Allow opportunistic merging of VM_CAN_NONLINEAR areas
[safe/jmp/linux-2.6] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30
31 #include <asm/uaccess.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlb.h>
34 #include <asm/mmu_context.h>
35
36 #include "internal.h"
37
38 #ifndef arch_mmap_check
39 #define arch_mmap_check(addr, len, flags)       (0)
40 #endif
41
42 #ifndef arch_rebalance_pgtables
43 #define arch_rebalance_pgtables(addr, len)              (addr)
44 #endif
45
46 static void unmap_region(struct mm_struct *mm,
47                 struct vm_area_struct *vma, struct vm_area_struct *prev,
48                 unsigned long start, unsigned long end);
49
50 /*
51  * WARNING: the debugging will use recursive algorithms so never enable this
52  * unless you know what you are doing.
53  */
54 #undef DEBUG_MM_RB
55
56 /* description of effects of mapping type and prot in current implementation.
57  * this is due to the limited x86 page protection hardware.  The expected
58  * behavior is in parens:
59  *
60  * map_type     prot
61  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
62  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
63  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
64  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
65  *              
66  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
67  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
68  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
69  *
70  */
71 pgprot_t protection_map[16] = {
72         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
73         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
74 };
75
76 pgprot_t vm_get_page_prot(unsigned long vm_flags)
77 {
78         return __pgprot(pgprot_val(protection_map[vm_flags &
79                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
80                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
81 }
82 EXPORT_SYMBOL(vm_get_page_prot);
83
84 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
85 int sysctl_overcommit_ratio = 50;       /* default is 50% */
86 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
87 atomic_long_t vm_committed_space = ATOMIC_LONG_INIT(0);
88
89 /*
90  * Check that a process has enough memory to allocate a new virtual
91  * mapping. 0 means there is enough memory for the allocation to
92  * succeed and -ENOMEM implies there is not.
93  *
94  * We currently support three overcommit policies, which are set via the
95  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
96  *
97  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
98  * Additional code 2002 Jul 20 by Robert Love.
99  *
100  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
101  *
102  * Note this is a helper function intended to be used by LSMs which
103  * wish to use this logic.
104  */
105 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
106 {
107         unsigned long free, allowed;
108
109         vm_acct_memory(pages);
110
111         /*
112          * Sometimes we want to use more memory than we have
113          */
114         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
115                 return 0;
116
117         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
118                 unsigned long n;
119
120                 free = global_page_state(NR_FILE_PAGES);
121                 free += nr_swap_pages;
122
123                 /*
124                  * Any slabs which are created with the
125                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
126                  * which are reclaimable, under pressure.  The dentry
127                  * cache and most inode caches should fall into this
128                  */
129                 free += global_page_state(NR_SLAB_RECLAIMABLE);
130
131                 /*
132                  * Leave the last 3% for root
133                  */
134                 if (!cap_sys_admin)
135                         free -= free / 32;
136
137                 if (free > pages)
138                         return 0;
139
140                 /*
141                  * nr_free_pages() is very expensive on large systems,
142                  * only call if we're about to fail.
143                  */
144                 n = nr_free_pages();
145
146                 /*
147                  * Leave reserved pages. The pages are not for anonymous pages.
148                  */
149                 if (n <= totalreserve_pages)
150                         goto error;
151                 else
152                         n -= totalreserve_pages;
153
154                 /*
155                  * Leave the last 3% for root
156                  */
157                 if (!cap_sys_admin)
158                         n -= n / 32;
159                 free += n;
160
161                 if (free > pages)
162                         return 0;
163
164                 goto error;
165         }
166
167         allowed = (totalram_pages - hugetlb_total_pages())
168                 * sysctl_overcommit_ratio / 100;
169         /*
170          * Leave the last 3% for root
171          */
172         if (!cap_sys_admin)
173                 allowed -= allowed / 32;
174         allowed += total_swap_pages;
175
176         /* Don't let a single process grow too big:
177            leave 3% of the size of this process for other processes */
178         if (mm)
179                 allowed -= mm->total_vm / 32;
180
181         /*
182          * cast `allowed' as a signed long because vm_committed_space
183          * sometimes has a negative value
184          */
185         if (atomic_long_read(&vm_committed_space) < (long)allowed)
186                 return 0;
187 error:
188         vm_unacct_memory(pages);
189
190         return -ENOMEM;
191 }
192
193 /*
194  * Requires inode->i_mapping->i_mmap_lock
195  */
196 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
197                 struct file *file, struct address_space *mapping)
198 {
199         if (vma->vm_flags & VM_DENYWRITE)
200                 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
201         if (vma->vm_flags & VM_SHARED)
202                 mapping->i_mmap_writable--;
203
204         flush_dcache_mmap_lock(mapping);
205         if (unlikely(vma->vm_flags & VM_NONLINEAR))
206                 list_del_init(&vma->shared.vm_set.list);
207         else
208                 vma_prio_tree_remove(vma, &mapping->i_mmap);
209         flush_dcache_mmap_unlock(mapping);
210 }
211
212 /*
213  * Unlink a file-based vm structure from its prio_tree, to hide
214  * vma from rmap and vmtruncate before freeing its page tables.
215  */
216 void unlink_file_vma(struct vm_area_struct *vma)
217 {
218         struct file *file = vma->vm_file;
219
220         if (file) {
221                 struct address_space *mapping = file->f_mapping;
222                 spin_lock(&mapping->i_mmap_lock);
223                 __remove_shared_vm_struct(vma, file, mapping);
224                 spin_unlock(&mapping->i_mmap_lock);
225         }
226 }
227
228 /*
229  * Close a vm structure and free it, returning the next.
230  */
231 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
232 {
233         struct vm_area_struct *next = vma->vm_next;
234
235         might_sleep();
236         if (vma->vm_ops && vma->vm_ops->close)
237                 vma->vm_ops->close(vma);
238         if (vma->vm_file) {
239                 fput(vma->vm_file);
240                 if (vma->vm_flags & VM_EXECUTABLE)
241                         removed_exe_file_vma(vma->vm_mm);
242         }
243         mpol_put(vma_policy(vma));
244         kmem_cache_free(vm_area_cachep, vma);
245         return next;
246 }
247
248 SYSCALL_DEFINE1(brk, unsigned long, brk)
249 {
250         unsigned long rlim, retval;
251         unsigned long newbrk, oldbrk;
252         struct mm_struct *mm = current->mm;
253         unsigned long min_brk;
254
255         down_write(&mm->mmap_sem);
256
257 #ifdef CONFIG_COMPAT_BRK
258         min_brk = mm->end_code;
259 #else
260         min_brk = mm->start_brk;
261 #endif
262         if (brk < min_brk)
263                 goto out;
264
265         /*
266          * Check against rlimit here. If this check is done later after the test
267          * of oldbrk with newbrk then it can escape the test and let the data
268          * segment grow beyond its set limit the in case where the limit is
269          * not page aligned -Ram Gupta
270          */
271         rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
272         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
273                         (mm->end_data - mm->start_data) > rlim)
274                 goto out;
275
276         newbrk = PAGE_ALIGN(brk);
277         oldbrk = PAGE_ALIGN(mm->brk);
278         if (oldbrk == newbrk)
279                 goto set_brk;
280
281         /* Always allow shrinking brk. */
282         if (brk <= mm->brk) {
283                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
284                         goto set_brk;
285                 goto out;
286         }
287
288         /* Check against existing mmap mappings. */
289         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
290                 goto out;
291
292         /* Ok, looks good - let it rip. */
293         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
294                 goto out;
295 set_brk:
296         mm->brk = brk;
297 out:
298         retval = mm->brk;
299         up_write(&mm->mmap_sem);
300         return retval;
301 }
302
303 #ifdef DEBUG_MM_RB
304 static int browse_rb(struct rb_root *root)
305 {
306         int i = 0, j;
307         struct rb_node *nd, *pn = NULL;
308         unsigned long prev = 0, pend = 0;
309
310         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
311                 struct vm_area_struct *vma;
312                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
313                 if (vma->vm_start < prev)
314                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
315                 if (vma->vm_start < pend)
316                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
317                 if (vma->vm_start > vma->vm_end)
318                         printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
319                 i++;
320                 pn = nd;
321                 prev = vma->vm_start;
322                 pend = vma->vm_end;
323         }
324         j = 0;
325         for (nd = pn; nd; nd = rb_prev(nd)) {
326                 j++;
327         }
328         if (i != j)
329                 printk("backwards %d, forwards %d\n", j, i), i = 0;
330         return i;
331 }
332
333 void validate_mm(struct mm_struct *mm)
334 {
335         int bug = 0;
336         int i = 0;
337         struct vm_area_struct *tmp = mm->mmap;
338         while (tmp) {
339                 tmp = tmp->vm_next;
340                 i++;
341         }
342         if (i != mm->map_count)
343                 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
344         i = browse_rb(&mm->mm_rb);
345         if (i != mm->map_count)
346                 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
347         BUG_ON(bug);
348 }
349 #else
350 #define validate_mm(mm) do { } while (0)
351 #endif
352
353 static struct vm_area_struct *
354 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
355                 struct vm_area_struct **pprev, struct rb_node ***rb_link,
356                 struct rb_node ** rb_parent)
357 {
358         struct vm_area_struct * vma;
359         struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
360
361         __rb_link = &mm->mm_rb.rb_node;
362         rb_prev = __rb_parent = NULL;
363         vma = NULL;
364
365         while (*__rb_link) {
366                 struct vm_area_struct *vma_tmp;
367
