Linux-2.6.12-rc2
[safe/jmp/linux-2.6] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
51
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
54 #include <asm/tlb.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
57
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60
61 #ifndef CONFIG_DISCONTIGMEM
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
64 struct page *mem_map;
65
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
68 #endif
69
70 unsigned long num_physpages;
71 /*
72  * A number of key systems in x86 including ioremap() rely on the assumption
73  * that high_memory defines the upper bound on direct map memory, then end
74  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
75  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76  * and ZONE_HIGHMEM.
77  */
78 void * high_memory;
79 unsigned long vmalloc_earlyreserve;
80
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85 /*
86  * If a p?d_bad entry is found while walking page tables, report
87  * the error, before resetting entry to p?d_none.  Usually (but
88  * very seldom) called out from the p?d_none_or_clear_bad macros.
89  */
90
91 void pgd_clear_bad(pgd_t *pgd)
92 {
93         pgd_ERROR(*pgd);
94         pgd_clear(pgd);
95 }
96
97 void pud_clear_bad(pud_t *pud)
98 {
99         pud_ERROR(*pud);
100         pud_clear(pud);
101 }
102
103 void pmd_clear_bad(pmd_t *pmd)
104 {
105         pmd_ERROR(*pmd);
106         pmd_clear(pmd);
107 }
108
109 /*
110  * Note: this doesn't free the actual pages themselves. That
111  * has been handled earlier when unmapping all the memory regions.
112  */
113 static inline void clear_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
114                                 unsigned long addr, unsigned long end)
115 {
116         if (!((addr | end) & ~PMD_MASK)) {
117                 /* Only free fully aligned ranges */
118                 struct page *page = pmd_page(*pmd);
119                 pmd_clear(pmd);
120                 dec_page_state(nr_page_table_pages);
121                 tlb->mm->nr_ptes--;
122                 pte_free_tlb(tlb, page);
123         }
124 }
125
126 static inline void clear_pmd_range(struct mmu_gather *tlb, pud_t *pud,
127                                 unsigned long addr, unsigned long end)
128 {
129         pmd_t *pmd;
130         unsigned long next;
131         pmd_t *empty_pmd = NULL;
132
133         pmd = pmd_offset(pud, addr);
134
135         /* Only free fully aligned ranges */
136         if (!((addr | end) & ~PUD_MASK))
137                 empty_pmd = pmd;
138         do {
139                 next = pmd_addr_end(addr, end);
140                 if (pmd_none_or_clear_bad(pmd))
141                         continue;
142                 clear_pte_range(tlb, pmd, addr, next);
143         } while (pmd++, addr = next, addr != end);
144
145         if (empty_pmd) {
146                 pud_clear(pud);
147                 pmd_free_tlb(tlb, empty_pmd);
148         }
149 }
150
151 static inline void clear_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
152                                 unsigned long addr, unsigned long end)
153 {
154         pud_t *pud;
155         unsigned long next;
156         pud_t *empty_pud = NULL;
157
158         pud = pud_offset(pgd, addr);
159
160         /* Only free fully aligned ranges */
161         if (!((addr | end) & ~PGDIR_MASK))
162                 empty_pud = pud;
163         do {
164                 next = pud_addr_end(addr, end);
165                 if (pud_none_or_clear_bad(pud))
166                         continue;
167                 clear_pmd_range(tlb, pud, addr, next);
168         } while (pud++, addr = next, addr != end);
169
170         if (empty_pud) {
171                 pgd_clear(pgd);
172                 pud_free_tlb(tlb, empty_pud);
173         }
174 }
175
176 /*
177  * This function clears user-level page tables of a process.
178  * Unlike other pagetable walks, some memory layouts might give end 0.
179  * Must be called with pagetable lock held.
180  */
181 void clear_page_range(struct mmu_gather *tlb,
182                                 unsigned long addr, unsigned long end)
183 {
184         pgd_t *pgd;
185         unsigned long next;
186
187         pgd = pgd_offset(tlb->mm, addr);
188         do {
189                 next = pgd_addr_end(addr, end);
190                 if (pgd_none_or_clear_bad(pgd))
191                         continue;
192                 clear_pud_range(tlb, pgd, addr, next);
193         } while (pgd++, addr = next, addr != end);
194 }
195
196 pte_t fastcall * pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
197 {
198         if (!pmd_present(*pmd)) {
199                 struct page *new;
200
201                 spin_unlock(&mm->page_table_lock);
202                 new = pte_alloc_one(mm, address);
203                 spin_lock(&mm->page_table_lock);
204                 if (!new)
205                         return NULL;
206                 /*
207                  * Because we dropped the lock, we should re-check the
208                  * entry, as somebody else could have populated it..
209                  */
210                 if (pmd_present(*pmd)) {
211                         pte_free(new);
212                         goto out;
213                 }
214                 mm->nr_ptes++;
215                 inc_page_state(nr_page_table_pages);
216                 pmd_populate(mm, pmd, new);
217         }
218 out:
219         return pte_offset_map(pmd, address);
220 }
221
222 pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
223 {
224         if (!pmd_present(*pmd)) {
225                 pte_t *new;
226
227                 spin_unlock(&mm->page_table_lock);
228                 new = pte_alloc_one_kernel(mm, address);
229                 spin_lock(&mm->page_table_lock);
230                 if (!new)
231                         return NULL;
232
233                 /*
234                  * Because we dropped the lock, we should re-check the
235                  * entry, as somebody else could have populated it..
236                  */
237                 if (pmd_present(*pmd)) {
238                         pte_free_kernel(new);
239                         goto out;
240                 }
241                 pmd_populate_kernel(mm, pmd, new);
242         }
243 out:
244         return pte_offset_kernel(pmd, address);
245 }
246
247 /*
248  * copy one vm_area from one task to the other. Assumes the page tables
249  * already present in the new task to be cleared in the whole range
250  * covered by this vma.
251  *
252  * dst->page_table_lock is held on entry and exit,
253  * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
254  */
255
256 static inline void
257 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
258                 pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags,
259                 unsigned long addr)
260 {
261         pte_t pte = *src_pte;
262         struct page *page;
263         unsigned long pfn;
264
265         /* pte contains position in swap or file, so copy. */
266         if (unlikely(!pte_present(pte))) {
267                 if (!pte_file(pte)) {
268                         swap_duplicate(pte_to_swp_entry(pte));
269                         /* make sure dst_mm is on swapoff's mmlist. */
270                         if (unlikely(list_empty(&dst_mm->mmlist))) {
271                                 spin_lock(&mmlist_lock);
272                                 list_add(&dst_mm->mmlist, &src_mm->mmlist);
273                                 spin_unlock(&mmlist_lock);
274                         }
275                 }
276                 set_pte_at(dst_mm, addr, dst_pte, pte);
277                 return;
278         }
279
280         pfn = pte_pfn(pte);
281         /* the pte points outside of valid memory, the
282          * mapping is assumed to be good, meaningful
283          * and not mapped via rmap - duplicate the
284          * mapping as is.
285          */
286         page = NULL;
287         if (pfn_valid(pfn))
288                 page = pfn_to_page(pfn);
289
290         if (!page || PageReserved(page)) {
291                 set_pte_at(dst_mm, addr, dst_pte, pte);
292                 return;
293         }
294
295         /*
296          * If it's a COW mapping, write protect it both
297          * in the parent and the child
298          */
299         if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
300                 ptep_set_wrprotect(src_mm, addr, src_pte);
301                 pte = *src_pte;
302         }
303
304         /*
305          * If it's a shared mapping, mark it clean in
306          * the child
307          */
308         if (vm_flags & VM_SHARED)
309                 pte = pte_mkclean(pte);
310         pte = pte_mkold(pte);
311         get_page(page);
312         inc_mm_counter(dst_mm, rss);
313         if (PageAnon(page))
314                 inc_mm_counter(dst_mm, anon_rss);
315         set_pte_at(dst_mm, addr, dst_pte, pte);
316         page_dup_rmap(page);
317 }
318
319 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
320                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
321                 unsigned long addr, unsigned long end)
322 {
323         pte_t *src_pte, *dst_pte;
324         unsigned long vm_flags = vma->vm_flags;
325         int progress;
326
327 again:
328         dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
329         if (!dst_pte)
330                 return -ENOMEM;
331         src_pte = pte_offset_map_nested(src_pmd, addr);
332
333         progress = 0;
334         spin_lock(&src_mm->page_table_lock);
335         do {
336                 /*
337                  * We are holding two locks at this point - either of them
338                  * could generate latencies in another task on another CPU.
