mm->brk);
277         if (oldbrk == newbrk)
278                 goto set_brk;
279
280         /* Always allow shrinking brk. */
281         if (brk <= mm->brk) {
282                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
283                         goto set_brk;
284                 goto out;
285         }
286
287         /* Check against existing mmap mappings. */
288         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
289                 goto out;
290
291         /* Ok, looks good - let it rip. */
292         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
293                 goto out;
294 set_brk:
295         mm->brk = brk;
296 out:
297         retval = mm->brk;
298         up_write(&mm->mmap_sem);
299         return retval;
300 }
301
302 #ifdef DEBUG_MM_RB
303 static int browse_rb(struct rb_root *root)
304 {
305         int i = 0, j;
306         struct rb_node *nd, *pn = NULL;
307         unsigned long prev = 0, pend = 0;
308
309         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
310                 struct vm_area_struct *vma;
311                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
312                 if (vma->vm_start < prev)
313                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
314                 if (vma->vm_start < pend)
315                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
316                 if (vma->vm_start > vma->vm_end)
317                         printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
318                 i++;
319                 pn = nd;
320                 prev = vma->vm_start;
321                 pend = vma->vm_end;
322         }
323         j = 0;
324         for (nd = pn; nd; nd = rb_prev(nd)) {
325                 j++;
326         }
327         if (i != j)
328                 printk("backwards %d, forwards %d\n", j, i), i = 0;
329         return i;
330 }
331
332 void validate_mm(struct mm_struct *mm)
333 {
334         int bug = 0;
335         int i = 0;
336         struct vm_area_struct *tmp = mm->mmap;
337         while (tmp) {
338                 tmp = tmp->vm_next;
339                 i++;
340         }
341         if (i != mm->map_count)
342                 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
343         i = browse_rb(&mm->mm_rb);
344         if (i != mm->map_count)
345                 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
346         BUG_ON(bug);
347 }
348 #else
349 #define validate_mm(mm) do { } while (0)
350 #endif
351
352 static struct vm_area_struct *
353 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
354                 struct vm_area_struct **pprev, struct rb_node ***rb_link,
355                 struct rb_node ** rb_parent)
356 {
357         struct vm_area_struct * vma;
358         struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
359
360         __rb_link = &mm->mm_rb.rb_node;
361         rb_prev = __rb_parent = NULL;
362         vma = NULL;
363
364         while (*__rb_link) {
365                 struct vm_area_struct *vma_tmp;
366
367                 __rb_parent = *__rb_link;
368                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
369
370                 if (vma_tmp->vm_end > addr) {
371                         vma = vma_tmp;
372                         if (vma_tmp->vm_start <= addr)
373                                 break;
374                         __rb_link = &__rb_parent->rb_left;
375                 } else {
376                         rb_prev = __rb_parent;
377                         __rb_link = &__rb_parent->rb_right;
378                 }
379         }
380
381         *pprev = NULL;
382         if (rb_prev)
383                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
384         *rb_link = __rb_link;
385         *rb_parent = __rb_parent;
386         return vma;
387 }
388
389 static inline void
390 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
391                 struct vm_area_struct *prev, struct rb_node *rb_parent)
392 {
393         if (prev) {
394                 vma->vm_next = prev->vm_next;
395                 prev->vm_next = vma;
396         } else {
397                 mm->mmap = vma;
398                 if (rb_parent)
399                         vma->vm_next = rb_entry(rb_parent,
400                                         struct vm_area_struct, vm_rb);
401                 else
402                         vma->vm_next = NULL;
403         }
404 }
405
406 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
407                 struct rb_node **rb_link, struct rb_node *rb_parent)
408 {
409         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
410         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
411 }
412
413 static void __vma_link_file(struct vm_area_struct *vma)
414 {
415         struct file *file;
416
417         file = vma->vm_file;
418         if (file) {
419                 struct address_space *mapping = file->f_mapping;
420
421                 if (vma->vm_flags & VM_DENYWRITE)
422                         atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
423                 if (vma->vm_flags & VM_SHARED)
424                         mapping->i_mmap_writable++;
425
426                 flush_dcache_mmap_lock(mapping);
427                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
428                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
429                 else
430                         vma_prio_tree_insert(vma, &mapping->i_mmap);
431                 flush_dcache_mmap_unlock(mapping);
432         }
433 }
434
435 static void
436 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
437         struct vm_area_struct *prev, struct rb_node **rb_link,
438         struct rb_node *rb_parent)
439 {
440         __vma_link_list(mm, vma, prev, rb_parent);
441         __vma_link_rb(mm, vma, rb_link, rb_parent);
442         __anon_vma_link(vma);
443 }
444
445 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
446                         struct vm_area_struct *prev, struct rb_node **rb_link,
447                         struct rb_node *rb_parent)
448 {
449         struct address_space *mapping = NULL;
450
451         if (vma->vm_file)
452                 mapping = vma->vm_file->f_mapping;
453
454         if (mapping) {
455                 spin_lock(&mapping->i_mmap_lock);
456                 vma->vm_truncate_count = mapping->truncate_count;
457         }
458         anon_vma_lock(vma);
459
460         __vma_link(mm, vma, prev, rb_link, rb_parent);
461         __vma_link_file(vma);
462
463         anon_vma_unlock(vma);
464         if (mapping)
465                 spin_unlock(&mapping->i_mmap_lock);
466
467         mm->map_count++;
468         validate_mm(mm);
469 }
470
471 /*
472  * Helper for vma_adjust in the split_vma insert case:
473  * insert vm structure into list and rbtree and anon_vma,
474  * but it has already been inserted into prio_tree earlier.
475  */
476 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
477 {
478         struct vm_area_struct *__vma, *prev;
479         struct rb_node **rb_link, *rb_parent;
480
481         __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
482         BUG_ON(__vma && __vma->vm_start < vma->vm_end);
483         __vma_link(mm, vma, prev, rb_link, rb_parent);
484         mm->map_count++;
485 }
486
487 static inline void
488 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
489                 struct vm_area_struct *prev)
490 {
491         prev->vm_next = vma->vm_next;
492         rb_erase(&vma->vm_rb, &mm->mm_rb);
493         if (mm->mmap_cache == vma)
494                 mm->mmap_cache = prev;
495 }
496
497 /*
498  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
499  * is already present in an i_mmap tree without adjusting the tree.
500  * The following helper function should be used when such adjustments
501  * are necessary.  The "insert" vma (if any) is to be inserted
502  * before we drop the necessary locks.
503  */
504 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
505         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
506 {
507         struct mm_struct *mm = vma->vm_mm;
508         struct vm_area_struct *next = vma->vm_next;
509         struct vm_area_struct *importer = NULL;
510         struct address_space *mapping = NULL;
511         struct prio_tree_root *root = NULL;
512         struct file *file = vma->vm_file;
513         struct anon_vma *anon_vma = NULL;
514         long adjust_next = 0;
515         int remove_next = 0;
516
517         if (next && !insert) {
518                 if (end >= next->vm_end) {
519                         /*
520                          * vma expands, overlapping all the next, and
521                          * perhaps the one after too (mprotect case 6).
522                          */
523 again:                  remove_next = 1 + (end > next->vm_end);
524                         end = next->vm_end;
525                         anon_vma = next->anon_vma;
526                         importer = vma;
527                 } else if (end > next->vm_start) {
528                         /*
529                          * vma expands, overlapping part of the next:
530                          * mprotect case 5 shifting the boundary up.
531                          */
532                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
533                         anon_vma = next->anon_vma;
534                         importer = vma;
535                 } else if (end < vma->vm_end) {
536                         /*
537                          * vma shrinks, and !insert tells it's not
538                          * split_vma inserting another: so it must be
539                          * mprotect case 4 shifting the boundary down.
540                          */
541                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
542                         anon_vma = next->anon_vma;
543                         importer = next;
544                 }
545         }
546
547         if (file) {
548                 mapping = file->f_mapping;
549                 if (!(vma->vm_flags & VM_NONLINEAR))
550                         root = &mapping->i_mmap;
551                 spin_lock(&mapping->i_mmap_lock);
552                 if (importer &&
553                     vma->vm_truncate_count != next->vm_truncate_count) {
554                         /*
555                          * unmap_mapping_range might be in progress:
556                          * ensure that the expanding vma is rescanned.
557                          */
558                         importer->vm_truncate_count = 0;
559                 }
560                 if (insert) {
561                         insert->vm_truncate_count = vma->vm_truncate_count;
562                         /*
563                          * Put into prio_tree now, so instantiated pages
564                          * are visible to arm/parisc __flush_dcache_page
565                          * throughout; but we cannot insert into address
566                          * space until vma start or end is updated.