368                 __rb_parent = *__rb_link;
369                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
370
371                 if (vma_tmp->vm_end > addr) {
372                         vma = vma_tmp;
373                         if (vma_tmp->vm_start <= addr)
374                                 break;
375                         __rb_link = &__rb_parent->rb_left;
376                 } else {
377                         rb_prev = __rb_parent;
378                         __rb_link = &__rb_parent->rb_right;
379                 }
380         }
381
382         *pprev = NULL;
383         if (rb_prev)
384                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
385         *rb_link = __rb_link;
386         *rb_parent = __rb_parent;
387         return vma;
388 }
389
390 static inline void
391 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
392                 struct vm_area_struct *prev, struct rb_node *rb_parent)
393 {
394         if (prev) {
395                 vma->vm_next = prev->vm_next;
396                 prev->vm_next = vma;
397         } else {
398                 mm->mmap = vma;
399                 if (rb_parent)
400                         vma->vm_next = rb_entry(rb_parent,
401                                         struct vm_area_struct, vm_rb);
402                 else
403                         vma->vm_next = NULL;
404         }
405 }
406
407 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
408                 struct rb_node **rb_link, struct rb_node *rb_parent)
409 {
410         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
411         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
412 }
413
414 static void __vma_link_file(struct vm_area_struct *vma)
415 {
416         struct file *file;
417
418         file = vma->vm_file;
419         if (file) {
420                 struct address_space *mapping = file->f_mapping;
421
422                 if (vma->vm_flags & VM_DENYWRITE)
423                         atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
424                 if (vma->vm_flags & VM_SHARED)
425                         mapping->i_mmap_writable++;
426
427                 flush_dcache_mmap_lock(mapping);
428                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
429                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
430                 else
431                         vma_prio_tree_insert(vma, &mapping->i_mmap);
432                 flush_dcache_mmap_unlock(mapping);
433         }
434 }
435
436 static void
437 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
438         struct vm_area_struct *prev, struct rb_node **rb_link,
439         struct rb_node *rb_parent)
440 {
441         __vma_link_list(mm, vma, prev, rb_parent);
442         __vma_link_rb(mm, vma, rb_link, rb_parent);
443         __anon_vma_link(vma);
444 }
445
446 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
447                         struct vm_area_struct *prev, struct rb_node **rb_link,
448                         struct rb_node *rb_parent)
449 {
450         struct address_space *mapping = NULL;
451
452         if (vma->vm_file)
453                 mapping = vma->vm_file->f_mapping;
454
455         if (mapping) {
456                 spin_lock(&mapping->i_mmap_lock);
457                 vma->vm_truncate_count = mapping->truncate_count;
458         }
459         anon_vma_lock(vma);
460
461         __vma_link(mm, vma, prev, rb_link, rb_parent);
462         __vma_link_file(vma);
463
464         anon_vma_unlock(vma);
465         if (mapping)
466                 spin_unlock(&mapping->i_mmap_lock);
467
468         mm->map_count++;
469         validate_mm(mm);
470 }
471
472 /*
473  * Helper for vma_adjust in the split_vma insert case:
474  * insert vm structure into list and rbtree and anon_vma,
475  * but it has already been inserted into prio_tree earlier.
476  */
477 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
478 {
479         struct vm_area_struct *__vma, *prev;
480         struct rb_node **rb_link, *rb_parent;
481
482         __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
483         BUG_ON(__vma && __vma->vm_start < vma->vm_end);
484         __vma_link(mm, vma, prev, rb_link, rb_parent);
485         mm->map_count++;
486 }
487
488 static inline void
489 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
490                 struct vm_area_struct *prev)
491 {
492         prev->vm_next = vma->vm_next;
493         rb_erase(&vma->vm_rb, &mm->mm_rb);
494         if (mm->mmap_cache == vma)
495                 mm->mmap_cache = prev;
496 }
497
498 /*
499  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
500  * is already present in an i_mmap tree without adjusting the tree.
501  * The following helper function should be used when such adjustments
502  * are necessary.  The "insert" vma (if any) is to be inserted
503  * before we drop the necessary locks.
504  */
505 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
506         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
507 {
508         struct mm_struct *mm = vma->vm_mm;
509         struct vm_area_struct *next = vma->vm_next;
510         struct vm_area_struct *importer = NULL;
511         struct address_space *mapping = NULL;
512         struct prio_tree_root *root = NULL;
513         struct file *file = vma->vm_file;
514         struct anon_vma *anon_vma = NULL;
515         long adjust_next = 0;
516         int remove_next = 0;
517
518         if (next && !insert) {
519                 if (end >= next->vm_end) {
520                         /*
521                          * vma expands, overlapping all the next, and
522                          * perhaps the one after too (mprotect case 6).
523                          */
524 again:                  remove_next = 1 + (end > next->vm_end);
525                         end = next->vm_end;
526                         anon_vma = next->anon_vma;
527                         importer = vma;
528                 } else if (end > next->vm_start) {
529                         /*
530                          * vma expands, overlapping part of the next:
531                          * mprotect case 5 shifting the boundary up.
532                          */
533                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
534                         anon_vma = next->anon_vma;
535                         importer = vma;
536                 } else if (end < vma->vm_end) {
537                         /*
538                          * vma shrinks, and !insert tells it's not
539                          * split_vma inserting another: so it must be
540                          * mprotect case 4 shifting the boundary down.
541                          */
542                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
543                         anon_vma = next->anon_vma;
544                         importer = next;
545                 }
546         }
547
548         if (file) {
549                 mapping = file->f_mapping;
550                 if (!(vma->vm_flags & VM_NONLINEAR))
551                         root = &mapping->i_mmap;
552                 spin_lock(&mapping->i_mmap_lock);
553                 if (importer &&
554                     vma->vm_truncate_count != next->vm_truncate_count) {
555                         /*
556                          * unmap_mapping_range might be in progress:
557                          * ensure that the expanding vma is rescanned.
558                          */
559                         importer->vm_truncate_count = 0;
560                 }
561                 if (insert) {
562                         insert->vm_truncate_count = vma->vm_truncate_count;
563                         /*
564                          * Put into prio_tree now, so instantiated pages
565                          * are visible to arm/parisc __flush_dcache_page
566                          * throughout; but we cannot insert into address
567                          * space until vma start or end is updated.
568                          */
569                         __vma_link_file(insert);
570                 }
571         }
572
573         /*
574          * When changing only vma->vm_end, we don't really need
575          * anon_vma lock: but is that case worth optimizing out?
576          */
577         if (vma->anon_vma)
578                 anon_vma = vma->anon_vma;
579         if (anon_vma) {
580                 spin_lock(&anon_vma->lock);
581                 /*
582                  * Easily overlooked: when mprotect shifts the boundary,
583                  * make sure the expanding vma has anon_vma set if the
584                  * shrinking vma had, to cover any anon pages imported.
585                  */
586                 if (importer && !importer->anon_vma) {
587                         importer->anon_vma = anon_vma;
588                         __anon_vma_link(importer);
589                 }
590         }
591
592         if (root) {
593                 flush_dcache_mmap_lock(mapping);
594                 vma_prio_tree_remove(vma, root);
595                 if (adjust_next)
596                         vma_prio_tree_remove(next, root);
597         }
598
599         vma->vm_start = start;
600         vma->vm_end = end;
601         vma->vm_pgoff = pgoff;
602         if (adjust_next) {
603                 next->vm_start += adjust_next << PAGE_SHIFT;
604                 next->vm_pgoff += adjust_next;
605         }
606
607         if (root) {
608                 if (adjust_next)
609                         vma_prio_tree_insert(next, root);
610                 vma_prio_tree_insert(vma, root);
611                 flush_dcache_mmap_unlock(mapping);
612         }
613
614         if (remove_next) {
615                 /*
616                  * vma_merge has merged next into vma, and needs
617                  * us to remove next before dropping the locks.
618                  */
619                 __vma_unlink(mm, next, vma);
620                 if (file)
621                         __remove_shared_vm_struct(next, file, mapping);
622                 if (next->anon_vma)
623                         __anon_vma_merge(vma, next);
624         } else if (insert) {
625                 /*
626                  * split_vma has split insert from vma, and needs
627                  * us to insert it before dropping the locks
628                  * (it may either follow vma or precede it).
629                  */
630                 __insert_vm_struct(mm, insert);
631         }
632
633         if (anon_vma)
634                 spin_unlock(&anon_vma->lock);
635         if (mapping)
636                 spin_unlock(&mapping->i_mmap_lock);
637
638         if (remove_next) {
639                 if (file) {
640                         fput(file);
641                         if (next->vm_flags & VM_EXECUTABLE)
642                                 removed_exe_file_vma(mm);
643                 }
644                 mm->map_count--;
645                 mpol_put(vma_policy(next));
646                 kmem_cache_free(vm_area_cachep, next);
647                 /*
648                  * In mprotect's case 6 (see comments on vma_merge),
649                  * we must remove another next too. It would clutter
650                  * up the code too much to do both in one go.
651                  */
652                 if (remove_next == 2) {
653                         next = vma->vm_next;
654                         goto again;
655                 }
656         }
657
658         validate_mm(mm);
659 }
660
661 /* Flags that can be inherited from an existing mapping when merging */
662 #define VM_MERGEABLE_FLAGS (VM_CAN_NONLINEAR)
663
664 /*
665  * If the vma has a ->close operation then the driver probably needs to release
666  * per-vma resources, so we don't attempt to merge those.