339                  */
340                 if (progress >= 32 && (need_resched() ||
341                     need_lockbreak(&src_mm->page_table_lock) ||
342                     need_lockbreak(&dst_mm->page_table_lock)))
343                         break;
344                 if (pte_none(*src_pte)) {
345                         progress++;
346                         continue;
347                 }
348                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr);
349                 progress += 8;
350         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
351         spin_unlock(&src_mm->page_table_lock);
352
353         pte_unmap_nested(src_pte - 1);
354         pte_unmap(dst_pte - 1);
355         cond_resched_lock(&dst_mm->page_table_lock);
356         if (addr != end)
357                 goto again;
358         return 0;
359 }
360
361 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
362                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
363                 unsigned long addr, unsigned long end)
364 {
365         pmd_t *src_pmd, *dst_pmd;
366         unsigned long next;
367
368         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
369         if (!dst_pmd)
370                 return -ENOMEM;
371         src_pmd = pmd_offset(src_pud, addr);
372         do {
373                 next = pmd_addr_end(addr, end);
374                 if (pmd_none_or_clear_bad(src_pmd))
375                         continue;
376                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
377                                                 vma, addr, next))
378                         return -ENOMEM;
379         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
380         return 0;
381 }
382
383 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
384                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
385                 unsigned long addr, unsigned long end)
386 {
387         pud_t *src_pud, *dst_pud;
388         unsigned long next;
389
390         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
391         if (!dst_pud)
392                 return -ENOMEM;
393         src_pud = pud_offset(src_pgd, addr);
394         do {
395                 next = pud_addr_end(addr, end);
396                 if (pud_none_or_clear_bad(src_pud))
397                         continue;
398                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
399                                                 vma, addr, next))
400                         return -ENOMEM;
401         } while (dst_pud++, src_pud++, addr = next, addr != end);
402         return 0;
403 }
404
405 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
406                 struct vm_area_struct *vma)
407 {
408         pgd_t *src_pgd, *dst_pgd;
409         unsigned long next;
410         unsigned long addr = vma->vm_start;
411         unsigned long end = vma->vm_end;
412
413         if (is_vm_hugetlb_page(vma))
414                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
415
416         dst_pgd = pgd_offset(dst_mm, addr);
417         src_pgd = pgd_offset(src_mm, addr);
418         do {
419                 next = pgd_addr_end(addr, end);
420                 if (pgd_none_or_clear_bad(src_pgd))
421                         continue;
422                 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
423                                                 vma, addr, next))
424                         return -ENOMEM;
425         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
426         return 0;
427 }
428
429 static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
430                                 unsigned long addr, unsigned long end,
431                                 struct zap_details *details)
432 {
433         pte_t *pte;
434
435         pte = pte_offset_map(pmd, addr);
436         do {
437                 pte_t ptent = *pte;
438                 if (pte_none(ptent))
439                         continue;
440                 if (pte_present(ptent)) {
441                         struct page *page = NULL;
442                         unsigned long pfn = pte_pfn(ptent);
443                         if (pfn_valid(pfn)) {
444                                 page = pfn_to_page(pfn);
445                                 if (PageReserved(page))
446                                         page = NULL;
447                         }
448                         if (unlikely(details) && page) {
449                                 /*
450                                  * unmap_shared_mapping_pages() wants to
451                                  * invalidate cache without truncating:
452                                  * unmap shared but keep private pages.
453                                  */
454                                 if (details->check_mapping &&
455                                     details->check_mapping != page->mapping)
456                                         continue;
457                                 /*
458                                  * Each page->index must be checked when
459                                  * invalidating or truncating nonlinear.
460                                  */
461                                 if (details->nonlinear_vma &&
462                                     (page->index < details->first_index ||
463                                      page->index > details->last_index))
464                                         continue;
465                         }
466                         ptent = ptep_get_and_clear(tlb->mm, addr, pte);
467                         tlb_remove_tlb_entry(tlb, pte, addr);
468                         if (unlikely(!page))
469                                 continue;
470                         if (unlikely(details) && details->nonlinear_vma
471                             && linear_page_index(details->nonlinear_vma,
472                                                 addr) != page->index)
473                                 set_pte_at(tlb->mm, addr, pte,
474                                            pgoff_to_pte(page->index));
475                         if (pte_dirty(ptent))
476                                 set_page_dirty(page);
477                         if (PageAnon(page))
478                                 dec_mm_counter(tlb->mm, anon_rss);
479                         else if (pte_young(ptent))
480                                 mark_page_accessed(page);
481                         tlb->freed++;
482                         page_remove_rmap(page);
483                         tlb_remove_page(tlb, page);
484                         continue;
485                 }
486                 /*
487                  * If details->check_mapping, we leave swap entries;
488                  * if details->nonlinear_vma, we leave file entries.
489                  */
490                 if (unlikely(details))
491                         continue;
492                 if (!pte_file(ptent))
493                         free_swap_and_cache(pte_to_swp_entry(ptent));
494                 pte_clear(tlb->mm, addr, pte);
495         } while (pte++, addr += PAGE_SIZE, addr != end);
496         pte_unmap(pte - 1);
497 }
498
499 static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud,
500                                 unsigned long addr, unsigned long end,
501                                 struct zap_details *details)
502 {
503         pmd_t *pmd;
504         unsigned long next;
505
506         pmd = pmd_offset(pud, addr);
507         do {
508                 next = pmd_addr_end(addr, end);
509                 if (pmd_none_or_clear_bad(pmd))
510                         continue;
511                 zap_pte_range(tlb, pmd, addr, next, details);
512         } while (pmd++, addr = next, addr != end);
513 }
514
515 static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
516                                 unsigned long addr, unsigned long end,
517                                 struct zap_details *details)
518 {
519         pud_t *pud;
520         unsigned long next;
521
522         pud = pud_offset(pgd, addr);
523         do {
524                 next = pud_addr_end(addr, end);
525                 if (pud_none_or_clear_bad(pud))
526                         continue;
527                 zap_pmd_range(tlb, pud, addr, next, details);
528         } while (pud++, addr = next, addr != end);
529 }
530
531 static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
532                                 unsigned long addr, unsigned long end,
533                                 struct zap_details *details)
534 {
535         pgd_t *pgd;
536         unsigned long next;
537
538         if (details && !details->check_mapping && !details->nonlinear_vma)
539                 details = NULL;
540
541         BUG_ON(addr >= end);
542         tlb_start_vma(tlb, vma);
543         pgd = pgd_offset(vma->vm_mm, addr);
544         do {
545                 next = pgd_addr_end(addr, end);
546                 if (pgd_none_or_clear_bad(pgd))
547                         continue;
548                 zap_pud_range(tlb, pgd, addr, next, details);
549         } while (pgd++, addr = next, addr != end);
550         tlb_end_vma(tlb, vma);
551 }
552
553 #ifdef CONFIG_PREEMPT
554 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
555 #else
556 /* No preempt: go for improved straight-line efficiency */
557 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
558 #endif
559
560 /**
561  * unmap_vmas - unmap a range of memory covered by a list of vma's
562  * @tlbp: address of the caller's struct mmu_gather
563  * @mm: the controlling mm_struct
564  * @vma: the starting vma
565  * @start_addr: virtual address at which to start unmapping
566  * @end_addr: virtual address at which to end unmapping
567  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
568  * @details: details of nonlinear truncation or shared cache invalidation
569  *
570  * Returns the number of vma's which were covered by the unmapping.
571  *
572  * Unmap all pages in the vma list.  Called under page_table_lock.
573  *
574  * We aim to not hold page_table_lock for too long (for scheduling latency
575  * reasons).  So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
576  * return the ending mmu_gather to the caller.
577  *
578  * Only addresses between `start' and `end' will be unmapped.
579  *
580  * The VMA list must be sorted in ascending virtual address order.
581  *
582  * unmap_vmas() assumes that the caller will flush the whole unmapped address
583  * range after unmap_vmas() returns.  So the only responsibility here is to
584  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
585  * drops the lock and schedules.
