Allow arbitrary shared PFNMAP's
[safe/jmp/linux-2.6] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
51
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
54 #include <asm/tlb.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
57
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
64 struct page *mem_map;
65
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
68 #endif
69
70 unsigned long num_physpages;
71 /*
72  * A number of key systems in x86 including ioremap() rely on the assumption
73  * that high_memory defines the upper bound on direct map memory, then end
74  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
75  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76  * and ZONE_HIGHMEM.
77  */
78 void * high_memory;
79 unsigned long vmalloc_earlyreserve;
80
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85 /*
86  * If a p?d_bad entry is found while walking page tables, report
87  * the error, before resetting entry to p?d_none.  Usually (but
88  * very seldom) called out from the p?d_none_or_clear_bad macros.
89  */
90
91 void pgd_clear_bad(pgd_t *pgd)
92 {
93         pgd_ERROR(*pgd);
94         pgd_clear(pgd);
95 }
96
97 void pud_clear_bad(pud_t *pud)
98 {
99         pud_ERROR(*pud);
100         pud_clear(pud);
101 }
102
103 void pmd_clear_bad(pmd_t *pmd)
104 {
105         pmd_ERROR(*pmd);
106         pmd_clear(pmd);
107 }
108
109 /*
110  * Note: this doesn't free the actual pages themselves. That
111  * has been handled earlier when unmapping all the memory regions.
112  */
113 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
114 {
115         struct page *page = pmd_page(*pmd);
116         pmd_clear(pmd);
117         pte_lock_deinit(page);
118         pte_free_tlb(tlb, page);
119         dec_page_state(nr_page_table_pages);
120         tlb->mm->nr_ptes--;
121 }
122
123 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
124                                 unsigned long addr, unsigned long end,
125                                 unsigned long floor, unsigned long ceiling)
126 {
127         pmd_t *pmd;
128         unsigned long next;
129         unsigned long start;
130
131         start = addr;
132         pmd = pmd_offset(pud, addr);
133         do {
134                 next = pmd_addr_end(addr, end);
135                 if (pmd_none_or_clear_bad(pmd))
136                         continue;
137                 free_pte_range(tlb, pmd);
138         } while (pmd++, addr = next, addr != end);
139
140         start &= PUD_MASK;
141         if (start < floor)
142                 return;
143         if (ceiling) {
144                 ceiling &= PUD_MASK;
145                 if (!ceiling)
146                         return;
147         }
148         if (end - 1 > ceiling - 1)
149                 return;
150
151         pmd = pmd_offset(pud, start);
152         pud_clear(pud);
153         pmd_free_tlb(tlb, pmd);
154 }
155
156 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
157                                 unsigned long addr, unsigned long end,
158                                 unsigned long floor, unsigned long ceiling)
159 {
160         pud_t *pud;
161         unsigned long next;
162         unsigned long start;
163
164         start = addr;
165         pud = pud_offset(pgd, addr);
166         do {
167                 next = pud_addr_end(addr, end);
168                 if (pud_none_or_clear_bad(pud))
169                         continue;
170                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
171         } while (pud++, addr = next, addr != end);
172
173         start &= PGDIR_MASK;
174         if (start < floor)
175                 return;
176         if (ceiling) {
177                 ceiling &= PGDIR_MASK;
178                 if (!ceiling)
179                         return;
180         }
181         if (end - 1 > ceiling - 1)
182                 return;
183
184         pud = pud_offset(pgd, start);
185         pgd_clear(pgd);
186         pud_free_tlb(tlb, pud);
187 }
188
189 /*
190  * This function frees user-level page tables of a process.
191  *
192  * Must be called with pagetable lock held.
193  */
194 void free_pgd_range(struct mmu_gather **tlb,
195                         unsigned long addr, unsigned long end,
196                         unsigned long floor, unsigned long ceiling)
197 {
198         pgd_t *pgd;
199         unsigned long next;
200         unsigned long start;
201
202         /*
203          * The next few lines have given us lots of grief...
204          *
205          * Why are we testing PMD* at this top level?  Because often
206          * there will be no work to do at all, and we'd prefer not to
207          * go all the way down to the bottom just to discover that.
208          *
209          * Why all these "- 1"s?  Because 0 represents both the bottom
210          * of the address space and the top of it (using -1 for the
211          * top wouldn't help much: the masks would do the wrong thing).
212          * The rule is that addr 0 and floor 0 refer to the bottom of
213          * the address space, but end 0 and ceiling 0 refer to the top
214          * Comparisons need to use "end - 1" and "ceiling - 1" (though
215          * that end 0 case should be mythical).
216          *
217          * Wherever addr is brought up or ceiling brought down, we must
218          * be careful to reject "the opposite 0" before it confuses the
219          * subsequent tests.  But what about where end is brought down
220          * by PMD_SIZE below? no, end can't go down to 0 there.
221          *
222          * Whereas we round start (addr) and ceiling down, by different
223          * masks at different levels, in order to test whether a table
224          * now has no other vmas using it, so can be freed, we don't
225          * bother to round floor or end up - the tests don't need that.
226          */
227
228         addr &= PMD_MASK;
229         if (addr < floor) {
230                 addr += PMD_SIZE;
231                 if (!addr)
232                         return;
233         }
234         if (ceiling) {
235                 ceiling &= PMD_MASK;
236                 if (!ceiling)
237                         return;
238         }
239         if (end - 1 > ceiling - 1)
240                 end -= PMD_SIZE;
241         if (addr > end - 1)
242                 return;
243
244         start = addr;
245         pgd = pgd_offset((*tlb)->mm, addr);
246         do {
247                 next = pgd_addr_end(addr, end);
248                 if (pgd_none_or_clear_bad(pgd))
249                         continue;
250                 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
251         } while (pgd++, addr = next, addr != end);
252
253         if (!(*tlb)->fullmm)
254                 flush_tlb_pgtables((*tlb)->mm, start, end);
255 }
256
257 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
258                 unsigned long floor, unsigned long ceiling)
259 {
260         while (vma) {
261                 struct vm_area_struct *next = vma->vm_next;
262                 unsigned long addr = vma->vm_start;
263
264                 /*
265                  * Hide vma from rmap and vmtruncate before freeing pgtables
266                  */
267                 anon_vma_unlink(vma);
268                 unlink_file_vma(vma);
269
270                 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
271                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
272                                 floor, next? next->vm_start: ceiling);
273                 } else {
274                         /*
275                          * Optimization: gather nearby vmas into one call down
276                          */
277                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
278                           && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
279                                                         HPAGE_SIZE)) {
280                                 vma = next;
281                                 next = vma->vm_next;
282                                 anon_vma_unlink(vma);
283                                 unlink_file_vma(vma);
284                         }
285                         free_pgd_range(tlb, addr, vma->vm_end,
286                                 floor, next? next->vm_start: ceiling);
287                 }
288                 vma = next;
289         }
290 }
291
292 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
293 {
294         struct page *new = pte_alloc_one(mm, address);
295         if (!new)
296                 return -ENOMEM;
297
298         pte_lock_init(new);
299         spin_lock(&mm->page_table_lock);
300         if (pmd_present(*pmd)) {        /* Another has populated it */
301                 pte_lock_deinit(new);
302                 pte_free(new);
303         } else {
304                 mm->nr_ptes++;
305                 inc_page_state(nr_page_table_pages);
306                 pmd_populate(mm, pmd, new);
307         }
308         spin_unlock(&mm->page_table_lock);
309         return 0;
310 }
311
312 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
313 {
314         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
315         if (!new)
316                 return -ENOMEM;
317
318         spin_lock(&init_mm.page_table_lock);
319         if (pmd_present(*pmd))          /* Another has populated it */
320                 pte_free_kernel(new);
321         else
322                 pmd_populate_kernel(&init_mm, pmd, new);
323         spin_unlock(&init_mm.page_table_lock);
324         return 0;
325 }
326
327 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
328 {
329         if (file_rss)
330                 add_mm_counter(mm, file_rss, file_rss);
331         if (anon_rss)
332                 add_mm_counter(mm, anon_rss, anon_rss);
333 }
334
335 /*
336  * This function is called to print an error when a bad pte
337  * is found. For example, we might have a PFN-mapped pte in
338  * a region that doesn't allow it.
339  *
340  * The calling function must still handle the error.
341  */
342 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
343 {
344         printk(KERN_ERR "Bad pte = %08llx, process = %s, "
345                         "vm_flags = %lx, vaddr = %lx\n",
346                 (long long)pte_val(pte),
347                 (vma->vm_mm == current->mm ? current->comm : "???"),
348                 vma->vm_flags, vaddr);
349         dump_stack();
350 }
351
352 /*
353  * This function gets the "struct page" associated with a pte.
354  *
355  * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
356  * will have each page table entry just pointing to a raw page frame
357  * number, and as far as the VM layer is concerned, those do not have
358  * pages associated with them - even if the PFN might point to memory
359  * that otherwise is perfectly fine and has a "struct page".
360  *
361  * The way we recognize those mappings is through the rules set up
362  * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
363  * and the vm_pgoff will point to the first PFN mapped: thus every
364  * page that is a raw mapping will always honor the rule
365  *
366  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
367  *
368  * and if that isn't true, the page has been COW'ed (in which case it
369  * _does_ have a "struct page" associated with it even if it is in a
370  * VM_PFNMAP range).
371  */
372 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
373 {
374         unsigned long pfn = pte_pfn(pte);
375
376         if (vma->vm_flags & VM_PFNMAP) {
377                 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
378                 if (pfn == vma->vm_pgoff + off)
379                         return NULL;
380                 if (vma->vm_flags & VM_SHARED)
381                         return NULL;
382         }
383
384         /*
385          * Add some anal sanity checks for now. Eventually,
386          * we should just do "return pfn_to_page(pfn)", but
387          * in the meantime we check that we get a valid pfn,
388          * and that the resulting page looks ok.