667  */
668 static inline int is_mergeable_vma(struct vm_area_struct *vma,
669                         struct file *file, unsigned long vm_flags)
670 {
671         if ((vma->vm_flags ^ vm_flags) & ~VM_MERGEABLE_FLAGS)
672                 return 0;
673         if (vma->vm_file != file)
674                 return 0;
675         if (vma->vm_ops && vma->vm_ops->close)
676                 return 0;
677         return 1;
678 }
679
680 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
681                                         struct anon_vma *anon_vma2)
682 {
683         return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
684 }
685
686 /*
687  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
688  * in front of (at a lower virtual address and file offset than) the vma.
689  *
690  * We cannot merge two vmas if they have differently assigned (non-NULL)
691  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
692  *
693  * We don't check here for the merged mmap wrapping around the end of pagecache
694  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
695  * wrap, nor mmaps which cover the final page at index -1UL.
696  */
697 static int
698 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
699         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
700 {
701         if (is_mergeable_vma(vma, file, vm_flags) &&
702             is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
703                 if (vma->vm_pgoff == vm_pgoff)
704                         return 1;
705         }
706         return 0;
707 }
708
709 /*
710  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
711  * beyond (at a higher virtual address and file offset than) the vma.
712  *
713  * We cannot merge two vmas if they have differently assigned (non-NULL)
714  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
715  */
716 static int
717 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
718         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
719 {
720         if (is_mergeable_vma(vma, file, vm_flags) &&
721             is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
722                 pgoff_t vm_pglen;
723                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
724                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
725                         return 1;
726         }
727         return 0;
728 }
729
730 /*
731  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
732  * whether that can be merged with its predecessor or its successor.
733  * Or both (it neatly fills a hole).
734  *
735  * In most cases - when called for mmap, brk or mremap - [addr,end) is
736  * certain not to be mapped by the time vma_merge is called; but when
737  * called for mprotect, it is certain to be already mapped (either at
738  * an offset within prev, or at the start of next), and the flags of
739  * this area are about to be changed to vm_flags - and the no-change
740  * case has already been eliminated.
741  *
742  * The following mprotect cases have to be considered, where AAAA is
743  * the area passed down from mprotect_fixup, never extending beyond one
744  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
745  *
746  *     AAAA             AAAA                AAAA          AAAA
747  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
748  *    cannot merge    might become    might become    might become
749  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
750  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
751  *    mremap move:                                    PPPPNNNNNNNN 8
752  *        AAAA
753  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
754  *    might become    case 1 below    case 2 below    case 3 below
755  *
756  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
757  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
758  */
759 struct vm_area_struct *vma_merge(struct mm_struct *mm,
760                         struct vm_area_struct *prev, unsigned long addr,
761                         unsigned long end, unsigned long vm_flags,
762                         struct anon_vma *anon_vma, struct file *file,
763                         pgoff_t pgoff, struct mempolicy *policy)
764 {
765         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
766         struct vm_area_struct *area, *next;
767
768         /*
769          * We later require that vma->vm_flags == vm_flags,
770          * so this tests vma->vm_flags & VM_SPECIAL, too.
771          */
772         if (vm_flags & VM_SPECIAL)
773                 return NULL;
774
775         if (prev)
776                 next = prev->vm_next;
777         else
778                 next = mm->mmap;
779         area = next;
780         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
781                 next = next->vm_next;
782
783         /*
784          * Can it merge with the predecessor?
785          */
786         if (prev && prev->vm_end == addr &&
787                         mpol_equal(vma_policy(prev), policy) &&
788                         can_vma_merge_after(prev, vm_flags,
789                                                 anon_vma, file, pgoff)) {
790                 /*
791                  * OK, it can.  Can we now merge in the successor as well?
792                  */
793                 if (next && end == next->vm_start &&
794                                 mpol_equal(policy, vma_policy(next)) &&
795                                 can_vma_merge_before(next, vm_flags,
796                                         anon_vma, file, pgoff+pglen) &&
797                                 is_mergeable_anon_vma(prev->anon_vma,
798                                                       next->anon_vma)) {
799                                                         /* cases 1, 6 */
800                         vma_adjust(prev, prev->vm_start,
801                                 next->vm_end, prev->vm_pgoff, NULL);
802                 } else                                  /* cases 2, 5, 7 */
803                         vma_adjust(prev, prev->vm_start,
804                                 end, prev->vm_pgoff, NULL);
805                 return prev;
806         }
807
808         /*
809          * Can this new request be merged in front of next?
810          */
811         if (next && end == next->vm_start &&
812                         mpol_equal(policy, vma_policy(next)) &&
813                         can_vma_merge_before(next, vm_flags,
814                                         anon_vma, file, pgoff+pglen)) {
815                 if (prev && addr < prev->vm_end)        /* case 4 */
816                         vma_adjust(prev, prev->vm_start,
817                                 addr, prev->vm_pgoff, NULL);
818                 else                                    /* cases 3, 8 */
819                         vma_adjust(area, addr, next->vm_end,
820                                 next->vm_pgoff - pglen, NULL);
821                 return area;
822         }
823
824         return NULL;
825 }
826
827 /*
828  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
829  * neighbouring vmas for a suitable anon_vma, before it goes off
830  * to allocate a new anon_vma.  It checks because a repetitive
831  * sequence of mprotects and faults may otherwise lead to distinct
832  * anon_vmas being allocated, preventing vma merge in subsequent
833  * mprotect.
834  */
835 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
836 {
837         struct vm_area_struct *near;
838         unsigned long vm_flags;
839
840         near = vma->vm_next;
841         if (!near)
842                 goto try_prev;
843
844         /*
845          * Since only mprotect tries to remerge vmas, match flags
846          * which might be mprotected into each other later on.
847          * Neither mlock nor madvise tries to remerge at present,
848          * so leave their flags as obstructing a merge.
849          */
850         vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
851         vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
852
853         if (near->anon_vma && vma->vm_end == near->vm_start &&
854                         mpol_equal(vma_policy(vma), vma_policy(near)) &&
855                         can_vma_merge_before(near, vm_flags,
856                                 NULL, vma->vm_file, vma->vm_pgoff +
857                                 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
858                 return near->anon_vma;
859 try_prev:
860         /*
861          * It is potentially slow to have to call find_vma_prev here.
862          * But it's only on the first write fault on the vma, not
863          * every time, and we could devise a way to avoid it later
864          * (e.g. stash info in next's anon_vma_node when assigning
865          * an anon_vma, or when trying vma_merge).  Another time.
866          */
867         BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
868         if (!near)
869                 goto none;
870
871         vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
872         vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
873
874         if (near->anon_vma && near->vm_end == vma->vm_start &&
875                         mpol_equal(vma_policy(near), vma_policy(vma)) &&
876                         can_vma_merge_after(near, vm_flags,
877                                 NULL, vma->vm_file, vma->vm_pgoff))
878                 return near->anon_vma;
879 none:
880         /*
881          * There's no absolute need to look only at touching neighbours:
882          * we could search further afield for "compatible" anon_vmas.
883          * But it would probably just be a waste of time searching,
884          * or lead to too many vmas hanging off the same anon_vma.
885          * We're trying to allow mprotect remerging later on,
886          * not trying to minimize memory used for anon_vmas.
887          */
888         return NULL;
889 }
890
891 #ifdef CONFIG_PROC_FS
892 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
893                                                 struct file *file, long pages)
894 {
895         const unsigned long stack_flags
896                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
897
898         if (file) {
899                 mm->shared_vm += pages;
900                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
901                         mm->exec_vm += pages;
902         } else if (flags & stack_flags)
903                 mm->stack_vm += pages;
904         if (flags & (VM_RESERVED|VM_IO))
905                 mm->reserved_vm += pages;
906 }
907 #endif /* CONFIG_PROC_FS */
908
909 /*
910  * The caller must hold down_write(current->mm->mmap_sem).
911  */
912
913 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
914                         unsigned long len, unsigned long prot,
915                         unsigned long flags, unsigned long pgoff)
916 {
917         struct mm_struct * mm = current->mm;
918         struct inode *inode;
919         unsigned int vm_flags;
920         int error;
921         int accountable = 1;
922         unsigned long reqprot = prot;
923
924         /*
925          * Does the application expect PROT_READ to imply PROT_EXEC?
926          *
927          * (the exception is when the underlying filesystem is noexec
928          *  mounted, in which case we dont add PROT_EXEC.)
929          */
930         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
931                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
932                         prot |= PROT_EXEC;
933
934         if (!len)
935                 return -EINVAL;
936
937         if (!(flags & MAP_FIXED))
938                 addr = round_hint_to_min(addr);
939
940         error = arch_mmap_check(addr, len, flags);
941         if (error)
942                 return error;
943
944         /* Careful about overflows.. */
945         len = PAGE_ALIGN(len);
946         if (!len || len > TASK_SIZE)
947                 return -ENOMEM;
948
949         /* offset overflow? */
950         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
951                return -EOVERFLOW;
952
953         /* Too many mappings? */
954         if (mm->map_count > sysctl_max_map_count)
955                 return -ENOMEM;
956
957         /* Obtain the address to map to. we verify (or select) it and ensure
958          * that it represents a valid section of the address space.
959          */
960         addr = get_unmapped_area(file, addr, len, pgoff, flags);
961         if (addr & ~PAGE_MASK)
962                 return addr;
963
964         /* Do simple checking here so the lower-level routines won't have
965          * to. we assume access permissions have been handled by the open
966          * of the memory object, so we don't do any here.