586  */
587 int unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
588                 struct vm_area_struct *vma, unsigned long start_addr,
589                 unsigned long end_addr, unsigned long *nr_accounted,
590                 struct zap_details *details)
591 {
592         unsigned long zap_bytes = ZAP_BLOCK_SIZE;
593         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
594         int tlb_start_valid = 0;
595         int ret = 0;
596         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
597         int fullmm = tlb_is_full_mm(*tlbp);
598
599         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
600                 unsigned long start;
601                 unsigned long end;
602
603                 start = max(vma->vm_start, start_addr);
604                 if (start >= vma->vm_end)
605                         continue;
606                 end = min(vma->vm_end, end_addr);
607                 if (end <= vma->vm_start)
608                         continue;
609
610                 if (vma->vm_flags & VM_ACCOUNT)
611                         *nr_accounted += (end - start) >> PAGE_SHIFT;
612
613                 ret++;
614                 while (start != end) {
615                         unsigned long block;
616
617                         if (!tlb_start_valid) {
618                                 tlb_start = start;
619                                 tlb_start_valid = 1;
620                         }
621
622                         if (is_vm_hugetlb_page(vma)) {
623                                 block = end - start;
624                                 unmap_hugepage_range(vma, start, end);
625                         } else {
626                                 block = min(zap_bytes, end - start);
627                                 unmap_page_range(*tlbp, vma, start,
628                                                 start + block, details);
629                         }
630
631                         start += block;
632                         zap_bytes -= block;
633                         if ((long)zap_bytes > 0)
634                                 continue;
635
636                         tlb_finish_mmu(*tlbp, tlb_start, start);
637
638                         if (need_resched() ||
639                                 need_lockbreak(&mm->page_table_lock) ||
640                                 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
641                                 if (i_mmap_lock) {
642                                         /* must reset count of rss freed */
643                                         *tlbp = tlb_gather_mmu(mm, fullmm);
644                                         details->break_addr = start;
645                                         goto out;
646                                 }
647                                 spin_unlock(&mm->page_table_lock);
648                                 cond_resched();
649                                 spin_lock(&mm->page_table_lock);
650                         }
651
652                         *tlbp = tlb_gather_mmu(mm, fullmm);
653                         tlb_start_valid = 0;
654                         zap_bytes = ZAP_BLOCK_SIZE;
655                 }
656         }
657 out:
658         return ret;
659 }
660
661 /**
662  * zap_page_range - remove user pages in a given range
663  * @vma: vm_area_struct holding the applicable pages
664  * @address: starting address of pages to zap
665  * @size: number of bytes to zap
666  * @details: details of nonlinear truncation or shared cache invalidation
667  */
668 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
669                 unsigned long size, struct zap_details *details)
670 {
671         struct mm_struct *mm = vma->vm_mm;
672         struct mmu_gather *tlb;
673         unsigned long end = address + size;
674         unsigned long nr_accounted = 0;
675
676         if (is_vm_hugetlb_page(vma)) {
677                 zap_hugepage_range(vma, address, size);
678                 return;
679         }
680
681         lru_add_drain();
682         spin_lock(&mm->page_table_lock);
683         tlb = tlb_gather_mmu(mm, 0);
684         unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
685         tlb_finish_mmu(tlb, address, end);
686         spin_unlock(&mm->page_table_lock);
687 }
688
689 /*
690  * Do a quick page-table lookup for a single page.
691  * mm->page_table_lock must be held.
692  */
693 static struct page *
694 __follow_page(struct mm_struct *mm, unsigned long address, int read, int write)
695 {
696         pgd_t *pgd;
697         pud_t *pud;
698         pmd_t *pmd;
699         pte_t *ptep, pte;
700         unsigned long pfn;
701         struct page *page;
702
703         page = follow_huge_addr(mm, address, write);
704         if (! IS_ERR(page))
705                 return page;
706
707         pgd = pgd_offset(mm, address);
708         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
709                 goto out;
710
711         pud = pud_offset(pgd, address);
712         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
713                 goto out;
714         
715         pmd = pmd_offset(pud, address);
716         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
717                 goto out;
718         if (pmd_huge(*pmd))
719                 return follow_huge_pmd(mm, address, pmd, write);
720
721         ptep = pte_offset_map(pmd, address);
722         if (!ptep)
723                 goto out;
724
725         pte = *ptep;
726         pte_unmap(ptep);
727         if (pte_present(pte)) {
728                 if (write && !pte_write(pte))
729                         goto out;
730                 if (read && !pte_read(pte))
731                         goto out;
732                 pfn = pte_pfn(pte);
733                 if (pfn_valid(pfn)) {
734                         page = pfn_to_page(pfn);
735                         if (write && !pte_dirty(pte) && !PageDirty(page))
736                                 set_page_dirty(page);
737                         mark_page_accessed(page);
738                         return page;
739                 }
740         }
741
742 out:
743         return NULL;
744 }
745
746 struct page *
747 follow_page(struct mm_struct *mm, unsigned long address, int write)
748 {
749         return __follow_page(mm, address, /*read*/0, write);
750 }
751
752 int
753 check_user_page_readable(struct mm_struct *mm, unsigned long address)
754 {
755         return __follow_page(mm, address, /*read*/1, /*write*/0) != NULL;
756 }
757
758 EXPORT_SYMBOL(check_user_page_readable);
759
760 /* 
761  * Given a physical address, is there a useful struct page pointing to
762  * it?  This may become more complex in the future if we start dealing
763  * with IO-aperture pages for direct-IO.
764  */
765
766 static inline struct page *get_page_map(struct page *page)
767 {
768         if (!pfn_valid(page_to_pfn(page)))
769                 return NULL;
770         return page;
771 }
772
773
774 static inline int
775 untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
776                          unsigned long address)
777 {
778         pgd_t *pgd;
779         pud_t *pud;
780         pmd_t *pmd;
781
782         /* Check if the vma is for an anonymous mapping. */
783         if (vma->vm_ops && vma->vm_ops->nopage)
784                 return 0;
785
786         /* Check if page directory entry exists. */
787         pgd = pgd_offset(mm, address);
788         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
789                 return 1;
790
791         pud = pud_offset(pgd, address);
792         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
793                 return 1;
794
795         /* Check if page middle directory entry exists. */
796         pmd = pmd_offset(pud, address);
797         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
798                 return 1;
799
800         /* There is a pte slot for 'address' in 'mm'. */
801         return 0;
802 }
803
804
805 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
806                 unsigned long start, int len, int write, int force,
807                 struct page **pages, struct vm_area_struct **vmas)
808 {
809         int i;
810         unsigned int flags;
811
812         /* 
813          * Require read or write permissions.
814          * If 'force' is set, we only require the "MAY" flags.
815          */
816         flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
817         flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
818         i = 0;
819
820         do {
821                 struct vm_area_struct * vma;
822
823                 vma = find_extend_vma(mm, start);
824                 if (!vma && in_gate_area(tsk, start)) {
825                         unsigned long pg = start & PAGE_MASK;
826                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
827                         pgd_t *pgd;
828                         pud_t *pud;
829                         pmd_t *pmd;
830                         pte_t *pte;
831                         if (write) /* user gate pages are read-only */
832                                 return i ? : -EFAULT;
833                         if (pg > TASK_SIZE)
834                                 pgd = pgd_offset_k(pg);
835                         else
836                                 pgd = pgd_offset_gate(mm, pg);
837                         BUG_ON(pgd_none(*pgd));
838                         pud = pud_offset(pgd, pg);
839                         BUG_ON(pud_none(*pud));
840                         pmd = pmd_offset(pud, pg);
841                         BUG_ON(pmd_none(*pmd));
842                         pte = pte_offset_map(pmd, pg);
843                         BUG_ON(pte_none(*pte));
844                         if (pages) {
845                                 pages[i] = pte_page(*pte);
846                                 get_page(pages[i]);
847                         }
848                         pte_unmap(pte);
849                         if (vmas)
850                                 vmas[i] = gate_vma;
851                         i++;
852                         start += PAGE_SIZE;
853                         len--;
854                         continue;
855                 }
856
857                 if (!vma || (vma->vm_flags & VM_IO)
858                                 || !(flags & vma->vm_flags))
859                         return i ? : -EFAULT;
860
861                 if (is_vm_hugetlb_page(vma)) {
862                         i = follow_hugetlb_page(mm, vma, pages, vmas,
863                                                 &start, &len, i);
864                         continue;
865                 }
866                 spin_lock(&mm->page_table_lock);
867                 do {
868                         struct page *map;
869                         int lookup_write = write;
870
871                         cond_resched_lock(&mm->page_table_lock);
872                         while (!(map = follow_page(mm, start, lookup_write))) {
873                                 /*
874                                  * Shortcut for anonymous pages. We don't want
875                                  * to force the creation of pages tables for
876                                  * insanly big anonymously mapped areas that
877                                  * nobody touched so far. This is important
878                                  * for doing a core dump for these mappings.
879                                  */
880                                 if (!lookup_write &&
881                                     untouched_anonymous_page(mm,vma,start)) {
882                                         map = ZERO_PAGE(start);
883                                         break;
884                                 }
885                                 spin_unlock(&mm->page_table_lock);
886                                 switch (handle_mm_fault(mm,vma,start,write)) {
887                                 case VM_FAULT_MINOR:
888                                         tsk->min_flt++;
889                                         break;
890                                 case VM_FAULT_MAJOR:
891                                         tsk->maj_flt++;
892                                         break;
893                                 case VM_FAULT_SIGBUS:
894                                         return i ? i : -EFAULT;
895                                 case VM_FAULT_OOM:
896                                         return i ? i : -ENOMEM;
897                                 default:
898                                         BUG();
899                                 }
900                                 /*
901                                  * Now that we have performed a write fault
902                                  * and surely no longer have a shared page we
903                                  * shouldn't write, we shouldn't ignore an
904                                  * unwritable page in the page table if
905                                  * we are forcing write access.
