a40e4b1cee4ff13cdca07b10a6afffa6933fcf30
[safe/jmp/linux-2.6] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
51
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
54 #include <asm/tlb.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
57
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
64 struct page *mem_map;
65
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
68 #endif
69
70 unsigned long num_physpages;
71 /*
72  * A number of key systems in x86 including ioremap() rely on the assumption
73  * that high_memory defines the upper bound on direct map memory, then end
74  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
75  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76  * and ZONE_HIGHMEM.
77  */
78 void * high_memory;
79 unsigned long vmalloc_earlyreserve;
80
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85 /*
86  * If a p?d_bad entry is found while walking page tables, report
87  * the error, before resetting entry to p?d_none.  Usually (but
88  * very seldom) called out from the p?d_none_or_clear_bad macros.
89  */
90
91 void pgd_clear_bad(pgd_t *pgd)
92 {
93         pgd_ERROR(*pgd);
94         pgd_clear(pgd);
95 }
96
97 void pud_clear_bad(pud_t *pud)
98 {
99         pud_ERROR(*pud);
100         pud_clear(pud);
101 }
102
103 void pmd_clear_bad(pmd_t *pmd)
104 {
105         pmd_ERROR(*pmd);
106         pmd_clear(pmd);
107 }
108
109 /*
110  * Note: this doesn't free the actual pages themselves. That
111  * has been handled earlier when unmapping all the memory regions.
112  */
113 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
114 {
115         struct page *page = pmd_page(*pmd);
116         pmd_clear(pmd);
117         pte_free_tlb(tlb, page);
118         dec_page_state(nr_page_table_pages);
119         tlb->mm->nr_ptes--;
120 }
121
122 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123                                 unsigned long addr, unsigned long end,
124                                 unsigned long floor, unsigned long ceiling)
125 {
126         pmd_t *pmd;
127         unsigned long next;
128         unsigned long start;
129
130         start = addr;
131         pmd = pmd_offset(pud, addr);
132         do {
133                 next = pmd_addr_end(addr, end);
134                 if (pmd_none_or_clear_bad(pmd))
135                         continue;
136                 free_pte_range(tlb, pmd);
137         } while (pmd++, addr = next, addr != end);
138
139         start &= PUD_MASK;
140         if (start < floor)
141                 return;
142         if (ceiling) {
143                 ceiling &= PUD_MASK;
144                 if (!ceiling)
145                         return;
146         }
147         if (end - 1 > ceiling - 1)
148                 return;
149
150         pmd = pmd_offset(pud, start);
151         pud_clear(pud);
152         pmd_free_tlb(tlb, pmd);
153 }
154
155 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156                                 unsigned long addr, unsigned long end,
157                                 unsigned long floor, unsigned long ceiling)
158 {
159         pud_t *pud;
160         unsigned long next;
161         unsigned long start;
162
163         start = addr;
164         pud = pud_offset(pgd, addr);
165         do {
166                 next = pud_addr_end(addr, end);
167                 if (pud_none_or_clear_bad(pud))
168                         continue;
169                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
170         } while (pud++, addr = next, addr != end);
171
172         start &= PGDIR_MASK;
173         if (start < floor)
174                 return;
175         if (ceiling) {
176                 ceiling &= PGDIR_MASK;
177                 if (!ceiling)
178                         return;
179         }
180         if (end - 1 > ceiling - 1)
181                 return;
182
183         pud = pud_offset(pgd, start);
184         pgd_clear(pgd);
185         pud_free_tlb(tlb, pud);
186 }
187
188 /*
189  * This function frees user-level page tables of a process.
190  *
191  * Must be called with pagetable lock held.
192  */
193 void free_pgd_range(struct mmu_gather **tlb,
194                         unsigned long addr, unsigned long end,
195                         unsigned long floor, unsigned long ceiling)
196 {
197         pgd_t *pgd;
198         unsigned long next;
199         unsigned long start;
200
201         /*
202          * The next few lines have given us lots of grief...
203          *
204          * Why are we testing PMD* at this top level?  Because often
205          * there will be no work to do at all, and we'd prefer not to
206          * go all the way down to the bottom just to discover that.
207          *
208          * Why all these "- 1"s?  Because 0 represents both the bottom
209          * of the address space and the top of it (using -1 for the
210          * top wouldn't help much: the masks would do the wrong thing).
211          * The rule is that addr 0 and floor 0 refer to the bottom of
212          * the address space, but end 0 and ceiling 0 refer to the top
213          * Comparisons need to use "end - 1" and "ceiling - 1" (though
214          * that end 0 case should be mythical).
215          *
216          * Wherever addr is brought up or ceiling brought down, we must
217          * be careful to reject "the opposite 0" before it confuses the
218          * subsequent tests.  But what about where end is brought down
219          * by PMD_SIZE below? no, end can't go down to 0 there.
220          *
221          * Whereas we round start (addr) and ceiling down, by different
222          * masks at different levels, in order to test whether a table
223          * now has no other vmas using it, so can be freed, we don't
224          * bother to round floor or end up - the tests don't need that.
225          */
226
227         addr &= PMD_MASK;
228         if (addr < floor) {
229                 addr += PMD_SIZE;
230                 if (!addr)
231                         return;
232         }
233         if (ceiling) {
234                 ceiling &= PMD_MASK;
235                 if (!ceiling)
236                         return;
237         }
238         if (end - 1 > ceiling - 1)
239                 end -= PMD_SIZE;
240         if (addr > end - 1)
241                 return;
242
243         start = addr;
244         pgd = pgd_offset((*tlb)->mm, addr);
245         do {
246                 next = pgd_addr_end(addr, end);
247                 if (pgd_none_or_clear_bad(pgd))
248                         continue;
249                 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
250         } while (pgd++, addr = next, addr != end);
251
252         if (!(*tlb)->fullmm)
253                 flush_tlb_pgtables((*tlb)->mm, start, end);
254 }
255
256 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
257                 unsigned long floor, unsigned long ceiling)
258 {
259         while (vma) {
260                 struct vm_area_struct *next = vma->vm_next;
261                 unsigned long addr = vma->vm_start;
262
263                 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
264                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
265                                 floor, next? next->vm_start: ceiling);
266                 } else {
267                         /*
268                          * Optimization: gather nearby vmas into one call down
269                          */
270                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
271                           && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
272                                                         HPAGE_SIZE)) {
273                                 vma = next;
274                                 next = vma->vm_next;
275                         }
276                         free_pgd_range(tlb, addr, vma->vm_end,
277                                 floor, next? next->vm_start: ceiling);
278                 }
279                 vma = next;
280         }
281 }
282
283 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
284 {
285         struct page *new = pte_alloc_one(mm, address);
286         if (!new)
287                 return -ENOMEM;
288
289         spin_lock(&mm->page_table_lock);
290         if (pmd_present(*pmd))          /* Another has populated it */
291                 pte_free(new);
292         else {
293                 mm->nr_ptes++;
294                 inc_page_state(nr_page_table_pages);
295                 pmd_populate(mm, pmd, new);
296         }
297         spin_unlock(&mm->page_table_lock);
298         return 0;
299 }
300
301 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
302 {
303         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
304         if (!new)
305                 return -ENOMEM;
306
307         spin_lock(&init_mm.page_table_lock);
308         if (pmd_present(*pmd))          /* Another has populated it */
309                 pte_free_kernel(new);
310         else
311                 pmd_populate_kernel(&init_mm, pmd, new);
312         spin_unlock(&init_mm.page_table_lock);
313         return 0;
314 }
315
316 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
317 {
318         if (file_rss)
319                 add_mm_counter(mm, file_rss, file_rss);
320         if (anon_rss)
321                 add_mm_counter(mm, anon_rss, anon_rss);
322 }
323
324 /*
325  * This function is called to print an error when a pte in a
326  * !VM_RESERVED region is found pointing to an invalid pfn (which
327  * is an error.
328  *
329  * The calling function must still handle the error.
330  */
331 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
332 {
333         printk(KERN_ERR "Bad pte = %08llx, process = %s, "
334                         "vm_flags = %lx, vaddr = %lx\n",
335                 (long long)pte_val(pte),
336                 (vma->vm_mm == current->mm ? current->comm : "???"),
337                 vma->vm_flags, vaddr);
338         dump_stack();
339 }
340
341 /*
342  * copy one vm_area from one task to the other. Assumes the page tables
343  * already present in the new task to be cleared in the whole range
344  * covered by this vma.