967          */
968         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
969                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
970
971         if (flags & MAP_LOCKED) {
972                 if (!can_do_mlock())
973                         return -EPERM;
974                 vm_flags |= VM_LOCKED;
975         }
976
977         /* mlock MCL_FUTURE? */
978         if (vm_flags & VM_LOCKED) {
979                 unsigned long locked, lock_limit;
980                 locked = len >> PAGE_SHIFT;
981                 locked += mm->locked_vm;
982                 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
983                 lock_limit >>= PAGE_SHIFT;
984                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
985                         return -EAGAIN;
986         }
987
988         inode = file ? file->f_path.dentry->d_inode : NULL;
989
990         if (file) {
991                 switch (flags & MAP_TYPE) {
992                 case MAP_SHARED:
993                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
994                                 return -EACCES;
995
996                         /*
997                          * Make sure we don't allow writing to an append-only
998                          * file..
999                          */
1000                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1001                                 return -EACCES;
1002
1003                         /*
1004                          * Make sure there are no mandatory locks on the file.
1005                          */
1006                         if (locks_verify_locked(inode))
1007                                 return -EAGAIN;
1008
1009                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1010                         if (!(file->f_mode & FMODE_WRITE))
1011                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1012
1013                         /* fall through */
1014                 case MAP_PRIVATE:
1015                         if (!(file->f_mode & FMODE_READ))
1016                                 return -EACCES;
1017                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1018                                 if (vm_flags & VM_EXEC)
1019                                         return -EPERM;
1020                                 vm_flags &= ~VM_MAYEXEC;
1021                         }
1022                         if (is_file_hugepages(file))
1023                                 accountable = 0;
1024
1025                         if (!file->f_op || !file->f_op->mmap)
1026                                 return -ENODEV;
1027                         break;
1028
1029                 default:
1030                         return -EINVAL;
1031                 }
1032         } else {
1033                 switch (flags & MAP_TYPE) {
1034                 case MAP_SHARED:
1035                         /*
1036                          * Ignore pgoff.
1037                          */
1038                         pgoff = 0;
1039                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1040                         break;
1041                 case MAP_PRIVATE:
1042                         /*
1043                          * Set pgoff according to addr for anon_vma.
1044                          */
1045                         pgoff = addr >> PAGE_SHIFT;
1046                         break;
1047                 default:
1048                         return -EINVAL;
1049                 }
1050         }
1051
1052         error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1053         if (error)
1054                 return error;
1055
1056         return mmap_region(file, addr, len, flags, vm_flags, pgoff,
1057                            accountable);
1058 }
1059 EXPORT_SYMBOL(do_mmap_pgoff);
1060
1061 /*
1062  * Some shared mappigns will want the pages marked read-only
1063  * to track write events. If so, we'll downgrade vm_page_prot
1064  * to the private version (using protection_map[] without the
1065  * VM_SHARED bit).
1066  */
1067 int vma_wants_writenotify(struct vm_area_struct *vma)
1068 {
1069         unsigned int vm_flags = vma->vm_flags;
1070
1071         /* If it was private or non-writable, the write bit is already clear */
1072         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1073                 return 0;
1074
1075         /* The backer wishes to know when pages are first written to? */
1076         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1077                 return 1;
1078
1079         /* The open routine did something to the protections already? */
1080         if (pgprot_val(vma->vm_page_prot) !=
1081             pgprot_val(vm_get_page_prot(vm_flags)))
1082                 return 0;
1083
1084         /* Specialty mapping? */
1085         if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1086                 return 0;
1087
1088         /* Can the mapping track the dirty pages? */
1089         return vma->vm_file && vma->vm_file->f_mapping &&
1090                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1091 }
1092
1093 unsigned long mmap_region(struct file *file, unsigned long addr,
1094                           unsigned long len, unsigned long flags,
1095                           unsigned int vm_flags, unsigned long pgoff,
1096                           int accountable)
1097 {
1098         struct mm_struct *mm = current->mm;
1099         struct vm_area_struct *vma, *prev;
1100         int correct_wcount = 0;
1101         int error;
1102         struct rb_node **rb_link, *rb_parent;
1103         unsigned long charged = 0;
1104         struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1105
1106         /* Clear old maps */
1107         error = -ENOMEM;
1108 munmap_back:
1109         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1110         if (vma && vma->vm_start < addr + len) {
1111                 if (do_munmap(mm, addr, len))
1112                         return -ENOMEM;
1113                 goto munmap_back;
1114         }
1115
1116         /* Check against address space limit. */
1117         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1118                 return -ENOMEM;
1119
1120         if (flags & MAP_NORESERVE)
1121                 vm_flags |= VM_NORESERVE;
1122
1123         if (accountable && (!(flags & MAP_NORESERVE) ||
1124                             sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1125                 if (vm_flags & VM_SHARED) {
1126                         /* Check memory availability in shmem_file_setup? */
1127                         vm_flags |= VM_ACCOUNT;
1128                 } else if (vm_flags & VM_WRITE) {
1129                         /*
1130                          * Private writable mapping: check memory availability
1131                          */
1132                         charged = len >> PAGE_SHIFT;
1133                         if (security_vm_enough_memory(charged))
1134                                 return -ENOMEM;
1135                         vm_flags |= VM_ACCOUNT;
1136                 }
1137         }
1138
1139         /*
1140          * Can we just expand an old mapping?
1141          */
1142         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1143         if (vma)
1144                 goto out;
1145
1146         /*
1147          * Determine the object being mapped and call the appropriate
1148          * specific mapper. the address has already been validated, but
1149          * not unmapped, but the maps are removed from the list.
1150          */
1151         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1152         if (!vma) {
1153                 error = -ENOMEM;
1154                 goto unacct_error;
1155         }
1156
1157         vma->vm_mm = mm;
1158         vma->vm_start = addr;
1159         vma->vm_end = addr + len;
1160         vma->vm_flags = vm_flags;
1161         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1162         vma->vm_pgoff = pgoff;
1163
1164         if (file) {
1165                 error = -EINVAL;
1166                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1167                         goto free_vma;
1168                 if (vm_flags & VM_DENYWRITE) {
1169                         error = deny_write_access(file);
1170                         if (error)
1171                                 goto free_vma;
1172                         correct_wcount = 1;
1173                 }
1174                 vma->vm_file = file;
1175                 get_file(file);
1176                 error = file->f_op->mmap(file, vma);
1177                 if (error)
1178                         goto unmap_and_free_vma;
1179                 if (vm_flags & VM_EXECUTABLE)
1180                         added_exe_file_vma(mm);
1181         } else if (vm_flags & VM_SHARED) {
1182                 error = shmem_zero_setup(vma);
1183                 if (error)
1184                         goto free_vma;
1185         }
1186
1187         /* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1188          * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1189          * that memory reservation must be checked; but that reservation
1190          * belongs to shared memory object, not to vma: so now clear it.
1191          */
1192         if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1193                 vma->vm_flags &= ~VM_ACCOUNT;
1194
1195         /* Can addr have changed??
1196          *
1197          * Answer: Yes, several device drivers can do it in their
1198          *         f_op->mmap method. -DaveM
1199          */
1200         addr = vma->vm_start;
1201         pgoff = vma->vm_pgoff;
1202         vm_flags = vma->vm_flags;
1203
1204         if (vma_wants_writenotify(vma))
1205                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1206
1207         vma_link(mm, vma, prev, rb_link, rb_parent);
1208         file = vma->vm_file;
1209
1210         /* Once vma denies write, undo our temporary denial count */
1211         if (correct_wcount)
1212                 atomic_inc(&inode->i_writecount);
1213 out:
1214         mm->total_vm += len >> PAGE_SHIFT;
1215         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1216         if (vm_flags & VM_LOCKED) {
1217                 /*
1218                  * makes pages present; downgrades, drops, reacquires mmap_sem
1219                  */
1220                 long nr_pages = mlock_vma_pages_range(vma, addr, addr + len);
1221                 if (nr_pages < 0)
1222                         return nr_pages;        /* vma gone! */
1223                 mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages;
1224         } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1225                 make_pages_present(addr, addr + len);
1226         return addr;
1227
1228 unmap_and_free_vma:
1229         if (correct_wcount)
1230                 atomic_inc(&inode->i_writecount);
1231         vma->vm_file = NULL;
1232         fput(file);
1233
1234         /* Undo any partial mapping done by a device driver. */
1235         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1236         charged = 0;
1237 free_vma:
1238         kmem_cache_free(vm_area_cachep, vma);
1239 unacct_error:
1240         if (charged)
1241                 vm_unacct_memory(charged);
1242         return error;
1243 }
1244
1245 /* Get an address range which is currently unmapped.
1246  * For shmat() with addr=0.
1247  *
1248  * Ugly calling convention alert:
1249  * Return value with the low bits set means error value,
1250  * ie
1251  *      if (ret & ~PAGE_MASK)
1252  *              error = ret;
1253  *
1254  * This function "knows" that -ENOMEM has the bits set.