567                          */
568                         __vma_link_file(insert);
569                 }
570         }
571
572         /*
573          * When changing only vma->vm_end, we don't really need
574          * anon_vma lock: but is that case worth optimizing out?
575          */
576         if (vma->anon_vma)
577                 anon_vma = vma->anon_vma;
578         if (anon_vma) {
579                 spin_lock(&anon_vma->lock);
580                 /*
581                  * Easily overlooked: when mprotect shifts the boundary,
582                  * make sure the expanding vma has anon_vma set if the
583                  * shrinking vma had, to cover any anon pages imported.
584                  */
585                 if (importer && !importer->anon_vma) {
586                         importer->anon_vma = anon_vma;
587                         __anon_vma_link(importer);
588                 }
589         }
590
591         if (root) {
592                 flush_dcache_mmap_lock(mapping);
593                 vma_prio_tree_remove(vma, root);
594                 if (adjust_next)
595                         vma_prio_tree_remove(next, root);
596         }
597
598         vma->vm_start = start;
599         vma->vm_end = end;
600         vma->vm_pgoff = pgoff;
601         if (adjust_next) {
602                 next->vm_start += adjust_next << PAGE_SHIFT;
603                 next->vm_pgoff += adjust_next;
604         }
605
606         if (root) {
607                 if (adjust_next)
608                         vma_prio_tree_insert(next, root);
609                 vma_prio_tree_insert(vma, root);
610                 flush_dcache_mmap_unlock(mapping);
611         }
612
613         if (remove_next) {
614                 /*
615                  * vma_merge has merged next into vma, and needs
616                  * us to remove next before dropping the locks.
617                  */
618                 __vma_unlink(mm, next, vma);
619                 if (file)
620                         __remove_shared_vm_struct(next, file, mapping);
621                 if (next->anon_vma)
622                         __anon_vma_merge(vma, next);
623         } else if (insert) {
624                 /*
625                  * split_vma has split insert from vma, and needs
626                  * us to insert it before dropping the locks
627                  * (it may either follow vma or precede it).
628                  */
629                 __insert_vm_struct(mm, insert);
630         }
631
632         if (anon_vma)
633                 spin_unlock(&anon_vma->lock);
634         if (mapping)
635                 spin_unlock(&mapping->i_mmap_lock);
636
637         if (remove_next) {
638                 if (file) {
639                         fput(file);
640                         if (next->vm_flags & VM_EXECUTABLE)
641                                 removed_exe_file_vma(mm);
642                 }
643                 mm->map_count--;
644                 mpol_put(vma_policy(next));
645                 kmem_cache_free(vm_area_cachep, next);
646                 /*
647                  * In mprotect's case 6 (see comments on vma_merge),
648                  * we must remove another next too. It would clutter
649                  * up the code too much to do both in one go.
650                  */
651                 if (remove_next == 2) {
652                         next = vma->vm_next;
653                         goto again;
654                 }
655         }
656
657         validate_mm(mm);
658 }
659
660 /*
661  * If the vma has a ->close operation then the driver probably needs to release
662  * per-vma resources, so we don't attempt to merge those.
663  */
664 static inline int is_mergeable_vma(struct vm_area_struct *vma,
665                         struct file *file, unsigned long vm_flags)
666 {
667         /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
668         if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
669                 return 0;
670         if (vma->vm_file != file)
671                 return 0;
672         if (vma->vm_ops && vma->vm_ops->close)
673                 return 0;
674         return 1;
675 }
676
677 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
678                                         struct anon_vma *anon_vma2)
679 {
680         return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
681 }
682
683 /*
684  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
685  * in front of (at a lower virtual address and file offset than) the vma.
686  *
687  * We cannot merge two vmas if they have differently assigned (non-NULL)
688  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
689  *
690  * We don't check here for the merged mmap wrapping around the end of pagecache
691  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
692  * wrap, nor mmaps which cover the final page at index -1UL.
693  */
694 static int
695 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
696         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
697 {
698         if (is_mergeable_vma(vma, file, vm_flags) &&
699             is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
700                 if (vma->vm_pgoff == vm_pgoff)
701                         return 1;
702         }
703         return 0;
704 }
705
706 /*
707  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
708  * beyond (at a higher virtual address and file offset than) the vma.
709  *
710  * We cannot merge two vmas if they have differently assigned (non-NULL)
711  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
712  */
713 static int
714 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
715         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
716 {
717         if (is_mergeable_vma(vma, file, vm_flags) &&
718             is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
719                 pgoff_t vm_pglen;
720                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
721                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
722                         return 1;
723         }
724         return 0;
725 }
726
727 /*
728  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
729  * whether that can be merged with its predecessor or its successor.
730  * Or both (it neatly fills a hole).
731  *
732  * In most cases - when called for mmap, brk or mremap - [addr,end) is
733  * certain not to be mapped by the time vma_merge is called; but when
734  * called for mprotect, it is certain to be already mapped (either at
735  * an offset within prev, or at the start of next), and the flags of
736  * this area are about to be changed to vm_flags - and the no-change
737  * case has already been eliminated.
738  *
739  * The following mprotect cases have to be considered, where AAAA is
740  * the area passed down from mprotect_fixup, never extending beyond one
741  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
742  *
743  *     AAAA             AAAA                AAAA          AAAA
744  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
745  *    cannot merge    might become    might become    might become
746  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
747  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
748  *    mremap move:                                    PPPPNNNNNNNN 8
749  *        AAAA
750  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
751  *    might become    case 1 below    case 2 below    case 3 below
752  *
753  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
754  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
755  */
756 struct vm_area_struct *vma_merge(struct mm_struct *mm,
757                         struct vm_area_struct *prev, unsigned long addr,
758                         unsigned long end, unsigned long vm_flags,
759                         struct anon_vma *anon_vma, struct file *file,
760                         pgoff_t pgoff, struct mempolicy *policy)
761 {
762         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
763         struct vm_area_struct *area, *next;
764
765         /*
766          * We later require that vma->vm_flags == vm_flags,
767          * so this tests vma->vm_flags & VM_SPECIAL, too.
768          */
769         if (vm_flags & VM_SPECIAL)
770                 return NULL;
771
772         if (prev)
773                 next = prev->vm_next;
774         else
775                 next = mm->mmap;
776         area = next;
777         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
778                 next = next->vm_next;
779
780         /*
781          * Can it merge with the predecessor?
782          */
783         if (prev && prev->vm_end == addr &&
784                         mpol_equal(vma_policy(prev), policy) &&
785                         can_vma_merge_after(prev, vm_flags,
786                                                 anon_vma, file, pgoff)) {
787                 /*
788                  * OK, it can.  Can we now merge in the successor as well?
789                  */
790                 if (next && end == next->vm_start &&
791                                 mpol_equal(policy, vma_policy(next)) &&
792                                 can_vma_merge_before(next, vm_flags,
793                                         anon_vma, file, pgoff+pglen) &&
794                                 is_mergeable_anon_vma(prev->anon_vma,
795                                                       next->anon_vma)) {
796                                                         /* cases 1, 6 */
797                         vma_adjust(prev, prev->vm_start,
798                                 next->vm_end, prev->vm_pgoff, NULL);
799                 } else                                  /* cases 2, 5, 7 */
800                         vma_adjust(prev, prev->vm_start,
801                                 end, prev->vm_pgoff, NULL);
802                 return prev;
803         }
804
805         /*
806          * Can this new request be merged in front of next?
807          */
808         if (next && end == next->vm_start &&
809                         mpol_equal(policy, vma_policy(next)) &&
810                         can_vma_merge_before(next, vm_flags,
811                                         anon_vma, file, pgoff+pglen)) {
812                 if (prev && addr < prev->vm_end)        /* case 4 */
813                         vma_adjust(prev, prev->vm_start,
814                                 addr, prev->vm_pgoff, NULL);
815                 else                                    /* cases 3, 8 */
816                         vma_adjust(area, addr, next->vm_end,
817                                 next->vm_pgoff - pglen, NULL);
818                 return area;
819         }
820
821         return NULL;
822 }
823
824 /*
825  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
826  * neighbouring vmas for a suitable anon_vma, before it goes off
827  * to allocate a new anon_vma.  It checks because a repetitive
828  * sequence of mprotects and faults may otherwise lead to distinct
829  * anon_vmas being allocated, preventing vma merge in subsequent
830  * mprotect.
831  */
832 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
833 {
834         struct vm_area_struct *near;
835         unsigned long vm_flags;
836
837         near = vma->vm_next;
838         if (!near)
839                 goto try_prev;
840
841         /*
842          * Since only mprotect tries to remerge vmas, match flags
843          * which might be mprotected into each other later on.