345  */
346
347 static inline void
348 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
349                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
350                 unsigned long addr, int *rss)
351 {
352         unsigned long vm_flags = vma->vm_flags;
353         pte_t pte = *src_pte;
354         struct page *page;
355         unsigned long pfn;
356
357         /* pte contains position in swap or file, so copy. */
358         if (unlikely(!pte_present(pte))) {
359                 if (!pte_file(pte)) {
360                         swap_duplicate(pte_to_swp_entry(pte));
361                         /* make sure dst_mm is on swapoff's mmlist. */
362                         if (unlikely(list_empty(&dst_mm->mmlist))) {
363                                 spin_lock(&mmlist_lock);
364                                 list_add(&dst_mm->mmlist, &src_mm->mmlist);
365                                 spin_unlock(&mmlist_lock);
366                         }
367                 }
368                 goto out_set_pte;
369         }
370
371         /* If the region is VM_RESERVED, the mapping is not
372          * mapped via rmap - duplicate the pte as is.
373          */
374         if (vm_flags & VM_RESERVED)
375                 goto out_set_pte;
376
377         pfn = pte_pfn(pte);
378         /* If the pte points outside of valid memory but
379          * the region is not VM_RESERVED, we have a problem.
380          */
381         if (unlikely(!pfn_valid(pfn))) {
382                 print_bad_pte(vma, pte, addr);
383                 goto out_set_pte; /* try to do something sane */
384         }
385
386         page = pfn_to_page(pfn);
387
388         /*
389          * If it's a COW mapping, write protect it both
390          * in the parent and the child
391          */
392         if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
393                 ptep_set_wrprotect(src_mm, addr, src_pte);
394                 pte = *src_pte;
395         }
396
397         /*
398          * If it's a shared mapping, mark it clean in
399          * the child
400          */
401         if (vm_flags & VM_SHARED)
402                 pte = pte_mkclean(pte);
403         pte = pte_mkold(pte);
404         get_page(page);
405         page_dup_rmap(page);
406         rss[!!PageAnon(page)]++;
407
408 out_set_pte:
409         set_pte_at(dst_mm, addr, dst_pte, pte);
410 }
411
412 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
413                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
414                 unsigned long addr, unsigned long end)
415 {
416         pte_t *src_pte, *dst_pte;
417         spinlock_t *src_ptl, *dst_ptl;
418         int progress = 0;
419         int rss[2];
420
421 again:
422         rss[1] = rss[0] = 0;
423         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
424         if (!dst_pte)
425                 return -ENOMEM;
426         src_pte = pte_offset_map_nested(src_pmd, addr);
427         src_ptl = &src_mm->page_table_lock;
428         spin_lock(src_ptl);
429
430         do {
431                 /*
432                  * We are holding two locks at this point - either of them
433                  * could generate latencies in another task on another CPU.
434                  */
435                 if (progress >= 32) {
436                         progress = 0;
437                         if (need_resched() ||
438                             need_lockbreak(src_ptl) ||
439                             need_lockbreak(dst_ptl))
440                                 break;
441                 }
442                 if (pte_none(*src_pte)) {
443                         progress++;
444                         continue;
445                 }
446                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
447                 progress += 8;
448         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
449
450         spin_unlock(src_ptl);
451         pte_unmap_nested(src_pte - 1);
452         add_mm_rss(dst_mm, rss[0], rss[1]);
453         pte_unmap_unlock(dst_pte - 1, dst_ptl);
454         cond_resched();
455         if (addr != end)
456                 goto again;
457         return 0;
458 }
459
460 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
461                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
462                 unsigned long addr, unsigned long end)
463 {
464         pmd_t *src_pmd, *dst_pmd;
465         unsigned long next;
466
467         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
468         if (!dst_pmd)
469                 return -ENOMEM;
470         src_pmd = pmd_offset(src_pud, addr);
471         do {
472                 next = pmd_addr_end(addr, end);
473                 if (pmd_none_or_clear_bad(src_pmd))
474                         continue;
475                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
476                                                 vma, addr, next))
477                         return -ENOMEM;
478         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
479         return 0;
480 }
481
482 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
483                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
484                 unsigned long addr, unsigned long end)
485 {
486         pud_t *src_pud, *dst_pud;
487         unsigned long next;
488
489         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
490         if (!dst_pud)
491                 return -ENOMEM;
492         src_pud = pud_offset(src_pgd, addr);
493         do {
494                 next = pud_addr_end(addr, end);
495                 if (pud_none_or_clear_bad(src_pud))
496                         continue;
497                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
498                                                 vma, addr, next))
499                         return -ENOMEM;
500         } while (dst_pud++, src_pud++, addr = next, addr != end);
501         return 0;
502 }
503
504 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
505                 struct vm_area_struct *vma)
506 {
507         pgd_t *src_pgd, *dst_pgd;
508         unsigned long next;
509         unsigned long addr = vma->vm_start;
510         unsigned long end = vma->vm_end;
511
512         /*
513          * Don't copy ptes where a page fault will fill them correctly.
514          * Fork becomes much lighter when there are big shared or private
515          * readonly mappings. The tradeoff is that copy_page_range is more
516          * efficient than faulting.
517          */
518         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
519                 if (!vma->anon_vma)
520                         return 0;
521         }
522
523         if (is_vm_hugetlb_page(vma))
524                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
525
526         dst_pgd = pgd_offset(dst_mm, addr);
527         src_pgd = pgd_offset(src_mm, addr);
528         do {
529                 next = pgd_addr_end(addr, end);
530                 if (pgd_none_or_clear_bad(src_pgd))
531                         continue;
532                 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
533                                                 vma, addr, next))
534                         return -ENOMEM;
535         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
536         return 0;
537 }
538
539 static void zap_pte_range(struct mmu_gather *tlb,
540                                 struct vm_area_struct *vma, pmd_t *pmd,
541                                 unsigned long addr, unsigned long end,
542                                 struct zap_details *details)
543 {
544         struct mm_struct *mm = tlb->mm;
545         pte_t *pte;
546         int file_rss = 0;
547         int anon_rss = 0;
548
549         pte = pte_offset_map(pmd, addr);
550         do {
551                 pte_t ptent = *pte;
552                 if (pte_none(ptent))
553                         continue;
554                 if (pte_present(ptent)) {
555                         struct page *page = NULL;
556                         if (!(vma->vm_flags & VM_RESERVED)) {
557                                 unsigned long pfn = pte_pfn(ptent);
558                                 if (unlikely(!pfn_valid(pfn)))
559                                         print_bad_pte(vma, ptent, addr);
560                                 else
561                                         page = pfn_to_page(pfn);
562                         }
563                         if (unlikely(details) && page) {
564                                 /*
565                                  * unmap_shared_mapping_pages() wants to
566                                  * invalidate cache without truncating:
567                                  * unmap shared but keep private pages.
568                                  */
569                                 if (details->check_mapping &&
570                                     details->check_mapping != page->mapping)
571                                         continue;
572                                 /*
573                                  * Each page->index must be checked when
574                                  * invalidating or truncating nonlinear.
575                                  */
576                                 if (details->nonlinear_vma &&
577                                     (page->index < details->first_index ||
578                                      page->index > details->last_index))
579                                         continue;
580                         }
581                         ptent = ptep_get_and_clear_full(mm, addr, pte,
582                                                         tlb->fullmm);
583                         tlb_remove_tlb_entry(tlb, pte, addr);
584                         if (unlikely(!page))
585                                 continue;
586                         if (unlikely(details) && details->nonlinear_vma
587                             && linear_page_index(details->nonlinear_vma,
588                                                 addr) != page->index)
589                                 set_pte_at(mm, addr, pte,
590                                            pgoff_to_pte(page->index));
591                         if (PageAnon(page))
592                                 anon_rss--;
593                         else {
594                                 if (pte_dirty(ptent))
595                                         set_page_dirty(page);
596                                 if (pte_young(ptent))
597                                         mark_page_accessed(page);
598                                 file_rss--;
599                         }
600                         page_remove_rmap(page);
601                         tlb_remove_page(tlb, page);
602                         continue;
603                 }
604                 /*
605                  * If details->check_mapping, we leave swap entries;
606                  * if details->nonlinear_vma, we leave file entries.