1255  */
1256 #ifndef HAVE_ARCH_UNMAPPED_AREA
1257 unsigned long
1258 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1259                 unsigned long len, unsigned long pgoff, unsigned long flags)
1260 {
1261         struct mm_struct *mm = current->mm;
1262         struct vm_area_struct *vma;
1263         unsigned long start_addr;
1264
1265         if (len > TASK_SIZE)
1266                 return -ENOMEM;
1267
1268         if (flags & MAP_FIXED)
1269                 return addr;
1270
1271         if (addr) {
1272                 addr = PAGE_ALIGN(addr);
1273                 vma = find_vma(mm, addr);
1274                 if (TASK_SIZE - len >= addr &&
1275                     (!vma || addr + len <= vma->vm_start))
1276                         return addr;
1277         }
1278         if (len > mm->cached_hole_size) {
1279                 start_addr = addr = mm->free_area_cache;
1280         } else {
1281                 start_addr = addr = TASK_UNMAPPED_BASE;
1282                 mm->cached_hole_size = 0;
1283         }
1284
1285 full_search:
1286         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1287                 /* At this point:  (!vma || addr < vma->vm_end). */
1288                 if (TASK_SIZE - len < addr) {
1289                         /*
1290                          * Start a new search - just in case we missed
1291                          * some holes.
1292                          */
1293                         if (start_addr != TASK_UNMAPPED_BASE) {
1294                                 addr = TASK_UNMAPPED_BASE;
1295                                 start_addr = addr;
1296                                 mm->cached_hole_size = 0;
1297                                 goto full_search;
1298                         }
1299                         return -ENOMEM;
1300                 }
1301                 if (!vma || addr + len <= vma->vm_start) {
1302                         /*
1303                          * Remember the place where we stopped the search:
1304                          */
1305                         mm->free_area_cache = addr + len;
1306                         return addr;
1307                 }
1308                 if (addr + mm->cached_hole_size < vma->vm_start)
1309                         mm->cached_hole_size = vma->vm_start - addr;
1310                 addr = vma->vm_end;
1311         }
1312 }
1313 #endif  
1314
1315 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1316 {
1317         /*
1318          * Is this a new hole at the lowest possible address?
1319          */
1320         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1321                 mm->free_area_cache = addr;
1322                 mm->cached_hole_size = ~0UL;
1323         }
1324 }
1325
1326 /*
1327  * This mmap-allocator allocates new areas top-down from below the
1328  * stack's low limit (the base):
1329  */
1330 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1331 unsigned long
1332 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1333                           const unsigned long len, const unsigned long pgoff,
1334                           const unsigned long flags)
1335 {
1336         struct vm_area_struct *vma;
1337         struct mm_struct *mm = current->mm;
1338         unsigned long addr = addr0;
1339
1340         /* requested length too big for entire address space */
1341         if (len > TASK_SIZE)
1342                 return -ENOMEM;
1343
1344         if (flags & MAP_FIXED)
1345                 return addr;
1346
1347         /* requesting a specific address */
1348         if (addr) {
1349                 addr = PAGE_ALIGN(addr);
1350                 vma = find_vma(mm, addr);
1351                 if (TASK_SIZE - len >= addr &&
1352                                 (!vma || addr + len <= vma->vm_start))
1353                         return addr;
1354         }
1355
1356         /* check if free_area_cache is useful for us */
1357         if (len <= mm->cached_hole_size) {
1358                 mm->cached_hole_size = 0;
1359                 mm->free_area_cache = mm->mmap_base;
1360         }
1361
1362         /* either no address requested or can't fit in requested address hole */
1363         addr = mm->free_area_cache;
1364
1365         /* make sure it can fit in the remaining address space */
1366         if (addr > len) {
1367                 vma = find_vma(mm, addr-len);
1368                 if (!vma || addr <= vma->vm_start)
1369                         /* remember the address as a hint for next time */
1370                         return (mm->free_area_cache = addr-len);
1371         }
1372
1373         if (mm->mmap_base < len)
1374                 goto bottomup;
1375
1376         addr = mm->mmap_base-len;
1377
1378         do {
1379                 /*
1380                  * Lookup failure means no vma is above this address,
1381                  * else if new region fits below vma->vm_start,
1382                  * return with success:
1383                  */
1384                 vma = find_vma(mm, addr);
1385                 if (!vma || addr+len <= vma->vm_start)
1386                         /* remember the address as a hint for next time */
1387                         return (mm->free_area_cache = addr);
1388
1389                 /* remember the largest hole we saw so far */
1390                 if (addr + mm->cached_hole_size < vma->vm_start)
1391                         mm->cached_hole_size = vma->vm_start - addr;
1392
1393                 /* try just below the current vma->vm_start */
1394                 addr = vma->vm_start-len;
1395         } while (len < vma->vm_start);
1396
1397 bottomup:
1398         /*
1399          * A failed mmap() very likely causes application failure,
1400          * so fall back to the bottom-up function here. This scenario
1401          * can happen with large stack limits and large mmap()
1402          * allocations.
1403          */
1404         mm->cached_hole_size = ~0UL;
1405         mm->free_area_cache = TASK_UNMAPPED_BASE;
1406         addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1407         /*
1408          * Restore the topdown base:
1409          */
1410         mm->free_area_cache = mm->mmap_base;
1411         mm->cached_hole_size = ~0UL;
1412
1413         return addr;
1414 }
1415 #endif
1416
1417 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1418 {
1419         /*
1420          * Is this a new hole at the highest possible address?
1421          */
1422         if (addr > mm->free_area_cache)
1423                 mm->free_area_cache = addr;
1424
1425         /* dont allow allocations above current base */
1426         if (mm->free_area_cache > mm->mmap_base)
1427                 mm->free_area_cache = mm->mmap_base;
1428 }
1429
1430 unsigned long
1431 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1432                 unsigned long pgoff, unsigned long flags)
1433 {
1434         unsigned long (*get_area)(struct file *, unsigned long,
1435                                   unsigned long, unsigned long, unsigned long);
1436
1437         get_area = current->mm->get_unmapped_area;
1438         if (file && file->f_op && file->f_op->get_unmapped_area)
1439                 get_area = file->f_op->get_unmapped_area;
1440         addr = get_area(file, addr, len, pgoff, flags);
1441         if (IS_ERR_VALUE(addr))
1442                 return addr;
1443
1444         if (addr > TASK_SIZE - len)
1445                 return -ENOMEM;
1446         if (addr & ~PAGE_MASK)
1447                 return -EINVAL;
1448
1449         return arch_rebalance_pgtables(addr, len);
1450 }
1451
1452 EXPORT_SYMBOL(get_unmapped_area);
1453
1454 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1455 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1456 {
1457         struct vm_area_struct *vma = NULL;
1458
1459         if (mm) {
1460                 /* Check the cache first. */
1461                 /* (Cache hit rate is typically around 35%.) */
1462                 vma = mm->mmap_cache;
1463                 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1464                         struct rb_node * rb_node;
1465
1466                         rb_node = mm->mm_rb.rb_node;
1467                         vma = NULL;
1468
1469                         while (rb_node) {
1470                                 struct vm_area_struct * vma_tmp;
1471
1472                                 vma_tmp = rb_entry(rb_node,
1473                                                 struct vm_area_struct, vm_rb);
1474
1475                                 if (vma_tmp->vm_end > addr) {
1476                                         vma = vma_tmp;
1477                                         if (vma_tmp->vm_start <= addr)
1478                                                 break;
1479                                         rb_node = rb_node->rb_left;
1480                                 } else
1481                                         rb_node = rb_node->rb_right;
1482                         }
1483                         if (vma)
1484                                 mm->mmap_cache = vma;
1485                 }
1486         }
1487         return vma;
1488 }
1489
1490 EXPORT_SYMBOL(find_vma);
1491
1492 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1493 struct vm_area_struct *
1494 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1495                         struct vm_area_struct **pprev)
1496 {
1497         struct vm_area_struct *vma = NULL, *prev = NULL;
1498         struct rb_node *rb_node;
1499         if (!mm)
1500                 goto out;
1501
1502         /* Guard against addr being lower than the first VMA */
1503         vma = mm->mmap;
1504
1505         /* Go through the RB tree quickly. */
1506         rb_node = mm->mm_rb.rb_node;
1507
1508         while (rb_node) {
1509                 struct vm_area_struct *vma_tmp;
1510                 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1511
1512                 if (addr < vma_tmp->vm_end) {
1513                         rb_node = rb_node->rb_left;
1514                 } else {
1515                         prev = vma_tmp;
1516                         if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1517                                 break;
1518                         rb_node = rb_node->rb_right;
1519                 }
1520         }
1521
1522 out:
1523         *pprev = prev;
1524         return prev ? prev->vm_next : vma;
1525 }
1526
1527 /*
1528  * Verify that the stack growth is acceptable and
1529  * update accounting. This is shared with both the
1530  * grow-up and grow-down cases.
1531  */
1532 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1533 {
1534         struct mm_struct *mm = vma->vm_mm;
1535         struct rlimit *rlim = current->signal->rlim;
1536         unsigned long new_start;
1537
1538         /* address space limit tests */
1539         if (!may_expand_vm(mm, grow))
1540                 return -ENOMEM;
1541
1542         /* Stack limit test */
1543         if (size > rlim[RLIMIT_STACK].rlim_cur)
1544                 return -ENOMEM;
1545
1546         /* mlock limit tests */
1547         if (vma->vm_flags & VM_LOCKED) {
1548                 unsigned long locked;
1549                 unsigned long limit;
1550                 locked = mm->locked_vm + grow;
1551                 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1552                 if (locked > limit && !capable(CAP_IPC_LOCK))
1553                         return -ENOMEM;
1554         }
1555
1556         /* Check to ensure the stack will not grow into a hugetlb-only region */
1557         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1558                         vma->vm_end - size;
1559         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1560                 return -EFAULT;
1561
1562         /*
1563          * Overcommit..  This must be the final test, as it will
1564          * update security statistics.
