kcore: register module area in generic way
[safe/jmp/linux-2.6] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59
60 #include <asm/io.h>
61 #include <asm/pgalloc.h>
62 #include <asm/uaccess.h>
63 #include <asm/tlb.h>
64 #include <asm/tlbflush.h>
65 #include <asm/pgtable.h>
66
67 #include "internal.h"
68
69 #ifndef CONFIG_NEED_MULTIPLE_NODES
70 /* use the per-pgdat data instead for discontigmem - mbligh */
71 unsigned long max_mapnr;
72 struct page *mem_map;
73
74 EXPORT_SYMBOL(max_mapnr);
75 EXPORT_SYMBOL(mem_map);
76 #endif
77
78 unsigned long num_physpages;
79 /*
80  * A number of key systems in x86 including ioremap() rely on the assumption
81  * that high_memory defines the upper bound on direct map memory, then end
82  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
83  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
84  * and ZONE_HIGHMEM.
85  */
86 void * high_memory;
87
88 EXPORT_SYMBOL(num_physpages);
89 EXPORT_SYMBOL(high_memory);
90
91 /*
92  * Randomize the address space (stacks, mmaps, brk, etc.).
93  *
94  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95  *   as ancient (libc5 based) binaries can segfault. )
96  */
97 int randomize_va_space __read_mostly =
98 #ifdef CONFIG_COMPAT_BRK
99                                         1;
100 #else
101                                         2;
102 #endif
103
104 static int __init disable_randmaps(char *s)
105 {
106         randomize_va_space = 0;
107         return 1;
108 }
109 __setup("norandmaps", disable_randmaps);
110
111 unsigned long zero_pfn __read_mostly;
112 unsigned long highest_memmap_pfn __read_mostly;
113
114 /*
115  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
116  */
117 static int __init init_zero_pfn(void)
118 {
119         zero_pfn = page_to_pfn(ZERO_PAGE(0));
120         return 0;
121 }
122 core_initcall(init_zero_pfn);
123
124 /*
125  * If a p?d_bad entry is found while walking page tables, report
126  * the error, before resetting entry to p?d_none.  Usually (but
127  * very seldom) called out from the p?d_none_or_clear_bad macros.
128  */
129
130 void pgd_clear_bad(pgd_t *pgd)
131 {
132         pgd_ERROR(*pgd);
133         pgd_clear(pgd);
134 }
135
136 void pud_clear_bad(pud_t *pud)
137 {
138         pud_ERROR(*pud);
139         pud_clear(pud);
140 }
141
142 void pmd_clear_bad(pmd_t *pmd)
143 {
144         pmd_ERROR(*pmd);
145         pmd_clear(pmd);
146 }
147
148 /*
149  * Note: this doesn't free the actual pages themselves. That
150  * has been handled earlier when unmapping all the memory regions.
151  */
152 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
153                            unsigned long addr)
154 {
155         pgtable_t token = pmd_pgtable(*pmd);
156         pmd_clear(pmd);
157         pte_free_tlb(tlb, token, addr);
158         tlb->mm->nr_ptes--;
159 }
160
161 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
162                                 unsigned long addr, unsigned long end,
163                                 unsigned long floor, unsigned long ceiling)
164 {
165         pmd_t *pmd;
166         unsigned long next;
167         unsigned long start;
168
169         start = addr;
170         pmd = pmd_offset(pud, addr);
171         do {
172                 next = pmd_addr_end(addr, end);
173                 if (pmd_none_or_clear_bad(pmd))
174                         continue;
175                 free_pte_range(tlb, pmd, addr);
176         } while (pmd++, addr = next, addr != end);
177
178         start &= PUD_MASK;
179         if (start < floor)
180                 return;
181         if (ceiling) {
182                 ceiling &= PUD_MASK;
183                 if (!ceiling)
184                         return;
185         }
186         if (end - 1 > ceiling - 1)
187                 return;
188
189         pmd = pmd_offset(pud, start);
190         pud_clear(pud);
191         pmd_free_tlb(tlb, pmd, start);
192 }
193
194 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
195                                 unsigned long addr, unsigned long end,
196                                 unsigned long floor, unsigned long ceiling)
197 {
198         pud_t *pud;
199         unsigned long next;
200         unsigned long start;
201
202         start = addr;
203         pud = pud_offset(pgd, addr);
204         do {
205                 next = pud_addr_end(addr, end);
206                 if (pud_none_or_clear_bad(pud))
207                         continue;
208                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
209         } while (pud++, addr = next, addr != end);
210
211         start &= PGDIR_MASK;
212         if (start < floor)
213                 return;
214         if (ceiling) {
215                 ceiling &= PGDIR_MASK;
216                 if (!ceiling)
217                         return;
218         }
219         if (end - 1 > ceiling - 1)
220                 return;
221
222         pud = pud_offset(pgd, start);
223         pgd_clear(pgd);
224         pud_free_tlb(tlb, pud, start);
225 }
226
227 /*
228  * This function frees user-level page tables of a process.
229  *
230  * Must be called with pagetable lock held.
231  */
232 void free_pgd_range(struct mmu_gather *tlb,
233                         unsigned long addr, unsigned long end,
234                         unsigned long floor, unsigned long ceiling)
235 {
236         pgd_t *pgd;
237         unsigned long next;
238         unsigned long start;
239
240         /*
241          * The next few lines have given us lots of grief...
242          *
243          * Why are we testing PMD* at this top level?  Because often
244          * there will be no work to do at all, and we'd prefer not to
245          * go all the way down to the bottom just to discover that.
246          *
247          * Why all these "- 1"s?  Because 0 represents both the bottom
248          * of the address space and the top of it (using -1 for the
249          * top wouldn't help much: the masks would do the wrong thing).
250          * The rule is that addr 0 and floor 0 refer to the bottom of
251          * the address space, but end 0 and ceiling 0 refer to the top
252          * Comparisons need to use "end - 1" and "ceiling - 1" (though
253          * that end 0 case should be mythical).
254          *
255          * Wherever addr is brought up or ceiling brought down, we must
256          * be careful to reject "the opposite 0" before it confuses the
257          * subsequent tests.  But what about where end is brought down
258          * by PMD_SIZE below? no, end can't go down to 0 there.
259          *
260          * Whereas we round start (addr) and ceiling down, by different
261          * masks at different levels, in order to test whether a table
262          * now has no other vmas using it, so can be freed, we don't
263          * bother to round floor or end up - the tests don't need that.
264          */
265
266         addr &= PMD_MASK;
267         if (addr < floor) {
268                 addr += PMD_SIZE;
269                 if (!addr)
270                         return;
271         }
272         if (ceiling) {
273                 ceiling &= PMD_MASK;
274                 if (!ceiling)
275                         return;
276         }
277         if (end - 1 > ceiling - 1)
278                 end -= PMD_SIZE;
279         if (addr > end - 1)
280                 return;
281
282         start = addr;
283         pgd = pgd_offset(tlb->mm, addr);
284         do {
285                 next = pgd_addr_end(addr, end);
286                 if (pgd_none_or_clear_bad(pgd))
287                         continue;
288                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
289         } while (pgd++, addr = next, addr != end);
290 }
291
292 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
293                 unsigned long floor, unsigned long ceiling)
294 {
295         while (vma) {
296                 struct vm_area_struct *next = vma->vm_next;
297                 unsigned long addr = vma->vm_start;
298
299                 /*
300                  * Hide vma from rmap and vmtruncate before freeing pgtables
301                  */
302                 anon_vma_unlink(vma);
303                 unlink_file_vma(vma);
304
305                 if (is_vm_hugetlb_page(vma)) {
306                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
307                                 floor, next? next->vm_start: ceiling);
308                 } else {
309                         /*
310                          * Optimization: gather nearby vmas into one call down
311                          */
312                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
313                                && !is_vm_hugetlb_page(next)) {
314                                 vma = next;
315                                 next = vma->vm_next;
316                                 anon_vma_unlink(vma);
317                                 unlink_file_vma(vma);
318                         }
319                         free_pgd_range(tlb, addr, vma->vm_end,
320                                 floor, next? next->vm_start: ceiling);
321                 }
322                 vma = next;
323         }
324 }
325
326 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
327 {
328         pgtable_t new = pte_alloc_one(mm, address);
329         if (!new)
330                 return -ENOMEM;
331
332         /*
333          * Ensure all pte setup (eg. pte page lock and page clearing) are
334          * visible before the pte is made visible to other CPUs by being
335          * put into page tables.
336          *
337          * The other side of the story is the pointer chasing in the page
338          * table walking code (when walking the page table without locking;
339          * ie. most of the time). Fortunately, these data accesses consist
340          * of a chain of data-dependent loads, meaning most CPUs (alpha
341          * being the notable exception) will already guarantee loads are
342          * seen in-order. See the alpha page table accessors for the
343          * smp_read_barrier_depends() barriers in page table walking code.
344          */
345         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
346
347         spin_lock(&mm->page_table_lock);
348         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
349                 mm->nr_ptes++;
350                 pmd_populate(mm, pmd, new);
351                 new = NULL;
352         }
353         spin_unlock(&mm->page_table_lock);
354         if (new)
355                 pte_free(mm, new);
356         return 0;
357 }
358
359 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
360 {
361         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
362         if (!new)
363                 return -ENOMEM;
364
365         smp_wmb(); /* See comment in __pte_alloc */
366
367         spin_lock(&init_mm.page_table_lock);
368         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
369                 pmd_populate_kernel(&init_mm, pmd, new);
370                 new = NULL;
371         }
372         spin_unlock(&init_mm.page_table_lock);
373         if (new)
374                 pte_free_kernel(&init_mm, new);
375         return 0;
376 }
377
378 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
379 {
380         if (file_rss)
381                 add_mm_counter(mm, file_rss, file_rss);
382         if (anon_rss)
383                 add_mm_counter(mm, anon_rss, anon_rss);
384 }
385
386 /*
387  * This function is called to print an error when a bad pte
388  * is found. For example, we might have a PFN-mapped pte in
389  * a region that doesn't allow it.
390  *
391  * The calling function must still handle the error.
392  */
393 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
394                           pte_t pte, struct page *page)
395 {
396         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
397         pud_t *pud = pud_offset(pgd, addr);
398         pmd_t *pmd = pmd_offset(pud, addr);
399         struct address_space *mapping;
400         pgoff_t index;
401         static unsigned long resume;
402         static unsigned long nr_shown;
403         static unsigned long nr_unshown;
404
405         /*
406          * Allow a burst of 60 reports, then keep quiet for that minute;
407          * or allow a steady drip of one report per second.
408          */
409         if (nr_shown == 60) {
410                 if (time_before(jiffies, resume)) {
411                         nr_unshown++;
412                         return;
413                 }
414                 if (nr_unshown) {
415                         printk(KERN_ALERT
416                                 "BUG: Bad page map: %lu messages suppressed\n",
417                                 nr_unshown);
418                         nr_unshown = 0;
419                 }
420                 nr_shown = 0;
421         }
422         if (nr_shown++ == 0)
423                 resume = jiffies + 60 * HZ;
424
425         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
426         index = linear_page_index(vma, addr);
427
428         printk(KERN_ALERT
429                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
430                 current->comm,
431                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
432         if (page) {
433                 printk(KERN_ALERT
434                 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
435                 page, (void *)page->flags, page_count(page),
436                 page_mapcount(page), page->mapping, page->index);
437         }
438         printk(KERN_ALERT
439                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
440                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
441         /*
442          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
443          */
444         if (vma->vm_ops)
445                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
446                                 (unsigned long)vma->vm_ops->fault);
447         if (vma->vm_file && vma->vm_file->f_op)
448                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
449                                 (unsigned long)vma->vm_file->f_op->mmap);
450         dump_stack();
451         add_taint(TAINT_BAD_PAGE);
452 }
453
454 static inline int is_cow_mapping(unsigned int flags)
455 {
456         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
457 }
458
459 #ifndef is_zero_pfn
460 static inline int is_zero_pfn(unsigned long pfn)
461 {
462         return pfn == zero_pfn;
463 }
464 #endif
465
466 #ifndef my_zero_pfn
467 static inline unsigned long my_zero_pfn(unsigned long addr)
468 {
469         return zero_pfn;
470 }
471 #endif
472
473 /*
474  * vm_normal_page -- This function gets the "struct page" associated with a pte.
475  *
476  * "Special" mappings do not wish to be associated with a "struct page" (either
477  * it doesn't exist, or it exists but they don't want to touch it). In this
478  * case, NULL is returned here. "Normal" mappings do have a struct page.
479  *
480  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
481  * pte bit, in which case this function is trivial. Secondly, an architecture
482  * may not have a spare pte bit, which requires a more complicated scheme,
483  * described below.
484  *
485  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
486  * special mapping (even if there are underlying and valid "struct pages").
487  * COWed pages of a VM_PFNMAP are always normal.
488  *
489  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
490  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
491  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
492  * mapping will always honor the rule
493  *
494  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
495  *
496  * And for normal mappings this is false.
497  *
498  * This restricts such mappings to be a linear translation from virtual address
499  * to pfn. To get around this restriction, we allow arbitrary mappings so long
500  * as the vma is not a COW mapping; in that case, we know that all ptes are
501  * special (because none can have been COWed).
502  *
503  *
504  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
505  *
506  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
507  * page" backing, however the difference is that _all_ pages with a struct
508  * page (that is, those where pfn_valid is true) are refcounted and considered
509  * normal pages by the VM. The disadvantage is that pages are refcounted
510  * (which can be slower and simply not an option for some PFNMAP users). The
511  * advantage is that we don't have to follow the strict linearity rule of
512  * PFNMAP mappings in order to support COWable mappings.