906                                  */
907                                 lookup_write = write && !force;
908                                 spin_lock(&mm->page_table_lock);
909                         }
910                         if (pages) {
911                                 pages[i] = get_page_map(map);
912                                 if (!pages[i]) {
913                                         spin_unlock(&mm->page_table_lock);
914                                         while (i--)
915                                                 page_cache_release(pages[i]);
916                                         i = -EFAULT;
917                                         goto out;
918                                 }
919                                 flush_dcache_page(pages[i]);
920                                 if (!PageReserved(pages[i]))
921                                         page_cache_get(pages[i]);
922                         }
923                         if (vmas)
924                                 vmas[i] = vma;
925                         i++;
926                         start += PAGE_SIZE;
927                         len--;
928                 } while(len && start < vma->vm_end);
929                 spin_unlock(&mm->page_table_lock);
930         } while(len);
931 out:
932         return i;
933 }
934
935 EXPORT_SYMBOL(get_user_pages);
936
937 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
938                         unsigned long addr, unsigned long end, pgprot_t prot)
939 {
940         pte_t *pte;
941
942         pte = pte_alloc_map(mm, pmd, addr);
943         if (!pte)
944                 return -ENOMEM;
945         do {
946                 pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot));
947                 BUG_ON(!pte_none(*pte));
948                 set_pte_at(mm, addr, pte, zero_pte);
949         } while (pte++, addr += PAGE_SIZE, addr != end);
950         pte_unmap(pte - 1);
951         return 0;
952 }
953
954 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
955                         unsigned long addr, unsigned long end, pgprot_t prot)
956 {
957         pmd_t *pmd;
958         unsigned long next;
959
960         pmd = pmd_alloc(mm, pud, addr);
961         if (!pmd)
962                 return -ENOMEM;
963         do {
964                 next = pmd_addr_end(addr, end);
965                 if (zeromap_pte_range(mm, pmd, addr, next, prot))
966                         return -ENOMEM;
967         } while (pmd++, addr = next, addr != end);
968         return 0;
969 }
970
971 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
972                         unsigned long addr, unsigned long end, pgprot_t prot)
973 {
974         pud_t *pud;
975         unsigned long next;
976
977         pud = pud_alloc(mm, pgd, addr);
978         if (!pud)
979                 return -ENOMEM;
980         do {
981                 next = pud_addr_end(addr, end);
982                 if (zeromap_pmd_range(mm, pud, addr, next, prot))
983                         return -ENOMEM;
984         } while (pud++, addr = next, addr != end);
985         return 0;
986 }
987
988 int zeromap_page_range(struct vm_area_struct *vma,
989                         unsigned long addr, unsigned long size, pgprot_t prot)
990 {
991         pgd_t *pgd;
992         unsigned long next;
993         unsigned long end = addr + size;
994         struct mm_struct *mm = vma->vm_mm;
995         int err;
996
997         BUG_ON(addr >= end);
998         pgd = pgd_offset(mm, addr);
999         flush_cache_range(vma, addr, end);
1000         spin_lock(&mm->page_table_lock);
1001         do {
1002                 next = pgd_addr_end(addr, end);
1003                 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1004                 if (err)
1005                         break;
1006         } while (pgd++, addr = next, addr != end);
1007         spin_unlock(&mm->page_table_lock);
1008         return err;
1009 }
1010
1011 /*
1012  * maps a range of physical memory into the requested pages. the old
1013  * mappings are removed. any references to nonexistent pages results
1014  * in null mappings (currently treated as "copy-on-access")
1015  */
1016 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1017                         unsigned long addr, unsigned long end,
1018                         unsigned long pfn, pgprot_t prot)
1019 {
1020         pte_t *pte;
1021
1022         pte = pte_alloc_map(mm, pmd, addr);
1023         if (!pte)
1024                 return -ENOMEM;
1025         do {
1026                 BUG_ON(!pte_none(*pte));
1027                 if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn)))
1028                         set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1029                 pfn++;
1030         } while (pte++, addr += PAGE_SIZE, addr != end);
1031         pte_unmap(pte - 1);
1032         return 0;
1033 }
1034
1035 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1036                         unsigned long addr, unsigned long end,
1037                         unsigned long pfn, pgprot_t prot)
1038 {
1039         pmd_t *pmd;
1040         unsigned long next;
1041
1042         pfn -= addr >> PAGE_SHIFT;
1043         pmd = pmd_alloc(mm, pud, addr);
1044         if (!pmd)
1045                 return -ENOMEM;
1046         do {
1047                 next = pmd_addr_end(addr, end);
1048                 if (remap_pte_range(mm, pmd, addr, next,
1049                                 pfn + (addr >> PAGE_SHIFT), prot))
1050                         return -ENOMEM;
1051         } while (pmd++, addr = next, addr != end);
1052         return 0;
1053 }
1054
1055 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1056                         unsigned long addr, unsigned long end,
1057                         unsigned long pfn, pgprot_t prot)
1058 {
1059         pud_t *pud;
1060         unsigned long next;
1061
1062         pfn -= addr >> PAGE_SHIFT;
1063         pud = pud_alloc(mm, pgd, addr);
1064         if (!pud)
1065                 return -ENOMEM;
1066         do {
1067                 next = pud_addr_end(addr, end);
1068                 if (remap_pmd_range(mm, pud, addr, next,
1069                                 pfn + (addr >> PAGE_SHIFT), prot))
1070                         return -ENOMEM;
1071         } while (pud++, addr = next, addr != end);
1072         return 0;
1073 }
1074
1075 /*  Note: this is only safe if the mm semaphore is held when called. */
1076 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1077                     unsigned long pfn, unsigned long size, pgprot_t prot)
1078 {
1079         pgd_t *pgd;
1080         unsigned long next;
1081         unsigned long end = addr + size;
1082         struct mm_struct *mm = vma->vm_mm;
1083         int err;
1084
1085         /*
1086          * Physically remapped pages are special. Tell the
1087          * rest of the world about it:
1088          *   VM_IO tells people not to look at these pages
1089          *      (accesses can have side effects).
1090          *   VM_RESERVED tells swapout not to try to touch
1091          *      this region.
1092          */
1093         vma->vm_flags |= VM_IO | VM_RESERVED;
1094
1095         BUG_ON(addr >= end);
1096         pfn -= addr >> PAGE_SHIFT;
1097         pgd = pgd_offset(mm, addr);
1098         flush_cache_range(vma, addr, end);
1099         spin_lock(&mm->page_table_lock);
1100         do {
1101                 next = pgd_addr_end(addr, end);
1102                 err = remap_pud_range(mm, pgd, addr, next,
1103                                 pfn + (addr >> PAGE_SHIFT), prot);
1104                 if (err)
1105                         break;
1106         } while (pgd++, addr = next, addr != end);
1107         spin_unlock(&mm->page_table_lock);
1108         return err;
1109 }
1110 EXPORT_SYMBOL(remap_pfn_range);
1111
1112 /*
1113  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1114  * servicing faults for write access.  In the normal case, do always want
1115  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1116  * that do not have writing enabled, when used by access_process_vm.
1117  */
1118 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1119 {
1120         if (likely(vma->vm_flags & VM_WRITE))
1121                 pte = pte_mkwrite(pte);
1122         return pte;
1123 }
1124
1125 /*
1126  * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock
1127  */
1128 static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address, 
1129                 pte_t *page_table)
1130 {
1131         pte_t entry;
1132
1133         entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)),
1134                               vma);
1135         ptep_establish(vma, address, page_table, entry);
1136         update_mmu_cache(vma, address, entry);
1137         lazy_mmu_prot_update(entry);
1138 }
1139
1140 /*
1141  * This routine handles present pages, when users try to write
1142  * to a shared page. It is done by copying the page to a new address
1143  * and decrementing the shared-page counter for the old page.
1144  *
1145  * Goto-purists beware: the only reason for goto's here is that it results
1146  * in better assembly code.. The "default" path will see no jumps at all.
1147  *
1148  * Note that this routine assumes that the protection checks have been
1149  * done by the caller (the low-level page fault routine in most cases).
1150  * Thus we can safely just mark it writable once we've done any necessary
1151  * COW.
1152  *
1153  * We also mark the page dirty at this point even though the page will
1154  * change only once the write actually happens. This avoids a few races,
1155  * and potentially makes it more efficient.
1156  *
1157  * We hold the mm semaphore and the page_table_lock on entry and exit
1158  * with the page_table_lock released.
1159  */
1160 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma,
1161         unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte)
1162 {
1163         struct page *old_page, *new_page;
1164         unsigned long pfn = pte_pfn(pte);
1165         pte_t entry;
1166
1167         if (unlikely(!pfn_valid(pfn))) {
1168                 /*
1169                  * This should really halt the system so it can be debugged or
1170                  * at least the kernel stops what it's doing before it corrupts
1171                  * data, but for the moment just pretend this is OOM.