844          * Neither mlock nor madvise tries to remerge at present,
845          * so leave their flags as obstructing a merge.
846          */
847         vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
848         vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
849
850         if (near->anon_vma && vma->vm_end == near->vm_start &&
851                         mpol_equal(vma_policy(vma), vma_policy(near)) &&
852                         can_vma_merge_before(near, vm_flags,
853                                 NULL, vma->vm_file, vma->vm_pgoff +
854                                 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
855                 return near->anon_vma;
856 try_prev:
857         /*
858          * It is potentially slow to have to call find_vma_prev here.
859          * But it's only on the first write fault on the vma, not
860          * every time, and we could devise a way to avoid it later
861          * (e.g. stash info in next's anon_vma_node when assigning
862          * an anon_vma, or when trying vma_merge).  Another time.
863          */
864         BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
865         if (!near)
866                 goto none;
867
868         vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
869         vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
870
871         if (near->anon_vma && near->vm_end == vma->vm_start &&
872                         mpol_equal(vma_policy(near), vma_policy(vma)) &&
873                         can_vma_merge_after(near, vm_flags,
874                                 NULL, vma->vm_file, vma->vm_pgoff))
875                 return near->anon_vma;
876 none:
877         /*
878          * There's no absolute need to look only at touching neighbours:
879          * we could search further afield for "compatible" anon_vmas.
880          * But it would probably just be a waste of time searching,
881          * or lead to too many vmas hanging off the same anon_vma.
882          * We're trying to allow mprotect remerging later on,
883          * not trying to minimize memory used for anon_vmas.
884          */
885         return NULL;
886 }
887
888 #ifdef CONFIG_PROC_FS
889 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
890                                                 struct file *file, long pages)
891 {
892         const unsigned long stack_flags
893                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
894
895         if (file) {
896                 mm->shared_vm += pages;
897                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
898                         mm->exec_vm += pages;
899         } else if (flags & stack_flags)
900                 mm->stack_vm += pages;
901         if (flags & (VM_RESERVED|VM_IO))
902                 mm->reserved_vm += pages;
903 }
904 #endif /* CONFIG_PROC_FS */
905
906 /*
907  * The caller must hold down_write(&current->mm->mmap_sem).
908  */
909
910 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
911                         unsigned long len, unsigned long prot,
912                         unsigned long flags, unsigned long pgoff)
913 {
914         struct mm_struct * mm = current->mm;
915         struct inode *inode;
916         unsigned int vm_flags;
917         int error;
918         unsigned long reqprot = prot;
919
920         /*
921          * Does the application expect PROT_READ to imply PROT_EXEC?
922          *
923          * (the exception is when the underlying filesystem is noexec
924          *  mounted, in which case we dont add PROT_EXEC.)
925          */
926         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
927                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
928                         prot |= PROT_EXEC;
929
930         if (!len)
931                 return -EINVAL;
932
933         if (!(flags & MAP_FIXED))
934                 addr = round_hint_to_min(addr);
935
936         error = arch_mmap_check(addr, len, flags);
937         if (error)
938                 return error;
939
940         /* Careful about overflows.. */
941         len = PAGE_ALIGN(len);
942         if (!len || len > TASK_SIZE)
943                 return -ENOMEM;
944
945         /* offset overflow? */
946         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
947                return -EOVERFLOW;
948
949         /* Too many mappings? */
950         if (mm->map_count > sysctl_max_map_count)
951                 return -ENOMEM;
952
953         /* Obtain the address to map to. we verify (or select) it and ensure
954          * that it represents a valid section of the address space.
955          */
956         addr = get_unmapped_area(file, addr, len, pgoff, flags);
957         if (addr & ~PAGE_MASK)
958                 return addr;
959
960         /* Do simple checking here so the lower-level routines won't have
961          * to. we assume access permissions have been handled by the open
962          * of the memory object, so we don't do any here.
963          */
964         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
965                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
966
967         if (flags & MAP_LOCKED) {
968                 if (!can_do_mlock())
969                         return -EPERM;
970                 vm_flags |= VM_LOCKED;
971         }
972
973         /* mlock MCL_FUTURE? */
974         if (vm_flags & VM_LOCKED) {
975                 unsigned long locked, lock_limit;
976                 locked = len >> PAGE_SHIFT;
977                 locked += mm->locked_vm;
978                 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
979                 lock_limit >>= PAGE_SHIFT;
980                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
981                         return -EAGAIN;
982         }
983
984         inode = file ? file->f_path.dentry->d_inode : NULL;
985
986         if (file) {
987                 switch (flags & MAP_TYPE) {
988                 case MAP_SHARED:
989                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
990                                 return -EACCES;
991
992                         /*
993                          * Make sure we don't allow writing to an append-only
994                          * file..
995                          */
996                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
997                                 return -EACCES;
998
999                         /*
1000                          * Make sure there are no mandatory locks on the file.
1001                          */
1002                         if (locks_verify_locked(inode))
1003                                 return -EAGAIN;
1004
1005                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1006                         if (!(file->f_mode & FMODE_WRITE))
1007                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1008
1009                         /* fall through */
1010                 case MAP_PRIVATE:
1011                         if (!(file->f_mode & FMODE_READ))
1012                                 return -EACCES;
1013                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1014                                 if (vm_flags & VM_EXEC)
1015                                         return -EPERM;
1016                                 vm_flags &= ~VM_MAYEXEC;
1017                         }
1018
1019                         if (!file->f_op || !file->f_op->mmap)
1020                                 return -ENODEV;
1021                         break;
1022
1023                 default:
1024                         return -EINVAL;
1025                 }
1026         } else {
1027                 switch (flags & MAP_TYPE) {
1028                 case MAP_SHARED:
1029                         /*
1030                          * Ignore pgoff.
1031                          */
1032                         pgoff = 0;
1033                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1034                         break;
1035                 case MAP_PRIVATE:
1036                         /*
1037                          * Set pgoff according to addr for anon_vma.
1038                          */
1039                         pgoff = addr >> PAGE_SHIFT;
1040                         break;
1041                 default:
1042                         return -EINVAL;
1043                 }
1044         }
1045
1046         error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1047         if (error)
1048                 return error;
1049         error = ima_file_mmap(file, prot);
1050         if (error)
1051                 return error;
1052
1053         return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1054 }
1055 EXPORT_SYMBOL(do_mmap_pgoff);
1056
1057 /*
1058  * Some shared mappigns will want the pages marked read-only
1059  * to track write events. If so, we'll downgrade vm_page_prot
1060  * to the private version (using protection_map[] without the
1061  * VM_SHARED bit).
1062  */
1063 int vma_wants_writenotify(struct vm_area_struct *vma)
1064 {
1065         unsigned int vm_flags = vma->vm_flags;
1066
1067         /* If it was private or non-writable, the write bit is already clear */
1068         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1069                 return 0;
1070
1071         /* The backer wishes to know when pages are first written to? */
1072         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1073                 return 1;
1074
1075         /* The open routine did something to the protections already? */
1076         if (pgprot_val(vma->vm_page_prot) !=
1077             pgprot_val(vm_get_page_prot(vm_flags)))
1078                 return 0;
1079
1080         /* Specialty mapping? */
1081         if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1082                 return 0;
1083
1084         /* Can the mapping track the dirty pages? */
1085         return vma->vm_file && vma->vm_file->f_mapping &&
1086                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1087 }
1088
1089 /*
1090  * We account for memory if it's a private writeable mapping,
1091  * not hugepages and VM_NORESERVE wasn't set.
1092  */
1093 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1094 {
1095         /*
1096          * hugetlb has its own accounting separate from the core VM
1097          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1098          */
1099         if (file && is_file_hugepages(file))
1100                 return 0;
1101
1102         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1103 }
1104
1105 unsigned long mmap_region(struct file *file, unsigned long addr,
1106                           unsigned long len, unsigned long flags,
1107                           unsigned int vm_flags, unsigned long pgoff)
1108 {
1109         struct mm_struct *mm = current->mm;
1110         struct vm_area_struct *vma, *prev;
1111         int correct_wcount = 0;
1112         int error;
1113         struct rb_node **rb_link, *rb_parent;
1114         unsigned long charged = 0;
1115         struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1116
1117         /* Clear old maps */
1118         error = -ENOMEM;
1119 munmap_back:
1120         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1121         if (vma && vma->vm_start < addr + len) {
1122                 if (do_munmap(mm, addr, len))
1123                         return -ENOMEM;
1124                 goto munmap_back;
1125         }
1126
1127         /* Check against address space limit. */
1128         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1129                 return -ENOMEM;
1130
1131         /*
1132          * Set 'VM_NORESERVE' if we should not account for the
1133          * memory use of this mapping.