389          *
390          * Remove this test eventually!
391          */
392         if (unlikely(!pfn_valid(pfn))) {
393                 print_bad_pte(vma, pte, addr);
394                 return NULL;
395         }
396
397         /*
398          * NOTE! We still have PageReserved() pages in the page 
399          * tables. 
400          *
401          * The PAGE_ZERO() pages and various VDSO mappings can
402          * cause them to exist.
403          */
404         return pfn_to_page(pfn);
405 }
406
407 /*
408  * copy one vm_area from one task to the other. Assumes the page tables
409  * already present in the new task to be cleared in the whole range
410  * covered by this vma.
411  */
412
413 static inline void
414 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
415                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
416                 unsigned long addr, int *rss)
417 {
418         unsigned long vm_flags = vma->vm_flags;
419         pte_t pte = *src_pte;
420         struct page *page;
421
422         /* pte contains position in swap or file, so copy. */
423         if (unlikely(!pte_present(pte))) {
424                 if (!pte_file(pte)) {
425                         swap_duplicate(pte_to_swp_entry(pte));
426                         /* make sure dst_mm is on swapoff's mmlist. */
427                         if (unlikely(list_empty(&dst_mm->mmlist))) {
428                                 spin_lock(&mmlist_lock);
429                                 if (list_empty(&dst_mm->mmlist))
430                                         list_add(&dst_mm->mmlist,
431                                                  &src_mm->mmlist);
432                                 spin_unlock(&mmlist_lock);
433                         }
434                 }
435                 goto out_set_pte;
436         }
437
438         /*
439          * If it's a COW mapping, write protect it both
440          * in the parent and the child
441          */
442         if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
443                 ptep_set_wrprotect(src_mm, addr, src_pte);
444                 pte = *src_pte;
445         }
446
447         /*
448          * If it's a shared mapping, mark it clean in
449          * the child
450          */
451         if (vm_flags & VM_SHARED)
452                 pte = pte_mkclean(pte);
453         pte = pte_mkold(pte);
454
455         page = vm_normal_page(vma, addr, pte);
456         if (page) {
457                 get_page(page);
458                 page_dup_rmap(page);
459                 rss[!!PageAnon(page)]++;
460         }
461
462 out_set_pte:
463         set_pte_at(dst_mm, addr, dst_pte, pte);
464 }
465
466 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
467                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
468                 unsigned long addr, unsigned long end)
469 {
470         pte_t *src_pte, *dst_pte;
471         spinlock_t *src_ptl, *dst_ptl;
472         int progress = 0;
473         int rss[2];
474
475 again:
476         rss[1] = rss[0] = 0;
477         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
478         if (!dst_pte)
479                 return -ENOMEM;
480         src_pte = pte_offset_map_nested(src_pmd, addr);
481         src_ptl = pte_lockptr(src_mm, src_pmd);
482         spin_lock(src_ptl);
483
484         do {
485                 /*
486                  * We are holding two locks at this point - either of them
487                  * could generate latencies in another task on another CPU.
488                  */
489                 if (progress >= 32) {
490                         progress = 0;
491                         if (need_resched() ||
492                             need_lockbreak(src_ptl) ||
493                             need_lockbreak(dst_ptl))
494                                 break;
495                 }
496                 if (pte_none(*src_pte)) {
497                         progress++;
498                         continue;
499                 }
500                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
501                 progress += 8;
502         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
503
504         spin_unlock(src_ptl);
505         pte_unmap_nested(src_pte - 1);
506         add_mm_rss(dst_mm, rss[0], rss[1]);
507         pte_unmap_unlock(dst_pte - 1, dst_ptl);
508         cond_resched();
509         if (addr != end)
510                 goto again;
511         return 0;
512 }
513
514 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
515                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
516                 unsigned long addr, unsigned long end)
517 {
518         pmd_t *src_pmd, *dst_pmd;
519         unsigned long next;
520
521         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
522         if (!dst_pmd)
523                 return -ENOMEM;
524         src_pmd = pmd_offset(src_pud, addr);
525         do {
526                 next = pmd_addr_end(addr, end);
527                 if (pmd_none_or_clear_bad(src_pmd))
528                         continue;
529                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
530                                                 vma, addr, next))
531                         return -ENOMEM;
532         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
533         return 0;
534 }
535
536 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
537                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
538                 unsigned long addr, unsigned long end)
539 {
540         pud_t *src_pud, *dst_pud;
541         unsigned long next;
542
543         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
544         if (!dst_pud)
545                 return -ENOMEM;
546         src_pud = pud_offset(src_pgd, addr);
547         do {
548                 next = pud_addr_end(addr, end);
549                 if (pud_none_or_clear_bad(src_pud))
550                         continue;
551                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
552                                                 vma, addr, next))
553                         return -ENOMEM;
554         } while (dst_pud++, src_pud++, addr = next, addr != end);
555         return 0;
556 }
557
558 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
559                 struct vm_area_struct *vma)
560 {
561         pgd_t *src_pgd, *dst_pgd;
562         unsigned long next;
563         unsigned long addr = vma->vm_start;
564         unsigned long end = vma->vm_end;
565
566         /*
567          * Don't copy ptes where a page fault will fill them correctly.
568          * Fork becomes much lighter when there are big shared or private
569          * readonly mappings. The tradeoff is that copy_page_range is more
570          * efficient than faulting.
571          */
572         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP))) {
573                 if (!vma->anon_vma)
574                         return 0;
575         }
576
577         if (is_vm_hugetlb_page(vma))
578                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
579
580         dst_pgd = pgd_offset(dst_mm, addr);
581         src_pgd = pgd_offset(src_mm, addr);
582         do {
583                 next = pgd_addr_end(addr, end);
584                 if (pgd_none_or_clear_bad(src_pgd))
585                         continue;
586                 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
587                                                 vma, addr, next))
588                         return -ENOMEM;
589         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
590         return 0;
591 }
592
593 static unsigned long zap_pte_range(struct mmu_gather *tlb,
594                                 struct vm_area_struct *vma, pmd_t *pmd,
595                                 unsigned long addr, unsigned long end,
596                                 long *zap_work, struct zap_details *details)
597 {
598         struct mm_struct *mm = tlb->mm;
599         pte_t *pte;
600         spinlock_t *ptl;
601         int file_rss = 0;
602         int anon_rss = 0;
603
604         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
605         do {
606                 pte_t ptent = *pte;
607                 if (pte_none(ptent)) {
608                         (*zap_work)--;
609                         continue;
610                 }
611                 if (pte_present(ptent)) {
612                         struct page *page;
613
614                         (*zap_work) -= PAGE_SIZE;
615
616                         page = vm_normal_page(vma, addr, ptent);
617                         if (unlikely(details) && page) {
618                                 /*
619                                  * unmap_shared_mapping_pages() wants to
620                                  * invalidate cache without truncating:
621                                  * unmap shared but keep private pages.
622                                  */
623                                 if (details->check_mapping &&
624                                     details->check_mapping != page->mapping)
625                                         continue;
626                                 /*
627                                  * Each page->index must be checked when
628                                  * invalidating or truncating nonlinear.
629                                  */
630                                 if (details->nonlinear_vma &&
631                                     (page->index < details->first_index ||
632                                      page->index > details->last_index))
633                                         continue;
634                         }
635                         ptent = ptep_get_and_clear_full(mm, addr, pte,
636                                                         tlb->fullmm);
637                         tlb_remove_tlb_entry(tlb, pte, addr);
638                         if (unlikely(!page))
639                                 continue;
640                         if (unlikely(details) && details->nonlinear_vma
641                             && linear_page_index(details->nonlinear_vma,
642                                                 addr) != page->index)
643                                 set_pte_at(mm, addr, pte,
644                                            pgoff_to_pte(page->index));
645                         if (PageAnon(page))
646                                 anon_rss--;
647                         else {
648                                 if (pte_dirty(ptent))
649                                         set_page_dirty(page);
650                                 if (pte_young(ptent))
651                                         mark_page_accessed(page);
652                                 file_rss--;
653                         }
654                         page_remove_rmap(page);
655                         tlb_remove_page(tlb, page);
656                         continue;
657                 }
658                 /*
659                  * If details->check_mapping, we leave swap entries;
660                  * if details->nonlinear_vma, we leave file entries.