1172                  */
1173                 pte_unmap(page_table);
1174                 printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n",
1175                                 address);
1176                 spin_unlock(&mm->page_table_lock);
1177                 return VM_FAULT_OOM;
1178         }
1179         old_page = pfn_to_page(pfn);
1180
1181         if (!TestSetPageLocked(old_page)) {
1182                 int reuse = can_share_swap_page(old_page);
1183                 unlock_page(old_page);
1184                 if (reuse) {
1185                         flush_cache_page(vma, address, pfn);
1186                         entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)),
1187                                               vma);
1188                         ptep_set_access_flags(vma, address, page_table, entry, 1);
1189                         update_mmu_cache(vma, address, entry);
1190                         lazy_mmu_prot_update(entry);
1191                         pte_unmap(page_table);
1192                         spin_unlock(&mm->page_table_lock);
1193                         return VM_FAULT_MINOR;
1194                 }
1195         }
1196         pte_unmap(page_table);
1197
1198         /*
1199          * Ok, we need to copy. Oh, well..
1200          */
1201         if (!PageReserved(old_page))
1202                 page_cache_get(old_page);
1203         spin_unlock(&mm->page_table_lock);
1204
1205         if (unlikely(anon_vma_prepare(vma)))
1206                 goto no_new_page;
1207         if (old_page == ZERO_PAGE(address)) {
1208                 new_page = alloc_zeroed_user_highpage(vma, address);
1209                 if (!new_page)
1210                         goto no_new_page;
1211         } else {
1212                 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1213                 if (!new_page)
1214                         goto no_new_page;
1215                 copy_user_highpage(new_page, old_page, address);
1216         }
1217         /*
1218          * Re-check the pte - we dropped the lock
1219          */
1220         spin_lock(&mm->page_table_lock);
1221         page_table = pte_offset_map(pmd, address);
1222         if (likely(pte_same(*page_table, pte))) {
1223                 if (PageAnon(old_page))
1224                         dec_mm_counter(mm, anon_rss);
1225                 if (PageReserved(old_page))
1226                         inc_mm_counter(mm, rss);
1227                 else
1228                         page_remove_rmap(old_page);
1229                 flush_cache_page(vma, address, pfn);
1230                 break_cow(vma, new_page, address, page_table);
1231                 lru_cache_add_active(new_page);
1232                 page_add_anon_rmap(new_page, vma, address);
1233
1234                 /* Free the old page.. */
1235                 new_page = old_page;
1236         }
1237         pte_unmap(page_table);
1238         page_cache_release(new_page);
1239         page_cache_release(old_page);
1240         spin_unlock(&mm->page_table_lock);
1241         return VM_FAULT_MINOR;
1242
1243 no_new_page:
1244         page_cache_release(old_page);
1245         return VM_FAULT_OOM;
1246 }
1247
1248 /*
1249  * Helper functions for unmap_mapping_range().
1250  *
1251  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1252  *
1253  * We have to restart searching the prio_tree whenever we drop the lock,
1254  * since the iterator is only valid while the lock is held, and anyway
1255  * a later vma might be split and reinserted earlier while lock dropped.
1256  *
1257  * The list of nonlinear vmas could be handled more efficiently, using
1258  * a placeholder, but handle it in the same way until a need is shown.
1259  * It is important to search the prio_tree before nonlinear list: a vma
1260  * may become nonlinear and be shifted from prio_tree to nonlinear list
1261  * while the lock is dropped; but never shifted from list to prio_tree.
1262  *
1263  * In order to make forward progress despite restarting the search,
1264  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1265  * quickly skip it next time around.  Since the prio_tree search only
1266  * shows us those vmas affected by unmapping the range in question, we
1267  * can't efficiently keep all vmas in step with mapping->truncate_count:
1268  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1269  * mapping->truncate_count and vma->vm_truncate_count are protected by
1270  * i_mmap_lock.
1271  *
1272  * In order to make forward progress despite repeatedly restarting some
1273  * large vma, note the break_addr set by unmap_vmas when it breaks out:
1274  * and restart from that address when we reach that vma again.  It might
1275  * have been split or merged, shrunk or extended, but never shifted: so
1276  * restart_addr remains valid so long as it remains in the vma's range.
1277  * unmap_mapping_range forces truncate_count to leap over page-aligned
1278  * values so we can save vma's restart_addr in its truncate_count field.
1279  */
1280 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1281
1282 static void reset_vma_truncate_counts(struct address_space *mapping)
1283 {
1284         struct vm_area_struct *vma;
1285         struct prio_tree_iter iter;
1286
1287         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1288                 vma->vm_truncate_count = 0;
1289         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1290                 vma->vm_truncate_count = 0;
1291 }
1292
1293 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1294                 unsigned long start_addr, unsigned long end_addr,
1295                 struct zap_details *details)
1296 {
1297         unsigned long restart_addr;
1298         int need_break;
1299
1300 again:
1301         restart_addr = vma->vm_truncate_count;
1302         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1303                 start_addr = restart_addr;
1304                 if (start_addr >= end_addr) {
1305                         /* Top of vma has been split off since last time */
1306                         vma->vm_truncate_count = details->truncate_count;
1307                         return 0;
1308                 }
1309         }
1310
1311         details->break_addr = end_addr;
1312         zap_page_range(vma, start_addr, end_addr - start_addr, details);
1313
1314         /*
1315          * We cannot rely on the break test in unmap_vmas:
1316          * on the one hand, we don't want to restart our loop
1317          * just because that broke out for the page_table_lock;
1318          * on the other hand, it does no test when vma is small.
1319          */
1320         need_break = need_resched() ||
1321                         need_lockbreak(details->i_mmap_lock);
1322
1323         if (details->break_addr >= end_addr) {
1324                 /* We have now completed this vma: mark it so */
1325                 vma->vm_truncate_count = details->truncate_count;
1326                 if (!need_break)
1327                         return 0;
1328         } else {
1329                 /* Note restart_addr in vma's truncate_count field */
1330                 vma->vm_truncate_count = details->break_addr;
1331                 if (!need_break)
1332                         goto again;
1333         }
1334
1335         spin_unlock(details->i_mmap_lock);
1336         cond_resched();
1337         spin_lock(details->i_mmap_lock);
1338         return -EINTR;
1339 }
1340
1341 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1342                                             struct zap_details *details)
1343 {
1344         struct vm_area_struct *vma;
1345         struct prio_tree_iter iter;
1346         pgoff_t vba, vea, zba, zea;
1347
1348 restart:
1349         vma_prio_tree_foreach(vma, &iter, root,
1350                         details->first_index, details->last_index) {
1351                 /* Skip quickly over those we have already dealt with */
1352                 if (vma->vm_truncate_count == details->truncate_count)
1353                         continue;
1354
1355                 vba = vma->vm_pgoff;
1356                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1357                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1358                 zba = details->first_index;
1359                 if (zba < vba)
1360                         zba = vba;
1361                 zea = details->last_index;
1362                 if (zea > vea)
1363                         zea = vea;
1364
1365                 if (unmap_mapping_range_vma(vma,
1366                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1367                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1368                                 details) < 0)
1369                         goto restart;
1370         }
1371 }
1372
1373 static inline void unmap_mapping_range_list(struct list_head *head,
1374                                             struct zap_details *details)
1375 {
1376         struct vm_area_struct *vma;
1377
1378         /*
1379          * In nonlinear VMAs there is no correspondence between virtual address
1380          * offset and file offset.  So we must perform an exhaustive search
1381          * across *all* the pages in each nonlinear VMA, not just the pages
1382          * whose virtual address lies outside the file truncation point.
1383          */
1384 restart:
1385         list_for_each_entry(vma, head, shared.vm_set.list) {
1386                 /* Skip quickly over those we have already dealt with */
1387                 if (vma->vm_truncate_count == details->truncate_count)
1388                         continue;
1389                 details->nonlinear_vma = vma;
1390                 if (unmap_mapping_range_vma(vma, vma->vm_start,
1391                                         vma->vm_end, details) < 0)
1392                         goto restart;
1393         }
1394 }
1395
1396 /**
1397  * unmap_mapping_range - unmap the portion of all mmaps
1398  * in the specified address_space corresponding to the specified
1399  * page range in the underlying file.
1400  * @address_space: the address space containing mmaps to be unmapped.
1401  * @holebegin: byte in first page to unmap, relative to the start of
1402  * the underlying file.  This will be rounded down to a PAGE_SIZE
1403  * boundary.  Note that this is different from vmtruncate(), which
1404  * must keep the partial page.  In contrast, we must get rid of
1405  * partial pages.