1134          */
1135         if ((flags & MAP_NORESERVE)) {
1136                 /* We honor MAP_NORESERVE if allowed to overcommit */
1137                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1138                         vm_flags |= VM_NORESERVE;
1139
1140                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1141                 if (file && is_file_hugepages(file))
1142                         vm_flags |= VM_NORESERVE;
1143         }
1144
1145         /*
1146          * Private writable mapping: check memory availability
1147          */
1148         if (accountable_mapping(file, vm_flags)) {
1149                 charged = len >> PAGE_SHIFT;
1150                 if (security_vm_enough_memory(charged))
1151                         return -ENOMEM;
1152                 vm_flags |= VM_ACCOUNT;
1153         }
1154
1155         /*
1156          * Can we just expand an old mapping?
1157          */
1158         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1159         if (vma)
1160                 goto out;
1161
1162         /*
1163          * Determine the object being mapped and call the appropriate
1164          * specific mapper. the address has already been validated, but
1165          * not unmapped, but the maps are removed from the list.
1166          */
1167         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1168         if (!vma) {
1169                 error = -ENOMEM;
1170                 goto unacct_error;
1171         }
1172
1173         vma->vm_mm = mm;
1174         vma->vm_start = addr;
1175         vma->vm_end = addr + len;
1176         vma->vm_flags = vm_flags;
1177         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1178         vma->vm_pgoff = pgoff;
1179
1180         if (file) {
1181                 error = -EINVAL;
1182                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1183                         goto free_vma;
1184                 if (vm_flags & VM_DENYWRITE) {
1185                         error = deny_write_access(file);
1186                         if (error)
1187                                 goto free_vma;
1188                         correct_wcount = 1;
1189                 }
1190                 vma->vm_file = file;
1191                 get_file(file);
1192                 error = file->f_op->mmap(file, vma);
1193                 if (error)
1194                         goto unmap_and_free_vma;
1195                 if (vm_flags & VM_EXECUTABLE)
1196                         added_exe_file_vma(mm);
1197         } else if (vm_flags & VM_SHARED) {
1198                 error = shmem_zero_setup(vma);
1199                 if (error)
1200                         goto free_vma;
1201         }
1202
1203         /* Can addr have changed??
1204          *
1205          * Answer: Yes, several device drivers can do it in their
1206          *         f_op->mmap method. -DaveM
1207          */
1208         addr = vma->vm_start;
1209         pgoff = vma->vm_pgoff;
1210         vm_flags = vma->vm_flags;
1211
1212         if (vma_wants_writenotify(vma))
1213                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1214
1215         vma_link(mm, vma, prev, rb_link, rb_parent);
1216         file = vma->vm_file;
1217
1218         /* Once vma denies write, undo our temporary denial count */
1219         if (correct_wcount)
1220                 atomic_inc(&inode->i_writecount);
1221 out:
1222         perf_event_mmap(vma);
1223
1224         mm->total_vm += len >> PAGE_SHIFT;
1225         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1226         if (vm_flags & VM_LOCKED) {
1227                 /*
1228                  * makes pages present; downgrades, drops, reacquires mmap_sem
1229                  */
1230                 long nr_pages = mlock_vma_pages_range(vma, addr, addr + len);
1231                 if (nr_pages < 0)
1232                         return nr_pages;        /* vma gone! */
1233                 mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages;
1234         } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1235                 make_pages_present(addr, addr + len);
1236         return addr;
1237
1238 unmap_and_free_vma:
1239         if (correct_wcount)
1240                 atomic_inc(&inode->i_writecount);
1241         vma->vm_file = NULL;
1242         fput(file);
1243
1244         /* Undo any partial mapping done by a device driver. */
1245         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1246         charged = 0;
1247 free_vma:
1248         kmem_cache_free(vm_area_cachep, vma);
1249 unacct_error:
1250         if (charged)
1251                 vm_unacct_memory(charged);
1252         return error;
1253 }
1254
1255 /* Get an address range which is currently unmapped.
1256  * For shmat() with addr=0.
1257  *
1258  * Ugly calling convention alert:
1259  * Return value with the low bits set means error value,
1260  * ie
1261  *      if (ret & ~PAGE_MASK)
1262  *              error = ret;
1263  *
1264  * This function "knows" that -ENOMEM has the bits set.
1265  */
1266 #ifndef HAVE_ARCH_UNMAPPED_AREA
1267 unsigned long
1268 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1269                 unsigned long len, unsigned long pgoff, unsigned long flags)
1270 {
1271         struct mm_struct *mm = current->mm;
1272         struct vm_area_struct *vma;
1273         unsigned long start_addr;
1274
1275         if (len > TASK_SIZE)
1276                 return -ENOMEM;
1277
1278         if (flags & MAP_FIXED)
1279                 return addr;
1280
1281         if (addr) {
1282                 addr = PAGE_ALIGN(addr);
1283                 vma = find_vma(mm, addr);
1284                 if (TASK_SIZE - len >= addr &&
1285                     (!vma || addr + len <= vma->vm_start))
1286                         return addr;
1287         }
1288         if (len > mm->cached_hole_size) {
1289                 start_addr = addr = mm->free_area_cache;
1290         } else {
1291                 start_addr = addr = TASK_UNMAPPED_BASE;
1292                 mm->cached_hole_size = 0;
1293         }
1294
1295 full_search:
1296         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1297                 /* At this point:  (!vma || addr < vma->vm_end). */
1298                 if (TASK_SIZE - len < addr) {
1299                         /*
1300                          * Start a new search - just in case we missed
1301                          * some holes.
1302                          */
1303                         if (start_addr != TASK_UNMAPPED_BASE) {
1304                                 addr = TASK_UNMAPPED_BASE;
1305                                 start_addr = addr;
1306                                 mm->cached_hole_size = 0;
1307                                 goto full_search;
1308                         }
1309                         return -ENOMEM;
1310                 }
1311                 if (!vma || addr + len <= vma->vm_start) {
1312                         /*
1313                          * Remember the place where we stopped the search:
1314                          */
1315                         mm->free_area_cache = addr + len;
1316                         return addr;
1317                 }
1318                 if (addr + mm->cached_hole_size < vma->vm_start)
1319                         mm->cached_hole_size = vma->vm_start - addr;
1320                 addr = vma->vm_end;
1321         }
1322 }
1323 #endif  
1324
1325 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1326 {
1327         /*
1328          * Is this a new hole at the lowest possible address?
1329          */
1330         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1331                 mm->free_area_cache = addr;
1332                 mm->cached_hole_size = ~0UL;
1333         }
1334 }
1335
1336 /*
1337  * This mmap-allocator allocates new areas top-down from below the
1338  * stack's low limit (the base):
1339  */
1340 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1341 unsigned long
1342 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1343                           const unsigned long len, const unsigned long pgoff,
1344                           const unsigned long flags)
1345 {
1346         struct vm_area_struct *vma;
1347         struct mm_struct *mm = current->mm;
1348         unsigned long addr = addr0;
1349
1350         /* requested length too big for entire address space */
1351         if (len > TASK_SIZE)
1352                 return -ENOMEM;
1353
1354         if (flags & MAP_FIXED)
1355                 return addr;
1356
1357         /* requesting a specific address */
1358         if (addr) {
1359                 addr = PAGE_ALIGN(addr);
1360                 vma = find_vma(mm, addr);
1361                 if (TASK_SIZE - len >= addr &&
1362                                 (!vma || addr + len <= vma->vm_start))
1363                         return addr;
1364         }
1365
1366         /* check if free_area_cache is useful for us */
1367         if (len <= mm->cached_hole_size) {
1368                 mm->cached_hole_size = 0;
1369                 mm->free_area_cache = mm->mmap_base;
1370         }
1371
1372         /* either no address requested or can't fit in requested address hole */
1373         addr = mm->free_area_cache;
1374
1375         /* make sure it can fit in the remaining address space */
1376         if (addr > len) {
1377                 vma = find_vma(mm, addr-len);
1378                 if (!vma || addr <= vma->vm_start)
1379                         /* remember the address as a hint for next time */
1380                         return (mm->free_area_cache = addr-len);
1381         }
1382
1383         if (mm->mmap_base < len)
1384                 goto bottomup;
1385
1386         addr = mm->mmap_base-len;
1387
1388         do {
1389                 /*
1390                  * Lookup failure means no vma is above this address,
1391                  * else if new region fits below vma->vm_start,
1392                  * return with success:
1393                  */
1394                 vma = find_vma(mm, addr);
1395                 if (!vma || addr+len <= vma->vm_start)
1396                         /* remember the address as a hint for next time */
1397                         return (mm->free_area_cache = addr);
1398
1399                 /* remember the largest hole we saw so far */
1400                 if (addr + mm->cached_hole_size < vma->vm_start)
1401                         mm->cached_hole_size = vma->vm_start - addr;
1402
1403                 /* try just below the current vma->vm_start */
1404                 addr = vma->vm_start-len;
1405         } while (len < vma->vm_start);
1406
1407 bottomup:
1408         /*
1409          * A failed mmap() very likely causes application failure,
1410          * so fall back to the bottom-up function here. This scenario
1411          * can happen with large stack limits and large mmap()
1412          * allocations.