661                  */
662                 if (unlikely(details))
663                         continue;
664                 if (!pte_file(ptent))
665                         free_swap_and_cache(pte_to_swp_entry(ptent));
666                 pte_clear_full(mm, addr, pte, tlb->fullmm);
667         } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
668
669         add_mm_rss(mm, file_rss, anon_rss);
670         pte_unmap_unlock(pte - 1, ptl);
671
672         return addr;
673 }
674
675 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
676                                 struct vm_area_struct *vma, pud_t *pud,
677                                 unsigned long addr, unsigned long end,
678                                 long *zap_work, struct zap_details *details)
679 {
680         pmd_t *pmd;
681         unsigned long next;
682
683         pmd = pmd_offset(pud, addr);
684         do {
685                 next = pmd_addr_end(addr, end);
686                 if (pmd_none_or_clear_bad(pmd)) {
687                         (*zap_work)--;
688                         continue;
689                 }
690                 next = zap_pte_range(tlb, vma, pmd, addr, next,
691                                                 zap_work, details);
692         } while (pmd++, addr = next, (addr != end && *zap_work > 0));
693
694         return addr;
695 }
696
697 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
698                                 struct vm_area_struct *vma, pgd_t *pgd,
699                                 unsigned long addr, unsigned long end,
700                                 long *zap_work, struct zap_details *details)
701 {
702         pud_t *pud;
703         unsigned long next;
704
705         pud = pud_offset(pgd, addr);
706         do {
707                 next = pud_addr_end(addr, end);
708                 if (pud_none_or_clear_bad(pud)) {
709                         (*zap_work)--;
710                         continue;
711                 }
712                 next = zap_pmd_range(tlb, vma, pud, addr, next,
713                                                 zap_work, details);
714         } while (pud++, addr = next, (addr != end && *zap_work > 0));
715
716         return addr;
717 }
718
719 static unsigned long unmap_page_range(struct mmu_gather *tlb,
720                                 struct vm_area_struct *vma,
721                                 unsigned long addr, unsigned long end,
722                                 long *zap_work, struct zap_details *details)
723 {
724         pgd_t *pgd;
725         unsigned long next;
726
727         if (details && !details->check_mapping && !details->nonlinear_vma)
728                 details = NULL;
729
730         BUG_ON(addr >= end);
731         tlb_start_vma(tlb, vma);
732         pgd = pgd_offset(vma->vm_mm, addr);
733         do {
734                 next = pgd_addr_end(addr, end);
735                 if (pgd_none_or_clear_bad(pgd)) {
736                         (*zap_work)--;
737                         continue;
738                 }
739                 next = zap_pud_range(tlb, vma, pgd, addr, next,
740                                                 zap_work, details);
741         } while (pgd++, addr = next, (addr != end && *zap_work > 0));
742         tlb_end_vma(tlb, vma);
743
744         return addr;
745 }
746
747 #ifdef CONFIG_PREEMPT
748 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
749 #else
750 /* No preempt: go for improved straight-line efficiency */
751 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
752 #endif
753
754 /**
755  * unmap_vmas - unmap a range of memory covered by a list of vma's
756  * @tlbp: address of the caller's struct mmu_gather
757  * @vma: the starting vma
758  * @start_addr: virtual address at which to start unmapping
759  * @end_addr: virtual address at which to end unmapping
760  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
761  * @details: details of nonlinear truncation or shared cache invalidation
762  *
763  * Returns the end address of the unmapping (restart addr if interrupted).
764  *
765  * Unmap all pages in the vma list.
766  *
767  * We aim to not hold locks for too long (for scheduling latency reasons).
768  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
769  * return the ending mmu_gather to the caller.
770  *
771  * Only addresses between `start' and `end' will be unmapped.
772  *
773  * The VMA list must be sorted in ascending virtual address order.
774  *
775  * unmap_vmas() assumes that the caller will flush the whole unmapped address
776  * range after unmap_vmas() returns.  So the only responsibility here is to
777  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
778  * drops the lock and schedules.
779  */
780 unsigned long unmap_vmas(struct mmu_gather **tlbp,
781                 struct vm_area_struct *vma, unsigned long start_addr,
782                 unsigned long end_addr, unsigned long *nr_accounted,
783                 struct zap_details *details)
784 {
785         long zap_work = ZAP_BLOCK_SIZE;
786         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
787         int tlb_start_valid = 0;
788         unsigned long start = start_addr;
789         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
790         int fullmm = (*tlbp)->fullmm;
791
792         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
793                 unsigned long end;
794
795                 start = max(vma->vm_start, start_addr);
796                 if (start >= vma->vm_end)
797                         continue;
798                 end = min(vma->vm_end, end_addr);
799                 if (end <= vma->vm_start)
800                         continue;
801
802                 if (vma->vm_flags & VM_ACCOUNT)
803                         *nr_accounted += (end - start) >> PAGE_SHIFT;
804
805                 while (start != end) {
806                         if (!tlb_start_valid) {
807                                 tlb_start = start;
808                                 tlb_start_valid = 1;
809                         }
810
811                         if (unlikely(is_vm_hugetlb_page(vma))) {
812                                 unmap_hugepage_range(vma, start, end);
813                                 zap_work -= (end - start) /
814                                                 (HPAGE_SIZE / PAGE_SIZE);
815                                 start = end;
816                         } else
817                                 start = unmap_page_range(*tlbp, vma,
818                                                 start, end, &zap_work, details);
819
820                         if (zap_work > 0) {
821                                 BUG_ON(start != end);
822                                 break;
823                         }
824
825                         tlb_finish_mmu(*tlbp, tlb_start, start);
826
827                         if (need_resched() ||
828                                 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
829                                 if (i_mmap_lock) {
830                                         *tlbp = NULL;
831                                         goto out;
832                                 }
833                                 cond_resched();
834                         }
835
836                         *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
837                         tlb_start_valid = 0;
838                         zap_work = ZAP_BLOCK_SIZE;
839                 }
840         }
841 out:
842         return start;   /* which is now the end (or restart) address */
843 }
844
845 /**
846  * zap_page_range - remove user pages in a given range
847  * @vma: vm_area_struct holding the applicable pages
848  * @address: starting address of pages to zap
849  * @size: number of bytes to zap
850  * @details: details of nonlinear truncation or shared cache invalidation
851  */
852 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
853                 unsigned long size, struct zap_details *details)
854 {
855         struct mm_struct *mm = vma->vm_mm;
856         struct mmu_gather *tlb;
857         unsigned long end = address + size;
858         unsigned long nr_accounted = 0;
859
860         lru_add_drain();
861         tlb = tlb_gather_mmu(mm, 0);
862         update_hiwater_rss(mm);
863         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
864         if (tlb)
865                 tlb_finish_mmu(tlb, address, end);
866         return end;
867 }
868
869 /*
870  * Do a quick page-table lookup for a single page.
871  */
872 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
873                         unsigned int flags)
874 {
875         pgd_t *pgd;
876         pud_t *pud;
877         pmd_t *pmd;
878         pte_t *ptep, pte;
879         spinlock_t *ptl;
880         struct page *page;
881         struct mm_struct *mm = vma->vm_mm;
882
883         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
884         if (!IS_ERR(page)) {
885                 BUG_ON(flags & FOLL_GET);
886                 goto out;
887         }
888
889         page = NULL;
890         pgd = pgd_offset(mm, address);
891         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
892                 goto no_page_table;
893
894         pud = pud_offset(pgd, address);
895         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
896                 goto no_page_table;
897         
898         pmd = pmd_offset(pud, address);
899         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
900                 goto no_page_table;
901
902         if (pmd_huge(*pmd)) {
903                 BUG_ON(flags & FOLL_GET);
904                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
905                 goto out;
906         }
907
908         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
909         if (!ptep)
910                 goto out;
911
912         pte = *ptep;
913         if (!pte_present(pte))
914                 goto unlock;
915         if ((flags & FOLL_WRITE) && !pte_write(pte))
916                 goto unlock;
917         page = vm_normal_page(vma, address, pte);
918         if (unlikely(!page))
919                 goto unlock;
920
921         if (flags & FOLL_GET)
922                 get_page(page);
923         if (flags & FOLL_TOUCH) {
924                 if ((flags & FOLL_WRITE) &&
925                     !pte_dirty(pte) && !PageDirty(page))
926                         set_page_dirty(page);
927                 mark_page_accessed(page);
928         }
929 unlock:
930         pte_unmap_unlock(ptep, ptl);
931 out:
932         return page;
933
934 no_page_table:
935         /*
936          * When core dumping an enormous anonymous area that nobody
937          * has touched so far, we don't want to allocate page tables.
938          */
939         if (flags & FOLL_ANON) {
940                 page = ZERO_PAGE(address);
941                 if (flags & FOLL_GET)
942                         get_page(page);
943                 BUG_ON(flags & FOLL_WRITE);
944         }
945         return page;
946 }
947
948 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
949                 unsigned long start, int len, int write, int force,
950                 struct page **pages, struct vm_area_struct **vmas)
951 {
952         int i;
953         unsigned int vm_flags;
954
955         /* 
956          * Require read or write permissions.
957          * If 'force' is set, we only require the "MAY" flags.
958          */
959         vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
960         vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
961         i = 0;
962
963         do {
964                 struct vm_area_struct *vma;
965                 unsigned int foll_flags;
966
967                 vma = find_extend_vma(mm, start);
968                 if (!vma && in_gate_area(tsk, start)) {
969                         unsigned long pg = start & PAGE_MASK;
970                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
971                         pgd_t *pgd;
972                         pud_t *pud;
973                         pmd_t *pmd;
974                         pte_t *pte;
975                         if (write) /* user gate pages are read-only */
976                                 return i ? : -EFAULT;
977                         if (pg > TASK_SIZE)
978                                 pgd = pgd_offset_k(pg);
979                         else
980                                 pgd = pgd_offset_gate(mm, pg);
981                         BUG_ON(pgd_none(*pgd));
982                         pud = pud_offset(pgd, pg);
983                         BUG_ON(pud_none(*pud));
984                         pmd = pmd_offset(pud, pg);
985                         if (pmd_none(*pmd))
986                                 return i ? : -EFAULT;
987                         pte = pte_offset_map(pmd, pg);
988                         if (pte_none(*pte)) {
989                                 pte_unmap(pte);
990                                 return i ? : -EFAULT;
991                         }
992                         if (pages) {
993                                 struct page *page = vm_normal_page(gate_vma, start, *pte);
994                                 pages[i] = page;
995                                 if (page)
996                                         get_page(page);
997                         }
998                         pte_unmap(pte);
999                         if (vmas)
1000                                 vmas[i] = gate_vma;
1001                         i++;
1002                         start += PAGE_SIZE;
1003                         len--;
1004                         continue;
1005                 }
1006
1007                 if (!vma || (vma->vm_flags & VM_IO)
1008                                 || !(vm_flags & vma->vm_flags))
1009                         return i ? : -EFAULT;
1010
1011                 if (is_vm_hugetlb_page(vma)) {
1012                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1013                                                 &start, &len, i);
1014                         continue;
1015                 }
1016
1017                 foll_flags = FOLL_TOUCH;
1018                 if (pages)
1019                         foll_flags |= FOLL_GET;
1020                 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1021                     (!vma->vm_ops || !vma->vm_ops->nopage))
1022                         foll_flags |= FOLL_ANON;
1023
1024                 do {
1025                         struct page *page;
1026
1027                         if (write)
1028                                 foll_flags |= FOLL_WRITE;
1029
1030                         cond_resched();
1031                         while (!(page = follow_page(vma, start, foll_flags))) {
1032                                 int ret;
1033                                 ret = __handle_mm_fault(mm, vma, start,
1034                                                 foll_flags & FOLL_WRITE);
1035                                 /*
1036                                  * The VM_FAULT_WRITE bit tells us that do_wp_page has
1037                                  * broken COW when necessary, even if maybe_mkwrite
1038                                  * decided not to set pte_write. We can thus safely do
1039                                  * subsequent page lookups as if they were reads.