513  *
514  */
515 #ifdef __HAVE_ARCH_PTE_SPECIAL
516 # define HAVE_PTE_SPECIAL 1
517 #else
518 # define HAVE_PTE_SPECIAL 0
519 #endif
520 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
521                                 pte_t pte)
522 {
523         unsigned long pfn = pte_pfn(pte);
524
525         if (HAVE_PTE_SPECIAL) {
526                 if (likely(!pte_special(pte)))
527                         goto check_pfn;
528                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
529                         return NULL;
530                 if (!is_zero_pfn(pfn))
531                         print_bad_pte(vma, addr, pte, NULL);
532                 return NULL;
533         }
534
535         /* !HAVE_PTE_SPECIAL case follows: */
536
537         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
538                 if (vma->vm_flags & VM_MIXEDMAP) {
539                         if (!pfn_valid(pfn))
540                                 return NULL;
541                         goto out;
542                 } else {
543                         unsigned long off;
544                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
545                         if (pfn == vma->vm_pgoff + off)
546                                 return NULL;
547                         if (!is_cow_mapping(vma->vm_flags))
548                                 return NULL;
549                 }
550         }
551
552         if (is_zero_pfn(pfn))
553                 return NULL;
554 check_pfn:
555         if (unlikely(pfn > highest_memmap_pfn)) {
556                 print_bad_pte(vma, addr, pte, NULL);
557                 return NULL;
558         }
559
560         /*
561          * NOTE! We still have PageReserved() pages in the page tables.
562          * eg. VDSO mappings can cause them to exist.
563          */
564 out:
565         return pfn_to_page(pfn);
566 }
567
568 /*
569  * copy one vm_area from one task to the other. Assumes the page tables
570  * already present in the new task to be cleared in the whole range
571  * covered by this vma.
572  */
573
574 static inline void
575 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
576                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
577                 unsigned long addr, int *rss)
578 {
579         unsigned long vm_flags = vma->vm_flags;
580         pte_t pte = *src_pte;
581         struct page *page;
582
583         /* pte contains position in swap or file, so copy. */
584         if (unlikely(!pte_present(pte))) {
585                 if (!pte_file(pte)) {
586                         swp_entry_t entry = pte_to_swp_entry(pte);
587
588                         swap_duplicate(entry);
589                         /* make sure dst_mm is on swapoff's mmlist. */
590                         if (unlikely(list_empty(&dst_mm->mmlist))) {
591                                 spin_lock(&mmlist_lock);
592                                 if (list_empty(&dst_mm->mmlist))
593                                         list_add(&dst_mm->mmlist,
594                                                  &src_mm->mmlist);
595                                 spin_unlock(&mmlist_lock);
596                         }
597                         if (is_write_migration_entry(entry) &&
598                                         is_cow_mapping(vm_flags)) {
599                                 /*
600                                  * COW mappings require pages in both parent
601                                  * and child to be set to read.
602                                  */
603                                 make_migration_entry_read(&entry);
604                                 pte = swp_entry_to_pte(entry);
605                                 set_pte_at(src_mm, addr, src_pte, pte);
606                         }
607                 }
608                 goto out_set_pte;
609         }
610
611         /*
612          * If it's a COW mapping, write protect it both
613          * in the parent and the child
614          */
615         if (is_cow_mapping(vm_flags)) {
616                 ptep_set_wrprotect(src_mm, addr, src_pte);
617                 pte = pte_wrprotect(pte);
618         }
619
620         /*
621          * If it's a shared mapping, mark it clean in
622          * the child
623          */
624         if (vm_flags & VM_SHARED)
625                 pte = pte_mkclean(pte);
626         pte = pte_mkold(pte);
627
628         page = vm_normal_page(vma, addr, pte);
629         if (page) {
630                 get_page(page);
631                 page_dup_rmap(page);
632                 rss[PageAnon(page)]++;
633         }
634
635 out_set_pte:
636         set_pte_at(dst_mm, addr, dst_pte, pte);
637 }
638
639 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
640                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
641                 unsigned long addr, unsigned long end)
642 {
643         pte_t *src_pte, *dst_pte;
644         spinlock_t *src_ptl, *dst_ptl;
645         int progress = 0;
646         int rss[2];
647
648 again:
649         rss[1] = rss[0] = 0;
650         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
651         if (!dst_pte)
652                 return -ENOMEM;
653         src_pte = pte_offset_map_nested(src_pmd, addr);
654         src_ptl = pte_lockptr(src_mm, src_pmd);
655         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
656         arch_enter_lazy_mmu_mode();
657
658         do {
659                 /*
660                  * We are holding two locks at this point - either of them
661                  * could generate latencies in another task on another CPU.
662                  */
663                 if (progress >= 32) {
664                         progress = 0;
665                         if (need_resched() ||
666                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
667                                 break;
668                 }
669                 if (pte_none(*src_pte)) {
670                         progress++;
671                         continue;
672                 }
673                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
674                 progress += 8;
675         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
676
677         arch_leave_lazy_mmu_mode();
678         spin_unlock(src_ptl);
679         pte_unmap_nested(src_pte - 1);
680         add_mm_rss(dst_mm, rss[0], rss[1]);
681         pte_unmap_unlock(dst_pte - 1, dst_ptl);
682         cond_resched();
683         if (addr != end)
684                 goto again;
685         return 0;
686 }
687
688 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
689                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
690                 unsigned long addr, unsigned long end)
691 {
692         pmd_t *src_pmd, *dst_pmd;
693         unsigned long next;
694
695         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
696         if (!dst_pmd)
697                 return -ENOMEM;
698         src_pmd = pmd_offset(src_pud, addr);
699         do {
700                 next = pmd_addr_end(addr, end);
701                 if (pmd_none_or_clear_bad(src_pmd))
702                         continue;
703                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
704                                                 vma, addr, next))
705                         return -ENOMEM;
706         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
707         return 0;
708 }
709
710 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
711                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
712                 unsigned long addr, unsigned long end)
713 {
714         pud_t *src_pud, *dst_pud;
715         unsigned long next;
716
717         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
718         if (!dst_pud)
719                 return -ENOMEM;
720         src_pud = pud_offset(src_pgd, addr);
721         do {
722                 next = pud_addr_end(addr, end);
723                 if (pud_none_or_clear_bad(src_pud))
724                         continue;
725                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
726                                                 vma, addr, next))
727                         return -ENOMEM;
728         } while (dst_pud++, src_pud++, addr = next, addr != end);
729         return 0;
730 }
731
732 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
733                 struct vm_area_struct *vma)
734 {
735         pgd_t *src_pgd, *dst_pgd;
736         unsigned long next;
737         unsigned long addr = vma->vm_start;
738         unsigned long end = vma->vm_end;
739         int ret;
740
741         /*
742          * Don't copy ptes where a page fault will fill them correctly.
743          * Fork becomes much lighter when there are big shared or private
744          * readonly mappings. The tradeoff is that copy_page_range is more
745          * efficient than faulting.
746          */
747         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
748                 if (!vma->anon_vma)
749                         return 0;
750         }
751
752         if (is_vm_hugetlb_page(vma))
753                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
754
755         if (unlikely(is_pfn_mapping(vma))) {
756                 /*
757                  * We do not free on error cases below as remove_vma
758                  * gets called on error from higher level routine
759                  */
760                 ret = track_pfn_vma_copy(vma);
761                 if (ret)
762                         return ret;
763         }
764
765         /*
766          * We need to invalidate the secondary MMU mappings only when
767          * there could be a permission downgrade on the ptes of the
768          * parent mm. And a permission downgrade will only happen if
769          * is_cow_mapping() returns true.
770          */
771         if (is_cow_mapping(vma->vm_flags))
772                 mmu_notifier_invalidate_range_start(src_mm, addr, end);
773
774         ret = 0;
775         dst_pgd = pgd_offset(dst_mm, addr);
776         src_pgd = pgd_offset(src_mm, addr);
777         do {
778                 next = pgd_addr_end(addr, end);
779                 if (pgd_none_or_clear_bad(src_pgd))
780                         continue;
781                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
782                                             vma, addr, next))) {
783                         ret = -ENOMEM;
784                         break;
785                 }
786         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
787
788         if (is_cow_mapping(vma->vm_flags))
789                 mmu_notifier_invalidate_range_end(src_mm,
790                                                   vma->vm_start, end);
791         return ret;
792 }
793
794 static unsigned long zap_pte_range(struct mmu_gather *tlb,
795                                 struct vm_area_struct *vma, pmd_t *pmd,
796                                 unsigned long addr, unsigned long end,
797                                 long *zap_work, struct zap_details *details)
798 {
799         struct mm_struct *mm = tlb->mm;
800         pte_t *pte;
801         spinlock_t *ptl;
802         int file_rss = 0;
803         int anon_rss = 0;
804
805         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
806         arch_enter_lazy_mmu_mode();
807         do {
808                 pte_t ptent = *pte;
809                 if (pte_none(ptent)) {
810                         (*zap_work)--;
811                         continue;
812                 }
813
814                 (*zap_work) -= PAGE_SIZE;
815
816                 if (pte_present(ptent)) {
817                         struct page *page;
818
819                         page = vm_normal_page(vma, addr, ptent);
820                         if (unlikely(details) && page) {
821                                 /*
822                                  * unmap_shared_mapping_pages() wants to
823                                  * invalidate cache without truncating:
824                                  * unmap shared but keep private pages.
825                                  */
826                                 if (details->check_mapping &&
827                                     details->check_mapping != page->mapping)
828                                         continue;
829                                 /*
830                                  * Each page->index must be checked when
831                                  * invalidating or truncating nonlinear.
832                                  */
833                                 if (details->nonlinear_vma &&
834                                     (page->index < details->first_index ||
835                                      page->index > details->last_index))
836                                         continue;
837                         }
838                         ptent = ptep_get_and_clear_full(mm, addr, pte,
839                                                         tlb->fullmm);
840                         tlb_remove_tlb_entry(tlb, pte, addr);
841                         if (unlikely(!page))
842                                 continue;
843                         if (unlikely(details) && details->nonlinear_vma
844                             && linear_page_index(details->nonlinear_vma,
845                                                 addr) != page->index)
846                                 set_pte_at(mm, addr, pte,
847                                            pgoff_to_pte(page->index));
848                         if (PageAnon(page))
849                                 anon_rss--;
850                         else {
851                                 if (pte_dirty(ptent))
852                                         set_page_dirty(page);
853                                 if (pte_young(ptent) &&
854                                     likely(!VM_SequentialReadHint(vma)))
855                                         mark_page_accessed(page);
856                                 file_rss--;
857                         }
858                         page_remove_rmap(page);
859                         if (unlikely(page_mapcount(page) < 0))
860                                 print_bad_pte(vma, addr, ptent, page);
861                         tlb_remove_page(tlb, page);
862                         continue;
863                 }
864                 /*
865                  * If details->check_mapping, we leave swap entries;
866                  * if details->nonlinear_vma, we leave file entries.
867                  */
868                 if (unlikely(details))
869                         continue;
870                 if (pte_file(ptent)) {
871                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
872                                 print_bad_pte(vma, addr, ptent, NULL);
873                 } else if
874                   (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
875                         print_bad_pte(vma, addr, ptent, NULL);
876                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
877         } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
878
879         add_mm_rss(mm, file_rss, anon_rss);
880         arch_leave_lazy_mmu_mode();
881         pte_unmap_unlock(pte - 1, ptl);
882
883         return addr;
884 }
885
886 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
887                                 struct vm_area_struct *vma, pud_t *pud,
888                                 unsigned long addr, unsigned long end,
889                                 long *zap_work, struct zap_details *details)
890 {
891         pmd_t *pmd;
892         unsigned long next;
893
894         pmd = pmd_offset(pud, addr);
895         do {
896                 next = pmd_addr_end(addr, end);
897                 if (pmd_none_or_clear_bad(pmd)) {
898                         (*zap_work)--;
899                         continue;
900                 }
901                 next = zap_pte_range(tlb, vma, pmd, addr, next,
902                                                 zap_work, details);
903         } while (pmd++, addr = next, (addr != end && *zap_work > 0));
904
905         return addr;
906 }
907
908 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
909                                 struct vm_area_struct *vma, pgd_t *pgd,
910                                 unsigned long addr, unsigned long end,
911                                 long *zap_work, struct zap_details *details)
912 {
913         pud_t *pud;
914         unsigned long next;
915
916         pud = pud_offset(pgd, addr);
917         do {
918                 next = pud_addr_end(addr, end);
919                 if (pud_none_or_clear_bad(pud)) {
920                         (*zap_work)--;
921                         continue;
922                 }
923                 next = zap_pmd_range(tlb, vma, pud, addr, next,
924                                                 zap_work, details);
925         } while (pud++, addr = next, (addr != end && *zap_work > 0));
926
927         return addr;
928 }
929
930 static unsigned long unmap_page_range(struct mmu_gather *tlb,
931                                 struct vm_area_struct *vma,
932                                 unsigned long addr, unsigned long end,
933                                 long *zap_work, struct zap_details *details)
934 {
935         pgd_t *pgd;
936         unsigned long next;
937
938         if (details && !details->check_mapping && !details->nonlinear_vma)
939                 details = NULL;
940
941         BUG_ON(addr >= end);
942         tlb_start_vma(tlb, vma);
943         pgd = pgd_offset(vma->vm_mm, addr);
944         do {
945                 next = pgd_addr_end(addr, end);
946                 if (pgd_none_or_clear_bad(pgd)) {
947                         (*zap_work)--;
948                         continue;
949                 }
950                 next = zap_pud_range(tlb, vma, pgd, addr, next,
951                                                 zap_work, details);
952         } while (pgd++, addr = next, (addr != end && *zap_work > 0));
953         tlb_end_vma(tlb, vma);
954
955         return addr;
956 }
957
958 #ifdef CONFIG_PREEMPT
959 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
960 #else
961 /* No preempt: go for improved straight-line efficiency */
962 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
963 #endif
964
965 /**
966  * unmap_vmas - unmap a range of memory covered by a list of vma's
967  * @tlbp: address of the caller's struct mmu_gather
968  * @vma: the starting vma
969  * @start_addr: virtual address at which to start unmapping
970  * @end_addr: virtual address at which to end unmapping
971  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
972  * @details: details of nonlinear truncation or shared cache invalidation
973  *
974  * Returns the end address of the unmapping (restart addr if interrupted).