1406  * @holelen: size of prospective hole in bytes.  This will be rounded
1407  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1408  * end of the file.
1409  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1410  * but 0 when invalidating pagecache, don't throw away private data.
1411  */
1412 void unmap_mapping_range(struct address_space *mapping,
1413                 loff_t const holebegin, loff_t const holelen, int even_cows)
1414 {
1415         struct zap_details details;
1416         pgoff_t hba = holebegin >> PAGE_SHIFT;
1417         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1418
1419         /* Check for overflow. */
1420         if (sizeof(holelen) > sizeof(hlen)) {
1421                 long long holeend =
1422                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1423                 if (holeend & ~(long long)ULONG_MAX)
1424                         hlen = ULONG_MAX - hba + 1;
1425         }
1426
1427         details.check_mapping = even_cows? NULL: mapping;
1428         details.nonlinear_vma = NULL;
1429         details.first_index = hba;
1430         details.last_index = hba + hlen - 1;
1431         if (details.last_index < details.first_index)
1432                 details.last_index = ULONG_MAX;
1433         details.i_mmap_lock = &mapping->i_mmap_lock;
1434
1435         spin_lock(&mapping->i_mmap_lock);
1436
1437         /* serialize i_size write against truncate_count write */
1438         smp_wmb();
1439         /* Protect against page faults, and endless unmapping loops */
1440         mapping->truncate_count++;
1441         /*
1442          * For archs where spin_lock has inclusive semantics like ia64
1443          * this smp_mb() will prevent to read pagetable contents
1444          * before the truncate_count increment is visible to
1445          * other cpus.
1446          */
1447         smp_mb();
1448         if (unlikely(is_restart_addr(mapping->truncate_count))) {
1449                 if (mapping->truncate_count == 0)
1450                         reset_vma_truncate_counts(mapping);
1451                 mapping->truncate_count++;
1452         }
1453         details.truncate_count = mapping->truncate_count;
1454
1455         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1456                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1457         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1458                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1459         spin_unlock(&mapping->i_mmap_lock);
1460 }
1461 EXPORT_SYMBOL(unmap_mapping_range);
1462
1463 /*
1464  * Handle all mappings that got truncated by a "truncate()"
1465  * system call.
1466  *
1467  * NOTE! We have to be ready to update the memory sharing
1468  * between the file and the memory map for a potential last
1469  * incomplete page.  Ugly, but necessary.
1470  */
1471 int vmtruncate(struct inode * inode, loff_t offset)
1472 {
1473         struct address_space *mapping = inode->i_mapping;
1474         unsigned long limit;
1475
1476         if (inode->i_size < offset)
1477                 goto do_expand;
1478         /*
1479          * truncation of in-use swapfiles is disallowed - it would cause
1480          * subsequent swapout to scribble on the now-freed blocks.
1481          */
1482         if (IS_SWAPFILE(inode))
1483                 goto out_busy;
1484         i_size_write(inode, offset);
1485         unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1486         truncate_inode_pages(mapping, offset);
1487         goto out_truncate;
1488
1489 do_expand:
1490         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1491         if (limit != RLIM_INFINITY && offset > limit)
1492                 goto out_sig;
1493         if (offset > inode->i_sb->s_maxbytes)
1494                 goto out_big;
1495         i_size_write(inode, offset);
1496
1497 out_truncate:
1498         if (inode->i_op && inode->i_op->truncate)
1499                 inode->i_op->truncate(inode);
1500         return 0;
1501 out_sig:
1502         send_sig(SIGXFSZ, current, 0);
1503 out_big:
1504         return -EFBIG;
1505 out_busy:
1506         return -ETXTBSY;
1507 }
1508
1509 EXPORT_SYMBOL(vmtruncate);
1510
1511 /* 
1512  * Primitive swap readahead code. We simply read an aligned block of
1513  * (1 << page_cluster) entries in the swap area. This method is chosen
1514  * because it doesn't cost us any seek time.  We also make sure to queue
1515  * the 'original' request together with the readahead ones...  
1516  *
1517  * This has been extended to use the NUMA policies from the mm triggering
1518  * the readahead.
1519  *
1520  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1521  */
1522 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1523 {
1524 #ifdef CONFIG_NUMA
1525         struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1526 #endif
1527         int i, num;
1528         struct page *new_page;
1529         unsigned long offset;
1530
1531         /*
1532          * Get the number of handles we should do readahead io to.
1533          */
1534         num = valid_swaphandles(entry, &offset);
1535         for (i = 0; i < num; offset++, i++) {
1536                 /* Ok, do the async read-ahead now */
1537                 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1538                                                            offset), vma, addr);
1539                 if (!new_page)
1540                         break;
1541                 page_cache_release(new_page);
1542 #ifdef CONFIG_NUMA
1543                 /*
1544                  * Find the next applicable VMA for the NUMA policy.
1545                  */
1546                 addr += PAGE_SIZE;
1547                 if (addr == 0)
1548                         vma = NULL;
1549                 if (vma) {
1550                         if (addr >= vma->vm_end) {
1551                                 vma = next_vma;
1552                                 next_vma = vma ? vma->vm_next : NULL;
1553                         }
1554                         if (vma && addr < vma->vm_start)
1555                                 vma = NULL;
1556                 } else {
1557                         if (next_vma && addr >= next_vma->vm_start) {
1558                                 vma = next_vma;
1559                                 next_vma = vma->vm_next;
1560                         }
1561                 }
1562 #endif
1563         }
1564         lru_add_drain();        /* Push any new pages onto the LRU now */
1565 }
1566
1567 /*
1568  * We hold the mm semaphore and the page_table_lock on entry and
1569  * should release the pagetable lock on exit..
1570  */
1571 static int do_swap_page(struct mm_struct * mm,
1572         struct vm_area_struct * vma, unsigned long address,
1573         pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access)
1574 {
1575         struct page *page;
1576         swp_entry_t entry = pte_to_swp_entry(orig_pte);
1577         pte_t pte;
1578         int ret = VM_FAULT_MINOR;
1579
1580         pte_unmap(page_table);
1581         spin_unlock(&mm->page_table_lock);
1582         page = lookup_swap_cache(entry);
1583         if (!page) {
1584                 swapin_readahead(entry, address, vma);
1585                 page = read_swap_cache_async(entry, vma, address);
1586                 if (!page) {
1587                         /*
1588                          * Back out if somebody else faulted in this pte while
1589                          * we released the page table lock.
1590                          */
1591                         spin_lock(&mm->page_table_lock);
1592                         page_table = pte_offset_map(pmd, address);
1593                         if (likely(pte_same(*page_table, orig_pte)))
1594                                 ret = VM_FAULT_OOM;
1595                         else
1596                                 ret = VM_FAULT_MINOR;
1597                         pte_unmap(page_table);
1598                         spin_unlock(&mm->page_table_lock);
1599                         goto out;
1600                 }
1601
1602                 /* Had to read the page from swap area: Major fault */
1603                 ret = VM_FAULT_MAJOR;
1604                 inc_page_state(pgmajfault);
1605                 grab_swap_token();
1606         }
1607
1608         mark_page_accessed(page);
1609         lock_page(page);
1610
1611         /*
1612          * Back out if somebody else faulted in this pte while we
1613          * released the page table lock.
1614          */
1615         spin_lock(&mm->page_table_lock);
1616         page_table = pte_offset_map(pmd, address);
1617         if (unlikely(!pte_same(*page_table, orig_pte))) {
1618                 pte_unmap(page_table);
1619                 spin_unlock(&mm->page_table_lock);
1620                 unlock_page(page);
1621                 page_cache_release(page);
1622                 ret = VM_FAULT_MINOR;
1623                 goto out;
1624         }
1625
1626         /* The page isn't present yet, go ahead with the fault. */
1627                 
1628         swap_free(entry);
1629         if (vm_swap_full())
1630                 remove_exclusive_swap_page(page);
1631
1632         inc_mm_counter(mm, rss);
1633         pte = mk_pte(page, vma->vm_page_prot);
1634         if (write_access && can_share_swap_page(page)) {
1635                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1636                 write_access = 0;
1637         }
1638         unlock_page(page);
1639
1640         flush_icache_page(vma, page);
1641         set_pte_at(mm, address, page_table, pte);
1642         page_add_anon_rmap(page, vma, address);
1643
1644         if (write_access) {
1645                 if (do_wp_page(mm, vma, address,
1646                                 page_table, pmd, pte) == VM_FAULT_OOM)
1647                         ret = VM_FAULT_OOM;
1648                 goto out;
1649         }
1650
1651         /* No need to invalidate - it was non-present before */
1652         update_mmu_cache(vma, address, pte);
1653         lazy_mmu_prot_update(pte);
1654         pte_unmap(page_table);
1655         spin_unlock(&mm->page_table_lock);
1656 out:
1657         return ret;
1658 }
1659
1660 /*
1661  * We are called with the MM semaphore and page_table_lock
1662  * spinlock held to protect against concurrent faults in
1663  * multithreaded programs. 