607                  */
608                 if (unlikely(details))
609                         continue;
610                 if (!pte_file(ptent))
611                         free_swap_and_cache(pte_to_swp_entry(ptent));
612                 pte_clear_full(mm, addr, pte, tlb->fullmm);
613         } while (pte++, addr += PAGE_SIZE, addr != end);
614
615         add_mm_rss(mm, file_rss, anon_rss);
616         pte_unmap(pte - 1);
617 }
618
619 static inline void zap_pmd_range(struct mmu_gather *tlb,
620                                 struct vm_area_struct *vma, pud_t *pud,
621                                 unsigned long addr, unsigned long end,
622                                 struct zap_details *details)
623 {
624         pmd_t *pmd;
625         unsigned long next;
626
627         pmd = pmd_offset(pud, addr);
628         do {
629                 next = pmd_addr_end(addr, end);
630                 if (pmd_none_or_clear_bad(pmd))
631                         continue;
632                 zap_pte_range(tlb, vma, pmd, addr, next, details);
633         } while (pmd++, addr = next, addr != end);
634 }
635
636 static inline void zap_pud_range(struct mmu_gather *tlb,
637                                 struct vm_area_struct *vma, pgd_t *pgd,
638                                 unsigned long addr, unsigned long end,
639                                 struct zap_details *details)
640 {
641         pud_t *pud;
642         unsigned long next;
643
644         pud = pud_offset(pgd, addr);
645         do {
646                 next = pud_addr_end(addr, end);
647                 if (pud_none_or_clear_bad(pud))
648                         continue;
649                 zap_pmd_range(tlb, vma, pud, addr, next, details);
650         } while (pud++, addr = next, addr != end);
651 }
652
653 static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
654                                 unsigned long addr, unsigned long end,
655                                 struct zap_details *details)
656 {
657         pgd_t *pgd;
658         unsigned long next;
659
660         if (details && !details->check_mapping && !details->nonlinear_vma)
661                 details = NULL;
662
663         BUG_ON(addr >= end);
664         tlb_start_vma(tlb, vma);
665         pgd = pgd_offset(vma->vm_mm, addr);
666         do {
667                 next = pgd_addr_end(addr, end);
668                 if (pgd_none_or_clear_bad(pgd))
669                         continue;
670                 zap_pud_range(tlb, vma, pgd, addr, next, details);
671         } while (pgd++, addr = next, addr != end);
672         tlb_end_vma(tlb, vma);
673 }
674
675 #ifdef CONFIG_PREEMPT
676 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
677 #else
678 /* No preempt: go for improved straight-line efficiency */
679 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
680 #endif
681
682 /**
683  * unmap_vmas - unmap a range of memory covered by a list of vma's
684  * @tlbp: address of the caller's struct mmu_gather
685  * @mm: the controlling mm_struct
686  * @vma: the starting vma
687  * @start_addr: virtual address at which to start unmapping
688  * @end_addr: virtual address at which to end unmapping
689  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
690  * @details: details of nonlinear truncation or shared cache invalidation
691  *
692  * Returns the end address of the unmapping (restart addr if interrupted).
693  *
694  * Unmap all pages in the vma list.  Called under page_table_lock.
695  *
696  * We aim to not hold page_table_lock for too long (for scheduling latency
697  * reasons).  So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
698  * return the ending mmu_gather to the caller.
699  *
700  * Only addresses between `start' and `end' will be unmapped.
701  *
702  * The VMA list must be sorted in ascending virtual address order.
703  *
704  * unmap_vmas() assumes that the caller will flush the whole unmapped address
705  * range after unmap_vmas() returns.  So the only responsibility here is to
706  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
707  * drops the lock and schedules.
708  */
709 unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
710                 struct vm_area_struct *vma, unsigned long start_addr,
711                 unsigned long end_addr, unsigned long *nr_accounted,
712                 struct zap_details *details)
713 {
714         unsigned long zap_bytes = ZAP_BLOCK_SIZE;
715         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
716         int tlb_start_valid = 0;
717         unsigned long start = start_addr;
718         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
719         int fullmm = (*tlbp)->fullmm;
720
721         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
722                 unsigned long end;
723
724                 start = max(vma->vm_start, start_addr);
725                 if (start >= vma->vm_end)
726                         continue;
727                 end = min(vma->vm_end, end_addr);
728                 if (end <= vma->vm_start)
729                         continue;
730
731                 if (vma->vm_flags & VM_ACCOUNT)
732                         *nr_accounted += (end - start) >> PAGE_SHIFT;
733
734                 while (start != end) {
735                         unsigned long block;
736
737                         if (!tlb_start_valid) {
738                                 tlb_start = start;
739                                 tlb_start_valid = 1;
740                         }
741
742                         if (is_vm_hugetlb_page(vma)) {
743                                 block = end - start;
744                                 unmap_hugepage_range(vma, start, end);
745                         } else {
746                                 block = min(zap_bytes, end - start);
747                                 unmap_page_range(*tlbp, vma, start,
748                                                 start + block, details);
749                         }
750
751                         start += block;
752                         zap_bytes -= block;
753                         if ((long)zap_bytes > 0)
754                                 continue;
755
756                         tlb_finish_mmu(*tlbp, tlb_start, start);
757
758                         if (need_resched() ||
759                                 need_lockbreak(&mm->page_table_lock) ||
760                                 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
761                                 if (i_mmap_lock) {
762                                         /* must reset count of rss freed */
763                                         *tlbp = tlb_gather_mmu(mm, fullmm);
764                                         goto out;
765                                 }
766                                 spin_unlock(&mm->page_table_lock);
767                                 cond_resched();
768                                 spin_lock(&mm->page_table_lock);
769                         }
770
771                         *tlbp = tlb_gather_mmu(mm, fullmm);
772                         tlb_start_valid = 0;
773                         zap_bytes = ZAP_BLOCK_SIZE;
774                 }
775         }
776 out:
777         return start;   /* which is now the end (or restart) address */
778 }
779
780 /**
781  * zap_page_range - remove user pages in a given range
782  * @vma: vm_area_struct holding the applicable pages
783  * @address: starting address of pages to zap
784  * @size: number of bytes to zap
785  * @details: details of nonlinear truncation or shared cache invalidation
786  */
787 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
788                 unsigned long size, struct zap_details *details)
789 {
790         struct mm_struct *mm = vma->vm_mm;
791         struct mmu_gather *tlb;
792         unsigned long end = address + size;
793         unsigned long nr_accounted = 0;
794
795         if (is_vm_hugetlb_page(vma)) {
796                 zap_hugepage_range(vma, address, size);
797                 return end;
798         }
799
800         lru_add_drain();
801         spin_lock(&mm->page_table_lock);
802         tlb = tlb_gather_mmu(mm, 0);
803         update_hiwater_rss(mm);
804         end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
805         tlb_finish_mmu(tlb, address, end);
806         spin_unlock(&mm->page_table_lock);
807         return end;
808 }
809
810 /*
811  * Do a quick page-table lookup for a single page.
812  * mm->page_table_lock must be held.