975  *
976  * Unmap all pages in the vma list.
977  *
978  * We aim to not hold locks for too long (for scheduling latency reasons).
979  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
980  * return the ending mmu_gather to the caller.
981  *
982  * Only addresses between `start' and `end' will be unmapped.
983  *
984  * The VMA list must be sorted in ascending virtual address order.
985  *
986  * unmap_vmas() assumes that the caller will flush the whole unmapped address
987  * range after unmap_vmas() returns.  So the only responsibility here is to
988  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
989  * drops the lock and schedules.
990  */
991 unsigned long unmap_vmas(struct mmu_gather **tlbp,
992                 struct vm_area_struct *vma, unsigned long start_addr,
993                 unsigned long end_addr, unsigned long *nr_accounted,
994                 struct zap_details *details)
995 {
996         long zap_work = ZAP_BLOCK_SIZE;
997         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
998         int tlb_start_valid = 0;
999         unsigned long start = start_addr;
1000         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1001         int fullmm = (*tlbp)->fullmm;
1002         struct mm_struct *mm = vma->vm_mm;
1003
1004         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1005         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1006                 unsigned long end;
1007
1008                 start = max(vma->vm_start, start_addr);
1009                 if (start >= vma->vm_end)
1010                         continue;
1011                 end = min(vma->vm_end, end_addr);
1012                 if (end <= vma->vm_start)
1013                         continue;
1014
1015                 if (vma->vm_flags & VM_ACCOUNT)
1016                         *nr_accounted += (end - start) >> PAGE_SHIFT;
1017
1018                 if (unlikely(is_pfn_mapping(vma)))
1019                         untrack_pfn_vma(vma, 0, 0);
1020
1021                 while (start != end) {
1022                         if (!tlb_start_valid) {
1023                                 tlb_start = start;
1024                                 tlb_start_valid = 1;
1025                         }
1026
1027                         if (unlikely(is_vm_hugetlb_page(vma))) {
1028                                 /*
1029                                  * It is undesirable to test vma->vm_file as it
1030                                  * should be non-null for valid hugetlb area.
1031                                  * However, vm_file will be NULL in the error
1032                                  * cleanup path of do_mmap_pgoff. When
1033                                  * hugetlbfs ->mmap method fails,
1034                                  * do_mmap_pgoff() nullifies vma->vm_file
1035                                  * before calling this function to clean up.
1036                                  * Since no pte has actually been setup, it is
1037                                  * safe to do nothing in this case.
1038                                  */
1039                                 if (vma->vm_file) {
1040                                         unmap_hugepage_range(vma, start, end, NULL);
1041                                         zap_work -= (end - start) /
1042                                         pages_per_huge_page(hstate_vma(vma));
1043                                 }
1044
1045                                 start = end;
1046                         } else
1047                                 start = unmap_page_range(*tlbp, vma,
1048                                                 start, end, &zap_work, details);
1049
1050                         if (zap_work > 0) {
1051                                 BUG_ON(start != end);
1052                                 break;
1053                         }
1054
1055                         tlb_finish_mmu(*tlbp, tlb_start, start);
1056
1057                         if (need_resched() ||
1058                                 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1059                                 if (i_mmap_lock) {
1060                                         *tlbp = NULL;
1061                                         goto out;
1062                                 }
1063                                 cond_resched();
1064                         }
1065
1066                         *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1067                         tlb_start_valid = 0;
1068                         zap_work = ZAP_BLOCK_SIZE;
1069                 }
1070         }
1071 out:
1072         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1073         return start;   /* which is now the end (or restart) address */
1074 }
1075
1076 /**
1077  * zap_page_range - remove user pages in a given range
1078  * @vma: vm_area_struct holding the applicable pages
1079  * @address: starting address of pages to zap
1080  * @size: number of bytes to zap
1081  * @details: details of nonlinear truncation or shared cache invalidation
1082  */
1083 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1084                 unsigned long size, struct zap_details *details)
1085 {
1086         struct mm_struct *mm = vma->vm_mm;
1087         struct mmu_gather *tlb;
1088         unsigned long end = address + size;
1089         unsigned long nr_accounted = 0;
1090
1091         lru_add_drain();
1092         tlb = tlb_gather_mmu(mm, 0);
1093         update_hiwater_rss(mm);
1094         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1095         if (tlb)
1096                 tlb_finish_mmu(tlb, address, end);
1097         return end;
1098 }
1099
1100 /**
1101  * zap_vma_ptes - remove ptes mapping the vma
1102  * @vma: vm_area_struct holding ptes to be zapped
1103  * @address: starting address of pages to zap
1104  * @size: number of bytes to zap
1105  *
1106  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1107  *
1108  * The entire address range must be fully contained within the vma.
1109  *
1110  * Returns 0 if successful.
1111  */
1112 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1113                 unsigned long size)
1114 {
1115         if (address < vma->vm_start || address + size > vma->vm_end ||
1116                         !(vma->vm_flags & VM_PFNMAP))
1117                 return -1;
1118         zap_page_range(vma, address, size, NULL);
1119         return 0;
1120 }
1121 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1122
1123 /*
1124  * Do a quick page-table lookup for a single page.
1125  */
1126 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1127                         unsigned int flags)
1128 {
1129         pgd_t *pgd;
1130         pud_t *pud;
1131         pmd_t *pmd;
1132         pte_t *ptep, pte;
1133         spinlock_t *ptl;
1134         struct page *page;
1135         struct mm_struct *mm = vma->vm_mm;
1136
1137         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1138         if (!IS_ERR(page)) {
1139                 BUG_ON(flags & FOLL_GET);
1140                 goto out;
1141         }
1142
1143         page = NULL;
1144         pgd = pgd_offset(mm, address);
1145         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1146                 goto no_page_table;
1147
1148         pud = pud_offset(pgd, address);
1149         if (pud_none(*pud))
1150                 goto no_page_table;
1151         if (pud_huge(*pud)) {
1152                 BUG_ON(flags & FOLL_GET);
1153                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1154                 goto out;
1155         }
1156         if (unlikely(pud_bad(*pud)))
1157                 goto no_page_table;
1158
1159         pmd = pmd_offset(pud, address);
1160         if (pmd_none(*pmd))
1161                 goto no_page_table;
1162         if (pmd_huge(*pmd)) {
1163                 BUG_ON(flags & FOLL_GET);
1164                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1165                 goto out;
1166         }
1167         if (unlikely(pmd_bad(*pmd)))
1168                 goto no_page_table;
1169
1170         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1171
1172         pte = *ptep;
1173         if (!pte_present(pte))
1174                 goto no_page;
1175         if ((flags & FOLL_WRITE) && !pte_write(pte))
1176                 goto unlock;
1177
1178         page = vm_normal_page(vma, address, pte);
1179         if (unlikely(!page)) {
1180                 if ((flags & FOLL_DUMP) ||
1181                     !is_zero_pfn(pte_pfn(pte)))
1182                         goto bad_page;
1183                 page = pte_page(pte);
1184         }
1185
1186         if (flags & FOLL_GET)
1187                 get_page(page);
1188         if (flags & FOLL_TOUCH) {
1189                 if ((flags & FOLL_WRITE) &&
1190                     !pte_dirty(pte) && !PageDirty(page))
1191                         set_page_dirty(page);
1192                 /*
1193                  * pte_mkyoung() would be more correct here, but atomic care
1194                  * is needed to avoid losing the dirty bit: it is easier to use
1195                  * mark_page_accessed().
1196                  */
1197                 mark_page_accessed(page);
1198         }
1199 unlock:
1200         pte_unmap_unlock(ptep, ptl);
1201 out:
1202         return page;
1203
1204 bad_page:
1205         pte_unmap_unlock(ptep, ptl);
1206         return ERR_PTR(-EFAULT);
1207
1208 no_page:
1209         pte_unmap_unlock(ptep, ptl);
1210         if (!pte_none(pte))
1211                 return page;
1212
1213 no_page_table:
1214         /*
1215          * When core dumping an enormous anonymous area that nobody
1216          * has touched so far, we don't want to allocate unnecessary pages or
1217          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1218          * then get_dump_page() will return NULL to leave a hole in the dump.
1219          * But we can only make this optimization where a hole would surely
1220          * be zero-filled if handle_mm_fault() actually did handle it.
1221          */
1222         if ((flags & FOLL_DUMP) &&
1223             (!vma->vm_ops || !vma->vm_ops->fault))
1224                 return ERR_PTR(-EFAULT);
1225         return page;
1226 }
1227
1228 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1229                      unsigned long start, int nr_pages, unsigned int gup_flags,
1230                      struct page **pages, struct vm_area_struct **vmas)
1231 {
1232         int i;
1233         unsigned long vm_flags;
1234
1235         if (nr_pages <= 0)
1236                 return 0;
1237
1238         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1239
1240         /* 
1241          * Require read or write permissions.
1242          * If FOLL_FORCE is set, we only require the "MAY" flags.
1243          */
1244         vm_flags  = (gup_flags & FOLL_WRITE) ?
1245                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1246         vm_flags &= (gup_flags & FOLL_FORCE) ?
1247                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1248         i = 0;
1249
1250         do {
1251                 struct vm_area_struct *vma;
1252
1253                 vma = find_extend_vma(mm, start);
1254                 if (!vma && in_gate_area(tsk, start)) {
1255                         unsigned long pg = start & PAGE_MASK;
1256                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1257                         pgd_t *pgd;
1258                         pud_t *pud;
1259                         pmd_t *pmd;
1260                         pte_t *pte;
1261
1262                         /* user gate pages are read-only */
1263                         if (gup_flags & FOLL_WRITE)
1264                                 return i ? : -EFAULT;
1265                         if (pg > TASK_SIZE)
1266                                 pgd = pgd_offset_k(pg);
1267                         else
1268                                 pgd = pgd_offset_gate(mm, pg);
1269                         BUG_ON(pgd_none(*pgd));
1270                         pud = pud_offset(pgd, pg);
1271                         BUG_ON(pud_none(*pud));
1272                         pmd = pmd_offset(pud, pg);
1273                         if (pmd_none(*pmd))
1274                                 return i ? : -EFAULT;
1275                         pte = pte_offset_map(pmd, pg);
1276                         if (pte_none(*pte)) {
1277                                 pte_unmap(pte);
1278                                 return i ? : -EFAULT;
1279                         }
1280                         if (pages) {
1281                                 struct page *page = vm_normal_page(gate_vma, start, *pte);
1282                                 pages[i] = page;
1283                                 if (page)
1284                                         get_page(page);
1285                         }
1286                         pte_unmap(pte);
1287                         if (vmas)
1288                                 vmas[i] = gate_vma;
1289                         i++;
1290                         start += PAGE_SIZE;
1291                         nr_pages--;
1292                         continue;
1293                 }
1294
1295                 if (!vma ||
1296                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1297                     !(vm_flags & vma->vm_flags))
1298                         return i ? : -EFAULT;
1299
1300                 if (is_vm_hugetlb_page(vma)) {
1301                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1302                                         &start, &nr_pages, i, gup_flags);
1303                         continue;
1304                 }
1305
1306                 do {
1307                         struct page *page;
1308                         unsigned int foll_flags = gup_flags;
1309
1310                         /*
1311                          * If we have a pending SIGKILL, don't keep faulting
1312                          * pages and potentially allocating memory.
1313                          */
1314                         if (unlikely(fatal_signal_pending(current)))
1315                                 return i ? i : -ERESTARTSYS;
1316
1317                         cond_resched();
1318                         while (!(page = follow_page(vma, start, foll_flags))) {
1319                                 int ret;
1320
1321                                 ret = handle_mm_fault(mm, vma, start,
1322                                         (foll_flags & FOLL_WRITE) ?
1323                                         FAULT_FLAG_WRITE : 0);
1324
1325                                 if (ret & VM_FAULT_ERROR) {
1326                                         if (ret & VM_FAULT_OOM)
1327                                                 return i ? i : -ENOMEM;
1328                                         else if (ret & VM_FAULT_SIGBUS)
1329                                                 return i ? i : -EFAULT;
1330                                         BUG();
1331                                 }
1332                                 if (ret & VM_FAULT_MAJOR)
1333                                         tsk->maj_flt++;
1334                                 else
1335                                         tsk->min_flt++;
1336
1337                                 /*
1338                                  * The VM_FAULT_WRITE bit tells us that
1339                                  * do_wp_page has broken COW when necessary,
1340                                  * even if maybe_mkwrite decided not to set
1341                                  * pte_write. We can thus safely do subsequent
1342                                  * page lookups as if they were reads. But only
1343                                  * do so when looping for pte_write is futile:
1344                                  * in some cases userspace may also be wanting
1345                                  * to write to the gotten user page, which a
1346                                  * read fault here might prevent (a readonly
1347                                  * page might get reCOWed by userspace write).