1040                                  */
1041                                 if (ret & VM_FAULT_WRITE)
1042                                         foll_flags &= ~FOLL_WRITE;
1043                                 
1044                                 switch (ret & ~VM_FAULT_WRITE) {
1045                                 case VM_FAULT_MINOR:
1046                                         tsk->min_flt++;
1047                                         break;
1048                                 case VM_FAULT_MAJOR:
1049                                         tsk->maj_flt++;
1050                                         break;
1051                                 case VM_FAULT_SIGBUS:
1052                                         return i ? i : -EFAULT;
1053                                 case VM_FAULT_OOM:
1054                                         return i ? i : -ENOMEM;
1055                                 default:
1056                                         BUG();
1057                                 }
1058                         }
1059                         if (pages) {
1060                                 pages[i] = page;
1061                                 flush_dcache_page(page);
1062                         }
1063                         if (vmas)
1064                                 vmas[i] = vma;
1065                         i++;
1066                         start += PAGE_SIZE;
1067                         len--;
1068                 } while (len && start < vma->vm_end);
1069         } while (len);
1070         return i;
1071 }
1072 EXPORT_SYMBOL(get_user_pages);
1073
1074 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1075                         unsigned long addr, unsigned long end, pgprot_t prot)
1076 {
1077         pte_t *pte;
1078         spinlock_t *ptl;
1079
1080         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1081         if (!pte)
1082                 return -ENOMEM;
1083         do {
1084                 struct page *page = ZERO_PAGE(addr);
1085                 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1086                 page_cache_get(page);
1087                 page_add_file_rmap(page);
1088                 inc_mm_counter(mm, file_rss);
1089                 BUG_ON(!pte_none(*pte));
1090                 set_pte_at(mm, addr, pte, zero_pte);
1091         } while (pte++, addr += PAGE_SIZE, addr != end);
1092         pte_unmap_unlock(pte - 1, ptl);
1093         return 0;
1094 }
1095
1096 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1097                         unsigned long addr, unsigned long end, pgprot_t prot)
1098 {
1099         pmd_t *pmd;
1100         unsigned long next;
1101
1102         pmd = pmd_alloc(mm, pud, addr);
1103         if (!pmd)
1104                 return -ENOMEM;
1105         do {
1106                 next = pmd_addr_end(addr, end);
1107                 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1108                         return -ENOMEM;
1109         } while (pmd++, addr = next, addr != end);
1110         return 0;
1111 }
1112
1113 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1114                         unsigned long addr, unsigned long end, pgprot_t prot)
1115 {
1116         pud_t *pud;
1117         unsigned long next;
1118
1119         pud = pud_alloc(mm, pgd, addr);
1120         if (!pud)
1121                 return -ENOMEM;
1122         do {
1123                 next = pud_addr_end(addr, end);
1124                 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1125                         return -ENOMEM;
1126         } while (pud++, addr = next, addr != end);
1127         return 0;
1128 }
1129
1130 int zeromap_page_range(struct vm_area_struct *vma,
1131                         unsigned long addr, unsigned long size, pgprot_t prot)
1132 {
1133         pgd_t *pgd;
1134         unsigned long next;
1135         unsigned long end = addr + size;
1136         struct mm_struct *mm = vma->vm_mm;
1137         int err;
1138
1139         BUG_ON(addr >= end);
1140         pgd = pgd_offset(mm, addr);
1141         flush_cache_range(vma, addr, end);
1142         do {
1143                 next = pgd_addr_end(addr, end);
1144                 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1145                 if (err)
1146                         break;
1147         } while (pgd++, addr = next, addr != end);
1148         return err;
1149 }
1150
1151 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1152 {
1153         pgd_t * pgd = pgd_offset(mm, addr);
1154         pud_t * pud = pud_alloc(mm, pgd, addr);
1155         if (pud) {
1156                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1157                 if (pmd)
1158                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1159         }
1160         return NULL;
1161 }
1162
1163 /*
1164  * This is the old fallback for page remapping.
1165  *
1166  * For historical reasons, it only allows reserved pages. Only
1167  * old drivers should use this, and they needed to mark their
1168  * pages reserved for the old functions anyway.
1169  */
1170 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1171 {
1172         int retval;
1173         pte_t *pte;
1174         spinlock_t *ptl;  
1175
1176         retval = -EINVAL;
1177         if (PageAnon(page))
1178                 goto out;
1179         retval = -ENOMEM;
1180         flush_dcache_page(page);
1181         pte = get_locked_pte(mm, addr, &ptl);
1182         if (!pte)
1183                 goto out;
1184         retval = -EBUSY;
1185         if (!pte_none(*pte))
1186                 goto out_unlock;
1187
1188         /* Ok, finally just insert the thing.. */
1189         get_page(page);
1190         inc_mm_counter(mm, file_rss);
1191         page_add_file_rmap(page);
1192         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1193
1194         retval = 0;
1195 out_unlock:
1196         pte_unmap_unlock(pte, ptl);
1197 out:
1198         return retval;
1199 }
1200
1201 /*
1202  * This allows drivers to insert individual pages they've allocated
1203  * into a user vma.
1204  *
1205  * The page has to be a nice clean _individual_ kernel allocation.
1206  * If you allocate a compound page, you need to have marked it as
1207  * such (__GFP_COMP), or manually just split the page up yourself
1208  * (which is mainly an issue of doing "set_page_count(page, 1)" for
1209  * each sub-page, and then freeing them one by one when you free
1210  * them rather than freeing it as a compound page).
1211  *
1212  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1213  * took an arbitrary page protection parameter. This doesn't allow
1214  * that. Your vma protection will have to be set up correctly, which
1215  * means that if you want a shared writable mapping, you'd better
1216  * ask for a shared writable mapping!
1217  *
1218  * The page does not need to be reserved.
1219  */
1220 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1221 {
1222         if (addr < vma->vm_start || addr >= vma->vm_end)
1223                 return -EFAULT;
1224         if (!page_count(page))
1225                 return -EINVAL;
1226         return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1227 }
1228 EXPORT_SYMBOL(vm_insert_page);
1229
1230 /*
1231  * Somebody does a pfn remapping that doesn't actually work as a vma.
1232  *
1233  * Do it as individual pages instead, and warn about it. It's bad form,
1234  * and very inefficient.
1235  */
1236 static int incomplete_pfn_remap(struct vm_area_struct *vma,
1237                 unsigned long start, unsigned long end,
1238                 unsigned long pfn, pgprot_t prot)
1239 {
1240         static int warn = 10;
1241         struct page *page;
1242         int retval;
1243
1244         if (!(vma->vm_flags & VM_INCOMPLETE)) {
1245                 if (warn) {
1246                         warn--;
1247                         printk("%s does an incomplete pfn remapping", current->comm);
1248                         dump_stack();
1249                 }
1250         }
1251         vma->vm_flags |= VM_INCOMPLETE | VM_IO | VM_RESERVED;
1252
1253         if (start < vma->vm_start || end > vma->vm_end)
1254                 return -EINVAL;
1255
1256         if (!pfn_valid(pfn))
1257                 return -EINVAL;
1258
1259         page = pfn_to_page(pfn);
1260         if (!PageReserved(page))
1261                 return -EINVAL;
1262
1263         retval = 0;
1264         while (start < end) {
1265                 retval = insert_page(vma->vm_mm, start, page, prot);
1266                 if (retval < 0)
1267                         break;
1268                 start += PAGE_SIZE;
1269                 page++;
1270         }
1271         return retval;
1272 }
1273
1274 /*
1275  * maps a range of physical memory into the requested pages. the old
1276  * mappings are removed. any references to nonexistent pages results
1277  * in null mappings (currently treated as "copy-on-access")
1278  */
1279 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1280                         unsigned long addr, unsigned long end,
1281                         unsigned long pfn, pgprot_t prot)
1282 {
1283         pte_t *pte;
1284         spinlock_t *ptl;
1285
1286         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1287         if (!pte)
1288                 return -ENOMEM;
1289         do {
1290                 BUG_ON(!pte_none(*pte));
1291                 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1292                 pfn++;
1293         } while (pte++, addr += PAGE_SIZE, addr != end);
1294         pte_unmap_unlock(pte - 1, ptl);
1295         return 0;
1296 }
1297
1298 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1299                         unsigned long addr, unsigned long end,
1300                         unsigned long pfn, pgprot_t prot)
1301 {
1302         pmd_t *pmd;
1303         unsigned long next;
1304
1305         pfn -= addr >> PAGE_SHIFT;
1306         pmd = pmd_alloc(mm, pud, addr);
1307         if (!pmd)
1308                 return -ENOMEM;
1309         do {
1310                 next = pmd_addr_end(addr, end);
1311                 if (remap_pte_range(mm, pmd, addr, next,
1312                                 pfn + (addr >> PAGE_SHIFT), prot))
1313                         return -ENOMEM;
1314         } while (pmd++, addr = next, addr != end);
1315         return 0;
1316 }
1317
1318 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1319                         unsigned long addr, unsigned long end,
1320                         unsigned long pfn, pgprot_t prot)
1321 {
1322         pud_t *pud;
1323         unsigned long next;
1324
1325         pfn -= addr >> PAGE_SHIFT;
1326         pud = pud_alloc(mm, pgd, addr);
1327         if (!pud)
1328                 return -ENOMEM;
1329         do {
1330                 next = pud_addr_end(addr, end);
1331                 if (remap_pmd_range(mm, pud, addr, next,
1332                                 pfn + (addr >> PAGE_SHIFT), prot))
1333                         return -ENOMEM;
1334         } while (pud++, addr = next, addr != end);
1335         return 0;
1336 }
1337
1338 /*  Note: this is only safe if the mm semaphore is held when called. */
1339 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1340                     unsigned long pfn, unsigned long size, pgprot_t prot)
1341 {
1342         pgd_t *pgd;
1343         unsigned long next;
1344         unsigned long end = addr + PAGE_ALIGN(size);
1345         struct mm_struct *mm = vma->vm_mm;
1346         int err;
1347
1348         /*
1349          * Physically remapped pages are special. Tell the
1350          * rest of the world about it:
1351          *   VM_IO tells people not to look at these pages
1352          *      (accesses can have side effects).