813  */
814 static struct page *__follow_page(struct mm_struct *mm, unsigned long address,
815                         int read, int write, int accessed)
816 {
817         pgd_t *pgd;
818         pud_t *pud;
819         pmd_t *pmd;
820         pte_t *ptep, pte;
821         unsigned long pfn;
822         struct page *page;
823
824         page = follow_huge_addr(mm, address, write);
825         if (! IS_ERR(page))
826                 return page;
827
828         pgd = pgd_offset(mm, address);
829         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
830                 goto out;
831
832         pud = pud_offset(pgd, address);
833         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
834                 goto out;
835         
836         pmd = pmd_offset(pud, address);
837         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
838                 goto out;
839         if (pmd_huge(*pmd))
840                 return follow_huge_pmd(mm, address, pmd, write);
841
842         ptep = pte_offset_map(pmd, address);
843         if (!ptep)
844                 goto out;
845
846         pte = *ptep;
847         pte_unmap(ptep);
848         if (pte_present(pte)) {
849                 if (write && !pte_write(pte))
850                         goto out;
851                 if (read && !pte_read(pte))
852                         goto out;
853                 pfn = pte_pfn(pte);
854                 if (pfn_valid(pfn)) {
855                         page = pfn_to_page(pfn);
856                         if (accessed) {
857                                 if (write && !pte_dirty(pte) &&!PageDirty(page))
858                                         set_page_dirty(page);
859                                 mark_page_accessed(page);
860                         }
861                         return page;
862                 }
863         }
864
865 out:
866         return NULL;
867 }
868
869 inline struct page *
870 follow_page(struct mm_struct *mm, unsigned long address, int write)
871 {
872         return __follow_page(mm, address, 0, write, 1);
873 }
874
875 /*
876  * check_user_page_readable() can be called frm niterrupt context by oprofile,
877  * so we need to avoid taking any non-irq-safe locks
878  */
879 int check_user_page_readable(struct mm_struct *mm, unsigned long address)
880 {
881         return __follow_page(mm, address, 1, 0, 0) != NULL;
882 }
883 EXPORT_SYMBOL(check_user_page_readable);
884
885 static inline int
886 untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
887                          unsigned long address)
888 {
889         pgd_t *pgd;
890         pud_t *pud;
891         pmd_t *pmd;
892
893         /* Check if the vma is for an anonymous mapping. */
894         if (vma->vm_ops && vma->vm_ops->nopage)
895                 return 0;
896
897         /* Check if page directory entry exists. */
898         pgd = pgd_offset(mm, address);
899         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
900                 return 1;
901
902         pud = pud_offset(pgd, address);
903         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
904                 return 1;
905
906         /* Check if page middle directory entry exists. */
907         pmd = pmd_offset(pud, address);
908         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
909                 return 1;
910
911         /* There is a pte slot for 'address' in 'mm'. */
912         return 0;
913 }
914
915 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
916                 unsigned long start, int len, int write, int force,
917                 struct page **pages, struct vm_area_struct **vmas)
918 {
919         int i;
920         unsigned int flags;
921
922         /* 
923          * Require read or write permissions.
924          * If 'force' is set, we only require the "MAY" flags.
925          */
926         flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
927         flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
928         i = 0;
929
930         do {
931                 struct vm_area_struct * vma;
932
933                 vma = find_extend_vma(mm, start);
934                 if (!vma && in_gate_area(tsk, start)) {
935                         unsigned long pg = start & PAGE_MASK;
936                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
937                         pgd_t *pgd;
938                         pud_t *pud;
939                         pmd_t *pmd;
940                         pte_t *pte;
941                         if (write) /* user gate pages are read-only */
942                                 return i ? : -EFAULT;
943                         if (pg > TASK_SIZE)
944                                 pgd = pgd_offset_k(pg);
945                         else
946                                 pgd = pgd_offset_gate(mm, pg);
947                         BUG_ON(pgd_none(*pgd));
948                         pud = pud_offset(pgd, pg);
949                         BUG_ON(pud_none(*pud));
950                         pmd = pmd_offset(pud, pg);
951                         if (pmd_none(*pmd))
952                                 return i ? : -EFAULT;
953                         pte = pte_offset_map(pmd, pg);
954                         if (pte_none(*pte)) {
955                                 pte_unmap(pte);
956                                 return i ? : -EFAULT;
957                         }
958                         if (pages) {
959                                 pages[i] = pte_page(*pte);
960                                 get_page(pages[i]);
961                         }
962                         pte_unmap(pte);
963                         if (vmas)
964                                 vmas[i] = gate_vma;
965                         i++;
966                         start += PAGE_SIZE;
967                         len--;
968                         continue;
969                 }
970
971                 if (!vma || (vma->vm_flags & (VM_IO | VM_RESERVED))
972                                 || !(flags & vma->vm_flags))
973                         return i ? : -EFAULT;
974
975                 if (is_vm_hugetlb_page(vma)) {
976                         i = follow_hugetlb_page(mm, vma, pages, vmas,
977                                                 &start, &len, i);
978                         continue;
979                 }
980                 spin_lock(&mm->page_table_lock);
981                 do {
982                         int write_access = write;
983                         struct page *page;
984
985                         cond_resched_lock(&mm->page_table_lock);
986                         while (!(page = follow_page(mm, start, write_access))) {
987                                 int ret;
988
989                                 /*
990                                  * Shortcut for anonymous pages. We don't want
991                                  * to force the creation of pages tables for
992                                  * insanely big anonymously mapped areas that
993                                  * nobody touched so far. This is important
994                                  * for doing a core dump for these mappings.
995                                  */
996                                 if (!write && untouched_anonymous_page(mm,vma,start)) {
997                                         page = ZERO_PAGE(start);
998                                         break;
999                                 }
1000                                 spin_unlock(&mm->page_table_lock);
1001                                 ret = __handle_mm_fault(mm, vma, start, write_access);
1002
1003                                 /*
1004                                  * The VM_FAULT_WRITE bit tells us that do_wp_page has
1005                                  * broken COW when necessary, even if maybe_mkwrite
1006                                  * decided not to set pte_write. We can thus safely do
1007                                  * subsequent page lookups as if they were reads.
1008                                  */
1009                                 if (ret & VM_FAULT_WRITE)
1010                                         write_access = 0;
1011                                 
1012                                 switch (ret & ~VM_FAULT_WRITE) {
1013                                 case VM_FAULT_MINOR:
1014                                         tsk->min_flt++;
1015                                         break;
1016                                 case VM_FAULT_MAJOR:
1017                                         tsk->maj_flt++;
1018                                         break;
1019                                 case VM_FAULT_SIGBUS:
1020                                         return i ? i : -EFAULT;
1021                                 case VM_FAULT_OOM:
1022                                         return i ? i : -ENOMEM;
1023                                 default:
1024                                         BUG();
1025                                 }
1026                                 spin_lock(&mm->page_table_lock);
1027                         }
1028                         if (pages) {
1029                                 pages[i] = page;
1030                                 flush_dcache_page(page);
1031                                 page_cache_get(page);
1032                         }
1033                         if (vmas)
1034                                 vmas[i] = vma;
1035                         i++;
1036                         start += PAGE_SIZE;
1037                         len--;
1038                 } while (len && start < vma->vm_end);
1039                 spin_unlock(&mm->page_table_lock);
1040         } while (len);
1041         return i;
1042 }
1043 EXPORT_SYMBOL(get_user_pages);
1044
1045 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1046                         unsigned long addr, unsigned long end, pgprot_t prot)
1047 {
1048         pte_t *pte;
1049         spinlock_t *ptl;
1050
1051         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1052         if (!pte)
1053                 return -ENOMEM;
1054         do {
1055                 struct page *page = ZERO_PAGE(addr);
1056                 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1057                 page_cache_get(page);
1058                 page_add_file_rmap(page);
1059                 inc_mm_counter(mm, file_rss);
1060                 BUG_ON(!pte_none(*pte));
1061                 set_pte_at(mm, addr, pte, zero_pte);
1062         } while (pte++, addr += PAGE_SIZE, addr != end);
1063         pte_unmap_unlock(pte - 1, ptl);
1064         return 0;
1065 }
1066
1067 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1068                         unsigned long addr, unsigned long end, pgprot_t prot)