1565          */
1566         if (security_vm_enough_memory(grow))
1567                 return -ENOMEM;
1568
1569         /* Ok, everything looks good - let it rip */
1570         mm->total_vm += grow;
1571         if (vma->vm_flags & VM_LOCKED)
1572                 mm->locked_vm += grow;
1573         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1574         return 0;
1575 }
1576
1577 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1578 /*
1579  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1580  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1581  */
1582 #ifndef CONFIG_IA64
1583 static
1584 #endif
1585 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1586 {
1587         int error;
1588
1589         if (!(vma->vm_flags & VM_GROWSUP))
1590                 return -EFAULT;
1591
1592         /*
1593          * We must make sure the anon_vma is allocated
1594          * so that the anon_vma locking is not a noop.
1595          */
1596         if (unlikely(anon_vma_prepare(vma)))
1597                 return -ENOMEM;
1598         anon_vma_lock(vma);
1599
1600         /*
1601          * vma->vm_start/vm_end cannot change under us because the caller
1602          * is required to hold the mmap_sem in read mode.  We need the
1603          * anon_vma lock to serialize against concurrent expand_stacks.
1604          * Also guard against wrapping around to address 0.
1605          */
1606         if (address < PAGE_ALIGN(address+4))
1607                 address = PAGE_ALIGN(address+4);
1608         else {
1609                 anon_vma_unlock(vma);
1610                 return -ENOMEM;
1611         }
1612         error = 0;
1613
1614         /* Somebody else might have raced and expanded it already */
1615         if (address > vma->vm_end) {
1616                 unsigned long size, grow;
1617
1618                 size = address - vma->vm_start;
1619                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1620
1621                 error = acct_stack_growth(vma, size, grow);
1622                 if (!error)
1623                         vma->vm_end = address;
1624         }
1625         anon_vma_unlock(vma);
1626         return error;
1627 }
1628 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1629
1630 /*
1631  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1632  */
1633 static int expand_downwards(struct vm_area_struct *vma,
1634                                    unsigned long address)
1635 {
1636         int error;
1637
1638         /*
1639          * We must make sure the anon_vma is allocated
1640          * so that the anon_vma locking is not a noop.
1641          */
1642         if (unlikely(anon_vma_prepare(vma)))
1643                 return -ENOMEM;
1644
1645         address &= PAGE_MASK;
1646         error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1647         if (error)
1648                 return error;
1649
1650         anon_vma_lock(vma);
1651
1652         /*
1653          * vma->vm_start/vm_end cannot change under us because the caller
1654          * is required to hold the mmap_sem in read mode.  We need the
1655          * anon_vma lock to serialize against concurrent expand_stacks.
1656          */
1657
1658         /* Somebody else might have raced and expanded it already */
1659         if (address < vma->vm_start) {
1660                 unsigned long size, grow;
1661
1662                 size = vma->vm_end - address;
1663                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1664
1665                 error = acct_stack_growth(vma, size, grow);
1666                 if (!error) {
1667                         vma->vm_start = address;
1668                         vma->vm_pgoff -= grow;
1669                 }
1670         }
1671         anon_vma_unlock(vma);
1672         return error;
1673 }
1674
1675 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1676 {
1677         return expand_downwards(vma, address);
1678 }
1679
1680 #ifdef CONFIG_STACK_GROWSUP
1681 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1682 {
1683         return expand_upwards(vma, address);
1684 }
1685
1686 struct vm_area_struct *
1687 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1688 {
1689         struct vm_area_struct *vma, *prev;
1690
1691         addr &= PAGE_MASK;
1692         vma = find_vma_prev(mm, addr, &prev);
1693         if (vma && (vma->vm_start <= addr))
1694                 return vma;
1695         if (!prev || expand_stack(prev, addr))
1696                 return NULL;
1697         if (prev->vm_flags & VM_LOCKED) {
1698                 if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0)
1699                         return NULL;    /* vma gone! */
1700         }
1701         return prev;
1702 }
1703 #else
1704 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1705 {
1706         return expand_downwards(vma, address);
1707 }
1708
1709 struct vm_area_struct *
1710 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1711 {
1712         struct vm_area_struct * vma;
1713         unsigned long start;
1714
1715         addr &= PAGE_MASK;
1716         vma = find_vma(mm,addr);
1717         if (!vma)
1718                 return NULL;
1719         if (vma->vm_start <= addr)
1720                 return vma;
1721         if (!(vma->vm_flags & VM_GROWSDOWN))
1722                 return NULL;
1723         start = vma->vm_start;
1724         if (expand_stack(vma, addr))
1725                 return NULL;
1726         if (vma->vm_flags & VM_LOCKED) {
1727                 if (mlock_vma_pages_range(vma, addr, start) < 0)
1728                         return NULL;    /* vma gone! */
1729         }
1730         return vma;
1731 }
1732 #endif
1733
1734 /*
1735  * Ok - we have the memory areas we should free on the vma list,
1736  * so release them, and do the vma updates.
1737  *
1738  * Called with the mm semaphore held.
1739  */
1740 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1741 {
1742         /* Update high watermark before we lower total_vm */
1743         update_hiwater_vm(mm);
1744         do {
1745                 long nrpages = vma_pages(vma);
1746
1747                 mm->total_vm -= nrpages;
1748                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1749                 vma = remove_vma(vma);
1750         } while (vma);
1751         validate_mm(mm);
1752 }
1753
1754 /*
1755  * Get rid of page table information in the indicated region.
1756  *
1757  * Called with the mm semaphore held.
1758  */
1759 static void unmap_region(struct mm_struct *mm,
1760                 struct vm_area_struct *vma, struct vm_area_struct *prev,
1761                 unsigned long start, unsigned long end)
1762 {
1763         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1764         struct mmu_gather *tlb;
1765         unsigned long nr_accounted = 0;
1766
1767         lru_add_drain();
1768         tlb = tlb_gather_mmu(mm, 0);
1769         update_hiwater_rss(mm);
1770         unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1771         vm_unacct_memory(nr_accounted);
1772         free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1773                                  next? next->vm_start: 0);
1774         tlb_finish_mmu(tlb, start, end);
1775 }
1776
1777 /*
1778  * Create a list of vma's touched by the unmap, removing them from the mm's
1779  * vma list as we go..
1780  */
1781 static void
1782 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1783         struct vm_area_struct *prev, unsigned long end)
1784 {
1785         struct vm_area_struct **insertion_point;
1786         struct vm_area_struct *tail_vma = NULL;
1787         unsigned long addr;
1788
1789         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1790         do {
1791                 rb_erase(&vma->vm_rb, &mm->mm_rb);
1792                 mm->map_count--;
1793                 tail_vma = vma;
1794                 vma = vma->vm_next;
1795         } while (vma && vma->vm_start < end);
1796         *insertion_point = vma;
1797         tail_vma->vm_next = NULL;
1798         if (mm->unmap_area == arch_unmap_area)
1799                 addr = prev ? prev->vm_end : mm->mmap_base;
1800         else
1801                 addr = vma ?  vma->vm_start : mm->mmap_base;
1802         mm->unmap_area(mm, addr);
1803         mm->mmap_cache = NULL;          /* Kill the cache. */
1804 }
1805
1806 /*
1807  * Split a vma into two pieces at address 'addr', a new vma is allocated
1808  * either for the first part or the tail.
1809  */
1810 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1811               unsigned long addr, int new_below)
1812 {
1813         struct mempolicy *pol;
1814         struct vm_area_struct *new;
1815
1816         if (is_vm_hugetlb_page(vma) && (addr &
1817                                         ~(huge_page_mask(hstate_vma(vma)))))
1818                 return -EINVAL;
1819
1820         if (mm->map_count >= sysctl_max_map_count)
1821                 return -ENOMEM;
1822
1823         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1824         if (!new)
1825                 return -ENOMEM;
1826
1827         /* most fields are the same, copy all, and then fixup */
1828         *new = *vma;
1829
1830         if (new_below)
1831                 new->vm_end = addr;
1832         else {
1833                 new->vm_start = addr;
1834                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1835         }
1836
1837         pol = mpol_dup(vma_policy(vma));
1838         if (IS_ERR(pol)) {
1839                 kmem_cache_free(vm_area_cachep, new);
1840                 return PTR_ERR(pol);
1841         }
1842         vma_set_policy(new, pol);
1843
1844         if (new->vm_file) {
1845                 get_file(new->vm_file);
1846                 if (vma->vm_flags & VM_EXECUTABLE)
1847                         added_exe_file_vma(mm);
1848         }
1849
1850         if (new->vm_ops && new->vm_ops->open)
1851                 new->vm_ops->open(new);
1852
1853         if (new_below)
1854                 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1855                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
1856         else
1857                 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1858
1859         return 0;
1860 }
1861
1862 /* Munmap is split into 2 main parts -- this part which finds
1863  * what needs doing, and the areas themselves, which do the
1864  * work.  This now handles partial unmappings.
1865  * Jeremy Fitzhardinge <jeremy@goop.org>
1866  */
1867 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1868 {
1869         unsigned long end;
1870         struct vm_area_struct *vma, *prev, *last;
1871
1872         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1873                 return -EINVAL;
1874
1875         if ((len = PAGE_ALIGN(len)) == 0)
1876                 return -EINVAL;
1877
1878         /* Find the first overlapping VMA */
1879         vma = find_vma_prev(mm, start, &prev);
1880         if (!vma)
1881                 return 0;
1882         /* we have  start < vma->vm_end  */
1883
1884         /* if it doesn't overlap, we have nothing.. */
1885         end = start + len;
1886         if (vma->vm_start >= end)
1887                 return 0;
1888
1889         /*
1890          * If we need to split any vma, do it now to save pain later.