1348                                  */
1349                                 if ((ret & VM_FAULT_WRITE) &&
1350                                     !(vma->vm_flags & VM_WRITE))
1351                                         foll_flags &= ~FOLL_WRITE;
1352
1353                                 cond_resched();
1354                         }
1355                         if (IS_ERR(page))
1356                                 return i ? i : PTR_ERR(page);
1357                         if (pages) {
1358                                 pages[i] = page;
1359
1360                                 flush_anon_page(vma, page, start);
1361                                 flush_dcache_page(page);
1362                         }
1363                         if (vmas)
1364                                 vmas[i] = vma;
1365                         i++;
1366                         start += PAGE_SIZE;
1367                         nr_pages--;
1368                 } while (nr_pages && start < vma->vm_end);
1369         } while (nr_pages);
1370         return i;
1371 }
1372
1373 /**
1374  * get_user_pages() - pin user pages in memory
1375  * @tsk:        task_struct of target task
1376  * @mm:         mm_struct of target mm
1377  * @start:      starting user address
1378  * @nr_pages:   number of pages from start to pin
1379  * @write:      whether pages will be written to by the caller
1380  * @force:      whether to force write access even if user mapping is
1381  *              readonly. This will result in the page being COWed even
1382  *              in MAP_SHARED mappings. You do not want this.
1383  * @pages:      array that receives pointers to the pages pinned.
1384  *              Should be at least nr_pages long. Or NULL, if caller
1385  *              only intends to ensure the pages are faulted in.
1386  * @vmas:       array of pointers to vmas corresponding to each page.
1387  *              Or NULL if the caller does not require them.
1388  *
1389  * Returns number of pages pinned. This may be fewer than the number
1390  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1391  * were pinned, returns -errno. Each page returned must be released
1392  * with a put_page() call when it is finished with. vmas will only
1393  * remain valid while mmap_sem is held.
1394  *
1395  * Must be called with mmap_sem held for read or write.
1396  *
1397  * get_user_pages walks a process's page tables and takes a reference to
1398  * each struct page that each user address corresponds to at a given
1399  * instant. That is, it takes the page that would be accessed if a user
1400  * thread accesses the given user virtual address at that instant.
1401  *
1402  * This does not guarantee that the page exists in the user mappings when
1403  * get_user_pages returns, and there may even be a completely different
1404  * page there in some cases (eg. if mmapped pagecache has been invalidated
1405  * and subsequently re faulted). However it does guarantee that the page
1406  * won't be freed completely. And mostly callers simply care that the page
1407  * contains data that was valid *at some point in time*. Typically, an IO
1408  * or similar operation cannot guarantee anything stronger anyway because
1409  * locks can't be held over the syscall boundary.
1410  *
1411  * If write=0, the page must not be written to. If the page is written to,
1412  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1413  * after the page is finished with, and before put_page is called.
1414  *
1415  * get_user_pages is typically used for fewer-copy IO operations, to get a
1416  * handle on the memory by some means other than accesses via the user virtual
1417  * addresses. The pages may be submitted for DMA to devices or accessed via
1418  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1419  * use the correct cache flushing APIs.
1420  *
1421  * See also get_user_pages_fast, for performance critical applications.
1422  */
1423 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1424                 unsigned long start, int nr_pages, int write, int force,
1425                 struct page **pages, struct vm_area_struct **vmas)
1426 {
1427         int flags = FOLL_TOUCH;
1428
1429         if (pages)
1430                 flags |= FOLL_GET;
1431         if (write)
1432                 flags |= FOLL_WRITE;
1433         if (force)
1434                 flags |= FOLL_FORCE;
1435
1436         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1437 }
1438 EXPORT_SYMBOL(get_user_pages);
1439
1440 /**
1441  * get_dump_page() - pin user page in memory while writing it to core dump
1442  * @addr: user address
1443  *
1444  * Returns struct page pointer of user page pinned for dump,
1445  * to be freed afterwards by page_cache_release() or put_page().
1446  *
1447  * Returns NULL on any kind of failure - a hole must then be inserted into
1448  * the corefile, to preserve alignment with its headers; and also returns
1449  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1450  * allowing a hole to be left in the corefile to save diskspace.
1451  *
1452  * Called without mmap_sem, but after all other threads have been killed.
1453  */
1454 #ifdef CONFIG_ELF_CORE
1455 struct page *get_dump_page(unsigned long addr)
1456 {
1457         struct vm_area_struct *vma;
1458         struct page *page;
1459
1460         if (__get_user_pages(current, current->mm, addr, 1,
1461                         FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
1462                 return NULL;
1463         flush_cache_page(vma, addr, page_to_pfn(page));
1464         return page;
1465 }
1466 #endif /* CONFIG_ELF_CORE */
1467
1468 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1469                         spinlock_t **ptl)
1470 {
1471         pgd_t * pgd = pgd_offset(mm, addr);
1472         pud_t * pud = pud_alloc(mm, pgd, addr);
1473         if (pud) {
1474                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1475                 if (pmd)
1476                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1477         }
1478         return NULL;
1479 }
1480
1481 /*
1482  * This is the old fallback for page remapping.
1483  *
1484  * For historical reasons, it only allows reserved pages. Only
1485  * old drivers should use this, and they needed to mark their
1486  * pages reserved for the old functions anyway.
1487  */
1488 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1489                         struct page *page, pgprot_t prot)
1490 {
1491         struct mm_struct *mm = vma->vm_mm;
1492         int retval;
1493         pte_t *pte;
1494         spinlock_t *ptl;
1495
1496         retval = -EINVAL;
1497         if (PageAnon(page))
1498                 goto out;
1499         retval = -ENOMEM;
1500         flush_dcache_page(page);
1501         pte = get_locked_pte(mm, addr, &ptl);
1502         if (!pte)
1503                 goto out;
1504         retval = -EBUSY;
1505         if (!pte_none(*pte))
1506                 goto out_unlock;
1507
1508         /* Ok, finally just insert the thing.. */
1509         get_page(page);
1510         inc_mm_counter(mm, file_rss);
1511         page_add_file_rmap(page);
1512         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1513
1514         retval = 0;
1515         pte_unmap_unlock(pte, ptl);
1516         return retval;
1517 out_unlock:
1518         pte_unmap_unlock(pte, ptl);
1519 out:
1520         return retval;
1521 }
1522
1523 /**
1524  * vm_insert_page - insert single page into user vma
1525  * @vma: user vma to map to
1526  * @addr: target user address of this page
1527  * @page: source kernel page
1528  *
1529  * This allows drivers to insert individual pages they've allocated
1530  * into a user vma.
1531  *
1532  * The page has to be a nice clean _individual_ kernel allocation.
1533  * If you allocate a compound page, you need to have marked it as
1534  * such (__GFP_COMP), or manually just split the page up yourself
1535  * (see split_page()).
1536  *
1537  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1538  * took an arbitrary page protection parameter. This doesn't allow
1539  * that. Your vma protection will have to be set up correctly, which
1540  * means that if you want a shared writable mapping, you'd better
1541  * ask for a shared writable mapping!
1542  *
1543  * The page does not need to be reserved.
1544  */
1545 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1546                         struct page *page)
1547 {
1548         if (addr < vma->vm_start || addr >= vma->vm_end)
1549                 return -EFAULT;
1550         if (!page_count(page))
1551                 return -EINVAL;
1552         vma->vm_flags |= VM_INSERTPAGE;
1553         return insert_page(vma, addr, page, vma->vm_page_prot);
1554 }
1555 EXPORT_SYMBOL(vm_insert_page);
1556
1557 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1558                         unsigned long pfn, pgprot_t prot)
1559 {
1560         struct mm_struct *mm = vma->vm_mm;
1561         int retval;
1562         pte_t *pte, entry;
1563         spinlock_t *ptl;
1564
1565         retval = -ENOMEM;
1566         pte = get_locked_pte(mm, addr, &ptl);
1567         if (!pte)
1568                 goto out;
1569         retval = -EBUSY;
1570         if (!pte_none(*pte))
1571                 goto out_unlock;
1572
1573         /* Ok, finally just insert the thing.. */
1574         entry = pte_mkspecial(pfn_pte(pfn, prot));
1575         set_pte_at(mm, addr, pte, entry);
1576         update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1577
1578         retval = 0;
1579 out_unlock:
1580         pte_unmap_unlock(pte, ptl);
1581 out:
1582         return retval;
1583 }
1584
1585 /**
1586  * vm_insert_pfn - insert single pfn into user vma
1587  * @vma: user vma to map to
1588  * @addr: target user address of this page
1589  * @pfn: source kernel pfn
1590  *
1591  * Similar to vm_inert_page, this allows drivers to insert individual pages
1592  * they've allocated into a user vma. Same comments apply.
1593  *
1594  * This function should only be called from a vm_ops->fault handler, and
1595  * in that case the handler should return NULL.
1596  *
1597  * vma cannot be a COW mapping.
1598  *
1599  * As this is called only for pages that do not currently exist, we
1600  * do not need to flush old virtual caches or the TLB.
1601  */
1602 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1603                         unsigned long pfn)
1604 {
1605         int ret;
1606         pgprot_t pgprot = vma->vm_page_prot;
1607         /*
1608          * Technically, architectures with pte_special can avoid all these
1609          * restrictions (same for remap_pfn_range).  However we would like
1610          * consistency in testing and feature parity among all, so we should
1611          * try to keep these invariants in place for everybody.
1612          */
1613         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1614         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1615                                                 (VM_PFNMAP|VM_MIXEDMAP));
1616         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1617         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1618
1619         if (addr < vma->vm_start || addr >= vma->vm_end)
1620                 return -EFAULT;
1621         if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1622                 return -EINVAL;
1623
1624         ret = insert_pfn(vma, addr, pfn, pgprot);
1625
1626         if (ret)
1627                 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1628
1629         return ret;
1630 }
1631 EXPORT_SYMBOL(vm_insert_pfn);
1632
1633 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1634                         unsigned long pfn)
1635 {
1636         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1637
1638         if (addr < vma->vm_start || addr >= vma->vm_end)
1639                 return -EFAULT;
1640
1641         /*
1642          * If we don't have pte special, then we have to use the pfn_valid()
1643          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1644          * refcount the page if pfn_valid is true (hence insert_page rather
1645          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1646          * without pte special, it would there be refcounted as a normal page.
1647          */
1648         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1649                 struct page *page;
1650
1651                 page = pfn_to_page(pfn);
1652                 return insert_page(vma, addr, page, vma->vm_page_prot);
1653         }
1654         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1655 }
1656 EXPORT_SYMBOL(vm_insert_mixed);
1657
1658 /*
1659  * maps a range of physical memory into the requested pages. the old
1660  * mappings are removed. any references to nonexistent pages results
1661  * in null mappings (currently treated as "copy-on-access")
1662  */
1663 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1664                         unsigned long addr, unsigned long end,
1665                         unsigned long pfn, pgprot_t prot)
1666 {
1667         pte_t *pte;
1668         spinlock_t *ptl;
1669
1670         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1671         if (!pte)
1672                 return -ENOMEM;
1673         arch_enter_lazy_mmu_mode();
1674         do {
1675                 BUG_ON(!pte_none(*pte));
1676                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1677                 pfn++;
1678         } while (pte++, addr += PAGE_SIZE, addr != end);
1679         arch_leave_lazy_mmu_mode();
1680         pte_unmap_unlock(pte - 1, ptl);
1681         return 0;
1682 }
1683
1684 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1685                         unsigned long addr, unsigned long end,
1686                         unsigned long pfn, pgprot_t prot)
1687 {
1688         pmd_t *pmd;
1689         unsigned long next;
1690
1691         pfn -= addr >> PAGE_SHIFT;
1692         pmd = pmd_alloc(mm, pud, addr);
1693         if (!pmd)
1694                 return -ENOMEM;
1695         do {
1696                 next = pmd_addr_end(addr, end);
1697                 if (remap_pte_range(mm, pmd, addr, next,
1698                                 pfn + (addr >> PAGE_SHIFT), prot))
1699                         return -ENOMEM;
1700         } while (pmd++, addr = next, addr != end);
1701         return 0;
1702 }
1703
1704 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1705                         unsigned long addr, unsigned long end,
1706                         unsigned long pfn, pgprot_t prot)
1707 {
1708         pud_t *pud;
1709         unsigned long next;
1710
1711         pfn -= addr >> PAGE_SHIFT;
1712         pud = pud_alloc(mm, pgd, addr);
1713         if (!pud)
1714                 return -ENOMEM;
1715         do {
1716                 next = pud_addr_end(addr, end);
1717                 if (remap_pmd_range(mm, pud, addr, next,
1718                                 pfn + (addr >> PAGE_SHIFT), prot))
1719                         return -ENOMEM;
1720         } while (pud++, addr = next, addr != end);
1721         return 0;
1722 }
1723
1724 /**
1725  * remap_pfn_range - remap kernel memory to userspace
1726  * @vma: user vma to map to
1727  * @addr: target user address to start at
1728  * @pfn: physical address of kernel memory
1729  * @size: size of map area
1730  * @prot: page protection flags for this mapping
1731  *
1732  *  Note: this is only safe if the mm semaphore is held when called.
1733  */
1734 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1735                     unsigned long pfn, unsigned long size, pgprot_t prot)
1736 {
1737         pgd_t *pgd;
1738         unsigned long next;
1739         unsigned long end = addr + PAGE_ALIGN(size);
1740         struct mm_struct *mm = vma->vm_mm;
1741         int err;
1742
1743         /*
1744          * Physically remapped pages are special. Tell the
1745          * rest of the world about it:
1746          *   VM_IO tells people not to look at these pages
1747          *      (accesses can have side effects).
1748          *   VM_RESERVED is specified all over the place, because
1749          *      in 2.4 it kept swapout's vma scan off this vma; but
1750          *      in 2.6 the LRU scan won't even find its pages, so this
1751          *      flag means no more than count its pages in reserved_vm,
1752          *      and omit it from core dump, even when VM_IO turned off.