1069 {
1070         pmd_t *pmd;
1071         unsigned long next;
1072
1073         pmd = pmd_alloc(mm, pud, addr);
1074         if (!pmd)
1075                 return -ENOMEM;
1076         do {
1077                 next = pmd_addr_end(addr, end);
1078                 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1079                         return -ENOMEM;
1080         } while (pmd++, addr = next, addr != end);
1081         return 0;
1082 }
1083
1084 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1085                         unsigned long addr, unsigned long end, pgprot_t prot)
1086 {
1087         pud_t *pud;
1088         unsigned long next;
1089
1090         pud = pud_alloc(mm, pgd, addr);
1091         if (!pud)
1092                 return -ENOMEM;
1093         do {
1094                 next = pud_addr_end(addr, end);
1095                 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1096                         return -ENOMEM;
1097         } while (pud++, addr = next, addr != end);
1098         return 0;
1099 }
1100
1101 int zeromap_page_range(struct vm_area_struct *vma,
1102                         unsigned long addr, unsigned long size, pgprot_t prot)
1103 {
1104         pgd_t *pgd;
1105         unsigned long next;
1106         unsigned long end = addr + size;
1107         struct mm_struct *mm = vma->vm_mm;
1108         int err;
1109
1110         BUG_ON(addr >= end);
1111         pgd = pgd_offset(mm, addr);
1112         flush_cache_range(vma, addr, end);
1113         do {
1114                 next = pgd_addr_end(addr, end);
1115                 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1116                 if (err)
1117                         break;
1118         } while (pgd++, addr = next, addr != end);
1119         return err;
1120 }
1121
1122 /*
1123  * maps a range of physical memory into the requested pages. the old
1124  * mappings are removed. any references to nonexistent pages results
1125  * in null mappings (currently treated as "copy-on-access")
1126  */
1127 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1128                         unsigned long addr, unsigned long end,
1129                         unsigned long pfn, pgprot_t prot)
1130 {
1131         pte_t *pte;
1132         spinlock_t *ptl;
1133
1134         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1135         if (!pte)
1136                 return -ENOMEM;
1137         do {
1138                 BUG_ON(!pte_none(*pte));
1139                 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1140                 pfn++;
1141         } while (pte++, addr += PAGE_SIZE, addr != end);
1142         pte_unmap_unlock(pte - 1, ptl);
1143         return 0;
1144 }
1145
1146 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1147                         unsigned long addr, unsigned long end,
1148                         unsigned long pfn, pgprot_t prot)
1149 {
1150         pmd_t *pmd;
1151         unsigned long next;
1152
1153         pfn -= addr >> PAGE_SHIFT;
1154         pmd = pmd_alloc(mm, pud, addr);
1155         if (!pmd)
1156                 return -ENOMEM;
1157         do {
1158                 next = pmd_addr_end(addr, end);
1159                 if (remap_pte_range(mm, pmd, addr, next,
1160                                 pfn + (addr >> PAGE_SHIFT), prot))
1161                         return -ENOMEM;
1162         } while (pmd++, addr = next, addr != end);
1163         return 0;
1164 }
1165
1166 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1167                         unsigned long addr, unsigned long end,
1168                         unsigned long pfn, pgprot_t prot)
1169 {
1170         pud_t *pud;
1171         unsigned long next;
1172
1173         pfn -= addr >> PAGE_SHIFT;
1174         pud = pud_alloc(mm, pgd, addr);
1175         if (!pud)
1176                 return -ENOMEM;
1177         do {
1178                 next = pud_addr_end(addr, end);
1179                 if (remap_pmd_range(mm, pud, addr, next,
1180                                 pfn + (addr >> PAGE_SHIFT), prot))
1181                         return -ENOMEM;
1182         } while (pud++, addr = next, addr != end);
1183         return 0;
1184 }
1185
1186 /*  Note: this is only safe if the mm semaphore is held when called. */
1187 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1188                     unsigned long pfn, unsigned long size, pgprot_t prot)
1189 {
1190         pgd_t *pgd;
1191         unsigned long next;
1192         unsigned long end = addr + PAGE_ALIGN(size);
1193         struct mm_struct *mm = vma->vm_mm;
1194         int err;
1195
1196         /*
1197          * Physically remapped pages are special. Tell the
1198          * rest of the world about it:
1199          *   VM_IO tells people not to look at these pages
1200          *      (accesses can have side effects).
1201          *   VM_RESERVED tells the core MM not to "manage" these pages
1202          *      (e.g. refcount, mapcount, try to swap them out).
1203          */
1204         vma->vm_flags |= VM_IO | VM_RESERVED;
1205
1206         BUG_ON(addr >= end);
1207         pfn -= addr >> PAGE_SHIFT;
1208         pgd = pgd_offset(mm, addr);
1209         flush_cache_range(vma, addr, end);
1210         do {
1211                 next = pgd_addr_end(addr, end);
1212                 err = remap_pud_range(mm, pgd, addr, next,
1213                                 pfn + (addr >> PAGE_SHIFT), prot);
1214                 if (err)
1215                         break;
1216         } while (pgd++, addr = next, addr != end);
1217         return err;
1218 }
1219 EXPORT_SYMBOL(remap_pfn_range);
1220
1221 /*
1222  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1223  * servicing faults for write access.  In the normal case, do always want
1224  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1225  * that do not have writing enabled, when used by access_process_vm.
1226  */
1227 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1228 {
1229         if (likely(vma->vm_flags & VM_WRITE))
1230                 pte = pte_mkwrite(pte);
1231         return pte;
1232 }
1233
1234 /*
1235  * This routine handles present pages, when users try to write
1236  * to a shared page. It is done by copying the page to a new address
1237  * and decrementing the shared-page counter for the old page.
1238  *
1239  * Note that this routine assumes that the protection checks have been
1240  * done by the caller (the low-level page fault routine in most cases).
1241  * Thus we can safely just mark it writable once we've done any necessary
1242  * COW.
1243  *
1244  * We also mark the page dirty at this point even though the page will
1245  * change only once the write actually happens. This avoids a few races,
1246  * and potentially makes it more efficient.
1247  *
1248  * We hold the mm semaphore and the page_table_lock on entry and exit
1249  * with the page_table_lock released.
1250  */
1251 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1252                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1253                 pte_t orig_pte)
1254 {
1255         struct page *old_page, *new_page;
1256         unsigned long pfn = pte_pfn(orig_pte);
1257         pte_t entry;
1258         int ret = VM_FAULT_MINOR;
1259
1260         BUG_ON(vma->vm_flags & VM_RESERVED);
1261
1262         if (unlikely(!pfn_valid(pfn))) {
1263                 /*
1264                  * Page table corrupted: show pte and kill process.
1265                  */
1266                 print_bad_pte(vma, orig_pte, address);
1267                 ret = VM_FAULT_OOM;
1268                 goto unlock;
1269         }
1270         old_page = pfn_to_page(pfn);
1271
1272         if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1273                 int reuse = can_share_swap_page(old_page);
1274                 unlock_page(old_page);
1275                 if (reuse) {
1276                         flush_cache_page(vma, address, pfn);
1277                         entry = pte_mkyoung(orig_pte);
1278                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1279                         ptep_set_access_flags(vma, address, page_table, entry, 1);
1280                         update_mmu_cache(vma, address, entry);
1281                         lazy_mmu_prot_update(entry);
1282                         ret |= VM_FAULT_WRITE;
1283                         goto unlock;
1284                 }
1285         }
1286
1287         /*
1288          * Ok, we need to copy. Oh, well..
1289          */
1290         page_cache_get(old_page);
1291         pte_unmap(page_table);
1292         spin_unlock(&mm->page_table_lock);
1293
1294         if (unlikely(anon_vma_prepare(vma)))
1295                 goto oom;
1296         if (old_page == ZERO_PAGE(address)) {
1297                 new_page = alloc_zeroed_user_highpage(vma, address);
1298                 if (!new_page)
1299                         goto oom;
1300         } else {
1301                 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1302                 if (!new_page)
1303                         goto oom;
1304                 copy_user_highpage(new_page, old_page, address);
1305         }
1306
1307         /*
1308          * Re-check the pte - we dropped the lock
1309          */
1310         spin_lock(&mm->page_table_lock);
1311         page_table = pte_offset_map(pmd, address);
1312         if (likely(pte_same(*page_table, orig_pte))) {
1313                 page_remove_rmap(old_page);
1314                 if (!PageAnon(old_page)) {
1315                         inc_mm_counter(mm, anon_rss);
1316                         dec_mm_counter(mm, file_rss);
1317                 }
1318                 flush_cache_page(vma, address, pfn);
1319                 entry = mk_pte(new_page, vma->vm_page_prot);
1320                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1321                 ptep_establish(vma, address, page_table, entry);
1322                 update_mmu_cache(vma, address, entry);
1323                 lazy_mmu_prot_update(entry);
1324
1325                 lru_cache_add_active(new_page);
1326                 page_add_anon_rmap(new_page, vma, address);
1327
1328                 /* Free the old page.. */
1329                 new_page = old_page;
1330                 ret |= VM_FAULT_WRITE;
1331         }
1332         page_cache_release(new_page);
1333         page_cache_release(old_page);
1334 unlock:
1335         pte_unmap(page_table);
1336         spin_unlock(&mm->page_table_lock);
1337         return ret;
1338 oom:
1339         page_cache_release(old_page);
1340         return VM_FAULT_OOM;
1341 }
1342
1343 /*
1344  * Helper functions for unmap_mapping_range().