1413          */
1414         mm->cached_hole_size = ~0UL;
1415         mm->free_area_cache = TASK_UNMAPPED_BASE;
1416         addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1417         /*
1418          * Restore the topdown base:
1419          */
1420         mm->free_area_cache = mm->mmap_base;
1421         mm->cached_hole_size = ~0UL;
1422
1423         return addr;
1424 }
1425 #endif
1426
1427 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1428 {
1429         /*
1430          * Is this a new hole at the highest possible address?
1431          */
1432         if (addr > mm->free_area_cache)
1433                 mm->free_area_cache = addr;
1434
1435         /* dont allow allocations above current base */
1436         if (mm->free_area_cache > mm->mmap_base)
1437                 mm->free_area_cache = mm->mmap_base;
1438 }
1439
1440 unsigned long
1441 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1442                 unsigned long pgoff, unsigned long flags)
1443 {
1444         unsigned long (*get_area)(struct file *, unsigned long,
1445                                   unsigned long, unsigned long, unsigned long);
1446
1447         get_area = current->mm->get_unmapped_area;
1448         if (file && file->f_op && file->f_op->get_unmapped_area)
1449                 get_area = file->f_op->get_unmapped_area;
1450         addr = get_area(file, addr, len, pgoff, flags);
1451         if (IS_ERR_VALUE(addr))
1452                 return addr;
1453
1454         if (addr > TASK_SIZE - len)
1455                 return -ENOMEM;
1456         if (addr & ~PAGE_MASK)
1457                 return -EINVAL;
1458
1459         return arch_rebalance_pgtables(addr, len);
1460 }
1461
1462 EXPORT_SYMBOL(get_unmapped_area);
1463
1464 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1465 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1466 {
1467         struct vm_area_struct *vma = NULL;
1468
1469         if (mm) {
1470                 /* Check the cache first. */
1471                 /* (Cache hit rate is typically around 35%.) */
1472                 vma = mm->mmap_cache;
1473                 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1474                         struct rb_node * rb_node;
1475
1476                         rb_node = mm->mm_rb.rb_node;
1477                         vma = NULL;
1478
1479                         while (rb_node) {
1480                                 struct vm_area_struct * vma_tmp;
1481
1482                                 vma_tmp = rb_entry(rb_node,
1483                                                 struct vm_area_struct, vm_rb);
1484
1485                                 if (vma_tmp->vm_end > addr) {
1486                                         vma = vma_tmp;
1487                                         if (vma_tmp->vm_start <= addr)
1488                                                 break;
1489                                         rb_node = rb_node->rb_left;
1490                                 } else
1491                                         rb_node = rb_node->rb_right;
1492                         }
1493                         if (vma)
1494                                 mm->mmap_cache = vma;
1495                 }
1496         }
1497         return vma;
1498 }
1499
1500 EXPORT_SYMBOL(find_vma);
1501
1502 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1503 struct vm_area_struct *
1504 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1505                         struct vm_area_struct **pprev)
1506 {
1507         struct vm_area_struct *vma = NULL, *prev = NULL;
1508         struct rb_node *rb_node;
1509         if (!mm)
1510                 goto out;
1511
1512         /* Guard against addr being lower than the first VMA */
1513         vma = mm->mmap;
1514
1515         /* Go through the RB tree quickly. */
1516         rb_node = mm->mm_rb.rb_node;
1517
1518         while (rb_node) {
1519                 struct vm_area_struct *vma_tmp;
1520                 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1521
1522                 if (addr < vma_tmp->vm_end) {
1523                         rb_node = rb_node->rb_left;
1524                 } else {
1525                         prev = vma_tmp;
1526                         if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1527                                 break;
1528                         rb_node = rb_node->rb_right;
1529                 }
1530         }
1531
1532 out:
1533         *pprev = prev;
1534         return prev ? prev->vm_next : vma;
1535 }
1536
1537 /*
1538  * Verify that the stack growth is acceptable and
1539  * update accounting. This is shared with both the
1540  * grow-up and grow-down cases.
1541  */
1542 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1543 {
1544         struct mm_struct *mm = vma->vm_mm;
1545         struct rlimit *rlim = current->signal->rlim;
1546         unsigned long new_start;
1547
1548         /* address space limit tests */
1549         if (!may_expand_vm(mm, grow))
1550                 return -ENOMEM;
1551
1552         /* Stack limit test */
1553         if (size > rlim[RLIMIT_STACK].rlim_cur)
1554                 return -ENOMEM;
1555
1556         /* mlock limit tests */
1557         if (vma->vm_flags & VM_LOCKED) {
1558                 unsigned long locked;
1559                 unsigned long limit;
1560                 locked = mm->locked_vm + grow;
1561                 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1562                 if (locked > limit && !capable(CAP_IPC_LOCK))
1563                         return -ENOMEM;
1564         }
1565
1566         /* Check to ensure the stack will not grow into a hugetlb-only region */
1567         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1568                         vma->vm_end - size;
1569         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1570                 return -EFAULT;
1571
1572         /*
1573          * Overcommit..  This must be the final test, as it will
1574          * update security statistics.
1575          */
1576         if (security_vm_enough_memory_mm(mm, grow))
1577                 return -ENOMEM;
1578
1579         /* Ok, everything looks good - let it rip */
1580         mm->total_vm += grow;
1581         if (vma->vm_flags & VM_LOCKED)
1582                 mm->locked_vm += grow;
1583         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1584         return 0;
1585 }
1586
1587 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1588 /*
1589  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1590  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1591  */
1592 #ifndef CONFIG_IA64
1593 static
1594 #endif
1595 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1596 {
1597         int error;
1598
1599         if (!(vma->vm_flags & VM_GROWSUP))
1600                 return -EFAULT;
1601
1602         /*
1603          * We must make sure the anon_vma is allocated
1604          * so that the anon_vma locking is not a noop.
1605          */
1606         if (unlikely(anon_vma_prepare(vma)))
1607                 return -ENOMEM;
1608         anon_vma_lock(vma);
1609
1610         /*
1611          * vma->vm_start/vm_end cannot change under us because the caller
1612          * is required to hold the mmap_sem in read mode.  We need the
1613          * anon_vma lock to serialize against concurrent expand_stacks.
1614          * Also guard against wrapping around to address 0.
1615          */
1616         if (address < PAGE_ALIGN(address+4))
1617                 address = PAGE_ALIGN(address+4);
1618         else {
1619                 anon_vma_unlock(vma);
1620                 return -ENOMEM;
1621         }
1622         error = 0;
1623
1624         /* Somebody else might have raced and expanded it already */
1625         if (address > vma->vm_end) {
1626                 unsigned long size, grow;
1627
1628                 size = address - vma->vm_start;
1629                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1630
1631                 error = acct_stack_growth(vma, size, grow);
1632                 if (!error)
1633                         vma->vm_end = address;
1634         }
1635         anon_vma_unlock(vma);
1636         return error;
1637 }
1638 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1639
1640 /*
1641  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1642  */
1643 static int expand_downwards(struct vm_area_struct *vma,
1644                                    unsigned long address)
1645 {
1646         int error;
1647
1648         /*
1649          * We must make sure the anon_vma is allocated
1650          * so that the anon_vma locking is not a noop.
1651          */
1652         if (unlikely(anon_vma_prepare(vma)))
1653                 return -ENOMEM;
1654
1655         address &= PAGE_MASK;
1656         error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1657         if (error)
1658                 return error;
1659
1660         anon_vma_lock(vma);
1661
1662         /*
1663          * vma->vm_start/vm_end cannot change under us because the caller
1664          * is required to hold the mmap_sem in read mode.  We need the
1665          * anon_vma lock to serialize against concurrent expand_stacks.