1753          *   VM_PFNMAP tells the core MM that the base pages are just
1754          *      raw PFN mappings, and do not have a "struct page" associated
1755          *      with them.
1756          *
1757          * There's a horrible special case to handle copy-on-write
1758          * behaviour that some programs depend on. We mark the "original"
1759          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1760          */
1761         if (addr == vma->vm_start && end == vma->vm_end) {
1762                 vma->vm_pgoff = pfn;
1763                 vma->vm_flags |= VM_PFN_AT_MMAP;
1764         } else if (is_cow_mapping(vma->vm_flags))
1765                 return -EINVAL;
1766
1767         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1768
1769         err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1770         if (err) {
1771                 /*
1772                  * To indicate that track_pfn related cleanup is not
1773                  * needed from higher level routine calling unmap_vmas
1774                  */
1775                 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1776                 vma->vm_flags &= ~VM_PFN_AT_MMAP;
1777                 return -EINVAL;
1778         }
1779
1780         BUG_ON(addr >= end);
1781         pfn -= addr >> PAGE_SHIFT;
1782         pgd = pgd_offset(mm, addr);
1783         flush_cache_range(vma, addr, end);
1784         do {
1785                 next = pgd_addr_end(addr, end);
1786                 err = remap_pud_range(mm, pgd, addr, next,
1787                                 pfn + (addr >> PAGE_SHIFT), prot);
1788                 if (err)
1789                         break;
1790         } while (pgd++, addr = next, addr != end);
1791
1792         if (err)
1793                 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1794
1795         return err;
1796 }
1797 EXPORT_SYMBOL(remap_pfn_range);
1798
1799 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1800                                      unsigned long addr, unsigned long end,
1801                                      pte_fn_t fn, void *data)
1802 {
1803         pte_t *pte;
1804         int err;
1805         pgtable_t token;
1806         spinlock_t *uninitialized_var(ptl);
1807
1808         pte = (mm == &init_mm) ?
1809                 pte_alloc_kernel(pmd, addr) :
1810                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1811         if (!pte)
1812                 return -ENOMEM;
1813
1814         BUG_ON(pmd_huge(*pmd));
1815
1816         arch_enter_lazy_mmu_mode();
1817
1818         token = pmd_pgtable(*pmd);
1819
1820         do {
1821                 err = fn(pte, token, addr, data);
1822                 if (err)
1823                         break;
1824         } while (pte++, addr += PAGE_SIZE, addr != end);
1825
1826         arch_leave_lazy_mmu_mode();
1827
1828         if (mm != &init_mm)
1829                 pte_unmap_unlock(pte-1, ptl);
1830         return err;
1831 }
1832
1833 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1834                                      unsigned long addr, unsigned long end,
1835                                      pte_fn_t fn, void *data)
1836 {
1837         pmd_t *pmd;
1838         unsigned long next;
1839         int err;
1840
1841         BUG_ON(pud_huge(*pud));
1842
1843         pmd = pmd_alloc(mm, pud, addr);
1844         if (!pmd)
1845                 return -ENOMEM;
1846         do {
1847                 next = pmd_addr_end(addr, end);
1848                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1849                 if (err)
1850                         break;
1851         } while (pmd++, addr = next, addr != end);
1852         return err;
1853 }
1854
1855 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1856                                      unsigned long addr, unsigned long end,
1857                                      pte_fn_t fn, void *data)
1858 {
1859         pud_t *pud;
1860         unsigned long next;
1861         int err;
1862
1863         pud = pud_alloc(mm, pgd, addr);
1864         if (!pud)
1865                 return -ENOMEM;
1866         do {
1867                 next = pud_addr_end(addr, end);
1868                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1869                 if (err)
1870                         break;
1871         } while (pud++, addr = next, addr != end);
1872         return err;
1873 }
1874
1875 /*
1876  * Scan a region of virtual memory, filling in page tables as necessary
1877  * and calling a provided function on each leaf page table.
1878  */
1879 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1880                         unsigned long size, pte_fn_t fn, void *data)
1881 {
1882         pgd_t *pgd;
1883         unsigned long next;
1884         unsigned long start = addr, end = addr + size;
1885         int err;
1886
1887         BUG_ON(addr >= end);
1888         mmu_notifier_invalidate_range_start(mm, start, end);
1889         pgd = pgd_offset(mm, addr);
1890         do {
1891                 next = pgd_addr_end(addr, end);
1892                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1893                 if (err)
1894                         break;
1895         } while (pgd++, addr = next, addr != end);
1896         mmu_notifier_invalidate_range_end(mm, start, end);
1897         return err;
1898 }
1899 EXPORT_SYMBOL_GPL(apply_to_page_range);
1900
1901 /*
1902  * handle_pte_fault chooses page fault handler according to an entry
1903  * which was read non-atomically.  Before making any commitment, on
1904  * those architectures or configurations (e.g. i386 with PAE) which
1905  * might give a mix of unmatched parts, do_swap_page and do_file_page
1906  * must check under lock before unmapping the pte and proceeding
1907  * (but do_wp_page is only called after already making such a check;
1908  * and do_anonymous_page and do_no_page can safely check later on).
1909  */
1910 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1911                                 pte_t *page_table, pte_t orig_pte)
1912 {
1913         int same = 1;
1914 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1915         if (sizeof(pte_t) > sizeof(unsigned long)) {
1916                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1917                 spin_lock(ptl);
1918                 same = pte_same(*page_table, orig_pte);
1919                 spin_unlock(ptl);
1920         }
1921 #endif
1922         pte_unmap(page_table);
1923         return same;
1924 }
1925
1926 /*
1927  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1928  * servicing faults for write access.  In the normal case, do always want
1929  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1930  * that do not have writing enabled, when used by access_process_vm.
1931  */
1932 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1933 {
1934         if (likely(vma->vm_flags & VM_WRITE))
1935                 pte = pte_mkwrite(pte);
1936         return pte;
1937 }
1938
1939 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1940 {
1941         /*
1942          * If the source page was a PFN mapping, we don't have
1943          * a "struct page" for it. We do a best-effort copy by
1944          * just copying from the original user address. If that
1945          * fails, we just zero-fill it. Live with it.
1946          */
1947         if (unlikely(!src)) {
1948                 void *kaddr = kmap_atomic(dst, KM_USER0);
1949                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1950
1951                 /*
1952                  * This really shouldn't fail, because the page is there
1953                  * in the page tables. But it might just be unreadable,
1954                  * in which case we just give up and fill the result with
1955                  * zeroes.
1956                  */
1957                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1958                         memset(kaddr, 0, PAGE_SIZE);
1959                 kunmap_atomic(kaddr, KM_USER0);
1960                 flush_dcache_page(dst);
1961         } else
1962                 copy_user_highpage(dst, src, va, vma);
1963 }
1964
1965 /*
1966  * This routine handles present pages, when users try to write
1967  * to a shared page. It is done by copying the page to a new address
1968  * and decrementing the shared-page counter for the old page.
1969  *
1970  * Note that this routine assumes that the protection checks have been
1971  * done by the caller (the low-level page fault routine in most cases).
1972  * Thus we can safely just mark it writable once we've done any necessary
1973  * COW.
1974  *
1975  * We also mark the page dirty at this point even though the page will
1976  * change only once the write actually happens. This avoids a few races,
1977  * and potentially makes it more efficient.
1978  *
1979  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1980  * but allow concurrent faults), with pte both mapped and locked.
1981  * We return with mmap_sem still held, but pte unmapped and unlocked.
1982  */
1983 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1984                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1985                 spinlock_t *ptl, pte_t orig_pte)
1986 {
1987         struct page *old_page, *new_page;
1988         pte_t entry;
1989         int reuse = 0, ret = 0;
1990         int page_mkwrite = 0;
1991         struct page *dirty_page = NULL;
1992
1993         old_page = vm_normal_page(vma, address, orig_pte);
1994         if (!old_page) {
1995                 /*
1996                  * VM_MIXEDMAP !pfn_valid() case
1997                  *
1998                  * We should not cow pages in a shared writeable mapping.
1999                  * Just mark the pages writable as we can't do any dirty
2000                  * accounting on raw pfn maps.
2001                  */
2002                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2003                                      (VM_WRITE|VM_SHARED))
2004                         goto reuse;
2005                 goto gotten;
2006         }
2007
2008         /*
2009          * Take out anonymous pages first, anonymous shared vmas are
2010          * not dirty accountable.
2011          */
2012         if (PageAnon(old_page) && !PageKsm(old_page)) {
2013                 if (!trylock_page(old_page)) {
2014                         page_cache_get(old_page);
2015                         pte_unmap_unlock(page_table, ptl);
2016                         lock_page(old_page);
2017                         page_table = pte_offset_map_lock(mm, pmd, address,
2018                                                          &ptl);
2019                         if (!pte_same(*page_table, orig_pte)) {
2020                                 unlock_page(old_page);
2021                                 page_cache_release(old_page);
2022                                 goto unlock;
2023                         }
2024                         page_cache_release(old_page);
2025                 }
2026                 reuse = reuse_swap_page(old_page);
2027                 unlock_page(old_page);
2028         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2029                                         (VM_WRITE|VM_SHARED))) {
2030                 /*
2031                  * Only catch write-faults on shared writable pages,
2032                  * read-only shared pages can get COWed by
2033                  * get_user_pages(.write=1, .force=1).
2034                  */
2035                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2036                         struct vm_fault vmf;
2037                         int tmp;
2038
2039                         vmf.virtual_address = (void __user *)(address &
2040                                                                 PAGE_MASK);
2041                         vmf.pgoff = old_page->index;
2042                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2043                         vmf.page = old_page;
2044
2045                         /*
2046                          * Notify the address space that the page is about to
2047                          * become writable so that it can prohibit this or wait
2048                          * for the page to get into an appropriate state.
2049                          *
2050                          * We do this without the lock held, so that it can
2051                          * sleep if it needs to.
2052                          */
2053                         page_cache_get(old_page);
2054                         pte_unmap_unlock(page_table, ptl);
2055
2056                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2057                         if (unlikely(tmp &
2058                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2059                                 ret = tmp;
2060                                 goto unwritable_page;
2061                         }
2062                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2063                                 lock_page(old_page);
2064                                 if (!old_page->mapping) {
2065                                         ret = 0; /* retry the fault */
2066                                         unlock_page(old_page);
2067                                         goto unwritable_page;
2068                                 }
2069                         } else
2070                                 VM_BUG_ON(!PageLocked(old_page));
2071
2072                         /*
2073                          * Since we dropped the lock we need to revalidate
2074                          * the PTE as someone else may have changed it.  If
2075                          * they did, we just return, as we can count on the
2076                          * MMU to tell us if they didn't also make it writable.
2077                          */
2078                         page_table = pte_offset_map_lock(mm, pmd, address,
2079                                                          &ptl);
2080                         if (!pte_same(*page_table, orig_pte)) {
2081                                 unlock_page(old_page);
2082                                 page_cache_release(old_page);
2083                                 goto unlock;
2084                         }
2085
2086                         page_mkwrite = 1;
2087                 }
2088                 dirty_page = old_page;
2089                 get_page(dirty_page);
2090                 reuse = 1;
2091         }
2092
2093         if (reuse) {
2094 reuse:
2095                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2096                 entry = pte_mkyoung(orig_pte);
2097                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2098                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2099                         update_mmu_cache(vma, address, entry);
2100                 ret |= VM_FAULT_WRITE;
2101                 goto unlock;
2102         }
2103
2104         /*
2105          * Ok, we need to copy. Oh, well..
2106          */
2107         page_cache_get(old_page);
2108 gotten:
2109         pte_unmap_unlock(page_table, ptl);
2110
2111         if (unlikely(anon_vma_prepare(vma)))
2112                 goto oom;
2113
2114         if (is_zero_pfn(pte_pfn(orig_pte))) {
2115                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2116                 if (!new_page)
2117                         goto oom;
2118         } else {
2119                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2120                 if (!new_page)
2121                         goto oom;
2122                 cow_user_page(new_page, old_page, address, vma);
2123         }
2124         __SetPageUptodate(new_page);
2125
2126         /*
2127          * Don't let another task, with possibly unlocked vma,
2128          * keep the mlocked page.
2129          */
2130         if ((vma->vm_flags & VM_LOCKED) && old_page) {
2131                 lock_page(old_page);    /* for LRU manipulation */
2132                 clear_page_mlock(old_page);
2133                 unlock_page(old_page);
2134         }
2135
2136         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2137                 goto oom_free_new;
2138
2139         /*
2140          * Re-check the pte - we dropped the lock
2141          */
2142         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2143         if (likely(pte_same(*page_table, orig_pte))) {
2144                 if (old_page) {
2145                         if (!PageAnon(old_page)) {
2146                                 dec_mm_counter(mm, file_rss);
2147                                 inc_mm_counter(mm, anon_rss);
2148                         }
2149                 } else
2150                         inc_mm_counter(mm, anon_rss);
2151                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2152                 entry = mk_pte(new_page, vma->vm_page_prot);
2153                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2154                 /*
2155                  * Clear the pte entry and flush it first, before updating the
2156                  * pte with the new entry. This will avoid a race condition
2157                  * seen in the presence of one thread doing SMC and another
2158                  * thread doing COW.
2159                  */
2160                 ptep_clear_flush(vma, address, page_table);
2161                 page_add_new_anon_rmap(new_page, vma, address);
2162                 /*
2163                  * We call the notify macro here because, when using secondary
2164                  * mmu page tables (such as kvm shadow page tables), we want the
2165                  * new page to be mapped directly into the secondary page table.