1891          *
1892          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1893          * unmapped vm_area_struct will remain in use: so lower split_vma
1894          * places tmp vma above, and higher split_vma places tmp vma below.
1895          */
1896         if (start > vma->vm_start) {
1897                 int error = split_vma(mm, vma, start, 0);
1898                 if (error)
1899                         return error;
1900                 prev = vma;
1901         }
1902
1903         /* Does it split the last one? */
1904         last = find_vma(mm, end);
1905         if (last && end > last->vm_start) {
1906                 int error = split_vma(mm, last, end, 1);
1907                 if (error)
1908                         return error;
1909         }
1910         vma = prev? prev->vm_next: mm->mmap;
1911
1912         /*
1913          * unlock any mlock()ed ranges before detaching vmas
1914          */
1915         if (mm->locked_vm) {
1916                 struct vm_area_struct *tmp = vma;
1917                 while (tmp && tmp->vm_start < end) {
1918                         if (tmp->vm_flags & VM_LOCKED) {
1919                                 mm->locked_vm -= vma_pages(tmp);
1920                                 munlock_vma_pages_all(tmp);
1921                         }
1922                         tmp = tmp->vm_next;
1923                 }
1924         }
1925
1926         /*
1927          * Remove the vma's, and unmap the actual pages
1928          */
1929         detach_vmas_to_be_unmapped(mm, vma, prev, end);
1930         unmap_region(mm, vma, prev, start, end);
1931
1932         /* Fix up all other VM information */
1933         remove_vma_list(mm, vma);
1934
1935         return 0;
1936 }
1937
1938 EXPORT_SYMBOL(do_munmap);
1939
1940 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1941 {
1942         int ret;
1943         struct mm_struct *mm = current->mm;
1944
1945         profile_munmap(addr);
1946
1947         down_write(&mm->mmap_sem);
1948         ret = do_munmap(mm, addr, len);
1949         up_write(&mm->mmap_sem);
1950         return ret;
1951 }
1952
1953 static inline void verify_mm_writelocked(struct mm_struct *mm)
1954 {
1955 #ifdef CONFIG_DEBUG_VM
1956         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1957                 WARN_ON(1);
1958                 up_read(&mm->mmap_sem);
1959         }
1960 #endif
1961 }
1962
1963 /*
1964  *  this is really a simplified "do_mmap".  it only handles
1965  *  anonymous maps.  eventually we may be able to do some
1966  *  brk-specific accounting here.
1967  */
1968 unsigned long do_brk(unsigned long addr, unsigned long len)
1969 {
1970         struct mm_struct * mm = current->mm;
1971         struct vm_area_struct * vma, * prev;
1972         unsigned long flags;
1973         struct rb_node ** rb_link, * rb_parent;
1974         pgoff_t pgoff = addr >> PAGE_SHIFT;
1975         int error;
1976
1977         len = PAGE_ALIGN(len);
1978         if (!len)
1979                 return addr;
1980
1981         if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1982                 return -EINVAL;
1983
1984         if (is_hugepage_only_range(mm, addr, len))
1985                 return -EINVAL;
1986
1987         error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
1988         if (error)
1989                 return error;
1990
1991         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1992
1993         error = arch_mmap_check(addr, len, flags);
1994         if (error)
1995                 return error;
1996
1997         /*
1998          * mlock MCL_FUTURE?
1999          */
2000         if (mm->def_flags & VM_LOCKED) {
2001                 unsigned long locked, lock_limit;
2002                 locked = len >> PAGE_SHIFT;
2003                 locked += mm->locked_vm;
2004                 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2005                 lock_limit >>= PAGE_SHIFT;
2006                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2007                         return -EAGAIN;
2008         }
2009
2010         /*
2011          * mm->mmap_sem is required to protect against another thread
2012          * changing the mappings in case we sleep.
2013          */
2014         verify_mm_writelocked(mm);
2015
2016         /*
2017          * Clear old maps.  this also does some error checking for us
2018          */
2019  munmap_back:
2020         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2021         if (vma && vma->vm_start < addr + len) {
2022                 if (do_munmap(mm, addr, len))
2023                         return -ENOMEM;
2024                 goto munmap_back;
2025         }
2026
2027         /* Check against address space limits *after* clearing old maps... */
2028         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2029                 return -ENOMEM;
2030
2031         if (mm->map_count > sysctl_max_map_count)
2032                 return -ENOMEM;
2033
2034         if (security_vm_enough_memory(len >> PAGE_SHIFT))
2035                 return -ENOMEM;
2036
2037         /* Can we just expand an old private anonymous mapping? */
2038         vma = vma_merge(mm, prev, addr, addr + len, flags,
2039                                         NULL, NULL, pgoff, NULL);
2040         if (vma)
2041                 goto out;
2042
2043         /*
2044          * create a vma struct for an anonymous mapping
2045          */
2046         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2047         if (!vma) {
2048                 vm_unacct_memory(len >> PAGE_SHIFT);
2049                 return -ENOMEM;
2050         }
2051
2052         vma->vm_mm = mm;
2053         vma->vm_start = addr;
2054         vma->vm_end = addr + len;
2055         vma->vm_pgoff = pgoff;
2056         vma->vm_flags = flags;
2057         vma->vm_page_prot = vm_get_page_prot(flags);
2058         vma_link(mm, vma, prev, rb_link, rb_parent);
2059 out:
2060         mm->total_vm += len >> PAGE_SHIFT;
2061         if (flags & VM_LOCKED) {
2062                 if (!mlock_vma_pages_range(vma, addr, addr + len))
2063                         mm->locked_vm += (len >> PAGE_SHIFT);
2064         }
2065         return addr;
2066 }
2067
2068 EXPORT_SYMBOL(do_brk);
2069
2070 /* Release all mmaps. */
2071 void exit_mmap(struct mm_struct *mm)
2072 {
2073         struct mmu_gather *tlb;
2074         struct vm_area_struct *vma;
2075         unsigned long nr_accounted = 0;
2076         unsigned long end;
2077
2078         /* mm's last user has gone, and its about to be pulled down */
2079         arch_exit_mmap(mm);
2080         mmu_notifier_release(mm);
2081
2082         if (!mm->mmap)  /* Can happen if dup_mmap() received an OOM */
2083                 return;
2084
2085         if (mm->locked_vm) {
2086                 vma = mm->mmap;
2087                 while (vma) {
2088                         if (vma->vm_flags & VM_LOCKED)
2089                                 munlock_vma_pages_all(vma);
2090                         vma = vma->vm_next;
2091                 }
2092         }
2093         vma = mm->mmap;
2094         lru_add_drain();
2095         flush_cache_mm(mm);
2096         tlb = tlb_gather_mmu(mm, 1);
2097         /* update_hiwater_rss(mm) here? but nobody should be looking */
2098         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2099         end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2100         vm_unacct_memory(nr_accounted);
2101         free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2102         tlb_finish_mmu(tlb, 0, end);
2103
2104         /*
2105          * Walk the list again, actually closing and freeing it,
2106          * with preemption enabled, without holding any MM locks.
2107          */
2108         while (vma)
2109                 vma = remove_vma(vma);
2110
2111         BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2112 }
2113
2114 /* Insert vm structure into process list sorted by address
2115  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2116  * then i_mmap_lock is taken here.
2117  */
2118 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2119 {
2120         struct vm_area_struct * __vma, * prev;
2121         struct rb_node ** rb_link, * rb_parent;
2122
2123         /*
2124          * The vm_pgoff of a purely anonymous vma should be irrelevant
2125          * until its first write fault, when page's anon_vma and index
2126          * are set.  But now set the vm_pgoff it will almost certainly
2127          * end up with (unless mremap moves it elsewhere before that
2128          * first wfault), so /proc/pid/maps tells a consistent story.
2129          *
2130          * By setting it to reflect the virtual start address of the
2131          * vma, merges and splits can happen in a seamless way, just
2132          * using the existing file pgoff checks and manipulations.
2133          * Similarly in do_mmap_pgoff and in do_brk.
2134          */
2135         if (!vma->vm_file) {
2136                 BUG_ON(vma->anon_vma);
2137                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2138         }
2139         __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2140         if (__vma && __vma->vm_start < vma->vm_end)
2141                 return -ENOMEM;
2142         if ((vma->vm_flags & VM_ACCOUNT) &&
2143              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2144                 return -ENOMEM;
2145         vma_link(mm, vma, prev, rb_link, rb_parent);
2146         return 0;
2147 }
2148
2149 /*
2150  * Copy the vma structure to a new location in the same mm,
2151  * prior to moving page table entries, to effect an mremap move.
2152  */
2153 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2154         unsigned long addr, unsigned long len, pgoff_t pgoff)
2155 {
2156         struct vm_area_struct *vma = *vmap;
2157         unsigned long vma_start = vma->vm_start;
2158         struct mm_struct *mm = vma->vm_mm;
2159         struct vm_area_struct *new_vma, *prev;
2160         struct rb_node **rb_link, *rb_parent;
2161         struct mempolicy *pol;
2162
2163         /*
2164          * If anonymous vma has not yet been faulted, update new pgoff
2165          * to match new location, to increase its chance of merging.