1353          *   VM_RESERVED is specified all over the place, because
1354          *      in 2.4 it kept swapout's vma scan off this vma; but
1355          *      in 2.6 the LRU scan won't even find its pages, so this
1356          *      flag means no more than count its pages in reserved_vm,
1357          *      and omit it from core dump, even when VM_IO turned off.
1358          *   VM_PFNMAP tells the core MM that the base pages are just
1359          *      raw PFN mappings, and do not have a "struct page" associated
1360          *      with them.
1361          *
1362          * There's a horrible special case to handle copy-on-write
1363          * behaviour that some programs depend on. We mark the "original"
1364          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1365          */
1366         if (!(vma->vm_flags & VM_SHARED)) {
1367                 if (addr != vma->vm_start || end != vma->vm_end)
1368                         return incomplete_pfn_remap(vma, addr, end, pfn, prot);
1369                 vma->vm_pgoff = pfn;
1370         }
1371
1372         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1373
1374         BUG_ON(addr >= end);
1375         pfn -= addr >> PAGE_SHIFT;
1376         pgd = pgd_offset(mm, addr);
1377         flush_cache_range(vma, addr, end);
1378         do {
1379                 next = pgd_addr_end(addr, end);
1380                 err = remap_pud_range(mm, pgd, addr, next,
1381                                 pfn + (addr >> PAGE_SHIFT), prot);
1382                 if (err)
1383                         break;
1384         } while (pgd++, addr = next, addr != end);
1385         return err;
1386 }
1387 EXPORT_SYMBOL(remap_pfn_range);
1388
1389 /*
1390  * handle_pte_fault chooses page fault handler according to an entry
1391  * which was read non-atomically.  Before making any commitment, on
1392  * those architectures or configurations (e.g. i386 with PAE) which
1393  * might give a mix of unmatched parts, do_swap_page and do_file_page
1394  * must check under lock before unmapping the pte and proceeding
1395  * (but do_wp_page is only called after already making such a check;
1396  * and do_anonymous_page and do_no_page can safely check later on).
1397  */
1398 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1399                                 pte_t *page_table, pte_t orig_pte)
1400 {
1401         int same = 1;
1402 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1403         if (sizeof(pte_t) > sizeof(unsigned long)) {
1404                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1405                 spin_lock(ptl);
1406                 same = pte_same(*page_table, orig_pte);
1407                 spin_unlock(ptl);
1408         }
1409 #endif
1410         pte_unmap(page_table);
1411         return same;
1412 }
1413
1414 /*
1415  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1416  * servicing faults for write access.  In the normal case, do always want
1417  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1418  * that do not have writing enabled, when used by access_process_vm.
1419  */
1420 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1421 {
1422         if (likely(vma->vm_flags & VM_WRITE))
1423                 pte = pte_mkwrite(pte);
1424         return pte;
1425 }
1426
1427 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va)
1428 {
1429         /*
1430          * If the source page was a PFN mapping, we don't have
1431          * a "struct page" for it. We do a best-effort copy by
1432          * just copying from the original user address. If that
1433          * fails, we just zero-fill it. Live with it.
1434          */
1435         if (unlikely(!src)) {
1436                 void *kaddr = kmap_atomic(dst, KM_USER0);
1437                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1438
1439                 /*
1440                  * This really shouldn't fail, because the page is there
1441                  * in the page tables. But it might just be unreadable,
1442                  * in which case we just give up and fill the result with
1443                  * zeroes.
1444                  */
1445                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1446                         memset(kaddr, 0, PAGE_SIZE);
1447                 kunmap_atomic(kaddr, KM_USER0);
1448                 return;
1449                 
1450         }
1451         copy_user_highpage(dst, src, va);
1452 }
1453
1454 /*
1455  * This routine handles present pages, when users try to write
1456  * to a shared page. It is done by copying the page to a new address
1457  * and decrementing the shared-page counter for the old page.
1458  *
1459  * Note that this routine assumes that the protection checks have been
1460  * done by the caller (the low-level page fault routine in most cases).
1461  * Thus we can safely just mark it writable once we've done any necessary
1462  * COW.
1463  *
1464  * We also mark the page dirty at this point even though the page will
1465  * change only once the write actually happens. This avoids a few races,
1466  * and potentially makes it more efficient.
1467  *
1468  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1469  * but allow concurrent faults), with pte both mapped and locked.
1470  * We return with mmap_sem still held, but pte unmapped and unlocked.
1471  */
1472 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1473                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1474                 spinlock_t *ptl, pte_t orig_pte)
1475 {
1476         struct page *old_page, *new_page;
1477         pte_t entry;
1478         int ret = VM_FAULT_MINOR;
1479
1480         old_page = vm_normal_page(vma, address, orig_pte);
1481         if (!old_page)
1482                 goto gotten;
1483
1484         if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1485                 int reuse = can_share_swap_page(old_page);
1486                 unlock_page(old_page);
1487                 if (reuse) {
1488                         flush_cache_page(vma, address, pte_pfn(orig_pte));
1489                         entry = pte_mkyoung(orig_pte);
1490                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1491                         ptep_set_access_flags(vma, address, page_table, entry, 1);
1492                         update_mmu_cache(vma, address, entry);
1493                         lazy_mmu_prot_update(entry);
1494                         ret |= VM_FAULT_WRITE;
1495                         goto unlock;
1496                 }
1497         }
1498
1499         /*
1500          * Ok, we need to copy. Oh, well..
1501          */
1502         page_cache_get(old_page);
1503 gotten:
1504         pte_unmap_unlock(page_table, ptl);
1505
1506         if (unlikely(anon_vma_prepare(vma)))
1507                 goto oom;
1508         if (old_page == ZERO_PAGE(address)) {
1509                 new_page = alloc_zeroed_user_highpage(vma, address);
1510                 if (!new_page)
1511                         goto oom;
1512         } else {
1513                 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1514                 if (!new_page)
1515                         goto oom;
1516                 cow_user_page(new_page, old_page, address);
1517         }
1518
1519         /*
1520          * Re-check the pte - we dropped the lock
1521          */
1522         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1523         if (likely(pte_same(*page_table, orig_pte))) {
1524                 if (old_page) {
1525                         page_remove_rmap(old_page);
1526                         if (!PageAnon(old_page)) {
1527                                 dec_mm_counter(mm, file_rss);
1528                                 inc_mm_counter(mm, anon_rss);
1529                         }
1530                 } else
1531                         inc_mm_counter(mm, anon_rss);
1532                 flush_cache_page(vma, address, pte_pfn(orig_pte));
1533                 entry = mk_pte(new_page, vma->vm_page_prot);
1534                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1535                 ptep_establish(vma, address, page_table, entry);
1536                 update_mmu_cache(vma, address, entry);
1537                 lazy_mmu_prot_update(entry);
1538                 lru_cache_add_active(new_page);
1539                 page_add_anon_rmap(new_page, vma, address);
1540
1541                 /* Free the old page.. */
1542                 new_page = old_page;
1543                 ret |= VM_FAULT_WRITE;
1544         }
1545         if (new_page)
1546                 page_cache_release(new_page);
1547         if (old_page)
1548                 page_cache_release(old_page);
1549 unlock:
1550         pte_unmap_unlock(page_table, ptl);
1551         return ret;
1552 oom:
1553         if (old_page)
1554                 page_cache_release(old_page);
1555         return VM_FAULT_OOM;
1556 }
1557
1558 /*
1559  * Helper functions for unmap_mapping_range().
1560  *
1561  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1562  *
1563  * We have to restart searching the prio_tree whenever we drop the lock,
1564  * since the iterator is only valid while the lock is held, and anyway
1565  * a later vma might be split and reinserted earlier while lock dropped.
1566  *
1567  * The list of nonlinear vmas could be handled more efficiently, using
1568  * a placeholder, but handle it in the same way until a need is shown.
1569  * It is important to search the prio_tree before nonlinear list: a vma
1570  * may become nonlinear and be shifted from prio_tree to nonlinear list
1571  * while the lock is dropped; but never shifted from list to prio_tree.
1572  *
1573  * In order to make forward progress despite restarting the search,
1574  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1575  * quickly skip it next time around.  Since the prio_tree search only
1576  * shows us those vmas affected by unmapping the range in question, we
1577  * can't efficiently keep all vmas in step with mapping->truncate_count:
1578  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1579  * mapping->truncate_count and vma->vm_truncate_count are protected by
1580  * i_mmap_lock.