2166                  */
2167                 set_pte_at_notify(mm, address, page_table, entry);
2168                 update_mmu_cache(vma, address, entry);
2169                 if (old_page) {
2170                         /*
2171                          * Only after switching the pte to the new page may
2172                          * we remove the mapcount here. Otherwise another
2173                          * process may come and find the rmap count decremented
2174                          * before the pte is switched to the new page, and
2175                          * "reuse" the old page writing into it while our pte
2176                          * here still points into it and can be read by other
2177                          * threads.
2178                          *
2179                          * The critical issue is to order this
2180                          * page_remove_rmap with the ptp_clear_flush above.
2181                          * Those stores are ordered by (if nothing else,)
2182                          * the barrier present in the atomic_add_negative
2183                          * in page_remove_rmap.
2184                          *
2185                          * Then the TLB flush in ptep_clear_flush ensures that
2186                          * no process can access the old page before the
2187                          * decremented mapcount is visible. And the old page
2188                          * cannot be reused until after the decremented
2189                          * mapcount is visible. So transitively, TLBs to
2190                          * old page will be flushed before it can be reused.
2191                          */
2192                         page_remove_rmap(old_page);
2193                 }
2194
2195                 /* Free the old page.. */
2196                 new_page = old_page;
2197                 ret |= VM_FAULT_WRITE;
2198         } else
2199                 mem_cgroup_uncharge_page(new_page);
2200
2201         if (new_page)
2202                 page_cache_release(new_page);
2203         if (old_page)
2204                 page_cache_release(old_page);
2205 unlock:
2206         pte_unmap_unlock(page_table, ptl);
2207         if (dirty_page) {
2208                 /*
2209                  * Yes, Virginia, this is actually required to prevent a race
2210                  * with clear_page_dirty_for_io() from clearing the page dirty
2211                  * bit after it clear all dirty ptes, but before a racing
2212                  * do_wp_page installs a dirty pte.
2213                  *
2214                  * do_no_page is protected similarly.
2215                  */
2216                 if (!page_mkwrite) {
2217                         wait_on_page_locked(dirty_page);
2218                         set_page_dirty_balance(dirty_page, page_mkwrite);
2219                 }
2220                 put_page(dirty_page);
2221                 if (page_mkwrite) {
2222                         struct address_space *mapping = dirty_page->mapping;
2223
2224                         set_page_dirty(dirty_page);
2225                         unlock_page(dirty_page);
2226                         page_cache_release(dirty_page);
2227                         if (mapping)    {
2228                                 /*
2229                                  * Some device drivers do not set page.mapping
2230                                  * but still dirty their pages
2231                                  */
2232                                 balance_dirty_pages_ratelimited(mapping);
2233                         }
2234                 }
2235
2236                 /* file_update_time outside page_lock */
2237                 if (vma->vm_file)
2238                         file_update_time(vma->vm_file);
2239         }
2240         return ret;
2241 oom_free_new:
2242         page_cache_release(new_page);
2243 oom:
2244         if (old_page) {
2245                 if (page_mkwrite) {
2246                         unlock_page(old_page);
2247                         page_cache_release(old_page);
2248                 }
2249                 page_cache_release(old_page);
2250         }
2251         return VM_FAULT_OOM;
2252
2253 unwritable_page:
2254         page_cache_release(old_page);
2255         return ret;
2256 }
2257
2258 /*
2259  * Helper functions for unmap_mapping_range().
2260  *
2261  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2262  *
2263  * We have to restart searching the prio_tree whenever we drop the lock,
2264  * since the iterator is only valid while the lock is held, and anyway
2265  * a later vma might be split and reinserted earlier while lock dropped.
2266  *
2267  * The list of nonlinear vmas could be handled more efficiently, using
2268  * a placeholder, but handle it in the same way until a need is shown.
2269  * It is important to search the prio_tree before nonlinear list: a vma
2270  * may become nonlinear and be shifted from prio_tree to nonlinear list
2271  * while the lock is dropped; but never shifted from list to prio_tree.
2272  *
2273  * In order to make forward progress despite restarting the search,
2274  * vm_truncate_count is used to mark a vma as now dealt with, so we can
2275  * quickly skip it next time around.  Since the prio_tree search only
2276  * shows us those vmas affected by unmapping the range in question, we
2277  * can't efficiently keep all vmas in step with mapping->truncate_count:
2278  * so instead reset them all whenever it wraps back to 0 (then go to 1).
2279  * mapping->truncate_count and vma->vm_truncate_count are protected by
2280  * i_mmap_lock.
2281  *
2282  * In order to make forward progress despite repeatedly restarting some
2283  * large vma, note the restart_addr from unmap_vmas when it breaks out:
2284  * and restart from that address when we reach that vma again.  It might
2285  * have been split or merged, shrunk or extended, but never shifted: so
2286  * restart_addr remains valid so long as it remains in the vma's range.
2287  * unmap_mapping_range forces truncate_count to leap over page-aligned
2288  * values so we can save vma's restart_addr in its truncate_count field.
2289  */
2290 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2291
2292 static void reset_vma_truncate_counts(struct address_space *mapping)
2293 {
2294         struct vm_area_struct *vma;
2295         struct prio_tree_iter iter;
2296
2297         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2298                 vma->vm_truncate_count = 0;
2299         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2300                 vma->vm_truncate_count = 0;
2301 }
2302
2303 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2304                 unsigned long start_addr, unsigned long end_addr,
2305                 struct zap_details *details)
2306 {
2307         unsigned long restart_addr;
2308         int need_break;
2309
2310         /*
2311          * files that support invalidating or truncating portions of the
2312          * file from under mmaped areas must have their ->fault function
2313          * return a locked page (and set VM_FAULT_LOCKED in the return).
2314          * This provides synchronisation against concurrent unmapping here.
2315          */
2316
2317 again:
2318         restart_addr = vma->vm_truncate_count;
2319         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2320                 start_addr = restart_addr;
2321                 if (start_addr >= end_addr) {
2322                         /* Top of vma has been split off since last time */
2323                         vma->vm_truncate_count = details->truncate_count;
2324                         return 0;
2325                 }
2326         }
2327
2328         restart_addr = zap_page_range(vma, start_addr,
2329                                         end_addr - start_addr, details);
2330         need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2331
2332         if (restart_addr >= end_addr) {
2333                 /* We have now completed this vma: mark it so */
2334                 vma->vm_truncate_count = details->truncate_count;
2335                 if (!need_break)
2336                         return 0;
2337         } else {
2338                 /* Note restart_addr in vma's truncate_count field */
2339                 vma->vm_truncate_count = restart_addr;
2340                 if (!need_break)
2341                         goto again;
2342         }
2343
2344         spin_unlock(details->i_mmap_lock);
2345         cond_resched();
2346         spin_lock(details->i_mmap_lock);
2347         return -EINTR;
2348 }
2349
2350 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2351                                             struct zap_details *details)
2352 {
2353         struct vm_area_struct *vma;
2354         struct prio_tree_iter iter;
2355         pgoff_t vba, vea, zba, zea;
2356
2357 restart:
2358         vma_prio_tree_foreach(vma, &iter, root,
2359                         details->first_index, details->last_index) {
2360                 /* Skip quickly over those we have already dealt with */
2361                 if (vma->vm_truncate_count == details->truncate_count)
2362                         continue;
2363
2364                 vba = vma->vm_pgoff;
2365                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2366                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2367                 zba = details->first_index;
2368                 if (zba < vba)
2369                         zba = vba;
2370                 zea = details->last_index;
2371                 if (zea > vea)
2372                         zea = vea;
2373
2374                 if (unmap_mapping_range_vma(vma,
2375                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2376                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2377                                 details) < 0)
2378                         goto restart;
2379         }
2380 }
2381
2382 static inline void unmap_mapping_range_list(struct list_head *head,
2383                                             struct zap_details *details)
2384 {
2385         struct vm_area_struct *vma;
2386
2387         /*
2388          * In nonlinear VMAs there is no correspondence between virtual address
2389          * offset and file offset.  So we must perform an exhaustive search
2390          * across *all* the pages in each nonlinear VMA, not just the pages
2391          * whose virtual address lies outside the file truncation point.
2392          */
2393 restart:
2394         list_for_each_entry(vma, head, shared.vm_set.list) {
2395                 /* Skip quickly over those we have already dealt with */
2396                 if (vma->vm_truncate_count == details->truncate_count)
2397                         continue;
2398                 details->nonlinear_vma = vma;
2399                 if (unmap_mapping_range_vma(vma, vma->vm_start,
2400                                         vma->vm_end, details) < 0)
2401                         goto restart;
2402         }
2403 }
2404
2405 /**
2406  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2407  * @mapping: the address space containing mmaps to be unmapped.
2408  * @holebegin: byte in first page to unmap, relative to the start of
2409  * the underlying file.  This will be rounded down to a PAGE_SIZE
2410  * boundary.  Note that this is different from vmtruncate(), which
2411  * must keep the partial page.  In contrast, we must get rid of
2412  * partial pages.
2413  * @holelen: size of prospective hole in bytes.  This will be rounded
2414  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2415  * end of the file.
2416  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2417  * but 0 when invalidating pagecache, don't throw away private data.
2418  */
2419 void unmap_mapping_range(struct address_space *mapping,
2420                 loff_t const holebegin, loff_t const holelen, int even_cows)
2421 {
2422         struct zap_details details;
2423         pgoff_t hba = holebegin >> PAGE_SHIFT;
2424         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2425
2426         /* Check for overflow. */
2427         if (sizeof(holelen) > sizeof(hlen)) {
2428                 long long holeend =
2429                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2430                 if (holeend & ~(long long)ULONG_MAX)
2431                         hlen = ULONG_MAX - hba + 1;
2432         }
2433
2434         details.check_mapping = even_cows? NULL: mapping;
2435         details.nonlinear_vma = NULL;
2436         details.first_index = hba;
2437         details.last_index = hba + hlen - 1;
2438         if (details.last_index < details.first_index)
2439                 details.last_index = ULONG_MAX;
2440         details.i_mmap_lock = &mapping->i_mmap_lock;
2441
2442         spin_lock(&mapping->i_mmap_lock);
2443
2444         /* Protect against endless unmapping loops */
2445         mapping->truncate_count++;
2446         if (unlikely(is_restart_addr(mapping->truncate_count))) {
2447                 if (mapping->truncate_count == 0)
2448                         reset_vma_truncate_counts(mapping);
2449                 mapping->truncate_count++;
2450         }
2451         details.truncate_count = mapping->truncate_count;
2452
2453         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2454                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2455         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2456                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2457         spin_unlock(&mapping->i_mmap_lock);
2458 }
2459 EXPORT_SYMBOL(unmap_mapping_range);
2460
2461 /**
2462  * vmtruncate - unmap mappings "freed" by truncate() syscall
2463  * @inode: inode of the file used
2464  * @offset: file offset to start truncating
2465  *
2466  * NOTE! We have to be ready to update the memory sharing
2467  * between the file and the memory map for a potential last
2468  * incomplete page.  Ugly, but necessary.
2469  */
2470 int vmtruncate(struct inode * inode, loff_t offset)
2471 {
2472         if (inode->i_size < offset) {
2473                 unsigned long limit;
2474
2475                 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2476                 if (limit != RLIM_INFINITY && offset > limit)
2477                         goto out_sig;
2478                 if (offset > inode->i_sb->s_maxbytes)
2479                         goto out_big;
2480                 i_size_write(inode, offset);
2481         } else {
2482                 struct address_space *mapping = inode->i_mapping;
2483
2484                 /*
2485                  * truncation of in-use swapfiles is disallowed - it would
2486                  * cause subsequent swapout to scribble on the now-freed
2487                  * blocks.
2488                  */
2489                 if (IS_SWAPFILE(inode))
2490                         return -ETXTBSY;
2491                 i_size_write(inode, offset);
2492
2493                 /*
2494                  * unmap_mapping_range is called twice, first simply for
2495                  * efficiency so that truncate_inode_pages does fewer
2496                  * single-page unmaps.  However after this first call, and
2497                  * before truncate_inode_pages finishes, it is possible for
2498                  * private pages to be COWed, which remain after
2499                  * truncate_inode_pages finishes, hence the second
2500                  * unmap_mapping_range call must be made for correctness.
2501                  */
2502                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2503                 truncate_inode_pages(mapping, offset);
2504                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2505         }
2506
2507         if (inode->i_op->truncate)
2508                 inode->i_op->truncate(inode);
2509         return 0;
2510
2511 out_sig:
2512         send_sig(SIGXFSZ, current, 0);
2513 out_big:
2514         return -EFBIG;
2515 }
2516 EXPORT_SYMBOL(vmtruncate);
2517
2518 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2519 {
2520         struct address_space *mapping = inode->i_mapping;
2521
2522         /*
2523          * If the underlying filesystem is not going to provide
2524          * a way to truncate a range of blocks (punch a hole) -
2525          * we should return failure right now.
2526          */
2527         if (!inode->i_op->truncate_range)
2528                 return -ENOSYS;
2529
2530         mutex_lock(&inode->i_mutex);
2531         down_write(&inode->i_alloc_sem);
2532         unmap_mapping_range(mapping, offset, (end - offset), 1);
2533         truncate_inode_pages_range(mapping, offset, end);
2534         unmap_mapping_range(mapping, offset, (end - offset), 1);
2535         inode->i_op->truncate_range(inode, offset, end);
2536         up_write(&inode->i_alloc_sem);
2537         mutex_unlock(&inode->i_mutex);
2538
2539         return 0;
2540 }
2541
2542 /*
2543  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2544  * but allow concurrent faults), and pte mapped but not yet locked.
2545  * We return with mmap_sem still held, but pte unmapped and unlocked.