1664  */
1665 static int
1666 do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1667                 pte_t *page_table, pmd_t *pmd, int write_access,
1668                 unsigned long addr)
1669 {
1670         pte_t entry;
1671         struct page * page = ZERO_PAGE(addr);
1672
1673         /* Read-only mapping of ZERO_PAGE. */
1674         entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));
1675
1676         /* ..except if it's a write access */
1677         if (write_access) {
1678                 /* Allocate our own private page. */
1679                 pte_unmap(page_table);
1680                 spin_unlock(&mm->page_table_lock);
1681
1682                 if (unlikely(anon_vma_prepare(vma)))
1683                         goto no_mem;
1684                 page = alloc_zeroed_user_highpage(vma, addr);
1685                 if (!page)
1686                         goto no_mem;
1687
1688                 spin_lock(&mm->page_table_lock);
1689                 page_table = pte_offset_map(pmd, addr);
1690
1691                 if (!pte_none(*page_table)) {
1692                         pte_unmap(page_table);
1693                         page_cache_release(page);
1694                         spin_unlock(&mm->page_table_lock);
1695                         goto out;
1696                 }
1697                 inc_mm_counter(mm, rss);
1698                 entry = maybe_mkwrite(pte_mkdirty(mk_pte(page,
1699                                                          vma->vm_page_prot)),
1700                                       vma);
1701                 lru_cache_add_active(page);
1702                 SetPageReferenced(page);
1703                 page_add_anon_rmap(page, vma, addr);
1704         }
1705
1706         set_pte_at(mm, addr, page_table, entry);
1707         pte_unmap(page_table);
1708
1709         /* No need to invalidate - it was non-present before */
1710         update_mmu_cache(vma, addr, entry);
1711         lazy_mmu_prot_update(entry);
1712         spin_unlock(&mm->page_table_lock);
1713 out:
1714         return VM_FAULT_MINOR;
1715 no_mem:
1716         return VM_FAULT_OOM;
1717 }
1718
1719 /*
1720  * do_no_page() tries to create a new page mapping. It aggressively
1721  * tries to share with existing pages, but makes a separate copy if
1722  * the "write_access" parameter is true in order to avoid the next
1723  * page fault.
1724  *
1725  * As this is called only for pages that do not currently exist, we
1726  * do not need to flush old virtual caches or the TLB.
1727  *
1728  * This is called with the MM semaphore held and the page table
1729  * spinlock held. Exit with the spinlock released.
1730  */
1731 static int
1732 do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1733         unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd)
1734 {
1735         struct page * new_page;
1736         struct address_space *mapping = NULL;
1737         pte_t entry;
1738         unsigned int sequence = 0;
1739         int ret = VM_FAULT_MINOR;
1740         int anon = 0;
1741
1742         if (!vma->vm_ops || !vma->vm_ops->nopage)
1743                 return do_anonymous_page(mm, vma, page_table,
1744                                         pmd, write_access, address);
1745         pte_unmap(page_table);
1746         spin_unlock(&mm->page_table_lock);
1747
1748         if (vma->vm_file) {
1749                 mapping = vma->vm_file->f_mapping;
1750                 sequence = mapping->truncate_count;
1751                 smp_rmb(); /* serializes i_size against truncate_count */
1752         }
1753 retry:
1754         cond_resched();
1755         new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1756         /*
1757          * No smp_rmb is needed here as long as there's a full
1758          * spin_lock/unlock sequence inside the ->nopage callback
1759          * (for the pagecache lookup) that acts as an implicit
1760          * smp_mb() and prevents the i_size read to happen
1761          * after the next truncate_count read.
1762          */
1763
1764         /* no page was available -- either SIGBUS or OOM */
1765         if (new_page == NOPAGE_SIGBUS)
1766                 return VM_FAULT_SIGBUS;
1767         if (new_page == NOPAGE_OOM)
1768                 return VM_FAULT_OOM;
1769
1770         /*
1771          * Should we do an early C-O-W break?
1772          */
1773         if (write_access && !(vma->vm_flags & VM_SHARED)) {
1774                 struct page *page;
1775
1776                 if (unlikely(anon_vma_prepare(vma)))
1777                         goto oom;
1778                 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1779                 if (!page)
1780                         goto oom;
1781                 copy_user_highpage(page, new_page, address);
1782                 page_cache_release(new_page);
1783                 new_page = page;
1784                 anon = 1;
1785         }
1786
1787         spin_lock(&mm->page_table_lock);
1788         /*
1789          * For a file-backed vma, someone could have truncated or otherwise
1790          * invalidated this page.  If unmap_mapping_range got called,
1791          * retry getting the page.
1792          */
1793         if (mapping && unlikely(sequence != mapping->truncate_count)) {
1794                 sequence = mapping->truncate_count;
1795                 spin_unlock(&mm->page_table_lock);
1796                 page_cache_release(new_page);
1797                 goto retry;
1798         }
1799         page_table = pte_offset_map(pmd, address);
1800
1801         /*
1802          * This silly early PAGE_DIRTY setting removes a race
1803          * due to the bad i386 page protection. But it's valid
1804          * for other architectures too.
1805          *
1806          * Note that if write_access is true, we either now have
1807          * an exclusive copy of the page, or this is a shared mapping,
1808          * so we can make it writable and dirty to avoid having to
1809          * handle that later.
1810          */
1811         /* Only go through if we didn't race with anybody else... */
1812         if (pte_none(*page_table)) {
1813                 if (!PageReserved(new_page))
1814                         inc_mm_counter(mm, rss);
1815
1816                 flush_icache_page(vma, new_page);
1817                 entry = mk_pte(new_page, vma->vm_page_prot);
1818                 if (write_access)
1819                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1820                 set_pte_at(mm, address, page_table, entry);
1821                 if (anon) {
1822                         lru_cache_add_active(new_page);
1823                         page_add_anon_rmap(new_page, vma, address);
1824                 } else
1825                         page_add_file_rmap(new_page);
1826                 pte_unmap(page_table);
1827         } else {
1828                 /* One of our sibling threads was faster, back out. */
1829                 pte_unmap(page_table);
1830                 page_cache_release(new_page);
1831                 spin_unlock(&mm->page_table_lock);
1832                 goto out;
1833         }
1834
1835         /* no need to invalidate: a not-present page shouldn't be cached */
1836         update_mmu_cache(vma, address, entry);
1837         lazy_mmu_prot_update(entry);
1838         spin_unlock(&mm->page_table_lock);
1839 out:
1840         return ret;
1841 oom:
1842         page_cache_release(new_page);
1843         ret = VM_FAULT_OOM;
1844         goto out;
1845 }
1846
1847 /*
1848  * Fault of a previously existing named mapping. Repopulate the pte
1849  * from the encoded file_pte if possible. This enables swappable
1850  * nonlinear vmas.
1851  */
1852 static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma,
1853         unsigned long address, int write_access, pte_t *pte, pmd_t *pmd)
1854 {
1855         unsigned long pgoff;
1856         int err;
1857
1858         BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage);
1859         /*
1860          * Fall back to the linear mapping if the fs does not support
1861          * ->populate:
1862          */
1863         if (!vma->vm_ops || !vma->vm_ops->populate || 
1864                         (write_access && !(vma->vm_flags & VM_SHARED))) {
1865                 pte_clear(mm, address, pte);
1866                 return do_no_page(mm, vma, address, write_access, pte, pmd);
1867         }
1868
1869         pgoff = pte_to_pgoff(*pte);
1870
1871         pte_unmap(pte);
1872         spin_unlock(&mm->page_table_lock);
1873
1874         err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0);
1875         if (err == -ENOMEM)
1876                 return VM_FAULT_OOM;
1877         if (err)
1878                 return VM_FAULT_SIGBUS;
1879         return VM_FAULT_MAJOR;
1880 }
1881
1882 /*
1883  * These routines also need to handle stuff like marking pages dirty
1884  * and/or accessed for architectures that don't do it in hardware (most
1885  * RISC architectures).  The early dirtying is also good on the i386.
1886  *
1887  * There is also a hook called "update_mmu_cache()" that architectures
1888  * with external mmu caches can use to update those (ie the Sparc or
1889  * PowerPC hashed page tables that act as extended TLBs).
1890  *
1891  * Note the "page_table_lock". It is to protect against kswapd removing
1892  * pages from under us. Note that kswapd only ever _removes_ pages, never
1893  * adds them. As such, once we have noticed that the page is not present,
1894  * we can drop the lock early.
1895  *
1896  * The adding of pages is protected by the MM semaphore (which we hold),
1897  * so we don't need to worry about a page being suddenly been added into
1898  * our VM.