1345  *
1346  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1347  *
1348  * We have to restart searching the prio_tree whenever we drop the lock,
1349  * since the iterator is only valid while the lock is held, and anyway
1350  * a later vma might be split and reinserted earlier while lock dropped.
1351  *
1352  * The list of nonlinear vmas could be handled more efficiently, using
1353  * a placeholder, but handle it in the same way until a need is shown.
1354  * It is important to search the prio_tree before nonlinear list: a vma
1355  * may become nonlinear and be shifted from prio_tree to nonlinear list
1356  * while the lock is dropped; but never shifted from list to prio_tree.
1357  *
1358  * In order to make forward progress despite restarting the search,
1359  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1360  * quickly skip it next time around.  Since the prio_tree search only
1361  * shows us those vmas affected by unmapping the range in question, we
1362  * can't efficiently keep all vmas in step with mapping->truncate_count:
1363  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1364  * mapping->truncate_count and vma->vm_truncate_count are protected by
1365  * i_mmap_lock.
1366  *
1367  * In order to make forward progress despite repeatedly restarting some
1368  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1369  * and restart from that address when we reach that vma again.  It might
1370  * have been split or merged, shrunk or extended, but never shifted: so
1371  * restart_addr remains valid so long as it remains in the vma's range.
1372  * unmap_mapping_range forces truncate_count to leap over page-aligned
1373  * values so we can save vma's restart_addr in its truncate_count field.
1374  */
1375 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1376
1377 static void reset_vma_truncate_counts(struct address_space *mapping)
1378 {
1379         struct vm_area_struct *vma;
1380         struct prio_tree_iter iter;
1381
1382         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1383                 vma->vm_truncate_count = 0;
1384         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1385                 vma->vm_truncate_count = 0;
1386 }
1387
1388 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1389                 unsigned long start_addr, unsigned long end_addr,
1390                 struct zap_details *details)
1391 {
1392         unsigned long restart_addr;
1393         int need_break;
1394
1395 again:
1396         restart_addr = vma->vm_truncate_count;
1397         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1398                 start_addr = restart_addr;
1399                 if (start_addr >= end_addr) {
1400                         /* Top of vma has been split off since last time */
1401                         vma->vm_truncate_count = details->truncate_count;
1402                         return 0;
1403                 }
1404         }
1405
1406         restart_addr = zap_page_range(vma, start_addr,
1407                                         end_addr - start_addr, details);
1408
1409         /*
1410          * We cannot rely on the break test in unmap_vmas:
1411          * on the one hand, we don't want to restart our loop
1412          * just because that broke out for the page_table_lock;
1413          * on the other hand, it does no test when vma is small.
1414          */
1415         need_break = need_resched() ||
1416                         need_lockbreak(details->i_mmap_lock);
1417
1418         if (restart_addr >= end_addr) {
1419                 /* We have now completed this vma: mark it so */
1420                 vma->vm_truncate_count = details->truncate_count;
1421                 if (!need_break)
1422                         return 0;
1423         } else {
1424                 /* Note restart_addr in vma's truncate_count field */
1425                 vma->vm_truncate_count = restart_addr;
1426                 if (!need_break)
1427                         goto again;
1428         }
1429
1430         spin_unlock(details->i_mmap_lock);
1431         cond_resched();
1432         spin_lock(details->i_mmap_lock);
1433         return -EINTR;
1434 }
1435
1436 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1437                                             struct zap_details *details)
1438 {
1439         struct vm_area_struct *vma;
1440         struct prio_tree_iter iter;
1441         pgoff_t vba, vea, zba, zea;
1442
1443 restart:
1444         vma_prio_tree_foreach(vma, &iter, root,
1445                         details->first_index, details->last_index) {
1446                 /* Skip quickly over those we have already dealt with */
1447                 if (vma->vm_truncate_count == details->truncate_count)
1448                         continue;
1449
1450                 vba = vma->vm_pgoff;
1451                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1452                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1453                 zba = details->first_index;
1454                 if (zba < vba)
1455                         zba = vba;
1456                 zea = details->last_index;
1457                 if (zea > vea)
1458                         zea = vea;
1459
1460                 if (unmap_mapping_range_vma(vma,
1461                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1462                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1463                                 details) < 0)
1464                         goto restart;
1465         }
1466 }
1467
1468 static inline void unmap_mapping_range_list(struct list_head *head,
1469                                             struct zap_details *details)
1470 {
1471         struct vm_area_struct *vma;
1472
1473         /*
1474          * In nonlinear VMAs there is no correspondence between virtual address
1475          * offset and file offset.  So we must perform an exhaustive search
1476          * across *all* the pages in each nonlinear VMA, not just the pages
1477          * whose virtual address lies outside the file truncation point.
1478          */
1479 restart:
1480         list_for_each_entry(vma, head, shared.vm_set.list) {
1481                 /* Skip quickly over those we have already dealt with */
1482                 if (vma->vm_truncate_count == details->truncate_count)
1483                         continue;
1484                 details->nonlinear_vma = vma;
1485                 if (unmap_mapping_range_vma(vma, vma->vm_start,
1486                                         vma->vm_end, details) < 0)
1487                         goto restart;
1488         }
1489 }
1490
1491 /**
1492  * unmap_mapping_range - unmap the portion of all mmaps
1493  * in the specified address_space corresponding to the specified
1494  * page range in the underlying file.
1495  * @mapping: the address space containing mmaps to be unmapped.
1496  * @holebegin: byte in first page to unmap, relative to the start of
1497  * the underlying file.  This will be rounded down to a PAGE_SIZE
1498  * boundary.  Note that this is different from vmtruncate(), which
1499  * must keep the partial page.  In contrast, we must get rid of
1500  * partial pages.
1501  * @holelen: size of prospective hole in bytes.  This will be rounded
1502  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1503  * end of the file.
1504  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1505  * but 0 when invalidating pagecache, don't throw away private data.
1506  */
1507 void unmap_mapping_range(struct address_space *mapping,
1508                 loff_t const holebegin, loff_t const holelen, int even_cows)
1509 {
1510         struct zap_details details;
1511         pgoff_t hba = holebegin >> PAGE_SHIFT;
1512         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1513
1514         /* Check for overflow. */
1515         if (sizeof(holelen) > sizeof(hlen)) {
1516                 long long holeend =
1517                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1518                 if (holeend & ~(long long)ULONG_MAX)
1519                         hlen = ULONG_MAX - hba + 1;
1520         }
1521
1522         details.check_mapping = even_cows? NULL: mapping;
1523         details.nonlinear_vma = NULL;
1524         details.first_index = hba;
1525         details.last_index = hba + hlen - 1;
1526         if (details.last_index < details.first_index)
1527                 details.last_index = ULONG_MAX;
1528         details.i_mmap_lock = &mapping->i_mmap_lock;
1529
1530         spin_lock(&mapping->i_mmap_lock);
1531
1532         /* serialize i_size write against truncate_count write */
1533         smp_wmb();
1534         /* Protect against page faults, and endless unmapping loops */
1535         mapping->truncate_count++;
1536         /*
1537          * For archs where spin_lock has inclusive semantics like ia64
1538          * this smp_mb() will prevent to read pagetable contents
1539          * before the truncate_count increment is visible to
1540          * other cpus.
1541          */
1542         smp_mb();
1543         if (unlikely(is_restart_addr(mapping->truncate_count))) {
1544                 if (mapping->truncate_count == 0)
1545                         reset_vma_truncate_counts(mapping);
1546                 mapping->truncate_count++;
1547         }
1548         details.truncate_count = mapping->truncate_count;
1549
1550         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1551                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1552         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1553                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1554         spin_unlock(&mapping->i_mmap_lock);
1555 }
1556 EXPORT_SYMBOL(unmap_mapping_range);
1557
1558 /*
1559  * Handle all mappings that got truncated by a "truncate()"
1560  * system call.
1561  *
1562  * NOTE! We have to be ready to update the memory sharing
1563  * between the file and the memory map for a potential last
1564  * incomplete page.  Ugly, but necessary.
1565  */
1566 int vmtruncate(struct inode * inode, loff_t offset)
1567 {
1568         struct address_space *mapping = inode->i_mapping;
1569         unsigned long limit;
1570
1571         if (inode->i_size < offset)
1572                 goto do_expand;
1573         /*
1574          * truncation of in-use swapfiles is disallowed - it would cause
1575          * subsequent swapout to scribble on the now-freed blocks.