2546  */
2547 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2548                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2549                 unsigned int flags, pte_t orig_pte)
2550 {
2551         spinlock_t *ptl;
2552         struct page *page;
2553         swp_entry_t entry;
2554         pte_t pte;
2555         struct mem_cgroup *ptr = NULL;
2556         int ret = 0;
2557
2558         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2559                 goto out;
2560
2561         entry = pte_to_swp_entry(orig_pte);
2562         if (is_migration_entry(entry)) {
2563                 migration_entry_wait(mm, pmd, address);
2564                 goto out;
2565         }
2566         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2567         page = lookup_swap_cache(entry);
2568         if (!page) {
2569                 grab_swap_token(mm); /* Contend for token _before_ read-in */
2570                 page = swapin_readahead(entry,
2571                                         GFP_HIGHUSER_MOVABLE, vma, address);
2572                 if (!page) {
2573                         /*
2574                          * Back out if somebody else faulted in this pte
2575                          * while we released the pte lock.
2576                          */
2577                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2578                         if (likely(pte_same(*page_table, orig_pte)))
2579                                 ret = VM_FAULT_OOM;
2580                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2581                         goto unlock;
2582                 }
2583
2584                 /* Had to read the page from swap area: Major fault */
2585                 ret = VM_FAULT_MAJOR;
2586                 count_vm_event(PGMAJFAULT);
2587         }
2588
2589         lock_page(page);
2590         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2591
2592         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2593                 ret = VM_FAULT_OOM;
2594                 goto out_page;
2595         }
2596
2597         /*
2598          * Back out if somebody else already faulted in this pte.
2599          */
2600         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2601         if (unlikely(!pte_same(*page_table, orig_pte)))
2602                 goto out_nomap;
2603
2604         if (unlikely(!PageUptodate(page))) {
2605                 ret = VM_FAULT_SIGBUS;
2606                 goto out_nomap;
2607         }
2608
2609         /*
2610          * The page isn't present yet, go ahead with the fault.
2611          *
2612          * Be careful about the sequence of operations here.
2613          * To get its accounting right, reuse_swap_page() must be called
2614          * while the page is counted on swap but not yet in mapcount i.e.
2615          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2616          * must be called after the swap_free(), or it will never succeed.
2617          * Because delete_from_swap_page() may be called by reuse_swap_page(),
2618          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2619          * in page->private. In this case, a record in swap_cgroup  is silently
2620          * discarded at swap_free().
2621          */
2622
2623         inc_mm_counter(mm, anon_rss);
2624         pte = mk_pte(page, vma->vm_page_prot);
2625         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2626                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2627                 flags &= ~FAULT_FLAG_WRITE;
2628         }
2629         flush_icache_page(vma, page);
2630         set_pte_at(mm, address, page_table, pte);
2631         page_add_anon_rmap(page, vma, address);
2632         /* It's better to call commit-charge after rmap is established */
2633         mem_cgroup_commit_charge_swapin(page, ptr);
2634
2635         swap_free(entry);
2636         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2637                 try_to_free_swap(page);
2638         unlock_page(page);
2639
2640         if (flags & FAULT_FLAG_WRITE) {
2641                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2642                 if (ret & VM_FAULT_ERROR)
2643                         ret &= VM_FAULT_ERROR;
2644                 goto out;
2645         }
2646
2647         /* No need to invalidate - it was non-present before */
2648         update_mmu_cache(vma, address, pte);
2649 unlock:
2650         pte_unmap_unlock(page_table, ptl);
2651 out:
2652         return ret;
2653 out_nomap:
2654         mem_cgroup_cancel_charge_swapin(ptr);
2655         pte_unmap_unlock(page_table, ptl);
2656 out_page:
2657         unlock_page(page);
2658         page_cache_release(page);
2659         return ret;
2660 }
2661
2662 /*
2663  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2664  * but allow concurrent faults), and pte mapped but not yet locked.
2665  * We return with mmap_sem still held, but pte unmapped and unlocked.
2666  */
2667 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2668                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2669                 unsigned int flags)
2670 {
2671         struct page *page;
2672         spinlock_t *ptl;
2673         pte_t entry;
2674
2675         if (!(flags & FAULT_FLAG_WRITE)) {
2676                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2677                                                 vma->vm_page_prot));
2678                 ptl = pte_lockptr(mm, pmd);
2679                 spin_lock(ptl);
2680                 if (!pte_none(*page_table))
2681                         goto unlock;
2682                 goto setpte;
2683         }
2684
2685         /* Allocate our own private page. */
2686         pte_unmap(page_table);
2687
2688         if (unlikely(anon_vma_prepare(vma)))
2689                 goto oom;
2690         page = alloc_zeroed_user_highpage_movable(vma, address);
2691         if (!page)
2692                 goto oom;
2693         __SetPageUptodate(page);
2694
2695         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2696                 goto oom_free_page;
2697
2698         entry = mk_pte(page, vma->vm_page_prot);
2699         if (vma->vm_flags & VM_WRITE)
2700                 entry = pte_mkwrite(pte_mkdirty(entry));
2701
2702         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2703         if (!pte_none(*page_table))
2704                 goto release;
2705
2706         inc_mm_counter(mm, anon_rss);
2707         page_add_new_anon_rmap(page, vma, address);
2708 setpte:
2709         set_pte_at(mm, address, page_table, entry);
2710
2711         /* No need to invalidate - it was non-present before */
2712         update_mmu_cache(vma, address, entry);
2713 unlock:
2714         pte_unmap_unlock(page_table, ptl);
2715         return 0;
2716 release:
2717         mem_cgroup_uncharge_page(page);
2718         page_cache_release(page);
2719         goto unlock;
2720 oom_free_page:
2721         page_cache_release(page);
2722 oom:
2723         return VM_FAULT_OOM;
2724 }
2725
2726 /*
2727  * __do_fault() tries to create a new page mapping. It aggressively
2728  * tries to share with existing pages, but makes a separate copy if
2729  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2730  * the next page fault.
2731  *
2732  * As this is called only for pages that do not currently exist, we
2733  * do not need to flush old virtual caches or the TLB.
2734  *
2735  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2736  * but allow concurrent faults), and pte neither mapped nor locked.
2737  * We return with mmap_sem still held, but pte unmapped and unlocked.
2738  */
2739 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2740                 unsigned long address, pmd_t *pmd,
2741                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2742 {
2743         pte_t *page_table;
2744         spinlock_t *ptl;
2745         struct page *page;
2746         pte_t entry;
2747         int anon = 0;
2748         int charged = 0;
2749         struct page *dirty_page = NULL;
2750         struct vm_fault vmf;
2751         int ret;
2752         int page_mkwrite = 0;
2753
2754         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2755         vmf.pgoff = pgoff;
2756         vmf.flags = flags;
2757         vmf.page = NULL;
2758
2759         ret = vma->vm_ops->fault(vma, &vmf);
2760         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2761                 return ret;
2762
2763         /*
2764          * For consistency in subsequent calls, make the faulted page always
2765          * locked.
2766          */
2767         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2768                 lock_page(vmf.page);
2769         else
2770                 VM_BUG_ON(!PageLocked(vmf.page));
2771
2772         /*
2773          * Should we do an early C-O-W break?
2774          */
2775         page = vmf.page;
2776         if (flags & FAULT_FLAG_WRITE) {
2777                 if (!(vma->vm_flags & VM_SHARED)) {
2778                         anon = 1;
2779                         if (unlikely(anon_vma_prepare(vma))) {
2780                                 ret = VM_FAULT_OOM;
2781                                 goto out;
2782                         }
2783                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2784                                                 vma, address);
2785                         if (!page) {
2786                                 ret = VM_FAULT_OOM;
2787                                 goto out;
2788                         }
2789                         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2790                                 ret = VM_FAULT_OOM;
2791                                 page_cache_release(page);
2792                                 goto out;
2793                         }
2794                         charged = 1;
2795                         /*
2796                          * Don't let another task, with possibly unlocked vma,
2797                          * keep the mlocked page.
2798                          */
2799                         if (vma->vm_flags & VM_LOCKED)
2800                                 clear_page_mlock(vmf.page);
2801                         copy_user_highpage(page, vmf.page, address, vma);
2802                         __SetPageUptodate(page);
2803                 } else {
2804                         /*
2805                          * If the page will be shareable, see if the backing
2806                          * address space wants to know that the page is about
2807                          * to become writable
2808                          */
2809                         if (vma->vm_ops->page_mkwrite) {
2810                                 int tmp;
2811
2812                                 unlock_page(page);
2813                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2814                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2815                                 if (unlikely(tmp &
2816                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2817                                         ret = tmp;
2818                                         goto unwritable_page;
2819                                 }
2820                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2821                                         lock_page(page);
2822                                         if (!page->mapping) {
2823                                                 ret = 0; /* retry the fault */
2824                                                 unlock_page(page);
2825                                                 goto unwritable_page;
2826                                         }
2827                                 } else
2828                                         VM_BUG_ON(!PageLocked(page));
2829                                 page_mkwrite = 1;
2830                         }
2831                 }
2832
2833         }
2834
2835         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2836
2837         /*
2838          * This silly early PAGE_DIRTY setting removes a race
2839          * due to the bad i386 page protection. But it's valid
2840          * for other architectures too.
2841          *
2842          * Note that if FAULT_FLAG_WRITE is set, we either now have
2843          * an exclusive copy of the page, or this is a shared mapping,
2844          * so we can make it writable and dirty to avoid having to
2845          * handle that later.
2846          */
2847         /* Only go through if we didn't race with anybody else... */
2848         if (likely(pte_same(*page_table, orig_pte))) {
2849                 flush_icache_page(vma, page);
2850                 entry = mk_pte(page, vma->vm_page_prot);
2851                 if (flags & FAULT_FLAG_WRITE)
2852                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2853                 if (anon) {
2854                         inc_mm_counter(mm, anon_rss);
2855                         page_add_new_anon_rmap(page, vma, address);
2856                 } else {
2857                         inc_mm_counter(mm, file_rss);
2858                         page_add_file_rmap(page);
2859                         if (flags & FAULT_FLAG_WRITE) {
2860                                 dirty_page = page;
2861                                 get_page(dirty_page);
2862                         }
2863                 }
2864                 set_pte_at(mm, address, page_table, entry);
2865
2866                 /* no need to invalidate: a not-present page won't be cached */
2867                 update_mmu_cache(vma, address, entry);
2868         } else {
2869                 if (charged)
2870                         mem_cgroup_uncharge_page(page);
2871                 if (anon)
2872                         page_cache_release(page);
2873                 else
2874                         anon = 1; /* no anon but release faulted_page */
2875         }
2876
2877         pte_unmap_unlock(page_table, ptl);
2878
2879 out:
2880         if (dirty_page) {
2881                 struct address_space *mapping = page->mapping;
2882
2883                 if (set_page_dirty(dirty_page))
2884                         page_mkwrite = 1;
2885                 unlock_page(dirty_page);
2886                 put_page(dirty_page);
2887                 if (page_mkwrite && mapping) {
2888                         /*
2889                          * Some device drivers do not set page.mapping but still
2890                          * dirty their pages
2891                          */
2892                         balance_dirty_pages_ratelimited(mapping);
2893                 }
2894
2895                 /* file_update_time outside page_lock */
2896                 if (vma->vm_file)
2897                         file_update_time(vma->vm_file);
2898         } else {
2899                 unlock_page(vmf.page);
2900                 if (anon)
2901                         page_cache_release(vmf.page);
2902         }
2903
2904         return ret;
2905
2906 unwritable_page:
2907         page_cache_release(page);
2908         return ret;
2909 }
2910
2911 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2912                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2913                 unsigned int flags, pte_t orig_pte)
2914 {
2915         pgoff_t pgoff = (((address & PAGE_MASK)
2916                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2917
2918         pte_unmap(page_table);
2919         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2920 }
2921
2922 /*
2923  * Fault of a previously existing named mapping. Repopulate the pte
2924  * from the encoded file_pte if possible. This enables swappable
2925  * nonlinear vmas.
2926  *
2927  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2928  * but allow concurrent faults), and pte mapped but not yet locked.
2929  * We return with mmap_sem still held, but pte unmapped and unlocked.
2930  */
2931 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2932                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2933                 unsigned int flags, pte_t orig_pte)
2934 {
2935         pgoff_t pgoff;
2936
2937         flags |= FAULT_FLAG_NONLINEAR;
2938
2939         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2940                 return 0;
2941
2942         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2943                 /*
2944                  * Page table corrupted: show pte and kill process.
2945                  */
2946                 print_bad_pte(vma, address, orig_pte, NULL);
2947                 return VM_FAULT_OOM;
2948         }
2949
2950         pgoff = pte_to_pgoff(orig_pte);
2951         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2952 }
2953
2954 /*
2955  * These routines also need to handle stuff like marking pages dirty
2956  * and/or accessed for architectures that don't do it in hardware (most
2957  * RISC architectures).  The early dirtying is also good on the i386.
2958  *
2959  * There is also a hook called "update_mmu_cache()" that architectures
2960  * with external mmu caches can use to update those (ie the Sparc or
2961  * PowerPC hashed page tables that act as extended TLBs).
2962  *
2963  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2964  * but allow concurrent faults), and pte mapped but not yet locked.
2965  * We return with mmap_sem still held, but pte unmapped and unlocked.