1666          */
1667
1668         /* Somebody else might have raced and expanded it already */
1669         if (address < vma->vm_start) {
1670                 unsigned long size, grow;
1671
1672                 size = vma->vm_end - address;
1673                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1674
1675                 error = acct_stack_growth(vma, size, grow);
1676                 if (!error) {
1677                         vma->vm_start = address;
1678                         vma->vm_pgoff -= grow;
1679                 }
1680         }
1681         anon_vma_unlock(vma);
1682         return error;
1683 }
1684
1685 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1686 {
1687         return expand_downwards(vma, address);
1688 }
1689
1690 #ifdef CONFIG_STACK_GROWSUP
1691 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1692 {
1693         return expand_upwards(vma, address);
1694 }
1695
1696 struct vm_area_struct *
1697 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1698 {
1699         struct vm_area_struct *vma, *prev;
1700
1701         addr &= PAGE_MASK;
1702         vma = find_vma_prev(mm, addr, &prev);
1703         if (vma && (vma->vm_start <= addr))
1704                 return vma;
1705         if (!prev || expand_stack(prev, addr))
1706                 return NULL;
1707         if (prev->vm_flags & VM_LOCKED) {
1708                 if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0)
1709                         return NULL;    /* vma gone! */
1710         }
1711         return prev;
1712 }
1713 #else
1714 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1715 {
1716         return expand_downwards(vma, address);
1717 }
1718
1719 struct vm_area_struct *
1720 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1721 {
1722         struct vm_area_struct * vma;
1723         unsigned long start;
1724
1725         addr &= PAGE_MASK;
1726         vma = find_vma(mm,addr);
1727         if (!vma)
1728                 return NULL;
1729         if (vma->vm_start <= addr)
1730                 return vma;
1731         if (!(vma->vm_flags & VM_GROWSDOWN))
1732                 return NULL;
1733         start = vma->vm_start;
1734         if (expand_stack(vma, addr))
1735                 return NULL;
1736         if (vma->vm_flags & VM_LOCKED) {
1737                 if (mlock_vma_pages_range(vma, addr, start) < 0)
1738                         return NULL;    /* vma gone! */
1739         }
1740         return vma;
1741 }
1742 #endif
1743
1744 /*
1745  * Ok - we have the memory areas we should free on the vma list,
1746  * so release them, and do the vma updates.
1747  *
1748  * Called with the mm semaphore held.
1749  */
1750 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1751 {
1752         /* Update high watermark before we lower total_vm */
1753         update_hiwater_vm(mm);
1754         do {
1755                 long nrpages = vma_pages(vma);
1756
1757                 mm->total_vm -= nrpages;
1758                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1759                 vma = remove_vma(vma);
1760         } while (vma);
1761         validate_mm(mm);
1762 }
1763
1764 /*
1765  * Get rid of page table information in the indicated region.
1766  *
1767  * Called with the mm semaphore held.
1768  */
1769 static void unmap_region(struct mm_struct *mm,
1770                 struct vm_area_struct *vma, struct vm_area_struct *prev,
1771                 unsigned long start, unsigned long end)
1772 {
1773         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1774         struct mmu_gather *tlb;
1775         unsigned long nr_accounted = 0;
1776
1777         lru_add_drain();
1778         tlb = tlb_gather_mmu(mm, 0);
1779         update_hiwater_rss(mm);
1780         unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1781         vm_unacct_memory(nr_accounted);
1782         free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1783                                  next? next->vm_start: 0);
1784         tlb_finish_mmu(tlb, start, end);
1785 }
1786
1787 /*
1788  * Create a list of vma's touched by the unmap, removing them from the mm's
1789  * vma list as we go..
1790  */
1791 static void
1792 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1793         struct vm_area_struct *prev, unsigned long end)
1794 {
1795         struct vm_area_struct **insertion_point;
1796         struct vm_area_struct *tail_vma = NULL;
1797         unsigned long addr;
1798
1799         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1800         do {
1801                 rb_erase(&vma->vm_rb, &mm->mm_rb);
1802                 mm->map_count--;
1803                 tail_vma = vma;
1804                 vma = vma->vm_next;
1805         } while (vma && vma->vm_start < end);
1806         *insertion_point = vma;
1807         tail_vma->vm_next = NULL;
1808         if (mm->unmap_area == arch_unmap_area)
1809                 addr = prev ? prev->vm_end : mm->mmap_base;
1810         else
1811                 addr = vma ?  vma->vm_start : mm->mmap_base;
1812         mm->unmap_area(mm, addr);
1813         mm->mmap_cache = NULL;          /* Kill the cache. */
1814 }
1815
1816 /*
1817  * Split a vma into two pieces at address 'addr', a new vma is allocated
1818  * either for the first part or the tail.
1819  */
1820 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1821               unsigned long addr, int new_below)
1822 {
1823         struct mempolicy *pol;
1824         struct vm_area_struct *new;
1825
1826         if (is_vm_hugetlb_page(vma) && (addr &
1827                                         ~(huge_page_mask(hstate_vma(vma)))))
1828                 return -EINVAL;
1829
1830         if (mm->map_count >= sysctl_max_map_count)
1831                 return -ENOMEM;
1832
1833         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1834         if (!new)
1835                 return -ENOMEM;
1836
1837         /* most fields are the same, copy all, and then fixup */
1838         *new = *vma;
1839
1840         if (new_below)
1841                 new->vm_end = addr;
1842         else {
1843                 new->vm_start = addr;
1844                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1845         }
1846
1847         pol = mpol_dup(vma_policy(vma));
1848         if (IS_ERR(pol)) {
1849                 kmem_cache_free(vm_area_cachep, new);
1850                 return PTR_ERR(pol);
1851         }
1852         vma_set_policy(new, pol);
1853
1854         if (new->vm_file) {
1855                 get_file(new->vm_file);
1856                 if (vma->vm_flags & VM_EXECUTABLE)
1857                         added_exe_file_vma(mm);
1858         }
1859
1860         if (new->vm_ops && new->vm_ops->open)
1861                 new->vm_ops->open(new);
1862
1863         if (new_below)
1864                 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1865                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
1866         else
1867                 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1868
1869         return 0;
1870 }
1871
1872 /* Munmap is split into 2 main parts -- this part which finds
1873  * what needs doing, and the areas themselves, which do the
1874  * work.  This now handles partial unmappings.
1875  * Jeremy Fitzhardinge <jeremy@goop.org>
1876  */
1877 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1878 {
1879         unsigned long end;
1880         struct vm_area_struct *vma, *prev, *last;
1881
1882         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1883                 return -EINVAL;
1884
1885         if ((len = PAGE_ALIGN(len)) == 0)
1886                 return -EINVAL;
1887
1888         /* Find the first overlapping VMA */
1889         vma = find_vma_prev(mm, start, &prev);
1890         if (!vma)
1891                 return 0;
1892         /* we have  start < vma->vm_end  */
1893
1894         /* if it doesn't overlap, we have nothing.. */
1895         end = start + len;
1896         if (vma->vm_start >= end)
1897                 return 0;
1898
1899         /*
1900          * If we need to split any vma, do it now to save pain later.
1901          *
1902          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1903          * unmapped vm_area_struct will remain in use: so lower split_vma
1904          * places tmp vma above, and higher split_vma places tmp vma below.
1905          */
1906         if (start > vma->vm_start) {
1907                 int error = split_vma(mm, vma, start, 0);
1908                 if (error)
1909                         return error;
1910                 prev = vma;
1911         }
1912
1913         /* Does it split the last one? */
1914         last = find_vma(mm, end);
1915         if (last && end > last->vm_start) {
1916                 int error = split_vma(mm, last, end, 1);
1917                 if (error)
1918                         return error;
1919         }
1920         vma = prev? prev->vm_next: mm->mmap;
1921
1922         /*
1923          * unlock any mlock()ed ranges before detaching vmas
1924          */
1925         if (mm->locked_vm) {
1926                 struct vm_area_struct *tmp = vma;
1927                 while (tmp && tmp->vm_start < end) {
1928                         if (tmp->vm_flags & VM_LOCKED) {
1929                                 mm->locked_vm -= vma_pages(tmp);
1930                                 munlock_vma_pages_all(tmp);
1931                         }
1932                         tmp = tmp->vm_next;
1933                 }
1934         }
1935
1936         /*
1937          * Remove the vma's, and unmap the actual pages
1938          */
1939         detach_vmas_to_be_unmapped(mm, vma, prev, end);
1940         unmap_region(mm, vma, prev, start, end);
1941
1942         /* Fix up all other VM information */
1943         remove_vma_list(mm, vma);
1944
1945         return 0;
1946 }
1947
1948 EXPORT_SYMBOL(do_munmap);
1949
1950 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1951 {
1952         int ret;
1953         struct mm_struct *mm = current->mm;
1954
1955         profile_munmap(addr);
1956
1957         down_write(&mm->mmap_sem);
1958         ret = do_munmap(mm, addr, len);
1959         up_write(&mm->mmap_sem);
1960         return ret;
1961 }
1962
1963 static inline void verify_mm_writelocked(struct mm_struct *mm)
1964 {
1965 #ifdef CONFIG_DEBUG_VM
1966         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1967                 WARN_ON(1);
1968                 up_read(&mm->mmap_sem);
1969         }
1970 #endif
1971 }
1972
1973 /*
1974  *  this is really a simplified "do_mmap".  it only handles
1975  *  anonymous maps.  eventually we may be able to do some
1976  *  brk-specific accounting here.