1581  *
1582  * In order to make forward progress despite repeatedly restarting some
1583  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1584  * and restart from that address when we reach that vma again.  It might
1585  * have been split or merged, shrunk or extended, but never shifted: so
1586  * restart_addr remains valid so long as it remains in the vma's range.
1587  * unmap_mapping_range forces truncate_count to leap over page-aligned
1588  * values so we can save vma's restart_addr in its truncate_count field.
1589  */
1590 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1591
1592 static void reset_vma_truncate_counts(struct address_space *mapping)
1593 {
1594         struct vm_area_struct *vma;
1595         struct prio_tree_iter iter;
1596
1597         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1598                 vma->vm_truncate_count = 0;
1599         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1600                 vma->vm_truncate_count = 0;
1601 }
1602
1603 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1604                 unsigned long start_addr, unsigned long end_addr,
1605                 struct zap_details *details)
1606 {
1607         unsigned long restart_addr;
1608         int need_break;
1609
1610 again:
1611         restart_addr = vma->vm_truncate_count;
1612         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1613                 start_addr = restart_addr;
1614                 if (start_addr >= end_addr) {
1615                         /* Top of vma has been split off since last time */
1616                         vma->vm_truncate_count = details->truncate_count;
1617                         return 0;
1618                 }
1619         }
1620
1621         restart_addr = zap_page_range(vma, start_addr,
1622                                         end_addr - start_addr, details);
1623         need_break = need_resched() ||
1624                         need_lockbreak(details->i_mmap_lock);
1625
1626         if (restart_addr >= end_addr) {
1627                 /* We have now completed this vma: mark it so */
1628                 vma->vm_truncate_count = details->truncate_count;
1629                 if (!need_break)
1630                         return 0;
1631         } else {
1632                 /* Note restart_addr in vma's truncate_count field */
1633                 vma->vm_truncate_count = restart_addr;
1634                 if (!need_break)
1635                         goto again;
1636         }
1637
1638         spin_unlock(details->i_mmap_lock);
1639         cond_resched();
1640         spin_lock(details->i_mmap_lock);
1641         return -EINTR;
1642 }
1643
1644 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1645                                             struct zap_details *details)
1646 {
1647         struct vm_area_struct *vma;
1648         struct prio_tree_iter iter;
1649         pgoff_t vba, vea, zba, zea;
1650
1651 restart:
1652         vma_prio_tree_foreach(vma, &iter, root,
1653                         details->first_index, details->last_index) {
1654                 /* Skip quickly over those we have already dealt with */
1655                 if (vma->vm_truncate_count == details->truncate_count)
1656                         continue;
1657
1658                 vba = vma->vm_pgoff;
1659                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1660                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1661                 zba = details->first_index;
1662                 if (zba < vba)
1663                         zba = vba;
1664                 zea = details->last_index;
1665                 if (zea > vea)
1666                         zea = vea;
1667
1668                 if (unmap_mapping_range_vma(vma,
1669                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1670                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1671                                 details) < 0)
1672                         goto restart;
1673         }
1674 }
1675
1676 static inline void unmap_mapping_range_list(struct list_head *head,
1677                                             struct zap_details *details)
1678 {
1679         struct vm_area_struct *vma;
1680
1681         /*
1682          * In nonlinear VMAs there is no correspondence between virtual address
1683          * offset and file offset.  So we must perform an exhaustive search
1684          * across *all* the pages in each nonlinear VMA, not just the pages
1685          * whose virtual address lies outside the file truncation point.
1686          */
1687 restart:
1688         list_for_each_entry(vma, head, shared.vm_set.list) {
1689                 /* Skip quickly over those we have already dealt with */
1690                 if (vma->vm_truncate_count == details->truncate_count)
1691                         continue;
1692                 details->nonlinear_vma = vma;
1693                 if (unmap_mapping_range_vma(vma, vma->vm_start,
1694                                         vma->vm_end, details) < 0)
1695                         goto restart;
1696         }
1697 }
1698
1699 /**
1700  * unmap_mapping_range - unmap the portion of all mmaps
1701  * in the specified address_space corresponding to the specified
1702  * page range in the underlying file.
1703  * @mapping: the address space containing mmaps to be unmapped.
1704  * @holebegin: byte in first page to unmap, relative to the start of
1705  * the underlying file.  This will be rounded down to a PAGE_SIZE
1706  * boundary.  Note that this is different from vmtruncate(), which
1707  * must keep the partial page.  In contrast, we must get rid of
1708  * partial pages.
1709  * @holelen: size of prospective hole in bytes.  This will be rounded
1710  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1711  * end of the file.
1712  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1713  * but 0 when invalidating pagecache, don't throw away private data.
1714  */
1715 void unmap_mapping_range(struct address_space *mapping,
1716                 loff_t const holebegin, loff_t const holelen, int even_cows)
1717 {
1718         struct zap_details details;
1719         pgoff_t hba = holebegin >> PAGE_SHIFT;
1720         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1721
1722         /* Check for overflow. */
1723         if (sizeof(holelen) > sizeof(hlen)) {
1724                 long long holeend =
1725                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1726                 if (holeend & ~(long long)ULONG_MAX)
1727                         hlen = ULONG_MAX - hba + 1;
1728         }
1729
1730         details.check_mapping = even_cows? NULL: mapping;
1731         details.nonlinear_vma = NULL;
1732         details.first_index = hba;
1733         details.last_index = hba + hlen - 1;
1734         if (details.last_index < details.first_index)
1735                 details.last_index = ULONG_MAX;
1736         details.i_mmap_lock = &mapping->i_mmap_lock;
1737
1738         spin_lock(&mapping->i_mmap_lock);
1739
1740         /* serialize i_size write against truncate_count write */
1741         smp_wmb();
1742         /* Protect against page faults, and endless unmapping loops */
1743         mapping->truncate_count++;
1744         /*
1745          * For archs where spin_lock has inclusive semantics like ia64
1746          * this smp_mb() will prevent to read pagetable contents
1747          * before the truncate_count increment is visible to
1748          * other cpus.
1749          */
1750         smp_mb();
1751         if (unlikely(is_restart_addr(mapping->truncate_count))) {
1752                 if (mapping->truncate_count == 0)
1753                         reset_vma_truncate_counts(mapping);
1754                 mapping->truncate_count++;
1755         }
1756         details.truncate_count = mapping->truncate_count;
1757
1758         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1759                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1760         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1761                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1762         spin_unlock(&mapping->i_mmap_lock);
1763 }
1764 EXPORT_SYMBOL(unmap_mapping_range);
1765
1766 /*
1767  * Handle all mappings that got truncated by a "truncate()"
1768  * system call.
1769  *
1770  * NOTE! We have to be ready to update the memory sharing
1771  * between the file and the memory map for a potential last
1772  * incomplete page.  Ugly, but necessary.
1773  */
1774 int vmtruncate(struct inode * inode, loff_t offset)
1775 {
1776         struct address_space *mapping = inode->i_mapping;
1777         unsigned long limit;
1778
1779         if (inode->i_size < offset)
1780                 goto do_expand;
1781         /*
1782          * truncation of in-use swapfiles is disallowed - it would cause
1783          * subsequent swapout to scribble on the now-freed blocks.
1784          */
1785         if (IS_SWAPFILE(inode))
1786                 goto out_busy;
1787         i_size_write(inode, offset);
1788         unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1789         truncate_inode_pages(mapping, offset);
1790         goto out_truncate;
1791
1792 do_expand:
1793         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1794         if (limit != RLIM_INFINITY && offset > limit)
1795                 goto out_sig;
1796         if (offset > inode->i_sb->s_maxbytes)
1797                 goto out_big;
1798         i_size_write(inode, offset);
1799
1800 out_truncate:
1801         if (inode->i_op && inode->i_op->truncate)
1802                 inode->i_op->truncate(inode);
1803         return 0;
1804 out_sig:
1805         send_sig(SIGXFSZ, current, 0);
1806 out_big:
1807         return -EFBIG;
1808 out_busy:
1809         return -ETXTBSY;
1810 }
1811
1812 EXPORT_SYMBOL(vmtruncate);
1813
1814 /* 
1815  * Primitive swap readahead code. We simply read an aligned block of
1816  * (1 << page_cluster) entries in the swap area. This method is chosen
1817  * because it doesn't cost us any seek time.  We also make sure to queue
1818  * the 'original' request together with the readahead ones...  
1819  *
1820  * This has been extended to use the NUMA policies from the mm triggering
1821  * the readahead.
1822  *
1823  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1824  */
1825 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1826 {
1827 #ifdef CONFIG_NUMA
1828         struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1829 #endif
1830         int i, num;
1831         struct page *new_page;
1832         unsigned long offset;
1833
1834         /*
1835          * Get the number of handles we should do readahead io to.
1836          */
1837         num = valid_swaphandles(entry, &offset);
1838         for (i = 0; i < num; offset++, i++) {
1839                 /* Ok, do the async read-ahead now */
1840                 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1841                                                            offset), vma, addr);
1842                 if (!new_page)
1843                         break;
1844                 page_cache_release(new_page);
1845 #ifdef CONFIG_NUMA
1846                 /*
1847                  * Find the next applicable VMA for the NUMA policy.
1848                  */
1849                 addr += PAGE_SIZE;
1850                 if (addr == 0)
1851                         vma = NULL;
1852                 if (vma) {
1853                         if (addr >= vma->vm_end) {
1854                                 vma = next_vma;
1855                                 next_vma = vma ? vma->vm_next : NULL;
1856                         }
1857                         if (vma && addr < vma->vm_start)
1858                                 vma = NULL;
1859                 } else {
1860                         if (next_vma && addr >= next_vma->vm_start) {
1861                                 vma = next_vma;
1862                                 next_vma = vma->vm_next;
1863                         }
1864                 }
1865 #endif
1866         }
1867         lru_add_drain();        /* Push any new pages onto the LRU now */
1868 }
1869
1870 /*
1871  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1872  * but allow concurrent faults), and pte mapped but not yet locked.