2966  */
2967 static inline int handle_pte_fault(struct mm_struct *mm,
2968                 struct vm_area_struct *vma, unsigned long address,
2969                 pte_t *pte, pmd_t *pmd, unsigned int flags)
2970 {
2971         pte_t entry;
2972         spinlock_t *ptl;
2973
2974         entry = *pte;
2975         if (!pte_present(entry)) {
2976                 if (pte_none(entry)) {
2977                         if (vma->vm_ops) {
2978                                 if (likely(vma->vm_ops->fault))
2979                                         return do_linear_fault(mm, vma, address,
2980                                                 pte, pmd, flags, entry);
2981                         }
2982                         return do_anonymous_page(mm, vma, address,
2983                                                  pte, pmd, flags);
2984                 }
2985                 if (pte_file(entry))
2986                         return do_nonlinear_fault(mm, vma, address,
2987                                         pte, pmd, flags, entry);
2988                 return do_swap_page(mm, vma, address,
2989                                         pte, pmd, flags, entry);
2990         }
2991
2992         ptl = pte_lockptr(mm, pmd);
2993         spin_lock(ptl);
2994         if (unlikely(!pte_same(*pte, entry)))
2995                 goto unlock;
2996         if (flags & FAULT_FLAG_WRITE) {
2997                 if (!pte_write(entry))
2998                         return do_wp_page(mm, vma, address,
2999                                         pte, pmd, ptl, entry);
3000                 entry = pte_mkdirty(entry);
3001         }
3002         entry = pte_mkyoung(entry);
3003         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3004                 update_mmu_cache(vma, address, entry);
3005         } else {
3006                 /*
3007                  * This is needed only for protection faults but the arch code
3008                  * is not yet telling us if this is a protection fault or not.
3009                  * This still avoids useless tlb flushes for .text page faults
3010                  * with threads.
3011                  */
3012                 if (flags & FAULT_FLAG_WRITE)
3013                         flush_tlb_page(vma, address);
3014         }
3015 unlock:
3016         pte_unmap_unlock(pte, ptl);
3017         return 0;
3018 }
3019
3020 /*
3021  * By the time we get here, we already hold the mm semaphore
3022  */
3023 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3024                 unsigned long address, unsigned int flags)
3025 {
3026         pgd_t *pgd;
3027         pud_t *pud;
3028         pmd_t *pmd;
3029         pte_t *pte;
3030
3031         __set_current_state(TASK_RUNNING);
3032
3033         count_vm_event(PGFAULT);
3034
3035         if (unlikely(is_vm_hugetlb_page(vma)))
3036                 return hugetlb_fault(mm, vma, address, flags);
3037
3038         pgd = pgd_offset(mm, address);
3039         pud = pud_alloc(mm, pgd, address);
3040         if (!pud)
3041                 return VM_FAULT_OOM;
3042         pmd = pmd_alloc(mm, pud, address);
3043         if (!pmd)
3044                 return VM_FAULT_OOM;
3045         pte = pte_alloc_map(mm, pmd, address);
3046         if (!pte)
3047                 return VM_FAULT_OOM;
3048
3049         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3050 }
3051
3052 #ifndef __PAGETABLE_PUD_FOLDED
3053 /*
3054  * Allocate page upper directory.
3055  * We've already handled the fast-path in-line.
3056  */
3057 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3058 {
3059         pud_t *new = pud_alloc_one(mm, address);
3060         if (!new)
3061                 return -ENOMEM;
3062
3063         smp_wmb(); /* See comment in __pte_alloc */
3064
3065         spin_lock(&mm->page_table_lock);
3066         if (pgd_present(*pgd))          /* Another has populated it */
3067                 pud_free(mm, new);
3068         else
3069                 pgd_populate(mm, pgd, new);
3070         spin_unlock(&mm->page_table_lock);
3071         return 0;
3072 }
3073 #endif /* __PAGETABLE_PUD_FOLDED */
3074
3075 #ifndef __PAGETABLE_PMD_FOLDED
3076 /*
3077  * Allocate page middle directory.
3078  * We've already handled the fast-path in-line.
3079  */
3080 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3081 {
3082         pmd_t *new = pmd_alloc_one(mm, address);
3083         if (!new)
3084                 return -ENOMEM;
3085
3086         smp_wmb(); /* See comment in __pte_alloc */
3087
3088         spin_lock(&mm->page_table_lock);
3089 #ifndef __ARCH_HAS_4LEVEL_HACK
3090         if (pud_present(*pud))          /* Another has populated it */
3091                 pmd_free(mm, new);
3092         else
3093                 pud_populate(mm, pud, new);
3094 #else
3095         if (pgd_present(*pud))          /* Another has populated it */
3096                 pmd_free(mm, new);
3097         else
3098                 pgd_populate(mm, pud, new);
3099 #endif /* __ARCH_HAS_4LEVEL_HACK */
3100         spin_unlock(&mm->page_table_lock);
3101         return 0;
3102 }
3103 #endif /* __PAGETABLE_PMD_FOLDED */
3104
3105 int make_pages_present(unsigned long addr, unsigned long end)
3106 {
3107         int ret, len, write;
3108         struct vm_area_struct * vma;
3109
3110         vma = find_vma(current->mm, addr);
3111         if (!vma)
3112                 return -ENOMEM;
3113         write = (vma->vm_flags & VM_WRITE) != 0;
3114         BUG_ON(addr >= end);
3115         BUG_ON(end > vma->vm_end);
3116         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3117         ret = get_user_pages(current, current->mm, addr,
3118                         len, write, 0, NULL, NULL);
3119         if (ret < 0)
3120                 return ret;
3121         return ret == len ? 0 : -EFAULT;
3122 }
3123
3124 #if !defined(__HAVE_ARCH_GATE_AREA)
3125
3126 #if defined(AT_SYSINFO_EHDR)
3127 static struct vm_area_struct gate_vma;
3128
3129 static int __init gate_vma_init(void)
3130 {
3131         gate_vma.vm_mm = NULL;
3132         gate_vma.vm_start = FIXADDR_USER_START;
3133         gate_vma.vm_end = FIXADDR_USER_END;
3134         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3135         gate_vma.vm_page_prot = __P101;
3136         /*
3137          * Make sure the vDSO gets into every core dump.
3138          * Dumping its contents makes post-mortem fully interpretable later
3139          * without matching up the same kernel and hardware config to see
3140          * what PC values meant.
3141          */
3142         gate_vma.vm_flags |= VM_ALWAYSDUMP;
3143         return 0;
3144 }
3145 __initcall(gate_vma_init);
3146 #endif
3147
3148 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3149 {
3150 #ifdef AT_SYSINFO_EHDR
3151         return &gate_vma;
3152 #else
3153         return NULL;
3154 #endif
3155 }
3156
3157 int in_gate_area_no_task(unsigned long addr)
3158 {
3159 #ifdef AT_SYSINFO_EHDR
3160         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3161                 return 1;
3162 #endif
3163         return 0;
3164 }
3165
3166 #endif  /* __HAVE_ARCH_GATE_AREA */
3167
3168 static int follow_pte(struct mm_struct *mm, unsigned long address,
3169                 pte_t **ptepp, spinlock_t **ptlp)
3170 {
3171         pgd_t *pgd;
3172         pud_t *pud;
3173         pmd_t *pmd;
3174         pte_t *ptep;
3175
3176         pgd = pgd_offset(mm, address);
3177         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3178                 goto out;
3179
3180         pud = pud_offset(pgd, address);
3181         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3182                 goto out;
3183
3184         pmd = pmd_offset(pud, address);
3185         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3186                 goto out;
3187
3188         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3189         if (pmd_huge(*pmd))
3190                 goto out;
3191
3192         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3193         if (!ptep)
3194                 goto out;
3195         if (!pte_present(*ptep))
3196                 goto unlock;
3197         *ptepp = ptep;
3198         return 0;
3199 unlock:
3200         pte_unmap_unlock(ptep, *ptlp);
3201 out:
3202         return -EINVAL;
3203 }
3204
3205 /**
3206  * follow_pfn - look up PFN at a user virtual address
3207  * @vma: memory mapping
3208  * @address: user virtual address
3209  * @pfn: location to store found PFN
3210  *
3211  * Only IO mappings and raw PFN mappings are allowed.
3212  *
3213  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3214  */
3215 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3216         unsigned long *pfn)
3217 {
3218         int ret = -EINVAL;
3219         spinlock_t *ptl;
3220         pte_t *ptep;
3221
3222         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3223                 return ret;
3224
3225         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3226         if (ret)
3227                 return ret;
3228         *pfn = pte_pfn(*ptep);
3229         pte_unmap_unlock(ptep, ptl);
3230         return 0;
3231 }
3232 EXPORT_SYMBOL(follow_pfn);
3233
3234 #ifdef CONFIG_HAVE_IOREMAP_PROT
3235 int follow_phys(struct vm_area_struct *vma,
3236                 unsigned long address, unsigned int flags,
3237                 unsigned long *prot, resource_size_t *phys)
3238 {
3239         int ret = -EINVAL;
3240         pte_t *ptep, pte;
3241         spinlock_t *ptl;
3242
3243         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3244                 goto out;
3245
3246         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3247                 goto out;
3248         pte = *ptep;
3249
3250         if ((flags & FOLL_WRITE) && !pte_write(pte))
3251                 goto unlock;
3252
3253         *prot = pgprot_val(pte_pgprot(pte));
3254         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3255
3256         ret = 0;
3257 unlock:
3258         pte_unmap_unlock(ptep, ptl);
3259 out:
3260         return ret;
3261 }
3262
3263 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3264                         void *buf, int len, int write)
3265 {
3266         resource_size_t phys_addr;
3267         unsigned long prot = 0;
3268         void __iomem *maddr;
3269         int offset = addr & (PAGE_SIZE-1);
3270
3271         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3272                 return -EINVAL;
3273
3274         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3275         if (write)
3276                 memcpy_toio(maddr + offset, buf, len);
3277         else
3278                 memcpy_fromio(buf, maddr + offset, len);
3279         iounmap(maddr);
3280
3281         return len;
3282 }
3283 #endif
3284
3285 /*
3286  * Access another process' address space.
3287  * Source/target buffer must be kernel space,
3288  * Do not walk the page table directly, use get_user_pages
3289  */
3290 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3291 {
3292         struct mm_struct *mm;
3293         struct vm_area_struct *vma;
3294         void *old_buf = buf;
3295
3296         mm = get_task_mm(tsk);
3297         if (!mm)
3298                 return 0;
3299
3300         down_read(&mm->mmap_sem);
3301         /* ignore errors, just check how much was successfully transferred */
3302         while (len) {
3303                 int bytes, ret, offset;
3304                 void *maddr;
3305                 struct page *page = NULL;
3306
3307                 ret = get_user_pages(tsk, mm, addr, 1,
3308                                 write, 1, &page, &vma);
3309                 if (ret <= 0) {
3310                         /*
3311                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3312                          * we can access using slightly different code.
3313                          */
3314 #ifdef CONFIG_HAVE_IOREMAP_PROT
3315                         vma = find_vma(mm, addr);
3316                         if (!vma)
3317                                 break;
3318                         if (vma->vm_ops && vma->vm_ops->access)
3319                                 ret = vma->vm_ops->access(vma, addr, buf,
3320                                                           len, write);
3321                         if (ret <= 0)
3322 #endif
3323                                 break;
3324                         bytes = ret;
3325                 } else {
3326                         bytes = len;
3327                         offset = addr & (PAGE_SIZE-1);
3328                         if (bytes > PAGE_SIZE-offset)
3329                                 bytes = PAGE_SIZE-offset;
3330
3331                         maddr = kmap(page);
3332                         if (write) {
3333                                 copy_to_user_page(vma, page, addr,
3334                                                   maddr + offset, buf, bytes);
3335                                 set_page_dirty_lock(page);
3336                         } else {
3337                                 copy_from_user_page(vma, page, addr,
3338                                                     buf, maddr + offset, bytes);
3339                         }
3340                         kunmap(page);
3341                         page_cache_release(page);
3342                 }
3343                 len -= bytes;
3344                 buf += bytes;
3345                 addr += bytes;
3346         }
3347         up_read(&mm->mmap_sem);
3348         mmput(mm);
3349
3350         return buf - old_buf;
3351 }
3352
3353 /*
3354  * Print the name of a VMA.
3355  */
3356 void print_vma_addr(char *prefix, unsigned long ip)
3357 {
3358         struct mm_struct *mm = current->mm;
3359         struct vm_area_struct *vma;
3360
3361         /*
3362          * Do not print if we are in atomic
3363          * contexts (in exception stacks, etc.):
3364          */
3365         if (preempt_count())
3366                 return;
3367
3368         down_read(&mm->mmap_sem);
3369         vma = find_vma(mm, ip);
3370         if (vma && vma->vm_file) {
3371                 struct file *f = vma->vm_file;
3372                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3373                 if (buf) {
3374                         char *p, *s;
3375
3376                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3377                         if (IS_ERR(p))
3378                                 p = "?";
3379                         s = strrchr(p, '/');
3380                         if (s)
3381                                 p = s+1;
3382                         printk("%s%s[%lx+%lx]", prefix, p,
3383                                         vma->vm_start,
3384                                         vma->vm_end - vma->vm_start);
3385                         free_page((unsigned long)buf);
3386                 }
3387         }
3388         up_read(&current->mm->mmap_sem);
3389 }
3390
3391 #ifdef CONFIG_PROVE_LOCKING
3392 void might_fault(void)
3393 {
3394         /*
3395          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3396          * holding the mmap_sem, this is safe because kernel memory doesn't
3397          * get paged out, therefore we'll never actually fault, and the
3398          * below annotations will generate false positives.
3399          */
3400         if (segment_eq(get_fs(), KERNEL_DS))
3401                 return;
3402
3403         might_sleep();
3404         /*
3405          * it would be nicer only to annotate paths which are not under
3406          * pagefault_disable, however that requires a larger audit and
3407          * providing helpers like get_user_atomic.
3408          */
3409         if (!in_atomic() && current->mm)
3410                 might_lock_read(&current->mm->mmap_sem);
3411 }
3412 EXPORT_SYMBOL(might_fault);
3413 #endif