1576          */
1577         if (IS_SWAPFILE(inode))
1578                 goto out_busy;
1579         i_size_write(inode, offset);
1580         unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1581         truncate_inode_pages(mapping, offset);
1582         goto out_truncate;
1583
1584 do_expand:
1585         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1586         if (limit != RLIM_INFINITY && offset > limit)
1587                 goto out_sig;
1588         if (offset > inode->i_sb->s_maxbytes)
1589                 goto out_big;
1590         i_size_write(inode, offset);
1591
1592 out_truncate:
1593         if (inode->i_op && inode->i_op->truncate)
1594                 inode->i_op->truncate(inode);
1595         return 0;
1596 out_sig:
1597         send_sig(SIGXFSZ, current, 0);
1598 out_big:
1599         return -EFBIG;
1600 out_busy:
1601         return -ETXTBSY;
1602 }
1603
1604 EXPORT_SYMBOL(vmtruncate);
1605
1606 /* 
1607  * Primitive swap readahead code. We simply read an aligned block of
1608  * (1 << page_cluster) entries in the swap area. This method is chosen
1609  * because it doesn't cost us any seek time.  We also make sure to queue
1610  * the 'original' request together with the readahead ones...  
1611  *
1612  * This has been extended to use the NUMA policies from the mm triggering
1613  * the readahead.
1614  *
1615  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1616  */
1617 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1618 {
1619 #ifdef CONFIG_NUMA
1620         struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1621 #endif
1622         int i, num;
1623         struct page *new_page;
1624         unsigned long offset;
1625
1626         /*
1627          * Get the number of handles we should do readahead io to.
1628          */
1629         num = valid_swaphandles(entry, &offset);
1630         for (i = 0; i < num; offset++, i++) {
1631                 /* Ok, do the async read-ahead now */
1632                 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1633                                                            offset), vma, addr);
1634                 if (!new_page)
1635                         break;
1636                 page_cache_release(new_page);
1637 #ifdef CONFIG_NUMA
1638                 /*
1639                  * Find the next applicable VMA for the NUMA policy.
1640                  */
1641                 addr += PAGE_SIZE;
1642                 if (addr == 0)
1643                         vma = NULL;
1644                 if (vma) {
1645                         if (addr >= vma->vm_end) {
1646                                 vma = next_vma;
1647                                 next_vma = vma ? vma->vm_next : NULL;
1648                         }
1649                         if (vma && addr < vma->vm_start)
1650                                 vma = NULL;
1651                 } else {
1652                         if (next_vma && addr >= next_vma->vm_start) {
1653                                 vma = next_vma;
1654                                 next_vma = vma->vm_next;
1655                         }
1656                 }
1657 #endif
1658         }
1659         lru_add_drain();        /* Push any new pages onto the LRU now */
1660 }
1661
1662 /*
1663  * We hold the mm semaphore and the page_table_lock on entry and
1664  * should release the pagetable lock on exit..
1665  */
1666 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1667                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1668                 int write_access, pte_t orig_pte)
1669 {
1670         struct page *page;
1671         swp_entry_t entry;
1672         pte_t pte;
1673         int ret = VM_FAULT_MINOR;
1674
1675         pte_unmap(page_table);
1676         spin_unlock(&mm->page_table_lock);
1677
1678         entry = pte_to_swp_entry(orig_pte);
1679         page = lookup_swap_cache(entry);
1680         if (!page) {
1681                 swapin_readahead(entry, address, vma);
1682                 page = read_swap_cache_async(entry, vma, address);
1683                 if (!page) {
1684                         /*
1685                          * Back out if somebody else faulted in this pte while
1686                          * we released the page table lock.
1687                          */
1688                         spin_lock(&mm->page_table_lock);
1689                         page_table = pte_offset_map(pmd, address);
1690                         if (likely(pte_same(*page_table, orig_pte)))
1691                                 ret = VM_FAULT_OOM;
1692                         goto unlock;
1693                 }
1694
1695                 /* Had to read the page from swap area: Major fault */
1696                 ret = VM_FAULT_MAJOR;
1697                 inc_page_state(pgmajfault);
1698                 grab_swap_token();
1699         }
1700
1701         mark_page_accessed(page);
1702         lock_page(page);
1703
1704         /*
1705          * Back out if somebody else faulted in this pte while we
1706          * released the page table lock.
1707          */
1708         spin_lock(&mm->page_table_lock);
1709         page_table = pte_offset_map(pmd, address);
1710         if (unlikely(!pte_same(*page_table, orig_pte)))
1711                 goto out_nomap;
1712
1713         if (unlikely(!PageUptodate(page))) {
1714                 ret = VM_FAULT_SIGBUS;
1715                 goto out_nomap;
1716         }
1717
1718         /* The page isn't present yet, go ahead with the fault. */
1719
1720         inc_mm_counter(mm, anon_rss);
1721         pte = mk_pte(page, vma->vm_page_prot);
1722         if (write_access && can_share_swap_page(page)) {
1723                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1724                 write_access = 0;
1725         }
1726
1727         flush_icache_page(vma, page);
1728         set_pte_at(mm, address, page_table, pte);
1729         page_add_anon_rmap(page, vma, address);
1730
1731         swap_free(entry);
1732         if (vm_swap_full())
1733                 remove_exclusive_swap_page(page);
1734         unlock_page(page);
1735
1736         if (write_access) {
1737                 if (do_wp_page(mm, vma, address,
1738                                 page_table, pmd, pte) == VM_FAULT_OOM)
1739                         ret = VM_FAULT_OOM;
1740                 goto out;
1741         }
1742
1743         /* No need to invalidate - it was non-present before */
1744         update_mmu_cache(vma, address, pte);
1745         lazy_mmu_prot_update(pte);
1746 unlock:
1747         pte_unmap(page_table);
1748         spin_unlock(&mm->page_table_lock);
1749 out:
1750         return ret;
1751 out_nomap:
1752         pte_unmap(page_table);
1753         spin_unlock(&mm->page_table_lock);
1754         unlock_page(page);
1755         page_cache_release(page);
1756         return ret;
1757 }
1758
1759 /*
1760  * We are called with the MM semaphore and page_table_lock
1761  * spinlock held to protect against concurrent faults in
1762  * multithreaded programs. 
1763  */
1764 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1765                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1766                 int write_access)
1767 {
1768         struct page *page = ZERO_PAGE(addr);
1769         pte_t entry;
1770
1771         /* Mapping of ZERO_PAGE - vm_page_prot is readonly */
1772         entry = mk_pte(page, vma->vm_page_prot);
1773
1774         if (write_access) {
1775                 /* Allocate our own private page. */
1776                 pte_unmap(page_table);
1777                 spin_unlock(&mm->page_table_lock);
1778
1779                 if (unlikely(anon_vma_prepare(vma)))
1780                         goto oom;
1781                 page = alloc_zeroed_user_highpage(vma, address);
1782                 if (!page)
1783                         goto oom;
1784
1785                 spin_lock(&mm->page_table_lock);
1786                 page_table = pte_offset_map(pmd, address);
1787
1788                 if (!pte_none(*page_table)) {
1789                         page_cache_release(page);
1790                         goto unlock;
1791                 }
1792                 inc_mm_counter(mm, anon_rss);
1793                 entry = mk_pte(page, vma->vm_page_prot);
1794                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1795                 lru_cache_add_active(page);
1796                 SetPageReferenced(page);
1797                 page_add_anon_rmap(page, vma, address);
1798         } else {
1799                 inc_mm_counter(mm, file_rss);
1800                 page_add_file_rmap(page);
1801                 page_cache_get(page);
1802         }
1803
1804         set_pte_at(mm, address, page_table, entry);
1805
1806         /* No need to invalidate - it was non-present before */
1807         update_mmu_cache(vma, address, entry);
1808         lazy_mmu_prot_update(entry);
1809 unlock:
1810         pte_unmap(page_table);
1811         spin_unlock(&mm->page_table_lock);
1812         return VM_FAULT_MINOR;
1813 oom:
1814         return VM_FAULT_OOM;
1815 }
1816
1817 /*
1818  * do_no_page() tries to create a new page mapping. It aggressively
1819  * tries to share with existing pages, but makes a separate copy if
1820  * the "write_access" parameter is true in order to avoid the next
1821  * page fault.