1873  * We return with mmap_sem still held, but pte unmapped and unlocked.
1874  */
1875 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1876                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1877                 int write_access, pte_t orig_pte)
1878 {
1879         spinlock_t *ptl;
1880         struct page *page;
1881         swp_entry_t entry;
1882         pte_t pte;
1883         int ret = VM_FAULT_MINOR;
1884
1885         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
1886                 goto out;
1887
1888         entry = pte_to_swp_entry(orig_pte);
1889         page = lookup_swap_cache(entry);
1890         if (!page) {
1891                 swapin_readahead(entry, address, vma);
1892                 page = read_swap_cache_async(entry, vma, address);
1893                 if (!page) {
1894                         /*
1895                          * Back out if somebody else faulted in this pte
1896                          * while we released the pte lock.
1897                          */
1898                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1899                         if (likely(pte_same(*page_table, orig_pte)))
1900                                 ret = VM_FAULT_OOM;
1901                         goto unlock;
1902                 }
1903
1904                 /* Had to read the page from swap area: Major fault */
1905                 ret = VM_FAULT_MAJOR;
1906                 inc_page_state(pgmajfault);
1907                 grab_swap_token();
1908         }
1909
1910         mark_page_accessed(page);
1911         lock_page(page);
1912
1913         /*
1914          * Back out if somebody else already faulted in this pte.
1915          */
1916         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1917         if (unlikely(!pte_same(*page_table, orig_pte)))
1918                 goto out_nomap;
1919
1920         if (unlikely(!PageUptodate(page))) {
1921                 ret = VM_FAULT_SIGBUS;
1922                 goto out_nomap;
1923         }
1924
1925         /* The page isn't present yet, go ahead with the fault. */
1926
1927         inc_mm_counter(mm, anon_rss);
1928         pte = mk_pte(page, vma->vm_page_prot);
1929         if (write_access && can_share_swap_page(page)) {
1930                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1931                 write_access = 0;
1932         }
1933
1934         flush_icache_page(vma, page);
1935         set_pte_at(mm, address, page_table, pte);
1936         page_add_anon_rmap(page, vma, address);
1937
1938         swap_free(entry);
1939         if (vm_swap_full())
1940                 remove_exclusive_swap_page(page);
1941         unlock_page(page);
1942
1943         if (write_access) {
1944                 if (do_wp_page(mm, vma, address,
1945                                 page_table, pmd, ptl, pte) == VM_FAULT_OOM)
1946                         ret = VM_FAULT_OOM;
1947                 goto out;
1948         }
1949
1950         /* No need to invalidate - it was non-present before */
1951         update_mmu_cache(vma, address, pte);
1952         lazy_mmu_prot_update(pte);
1953 unlock:
1954         pte_unmap_unlock(page_table, ptl);
1955 out:
1956         return ret;
1957 out_nomap:
1958         pte_unmap_unlock(page_table, ptl);
1959         unlock_page(page);
1960         page_cache_release(page);
1961         return ret;
1962 }
1963
1964 /*
1965  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1966  * but allow concurrent faults), and pte mapped but not yet locked.
1967  * We return with mmap_sem still held, but pte unmapped and unlocked.
1968  */
1969 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1970                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1971                 int write_access)
1972 {
1973         struct page *page;
1974         spinlock_t *ptl;
1975         pte_t entry;
1976
1977         if (write_access) {
1978                 /* Allocate our own private page. */
1979                 pte_unmap(page_table);
1980
1981                 if (unlikely(anon_vma_prepare(vma)))
1982                         goto oom;
1983                 page = alloc_zeroed_user_highpage(vma, address);
1984                 if (!page)
1985                         goto oom;
1986
1987                 entry = mk_pte(page, vma->vm_page_prot);
1988                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1989
1990                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1991                 if (!pte_none(*page_table))
1992                         goto release;
1993                 inc_mm_counter(mm, anon_rss);
1994                 lru_cache_add_active(page);
1995                 SetPageReferenced(page);
1996                 page_add_anon_rmap(page, vma, address);
1997         } else {
1998                 /* Map the ZERO_PAGE - vm_page_prot is readonly */
1999                 page = ZERO_PAGE(address);
2000                 page_cache_get(page);
2001                 entry = mk_pte(page, vma->vm_page_prot);
2002
2003                 ptl = pte_lockptr(mm, pmd);
2004                 spin_lock(ptl);
2005                 if (!pte_none(*page_table))
2006                         goto release;
2007                 inc_mm_counter(mm, file_rss);
2008                 page_add_file_rmap(page);
2009         }
2010
2011         set_pte_at(mm, address, page_table, entry);
2012
2013         /* No need to invalidate - it was non-present before */
2014         update_mmu_cache(vma, address, entry);
2015         lazy_mmu_prot_update(entry);
2016 unlock:
2017         pte_unmap_unlock(page_table, ptl);
2018         return VM_FAULT_MINOR;
2019 release:
2020         page_cache_release(page);
2021         goto unlock;
2022 oom:
2023         return VM_FAULT_OOM;
2024 }
2025
2026 /*
2027  * do_no_page() tries to create a new page mapping. It aggressively
2028  * tries to share with existing pages, but makes a separate copy if
2029  * the "write_access" parameter is true in order to avoid the next
2030  * page fault.
2031  *
2032  * As this is called only for pages that do not currently exist, we
2033  * do not need to flush old virtual caches or the TLB.
2034  *
2035  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2036  * but allow concurrent faults), and pte mapped but not yet locked.
2037  * We return with mmap_sem still held, but pte unmapped and unlocked.
2038  */
2039 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2040                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2041                 int write_access)
2042 {
2043         spinlock_t *ptl;
2044         struct page *new_page;
2045         struct address_space *mapping = NULL;
2046         pte_t entry;
2047         unsigned int sequence = 0;
2048         int ret = VM_FAULT_MINOR;
2049         int anon = 0;
2050
2051         pte_unmap(page_table);
2052         BUG_ON(vma->vm_flags & VM_PFNMAP);
2053
2054         if (vma->vm_file) {
2055                 mapping = vma->vm_file->f_mapping;
2056                 sequence = mapping->truncate_count;
2057                 smp_rmb(); /* serializes i_size against truncate_count */
2058         }
2059 retry:
2060         new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2061         /*
2062          * No smp_rmb is needed here as long as there's a full
2063          * spin_lock/unlock sequence inside the ->nopage callback
2064          * (for the pagecache lookup) that acts as an implicit
2065          * smp_mb() and prevents the i_size read to happen
2066          * after the next truncate_count read.
2067          */
2068
2069         /* no page was available -- either SIGBUS or OOM */
2070         if (new_page == NOPAGE_SIGBUS)
2071                 return VM_FAULT_SIGBUS;
2072         if (new_page == NOPAGE_OOM)
2073                 return VM_FAULT_OOM;
2074
2075         /*
2076          * Should we do an early C-O-W break?
2077          */
2078         if (write_access && !(vma->vm_flags & VM_SHARED)) {
2079                 struct page *page;
2080
2081                 if (unlikely(anon_vma_prepare(vma)))
2082                         goto oom;
2083                 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
2084                 if (!page)
2085                         goto oom;
2086                 copy_user_highpage(page, new_page, address);
2087                 page_cache_release(new_page);
2088                 new_page = page;
2089                 anon = 1;
2090         }
2091
2092         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2093         /*
2094          * For a file-backed vma, someone could have truncated or otherwise
2095          * invalidated this page.  If unmap_mapping_range got called,
2096          * retry getting the page.
2097          */
2098         if (mapping && unlikely(sequence != mapping->truncate_count)) {
2099                 pte_unmap_unlock(page_table, ptl);
2100                 page_cache_release(new_page);
2101                 cond_resched();
2102                 sequence = mapping->truncate_count;
2103                 smp_rmb();
2104                 goto retry;
2105         }
2106
2107         /*
2108          * This silly early PAGE_DIRTY setting removes a race
2109          * due to the bad i386 page protection. But it's valid
2110          * for other architectures too.
2111          *
2112          * Note that if write_access is true, we either now have
2113          * an exclusive copy of the page, or this is a shared mapping,
2114          * so we can make it writable and dirty to avoid having to
2115          * handle that later.
2116          */
2117         /* Only go through if we didn't race with anybody else... */
2118         if (pte_none(*page_table)) {
2119                 flush_icache_page(vma, new_page);
2120                 entry = mk_pte(new_page, vma->vm_page_prot);
2121                 if (write_access)
2122                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2123                 set_pte_at(mm, address, page_table, entry);
2124                 if (anon) {
2125                         inc_mm_counter(mm, anon_rss);
2126                         lru_cache_add_active(new_page);
2127                         page_add_anon_rmap(new_page, vma, address);
2128                 } else {
2129                         inc_mm_counter(mm, file_rss);
2130                         page_add_file_rmap(new_page);
2131                 }
2132         } else {
2133                 /* One of our sibling threads was faster, back out. */
2134                 page_cache_release(new_page);
2135                 goto unlock;
2136         }
2137
2138         /* no need to invalidate: a not-present page shouldn't be cached */
2139         update_mmu_cache(vma, address, entry);
2140         lazy_mmu_prot_update(entry);
2141 unlock:
2142         pte_unmap_unlock(page_table, ptl);
2143         return ret;
2144 oom:
2145         page_cache_release(new_page);
2146         return VM_FAULT_OOM;
2147 }
2148
2149 /*
2150  * Fault of a previously existing named mapping. Repopulate the pte
2151  * from the encoded file_pte if possible. This enables swappable
2152  * nonlinear vmas.
2153  *
2154  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2155  * but allow concurrent faults), and pte mapped but not yet locked.