1977  */
1978 unsigned long do_brk(unsigned long addr, unsigned long len)
1979 {
1980         struct mm_struct * mm = current->mm;
1981         struct vm_area_struct * vma, * prev;
1982         unsigned long flags;
1983         struct rb_node ** rb_link, * rb_parent;
1984         pgoff_t pgoff = addr >> PAGE_SHIFT;
1985         int error;
1986
1987         len = PAGE_ALIGN(len);
1988         if (!len)
1989                 return addr;
1990
1991         if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1992                 return -EINVAL;
1993
1994         if (is_hugepage_only_range(mm, addr, len))
1995                 return -EINVAL;
1996
1997         error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
1998         if (error)
1999                 return error;
2000
2001         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2002
2003         error = arch_mmap_check(addr, len, flags);
2004         if (error)
2005                 return error;
2006
2007         /*
2008          * mlock MCL_FUTURE?
2009          */
2010         if (mm->def_flags & VM_LOCKED) {
2011                 unsigned long locked, lock_limit;
2012                 locked = len >> PAGE_SHIFT;
2013                 locked += mm->locked_vm;
2014                 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2015                 lock_limit >>= PAGE_SHIFT;
2016                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2017                         return -EAGAIN;
2018         }
2019
2020         /*
2021          * mm->mmap_sem is required to protect against another thread
2022          * changing the mappings in case we sleep.
2023          */
2024         verify_mm_writelocked(mm);
2025
2026         /*
2027          * Clear old maps.  this also does some error checking for us
2028          */
2029  munmap_back:
2030         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2031         if (vma && vma->vm_start < addr + len) {
2032                 if (do_munmap(mm, addr, len))
2033                         return -ENOMEM;
2034                 goto munmap_back;
2035         }
2036
2037         /* Check against address space limits *after* clearing old maps... */
2038         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2039                 return -ENOMEM;
2040
2041         if (mm->map_count > sysctl_max_map_count)
2042                 return -ENOMEM;
2043
2044         if (security_vm_enough_memory(len >> PAGE_SHIFT))
2045                 return -ENOMEM;
2046
2047         /* Can we just expand an old private anonymous mapping? */
2048         vma = vma_merge(mm, prev, addr, addr + len, flags,
2049                                         NULL, NULL, pgoff, NULL);
2050         if (vma)
2051                 goto out;
2052
2053         /*
2054          * create a vma struct for an anonymous mapping
2055          */
2056         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2057         if (!vma) {
2058                 vm_unacct_memory(len >> PAGE_SHIFT);
2059                 return -ENOMEM;
2060         }
2061
2062         vma->vm_mm = mm;
2063         vma->vm_start = addr;
2064         vma->vm_end = addr + len;
2065         vma->vm_pgoff = pgoff;
2066         vma->vm_flags = flags;
2067         vma->vm_page_prot = vm_get_page_prot(flags);
2068         vma_link(mm, vma, prev, rb_link, rb_parent);
2069 out:
2070         mm->total_vm += len >> PAGE_SHIFT;
2071         if (flags & VM_LOCKED) {
2072                 if (!mlock_vma_pages_range(vma, addr, addr + len))
2073                         mm->locked_vm += (len >> PAGE_SHIFT);
2074         }
2075         return addr;
2076 }
2077
2078 EXPORT_SYMBOL(do_brk);
2079
2080 /* Release all mmaps. */
2081 void exit_mmap(struct mm_struct *mm)
2082 {
2083         struct mmu_gather *tlb;
2084         struct vm_area_struct *vma;
2085         unsigned long nr_accounted = 0;
2086         unsigned long end;
2087
2088         /* mm's last user has gone, and its about to be pulled down */
2089         mmu_notifier_release(mm);
2090
2091         if (mm->locked_vm) {
2092                 vma = mm->mmap;
2093                 while (vma) {
2094                         if (vma->vm_flags & VM_LOCKED)
2095                                 munlock_vma_pages_all(vma);
2096                         vma = vma->vm_next;
2097                 }
2098         }
2099
2100         arch_exit_mmap(mm);
2101
2102         vma = mm->mmap;
2103         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2104                 return;
2105
2106         lru_add_drain();
2107         flush_cache_mm(mm);
2108         tlb = tlb_gather_mmu(mm, 1);
2109         /* update_hiwater_rss(mm) here? but nobody should be looking */
2110         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2111         end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2112         vm_unacct_memory(nr_accounted);
2113
2114         free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2115         tlb_finish_mmu(tlb, 0, end);
2116
2117         /*
2118          * Walk the list again, actually closing and freeing it,
2119          * with preemption enabled, without holding any MM locks.
2120          */
2121         while (vma)
2122                 vma = remove_vma(vma);
2123
2124         BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2125 }
2126
2127 /* Insert vm structure into process list sorted by address
2128  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2129  * then i_mmap_lock is taken here.
2130  */
2131 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2132 {
2133         struct vm_area_struct * __vma, * prev;
2134         struct rb_node ** rb_link, * rb_parent;
2135
2136         /*
2137          * The vm_pgoff of a purely anonymous vma should be irrelevant
2138          * until its first write fault, when page's anon_vma and index
2139          * are set.  But now set the vm_pgoff it will almost certainly
2140          * end up with (unless mremap moves it elsewhere before that
2141          * first wfault), so /proc/pid/maps tells a consistent story.
2142          *
2143          * By setting it to reflect the virtual start address of the
2144          * vma, merges and splits can happen in a seamless way, just
2145          * using the existing file pgoff checks and manipulations.
2146          * Similarly in do_mmap_pgoff and in do_brk.
2147          */
2148         if (!vma->vm_file) {
2149                 BUG_ON(vma->anon_vma);
2150                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2151         }
2152         __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2153         if (__vma && __vma->vm_start < vma->vm_end)
2154                 return -ENOMEM;
2155         if ((vma->vm_flags & VM_ACCOUNT) &&
2156              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2157                 return -ENOMEM;
2158         vma_link(mm, vma, prev, rb_link, rb_parent);
2159         return 0;
2160 }
2161
2162 /*
2163  * Copy the vma structure to a new location in the same mm,
2164  * prior to moving page table entries, to effect an mremap move.
2165  */
2166 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2167         unsigned long addr, unsigned long len, pgoff_t pgoff)
2168 {
2169         struct vm_area_struct *vma = *vmap;
2170         unsigned long vma_start = vma->vm_start;
2171         struct mm_struct *mm = vma->vm_mm;
2172         struct vm_area_struct *new_vma, *prev;
2173         struct rb_node **rb_link, *rb_parent;
2174         struct mempolicy *pol;
2175
2176         /*
2177          * If anonymous vma has not yet been faulted, update new pgoff
2178          * to match new location, to increase its chance of merging.
2179          */
2180         if (!vma->vm_file && !vma->anon_vma)
2181                 pgoff = addr >> PAGE_SHIFT;
2182
2183         find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2184         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2185                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2186         if (new_vma) {
2187                 /*
2188                  * Source vma may have been merged into new_vma
2189                  */
2190                 if (vma_start >= new_vma->vm_start &&
2191                     vma_start < new_vma->vm_end)
2192                         *vmap = new_vma;
2193         } else {
2194                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2195                 if (new_vma) {
2196                         *new_vma = *vma;
2197                         pol = mpol_dup(vma_policy(vma));
2198                         if (IS_ERR(pol)) {
2199                                 kmem_cache_free(vm_area_cachep, new_vma);
2200                                 return NULL;
2201                         }
2202                         vma_set_policy(new_vma, pol);
2203                         new_vma->vm_start = addr;
2204                         new_vma->vm_end = addr + len;
2205                         new_vma->vm_pgoff = pgoff;
2206                         if (new_vma->vm_file) {
2207                                 get_file(new_vma->vm_file);
2208                                 if (vma->vm_flags & VM_EXECUTABLE)
2209                                         added_exe_file_vma(mm);
2210                         }
2211                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2212                                 new_vma->vm_ops->open(new_vma);
2213                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2214                 }
2215         }
2216         return new_vma;
2217 }
2218
2219 /*
2220  * Return true if the calling process may expand its vm space by the passed
2221  * number of pages
2222  */
2223 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2224 {
2225         unsigned long cur = mm->total_vm;       /* pages */
2226         unsigned long lim;
2227
2228         lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2229
2230         if (cur + npages > lim)
2231                 return 0;
2232         return 1;
2233 }
2234
2235
2236 static int special_mapping_fault(struct vm_area_struct *vma,
2237                                 struct vm_fault *vmf)
2238 {
2239         pgoff_t pgoff;
2240         struct page **pages;
2241
2242         /*
2243          * special mappings have no vm_file, and in that case, the mm
2244          * uses vm_pgoff internally. So we have to subtract it from here.