1899  *
1900  * We enter with the pagetable spinlock held, we are supposed to
1901  * release it when done.
1902  */
1903 static inline int handle_pte_fault(struct mm_struct *mm,
1904         struct vm_area_struct * vma, unsigned long address,
1905         int write_access, pte_t *pte, pmd_t *pmd)
1906 {
1907         pte_t entry;
1908
1909         entry = *pte;
1910         if (!pte_present(entry)) {
1911                 /*
1912                  * If it truly wasn't present, we know that kswapd
1913                  * and the PTE updates will not touch it later. So
1914                  * drop the lock.
1915                  */
1916                 if (pte_none(entry))
1917                         return do_no_page(mm, vma, address, write_access, pte, pmd);
1918                 if (pte_file(entry))
1919                         return do_file_page(mm, vma, address, write_access, pte, pmd);
1920                 return do_swap_page(mm, vma, address, pte, pmd, entry, write_access);
1921         }
1922
1923         if (write_access) {
1924                 if (!pte_write(entry))
1925                         return do_wp_page(mm, vma, address, pte, pmd, entry);
1926
1927                 entry = pte_mkdirty(entry);
1928         }
1929         entry = pte_mkyoung(entry);
1930         ptep_set_access_flags(vma, address, pte, entry, write_access);
1931         update_mmu_cache(vma, address, entry);
1932         lazy_mmu_prot_update(entry);
1933         pte_unmap(pte);
1934         spin_unlock(&mm->page_table_lock);
1935         return VM_FAULT_MINOR;
1936 }
1937
1938 /*
1939  * By the time we get here, we already hold the mm semaphore
1940  */
1941 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
1942                 unsigned long address, int write_access)
1943 {
1944         pgd_t *pgd;
1945         pud_t *pud;
1946         pmd_t *pmd;
1947         pte_t *pte;
1948
1949         __set_current_state(TASK_RUNNING);
1950
1951         inc_page_state(pgfault);
1952
1953         if (is_vm_hugetlb_page(vma))
1954                 return VM_FAULT_SIGBUS; /* mapping truncation does this. */
1955
1956         /*
1957          * We need the page table lock to synchronize with kswapd
1958          * and the SMP-safe atomic PTE updates.
1959          */
1960         pgd = pgd_offset(mm, address);
1961         spin_lock(&mm->page_table_lock);
1962
1963         pud = pud_alloc(mm, pgd, address);
1964         if (!pud)
1965                 goto oom;
1966
1967         pmd = pmd_alloc(mm, pud, address);
1968         if (!pmd)
1969                 goto oom;
1970
1971         pte = pte_alloc_map(mm, pmd, address);
1972         if (!pte)
1973                 goto oom;
1974         
1975         return handle_pte_fault(mm, vma, address, write_access, pte, pmd);
1976
1977  oom:
1978         spin_unlock(&mm->page_table_lock);
1979         return VM_FAULT_OOM;
1980 }
1981
1982 #ifndef __PAGETABLE_PUD_FOLDED
1983 /*
1984  * Allocate page upper directory.
1985  *
1986  * We've already handled the fast-path in-line, and we own the
1987  * page table lock.
1988  */
1989 pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1990 {
1991         pud_t *new;
1992
1993         spin_unlock(&mm->page_table_lock);
1994         new = pud_alloc_one(mm, address);
1995         spin_lock(&mm->page_table_lock);
1996         if (!new)
1997                 return NULL;
1998
1999         /*
2000          * Because we dropped the lock, we should re-check the
2001          * entry, as somebody else could have populated it..
2002          */
2003         if (pgd_present(*pgd)) {
2004                 pud_free(new);
2005                 goto out;
2006         }
2007         pgd_populate(mm, pgd, new);
2008  out:
2009         return pud_offset(pgd, address);
2010 }
2011 #endif /* __PAGETABLE_PUD_FOLDED */
2012
2013 #ifndef __PAGETABLE_PMD_FOLDED
2014 /*
2015  * Allocate page middle directory.
2016  *
2017  * We've already handled the fast-path in-line, and we own the
2018  * page table lock.
2019  */
2020 pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2021 {
2022         pmd_t *new;
2023
2024         spin_unlock(&mm->page_table_lock);
2025         new = pmd_alloc_one(mm, address);
2026         spin_lock(&mm->page_table_lock);
2027         if (!new)
2028                 return NULL;
2029
2030         /*
2031          * Because we dropped the lock, we should re-check the
2032          * entry, as somebody else could have populated it..
2033          */
2034 #ifndef __ARCH_HAS_4LEVEL_HACK
2035         if (pud_present(*pud)) {
2036                 pmd_free(new);
2037                 goto out;
2038         }
2039         pud_populate(mm, pud, new);
2040 #else
2041         if (pgd_present(*pud)) {
2042                 pmd_free(new);
2043                 goto out;
2044         }
2045         pgd_populate(mm, pud, new);
2046 #endif /* __ARCH_HAS_4LEVEL_HACK */
2047
2048  out:
2049         return pmd_offset(pud, address);
2050 }
2051 #endif /* __PAGETABLE_PMD_FOLDED */
2052
2053 int make_pages_present(unsigned long addr, unsigned long end)
2054 {
2055         int ret, len, write;
2056         struct vm_area_struct * vma;
2057
2058         vma = find_vma(current->mm, addr);
2059         if (!vma)
2060                 return -1;
2061         write = (vma->vm_flags & VM_WRITE) != 0;
2062         if (addr >= end)
2063                 BUG();
2064         if (end > vma->vm_end)
2065                 BUG();
2066         len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2067         ret = get_user_pages(current, current->mm, addr,
2068                         len, write, 0, NULL, NULL);
2069         if (ret < 0)
2070                 return ret;
2071         return ret == len ? 0 : -1;
2072 }
2073
2074 /* 
2075  * Map a vmalloc()-space virtual address to the physical page.
2076  */
2077 struct page * vmalloc_to_page(void * vmalloc_addr)
2078 {
2079         unsigned long addr = (unsigned long) vmalloc_addr;
2080         struct page *page = NULL;
2081         pgd_t *pgd = pgd_offset_k(addr);
2082         pud_t *pud;
2083         pmd_t *pmd;
2084         pte_t *ptep, pte;
2085   
2086         if (!pgd_none(*pgd)) {
2087                 pud = pud_offset(pgd, addr);
2088                 if (!pud_none(*pud)) {
2089                         pmd = pmd_offset(pud, addr);
2090                         if (!pmd_none(*pmd)) {
2091                                 ptep = pte_offset_map(pmd, addr);
2092                                 pte = *ptep;
2093                                 if (pte_present(pte))
2094                                         page = pte_page(pte);
2095                                 pte_unmap(ptep);
2096                         }
2097                 }
2098         }
2099         return page;
2100 }
2101
2102 EXPORT_SYMBOL(vmalloc_to_page);
2103
2104 /*
2105  * Map a vmalloc()-space virtual address to the physical page frame number.
2106  */
2107 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2108 {
2109         return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2110 }
2111
2112 EXPORT_SYMBOL(vmalloc_to_pfn);
2113
2114 /*
2115  * update_mem_hiwater
2116  *      - update per process rss and vm high water data
2117  */
2118 void update_mem_hiwater(struct task_struct *tsk)
2119 {
2120         if (tsk->mm) {
2121                 unsigned long rss = get_mm_counter(tsk->mm, rss);
2122
2123                 if (tsk->mm->hiwater_rss < rss)
2124                         tsk->mm->hiwater_rss = rss;
2125                 if (tsk->mm->hiwater_vm < tsk->mm->total_vm)
2126                         tsk->mm->hiwater_vm = tsk->mm->total_vm;
2127         }
2128 }
2129
2130 #if !defined(__HAVE_ARCH_GATE_AREA)
2131
2132 #if defined(AT_SYSINFO_EHDR)
2133 struct vm_area_struct gate_vma;
2134
2135 static int __init gate_vma_init(void)
2136 {
2137         gate_vma.vm_mm = NULL;
2138         gate_vma.vm_start = FIXADDR_USER_START;
2139         gate_vma.vm_end = FIXADDR_USER_END;
2140         gate_vma.vm_page_prot = PAGE_READONLY;
2141         gate_vma.vm_flags = 0;
2142         return 0;
2143 }
2144 __initcall(gate_vma_init);
2145 #endif
2146
2147 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2148 {
2149 #ifdef AT_SYSINFO_EHDR
2150         return &gate_vma;
2151 #else
2152         return NULL;
2153 #endif
2154 }
2155
2156 int in_gate_area_no_task(unsigned long addr)
2157 {
2158 #ifdef AT_SYSINFO_EHDR
2159         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2160                 return 1;
2161 #endif
2162         return 0;
2163 }
2164
2165 #endif  /* __HAVE_ARCH_GATE_AREA */