2156  * We return with mmap_sem still held, but pte unmapped and unlocked.
2157  */
2158 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
2159                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2160                 int write_access, pte_t orig_pte)
2161 {
2162         pgoff_t pgoff;
2163         int err;
2164
2165         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2166                 return VM_FAULT_MINOR;
2167
2168         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2169                 /*
2170                  * Page table corrupted: show pte and kill process.
2171                  */
2172                 print_bad_pte(vma, orig_pte, address);
2173                 return VM_FAULT_OOM;
2174         }
2175         /* We can then assume vm->vm_ops && vma->vm_ops->populate */
2176
2177         pgoff = pte_to_pgoff(orig_pte);
2178         err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
2179                                         vma->vm_page_prot, pgoff, 0);
2180         if (err == -ENOMEM)
2181                 return VM_FAULT_OOM;
2182         if (err)
2183                 return VM_FAULT_SIGBUS;
2184         return VM_FAULT_MAJOR;
2185 }
2186
2187 /*
2188  * These routines also need to handle stuff like marking pages dirty
2189  * and/or accessed for architectures that don't do it in hardware (most
2190  * RISC architectures).  The early dirtying is also good on the i386.
2191  *
2192  * There is also a hook called "update_mmu_cache()" that architectures
2193  * with external mmu caches can use to update those (ie the Sparc or
2194  * PowerPC hashed page tables that act as extended TLBs).
2195  *
2196  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2197  * but allow concurrent faults), and pte mapped but not yet locked.
2198  * We return with mmap_sem still held, but pte unmapped and unlocked.
2199  */
2200 static inline int handle_pte_fault(struct mm_struct *mm,
2201                 struct vm_area_struct *vma, unsigned long address,
2202                 pte_t *pte, pmd_t *pmd, int write_access)
2203 {
2204         pte_t entry;
2205         pte_t old_entry;
2206         spinlock_t *ptl;
2207
2208         old_entry = entry = *pte;
2209         if (!pte_present(entry)) {
2210                 if (pte_none(entry)) {
2211                         if (!vma->vm_ops || !vma->vm_ops->nopage)
2212                                 return do_anonymous_page(mm, vma, address,
2213                                         pte, pmd, write_access);
2214                         return do_no_page(mm, vma, address,
2215                                         pte, pmd, write_access);
2216                 }
2217                 if (pte_file(entry))
2218                         return do_file_page(mm, vma, address,
2219                                         pte, pmd, write_access, entry);
2220                 return do_swap_page(mm, vma, address,
2221                                         pte, pmd, write_access, entry);
2222         }
2223
2224         ptl = pte_lockptr(mm, pmd);
2225         spin_lock(ptl);
2226         if (unlikely(!pte_same(*pte, entry)))
2227                 goto unlock;
2228         if (write_access) {
2229                 if (!pte_write(entry))
2230                         return do_wp_page(mm, vma, address,
2231                                         pte, pmd, ptl, entry);
2232                 entry = pte_mkdirty(entry);
2233         }
2234         entry = pte_mkyoung(entry);
2235         if (!pte_same(old_entry, entry)) {
2236                 ptep_set_access_flags(vma, address, pte, entry, write_access);
2237                 update_mmu_cache(vma, address, entry);
2238                 lazy_mmu_prot_update(entry);
2239         } else {
2240                 /*
2241                  * This is needed only for protection faults but the arch code
2242                  * is not yet telling us if this is a protection fault or not.
2243                  * This still avoids useless tlb flushes for .text page faults
2244                  * with threads.
2245                  */
2246                 if (write_access)
2247                         flush_tlb_page(vma, address);
2248         }
2249 unlock:
2250         pte_unmap_unlock(pte, ptl);
2251         return VM_FAULT_MINOR;
2252 }
2253
2254 /*
2255  * By the time we get here, we already hold the mm semaphore
2256  */
2257 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2258                 unsigned long address, int write_access)
2259 {
2260         pgd_t *pgd;
2261         pud_t *pud;
2262         pmd_t *pmd;
2263         pte_t *pte;
2264
2265         __set_current_state(TASK_RUNNING);
2266
2267         inc_page_state(pgfault);
2268
2269         if (unlikely(is_vm_hugetlb_page(vma)))
2270                 return hugetlb_fault(mm, vma, address, write_access);
2271
2272         pgd = pgd_offset(mm, address);
2273         pud = pud_alloc(mm, pgd, address);
2274         if (!pud)
2275                 return VM_FAULT_OOM;
2276         pmd = pmd_alloc(mm, pud, address);
2277         if (!pmd)
2278                 return VM_FAULT_OOM;
2279         pte = pte_alloc_map(mm, pmd, address);
2280         if (!pte)
2281                 return VM_FAULT_OOM;
2282
2283         return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2284 }
2285
2286 #ifndef __PAGETABLE_PUD_FOLDED
2287 /*
2288  * Allocate page upper directory.
2289  * We've already handled the fast-path in-line.
2290  */
2291 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2292 {
2293         pud_t *new = pud_alloc_one(mm, address);
2294         if (!new)
2295                 return -ENOMEM;
2296
2297         spin_lock(&mm->page_table_lock);
2298         if (pgd_present(*pgd))          /* Another has populated it */
2299                 pud_free(new);
2300         else
2301                 pgd_populate(mm, pgd, new);
2302         spin_unlock(&mm->page_table_lock);
2303         return 0;
2304 }
2305 #else
2306 /* Workaround for gcc 2.96 */
2307 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2308 {
2309         return 0;
2310 }
2311 #endif /* __PAGETABLE_PUD_FOLDED */
2312
2313 #ifndef __PAGETABLE_PMD_FOLDED
2314 /*
2315  * Allocate page middle directory.
2316  * We've already handled the fast-path in-line.
2317  */
2318 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2319 {
2320         pmd_t *new = pmd_alloc_one(mm, address);
2321         if (!new)
2322                 return -ENOMEM;
2323
2324         spin_lock(&mm->page_table_lock);
2325 #ifndef __ARCH_HAS_4LEVEL_HACK
2326         if (pud_present(*pud))          /* Another has populated it */
2327                 pmd_free(new);
2328         else
2329                 pud_populate(mm, pud, new);
2330 #else
2331         if (pgd_present(*pud))          /* Another has populated it */
2332                 pmd_free(new);
2333         else
2334                 pgd_populate(mm, pud, new);
2335 #endif /* __ARCH_HAS_4LEVEL_HACK */
2336         spin_unlock(&mm->page_table_lock);
2337         return 0;
2338 }
2339 #else
2340 /* Workaround for gcc 2.96 */
2341 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2342 {
2343         return 0;
2344 }
2345 #endif /* __PAGETABLE_PMD_FOLDED */
2346
2347 int make_pages_present(unsigned long addr, unsigned long end)
2348 {
2349         int ret, len, write;
2350         struct vm_area_struct * vma;
2351
2352         vma = find_vma(current->mm, addr);
2353         if (!vma)
2354                 return -1;
2355         write = (vma->vm_flags & VM_WRITE) != 0;
2356         if (addr >= end)
2357                 BUG();
2358         if (end > vma->vm_end)
2359                 BUG();
2360         len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2361         ret = get_user_pages(current, current->mm, addr,
2362                         len, write, 0, NULL, NULL);
2363         if (ret < 0)
2364                 return ret;
2365         return ret == len ? 0 : -1;
2366 }
2367
2368 /* 
2369  * Map a vmalloc()-space virtual address to the physical page.
2370  */
2371 struct page * vmalloc_to_page(void * vmalloc_addr)
2372 {
2373         unsigned long addr = (unsigned long) vmalloc_addr;
2374         struct page *page = NULL;
2375         pgd_t *pgd = pgd_offset_k(addr);
2376         pud_t *pud;
2377         pmd_t *pmd;
2378         pte_t *ptep, pte;
2379   
2380         if (!pgd_none(*pgd)) {
2381                 pud = pud_offset(pgd, addr);
2382                 if (!pud_none(*pud)) {
2383                         pmd = pmd_offset(pud, addr);
2384                         if (!pmd_none(*pmd)) {
2385                                 ptep = pte_offset_map(pmd, addr);
2386                                 pte = *ptep;
2387                                 if (pte_present(pte))
2388                                         page = pte_page(pte);
2389                                 pte_unmap(ptep);
2390                         }
2391                 }
2392         }
2393         return page;
2394 }
2395
2396 EXPORT_SYMBOL(vmalloc_to_page);
2397
2398 /*
2399  * Map a vmalloc()-space virtual address to the physical page frame number.
2400  */
2401 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2402 {
2403         return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2404 }
2405
2406 EXPORT_SYMBOL(vmalloc_to_pfn);
2407
2408 #if !defined(__HAVE_ARCH_GATE_AREA)
2409
2410 #if defined(AT_SYSINFO_EHDR)
2411 static struct vm_area_struct gate_vma;
2412
2413 static int __init gate_vma_init(void)
2414 {
2415         gate_vma.vm_mm = NULL;
2416         gate_vma.vm_start = FIXADDR_USER_START;
2417         gate_vma.vm_end = FIXADDR_USER_END;
2418         gate_vma.vm_page_prot = PAGE_READONLY;
2419         gate_vma.vm_flags = 0;
2420         return 0;
2421 }
2422 __initcall(gate_vma_init);
2423 #endif
2424
2425 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2426 {
2427 #ifdef AT_SYSINFO_EHDR
2428         return &gate_vma;
2429 #else
2430         return NULL;
2431 #endif
2432 }
2433
2434 int in_gate_area_no_task(unsigned long addr)
2435 {
2436 #ifdef AT_SYSINFO_EHDR
2437         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2438                 return 1;
2439 #endif
2440         return 0;
2441 }
2442
2443 #endif  /* __HAVE_ARCH_GATE_AREA */