2245          * We are allowed to do this because we are the mm; do not copy
2246          * this code into drivers!
2247          */
2248         pgoff = vmf->pgoff - vma->vm_pgoff;
2249
2250         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2251                 pgoff--;
2252
2253         if (*pages) {
2254                 struct page *page = *pages;
2255                 get_page(page);
2256                 vmf->page = page;
2257                 return 0;
2258         }
2259
2260         return VM_FAULT_SIGBUS;
2261 }
2262
2263 /*
2264  * Having a close hook prevents vma merging regardless of flags.
2265  */
2266 static void special_mapping_close(struct vm_area_struct *vma)
2267 {
2268 }
2269
2270 static struct vm_operations_struct special_mapping_vmops = {
2271         .close = special_mapping_close,
2272         .fault = special_mapping_fault,
2273 };
2274
2275 /*
2276  * Called with mm->mmap_sem held for writing.
2277  * Insert a new vma covering the given region, with the given flags.
2278  * Its pages are supplied by the given array of struct page *.
2279  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2280  * The region past the last page supplied will always produce SIGBUS.
2281  * The array pointer and the pages it points to are assumed to stay alive
2282  * for as long as this mapping might exist.
2283  */
2284 int install_special_mapping(struct mm_struct *mm,
2285                             unsigned long addr, unsigned long len,
2286                             unsigned long vm_flags, struct page **pages)
2287 {
2288         struct vm_area_struct *vma;
2289
2290         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2291         if (unlikely(vma == NULL))
2292                 return -ENOMEM;
2293
2294         vma->vm_mm = mm;
2295         vma->vm_start = addr;
2296         vma->vm_end = addr + len;
2297
2298         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2299         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2300
2301         vma->vm_ops = &special_mapping_vmops;
2302         vma->vm_private_data = pages;
2303
2304         if (unlikely(insert_vm_struct(mm, vma))) {
2305                 kmem_cache_free(vm_area_cachep, vma);
2306                 return -ENOMEM;
2307         }
2308
2309         mm->total_vm += len >> PAGE_SHIFT;
2310
2311         perf_event_mmap(vma);
2312
2313         return 0;
2314 }
2315
2316 static DEFINE_MUTEX(mm_all_locks_mutex);
2317
2318 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2319 {
2320         if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2321                 /*
2322                  * The LSB of head.next can't change from under us
2323                  * because we hold the mm_all_locks_mutex.
2324                  */
2325                 spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2326                 /*
2327                  * We can safely modify head.next after taking the
2328                  * anon_vma->lock. If some other vma in this mm shares
2329                  * the same anon_vma we won't take it again.
2330                  *
2331                  * No need of atomic instructions here, head.next
2332                  * can't change from under us thanks to the
2333                  * anon_vma->lock.
2334                  */
2335                 if (__test_and_set_bit(0, (unsigned long *)
2336                                        &anon_vma->head.next))
2337                         BUG();
2338         }
2339 }
2340
2341 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2342 {
2343         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2344                 /*
2345                  * AS_MM_ALL_LOCKS can't change from under us because
2346                  * we hold the mm_all_locks_mutex.
2347                  *
2348                  * Operations on ->flags have to be atomic because
2349                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2350                  * mm_all_locks_mutex, there may be other cpus
2351                  * changing other bitflags in parallel to us.
2352                  */
2353                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2354                         BUG();
2355                 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2356         }
2357 }
2358
2359 /*
2360  * This operation locks against the VM for all pte/vma/mm related
2361  * operations that could ever happen on a certain mm. This includes
2362  * vmtruncate, try_to_unmap, and all page faults.
2363  *
2364  * The caller must take the mmap_sem in write mode before calling
2365  * mm_take_all_locks(). The caller isn't allowed to release the
2366  * mmap_sem until mm_drop_all_locks() returns.
2367  *
2368  * mmap_sem in write mode is required in order to block all operations
2369  * that could modify pagetables and free pages without need of
2370  * altering the vma layout (for example populate_range() with
2371  * nonlinear vmas). It's also needed in write mode to avoid new
2372  * anon_vmas to be associated with existing vmas.
2373  *
2374  * A single task can't take more than one mm_take_all_locks() in a row
2375  * or it would deadlock.
2376  *
2377  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2378  * mapping->flags avoid to take the same lock twice, if more than one
2379  * vma in this mm is backed by the same anon_vma or address_space.
2380  *
2381  * We can take all the locks in random order because the VM code
2382  * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2383  * takes more than one of them in a row. Secondly we're protected
2384  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2385  *
2386  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2387  * that may have to take thousand of locks.
2388  *
2389  * mm_take_all_locks() can fail if it's interrupted by signals.
2390  */
2391 int mm_take_all_locks(struct mm_struct *mm)
2392 {
2393         struct vm_area_struct *vma;
2394         int ret = -EINTR;
2395
2396         BUG_ON(down_read_trylock(&mm->mmap_sem));
2397
2398         mutex_lock(&mm_all_locks_mutex);
2399
2400         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2401                 if (signal_pending(current))
2402                         goto out_unlock;
2403                 if (vma->vm_file && vma->vm_file->f_mapping)
2404                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
2405         }
2406
2407         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2408                 if (signal_pending(current))
2409                         goto out_unlock;
2410                 if (vma->anon_vma)
2411                         vm_lock_anon_vma(mm, vma->anon_vma);
2412         }
2413
2414         ret = 0;
2415
2416 out_unlock:
2417         if (ret)
2418                 mm_drop_all_locks(mm);
2419
2420         return ret;
2421 }
2422
2423 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2424 {
2425         if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2426                 /*
2427                  * The LSB of head.next can't change to 0 from under
2428                  * us because we hold the mm_all_locks_mutex.
2429                  *
2430                  * We must however clear the bitflag before unlocking
2431                  * the vma so the users using the anon_vma->head will
2432                  * never see our bitflag.
2433                  *
2434                  * No need of atomic instructions here, head.next
2435                  * can't change from under us until we release the
2436                  * anon_vma->lock.
2437                  */
2438                 if (!__test_and_clear_bit(0, (unsigned long *)
2439                                           &anon_vma->head.next))
2440                         BUG();
2441                 spin_unlock(&anon_vma->lock);
2442         }
2443 }
2444
2445 static void vm_unlock_mapping(struct address_space *mapping)
2446 {
2447         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2448                 /*
2449                  * AS_MM_ALL_LOCKS can't change to 0 from under us
2450                  * because we hold the mm_all_locks_mutex.
2451                  */
2452                 spin_unlock(&mapping->i_mmap_lock);
2453                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2454                                         &mapping->flags))
2455                         BUG();
2456         }
2457 }
2458
2459 /*
2460  * The mmap_sem cannot be released by the caller until
2461  * mm_drop_all_locks() returns.
2462  */
2463 void mm_drop_all_locks(struct mm_struct *mm)
2464 {
2465         struct vm_area_struct *vma;
2466
2467         BUG_ON(down_read_trylock(&mm->mmap_sem));
2468         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2469
2470         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2471                 if (vma->anon_vma)
2472                         vm_unlock_anon_vma(vma->anon_vma);
2473                 if (vma->vm_file && vma->vm_file->f_mapping)
2474                         vm_unlock_mapping(vma->vm_file->f_mapping);
2475         }
2476
2477         mutex_unlock(&mm_all_locks_mutex);
2478 }
2479
2480 /*
2481  * initialise the VMA slab
2482  */
2483 void __init mmap_init(void)
2484 {
2485         int ret;
2486
2487         ret = percpu_counter_init(&vm_committed_as, 0);
2488         VM_BUG_ON(ret);
2489 }