2166          */
2167         if (!vma->vm_file && !vma->anon_vma)
2168                 pgoff = addr >> PAGE_SHIFT;
2169
2170         find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2171         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2172                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2173         if (new_vma) {
2174                 /*
2175                  * Source vma may have been merged into new_vma
2176                  */
2177                 if (vma_start >= new_vma->vm_start &&
2178                     vma_start < new_vma->vm_end)
2179                         *vmap = new_vma;
2180         } else {
2181                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2182                 if (new_vma) {
2183                         *new_vma = *vma;
2184                         pol = mpol_dup(vma_policy(vma));
2185                         if (IS_ERR(pol)) {
2186                                 kmem_cache_free(vm_area_cachep, new_vma);
2187                                 return NULL;
2188                         }
2189                         vma_set_policy(new_vma, pol);
2190                         new_vma->vm_start = addr;
2191                         new_vma->vm_end = addr + len;
2192                         new_vma->vm_pgoff = pgoff;
2193                         if (new_vma->vm_file) {
2194                                 get_file(new_vma->vm_file);
2195                                 if (vma->vm_flags & VM_EXECUTABLE)
2196                                         added_exe_file_vma(mm);
2197                         }
2198                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2199                                 new_vma->vm_ops->open(new_vma);
2200                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2201                 }
2202         }
2203         return new_vma;
2204 }
2205
2206 /*
2207  * Return true if the calling process may expand its vm space by the passed
2208  * number of pages
2209  */
2210 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2211 {
2212         unsigned long cur = mm->total_vm;       /* pages */
2213         unsigned long lim;
2214
2215         lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2216
2217         if (cur + npages > lim)
2218                 return 0;
2219         return 1;
2220 }
2221
2222
2223 static int special_mapping_fault(struct vm_area_struct *vma,
2224                                 struct vm_fault *vmf)
2225 {
2226         pgoff_t pgoff;
2227         struct page **pages;
2228
2229         /*
2230          * special mappings have no vm_file, and in that case, the mm
2231          * uses vm_pgoff internally. So we have to subtract it from here.
2232          * We are allowed to do this because we are the mm; do not copy
2233          * this code into drivers!
2234          */
2235         pgoff = vmf->pgoff - vma->vm_pgoff;
2236
2237         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2238                 pgoff--;
2239
2240         if (*pages) {
2241                 struct page *page = *pages;
2242                 get_page(page);
2243                 vmf->page = page;
2244                 return 0;
2245         }
2246
2247         return VM_FAULT_SIGBUS;
2248 }
2249
2250 /*
2251  * Having a close hook prevents vma merging regardless of flags.
2252  */
2253 static void special_mapping_close(struct vm_area_struct *vma)
2254 {
2255 }
2256
2257 static struct vm_operations_struct special_mapping_vmops = {
2258         .close = special_mapping_close,
2259         .fault = special_mapping_fault,
2260 };
2261
2262 /*
2263  * Called with mm->mmap_sem held for writing.
2264  * Insert a new vma covering the given region, with the given flags.
2265  * Its pages are supplied by the given array of struct page *.
2266  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2267  * The region past the last page supplied will always produce SIGBUS.
2268  * The array pointer and the pages it points to are assumed to stay alive
2269  * for as long as this mapping might exist.
2270  */
2271 int install_special_mapping(struct mm_struct *mm,
2272                             unsigned long addr, unsigned long len,
2273                             unsigned long vm_flags, struct page **pages)
2274 {
2275         struct vm_area_struct *vma;
2276
2277         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2278         if (unlikely(vma == NULL))
2279                 return -ENOMEM;
2280
2281         vma->vm_mm = mm;
2282         vma->vm_start = addr;
2283         vma->vm_end = addr + len;
2284
2285         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2286         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2287
2288         vma->vm_ops = &special_mapping_vmops;
2289         vma->vm_private_data = pages;
2290
2291         if (unlikely(insert_vm_struct(mm, vma))) {
2292                 kmem_cache_free(vm_area_cachep, vma);
2293                 return -ENOMEM;
2294         }
2295
2296         mm->total_vm += len >> PAGE_SHIFT;
2297
2298         return 0;
2299 }
2300
2301 static DEFINE_MUTEX(mm_all_locks_mutex);
2302
2303 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2304 {
2305         if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2306                 /*
2307                  * The LSB of head.next can't change from under us
2308                  * because we hold the mm_all_locks_mutex.
2309                  */
2310                 spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2311                 /*
2312                  * We can safely modify head.next after taking the
2313                  * anon_vma->lock. If some other vma in this mm shares
2314                  * the same anon_vma we won't take it again.
2315                  *
2316                  * No need of atomic instructions here, head.next
2317                  * can't change from under us thanks to the
2318                  * anon_vma->lock.
2319                  */
2320                 if (__test_and_set_bit(0, (unsigned long *)
2321                                        &anon_vma->head.next))
2322                         BUG();
2323         }
2324 }
2325
2326 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2327 {
2328         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2329                 /*
2330                  * AS_MM_ALL_LOCKS can't change from under us because
2331                  * we hold the mm_all_locks_mutex.
2332                  *
2333                  * Operations on ->flags have to be atomic because
2334                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2335                  * mm_all_locks_mutex, there may be other cpus
2336                  * changing other bitflags in parallel to us.
2337                  */
2338                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2339                         BUG();
2340                 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2341         }
2342 }
2343
2344 /*
2345  * This operation locks against the VM for all pte/vma/mm related
2346  * operations that could ever happen on a certain mm. This includes
2347  * vmtruncate, try_to_unmap, and all page faults.
2348  *
2349  * The caller must take the mmap_sem in write mode before calling
2350  * mm_take_all_locks(). The caller isn't allowed to release the
2351  * mmap_sem until mm_drop_all_locks() returns.
2352  *
2353  * mmap_sem in write mode is required in order to block all operations
2354  * that could modify pagetables and free pages without need of
2355  * altering the vma layout (for example populate_range() with
2356  * nonlinear vmas). It's also needed in write mode to avoid new
2357  * anon_vmas to be associated with existing vmas.
2358  *
2359  * A single task can't take more than one mm_take_all_locks() in a row
2360  * or it would deadlock.
2361  *
2362  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2363  * mapping->flags avoid to take the same lock twice, if more than one
2364  * vma in this mm is backed by the same anon_vma or address_space.
2365  *
2366  * We can take all the locks in random order because the VM code
2367  * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2368  * takes more than one of them in a row. Secondly we're protected
2369  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2370  *
2371  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2372  * that may have to take thousand of locks.
2373  *
2374  * mm_take_all_locks() can fail if it's interrupted by signals.
2375  */
2376 int mm_take_all_locks(struct mm_struct *mm)
2377 {
2378         struct vm_area_struct *vma;
2379         int ret = -EINTR;
2380
2381         BUG_ON(down_read_trylock(&mm->mmap_sem));
2382
2383         mutex_lock(&mm_all_locks_mutex);
2384
2385         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2386                 if (signal_pending(current))
2387                         goto out_unlock;
2388                 if (vma->vm_file && vma->vm_file->f_mapping)
2389                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
2390         }
2391
2392         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2393                 if (signal_pending(current))
2394                         goto out_unlock;
2395                 if (vma->anon_vma)
2396                         vm_lock_anon_vma(mm, vma->anon_vma);
2397         }
2398
2399         ret = 0;
2400
2401 out_unlock:
2402         if (ret)
2403                 mm_drop_all_locks(mm);
2404
2405         return ret;
2406 }
2407
2408 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2409 {
2410         if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2411                 /*
2412                  * The LSB of head.next can't change to 0 from under
2413                  * us because we hold the mm_all_locks_mutex.
2414                  *
2415                  * We must however clear the bitflag before unlocking
2416                  * the vma so the users using the anon_vma->head will
2417                  * never see our bitflag.
2418                  *
2419                  * No need of atomic instructions here, head.next
2420                  * can't change from under us until we release the
2421                  * anon_vma->lock.
2422                  */
2423                 if (!__test_and_clear_bit(0, (unsigned long *)
2424                                           &anon_vma->head.next))
2425                         BUG();
2426                 spin_unlock(&anon_vma->lock);
2427         }
2428 }
2429
2430 static void vm_unlock_mapping(struct address_space *mapping)
2431 {
2432         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2433                 /*
2434                  * AS_MM_ALL_LOCKS can't change to 0 from under us
2435                  * because we hold the mm_all_locks_mutex.
2436                  */
2437                 spin_unlock(&mapping->i_mmap_lock);
2438                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2439                                         &mapping->flags))
2440                         BUG();
2441         }
2442 }
2443
2444 /*
2445  * The mmap_sem cannot be released by the caller until
2446  * mm_drop_all_locks() returns.
2447  */
2448 void mm_drop_all_locks(struct mm_struct *mm)
2449 {
2450         struct vm_area_struct *vma;
2451
2452         BUG_ON(down_read_trylock(&mm->mmap_sem));
2453         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2454
2455         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2456                 if (vma->anon_vma)
2457                         vm_unlock_anon_vma(vma->anon_vma);
2458                 if (vma->vm_file && vma->vm_file->f_mapping)
2459                         vm_unlock_mapping(vma->vm_file->f_mapping);
2460         }
2461
2462         mutex_unlock(&mm_all_locks_mutex);
2463 }
2464
2465 /*
2466  * initialise the VMA slab
2467  */
2468 void __init mmap_init(void)
2469 {
2470         vm_area_cachep = kmem_cache_create("vm_area_struct",
2471                         sizeof(struct vm_area_struct), 0,
2472                         SLAB_PANIC, NULL);
2473 }