1822  *
1823  * As this is called only for pages that do not currently exist, we
1824  * do not need to flush old virtual caches or the TLB.
1825  *
1826  * This is called with the MM semaphore held and the page table
1827  * spinlock held. Exit with the spinlock released.
1828  */
1829 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1830                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1831                 int write_access)
1832 {
1833         struct page *new_page;
1834         struct address_space *mapping = NULL;
1835         pte_t entry;
1836         unsigned int sequence = 0;
1837         int ret = VM_FAULT_MINOR;
1838         int anon = 0;
1839
1840         pte_unmap(page_table);
1841         spin_unlock(&mm->page_table_lock);
1842
1843         if (vma->vm_file) {
1844                 mapping = vma->vm_file->f_mapping;
1845                 sequence = mapping->truncate_count;
1846                 smp_rmb(); /* serializes i_size against truncate_count */
1847         }
1848 retry:
1849         new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1850         /*
1851          * No smp_rmb is needed here as long as there's a full
1852          * spin_lock/unlock sequence inside the ->nopage callback
1853          * (for the pagecache lookup) that acts as an implicit
1854          * smp_mb() and prevents the i_size read to happen
1855          * after the next truncate_count read.
1856          */
1857
1858         /* no page was available -- either SIGBUS or OOM */
1859         if (new_page == NOPAGE_SIGBUS)
1860                 return VM_FAULT_SIGBUS;
1861         if (new_page == NOPAGE_OOM)
1862                 return VM_FAULT_OOM;
1863
1864         /*
1865          * Should we do an early C-O-W break?
1866          */
1867         if (write_access && !(vma->vm_flags & VM_SHARED)) {
1868                 struct page *page;
1869
1870                 if (unlikely(anon_vma_prepare(vma)))
1871                         goto oom;
1872                 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1873                 if (!page)
1874                         goto oom;
1875                 copy_user_highpage(page, new_page, address);
1876                 page_cache_release(new_page);
1877                 new_page = page;
1878                 anon = 1;
1879         }
1880
1881         spin_lock(&mm->page_table_lock);
1882         /*
1883          * For a file-backed vma, someone could have truncated or otherwise
1884          * invalidated this page.  If unmap_mapping_range got called,
1885          * retry getting the page.
1886          */
1887         if (mapping && unlikely(sequence != mapping->truncate_count)) {
1888                 spin_unlock(&mm->page_table_lock);
1889                 page_cache_release(new_page);
1890                 cond_resched();
1891                 sequence = mapping->truncate_count;
1892                 smp_rmb();
1893                 goto retry;
1894         }
1895         page_table = pte_offset_map(pmd, address);
1896
1897         /*
1898          * This silly early PAGE_DIRTY setting removes a race
1899          * due to the bad i386 page protection. But it's valid
1900          * for other architectures too.
1901          *
1902          * Note that if write_access is true, we either now have
1903          * an exclusive copy of the page, or this is a shared mapping,
1904          * so we can make it writable and dirty to avoid having to
1905          * handle that later.
1906          */
1907         /* Only go through if we didn't race with anybody else... */
1908         if (pte_none(*page_table)) {
1909                 flush_icache_page(vma, new_page);
1910                 entry = mk_pte(new_page, vma->vm_page_prot);
1911                 if (write_access)
1912                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1913                 set_pte_at(mm, address, page_table, entry);
1914                 if (anon) {
1915                         inc_mm_counter(mm, anon_rss);
1916                         lru_cache_add_active(new_page);
1917                         page_add_anon_rmap(new_page, vma, address);
1918                 } else if (!(vma->vm_flags & VM_RESERVED)) {
1919                         inc_mm_counter(mm, file_rss);
1920                         page_add_file_rmap(new_page);
1921                 }
1922         } else {
1923                 /* One of our sibling threads was faster, back out. */
1924                 page_cache_release(new_page);
1925                 goto unlock;
1926         }
1927
1928         /* no need to invalidate: a not-present page shouldn't be cached */
1929         update_mmu_cache(vma, address, entry);
1930         lazy_mmu_prot_update(entry);
1931 unlock:
1932         pte_unmap(page_table);
1933         spin_unlock(&mm->page_table_lock);
1934         return ret;
1935 oom:
1936         page_cache_release(new_page);
1937         return VM_FAULT_OOM;
1938 }
1939
1940 /*
1941  * Fault of a previously existing named mapping. Repopulate the pte
1942  * from the encoded file_pte if possible. This enables swappable
1943  * nonlinear vmas.
1944  */
1945 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
1946                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1947                 int write_access, pte_t orig_pte)
1948 {
1949         pgoff_t pgoff;
1950         int err;
1951
1952         pte_unmap(page_table);
1953         spin_unlock(&mm->page_table_lock);
1954
1955         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
1956                 /*
1957                  * Page table corrupted: show pte and kill process.
1958                  */
1959                 print_bad_pte(vma, orig_pte, address);
1960                 return VM_FAULT_OOM;
1961         }
1962         /* We can then assume vm->vm_ops && vma->vm_ops->populate */
1963
1964         pgoff = pte_to_pgoff(orig_pte);
1965         err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
1966                                         vma->vm_page_prot, pgoff, 0);
1967         if (err == -ENOMEM)
1968                 return VM_FAULT_OOM;
1969         if (err)
1970                 return VM_FAULT_SIGBUS;
1971         return VM_FAULT_MAJOR;
1972 }
1973
1974 /*
1975  * These routines also need to handle stuff like marking pages dirty
1976  * and/or accessed for architectures that don't do it in hardware (most
1977  * RISC architectures).  The early dirtying is also good on the i386.
1978  *
1979  * There is also a hook called "update_mmu_cache()" that architectures
1980  * with external mmu caches can use to update those (ie the Sparc or
1981  * PowerPC hashed page tables that act as extended TLBs).
1982  *
1983  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1984  * but allow concurrent faults), and pte mapped but not yet locked.
1985  * We return with mmap_sem still held, but pte unmapped and unlocked.
1986  */
1987 static inline int handle_pte_fault(struct mm_struct *mm,
1988                 struct vm_area_struct *vma, unsigned long address,
1989                 pte_t *pte, pmd_t *pmd, int write_access)
1990 {
1991         pte_t entry;
1992
1993         spin_lock(&mm->page_table_lock);
1994         entry = *pte;
1995         if (!pte_present(entry)) {
1996                 if (pte_none(entry)) {
1997                         if (!vma->vm_ops || !vma->vm_ops->nopage)
1998                                 return do_anonymous_page(mm, vma, address,
1999                                         pte, pmd, write_access);
2000                         return do_no_page(mm, vma, address,
2001                                         pte, pmd, write_access);
2002                 }
2003                 if (pte_file(entry))
2004                         return do_file_page(mm, vma, address,
2005                                         pte, pmd, write_access, entry);
2006                 return do_swap_page(mm, vma, address,
2007                                         pte, pmd, write_access, entry);
2008         }
2009
2010         if (write_access) {
2011                 if (!pte_write(entry))
2012                         return do_wp_page(mm, vma, address, pte, pmd, entry);
2013                 entry = pte_mkdirty(entry);
2014         }
2015         entry = pte_mkyoung(entry);
2016         ptep_set_access_flags(vma, address, pte, entry, write_access);
2017         update_mmu_cache(vma, address, entry);
2018         lazy_mmu_prot_update(entry);
2019         pte_unmap(pte);
2020         spin_unlock(&mm->page_table_lock);
2021         return VM_FAULT_MINOR;
2022 }
2023
2024 /*
2025  * By the time we get here, we already hold the mm semaphore
2026  */
2027 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2028                 unsigned long address, int write_access)
2029 {
2030         pgd_t *pgd;
2031         pud_t *pud;
2032         pmd_t *pmd;
2033         pte_t *pte;
2034
2035         __set_current_state(TASK_RUNNING);
2036
2037         inc_page_state(pgfault);
2038
2039         if (unlikely(is_vm_hugetlb_page(vma)))
2040                 return hugetlb_fault(mm, vma, address, write_access);
2041
2042         pgd = pgd_offset(mm, address);
2043         pud = pud_alloc(mm, pgd, address);
2044         if (!pud)
2045                 return VM_FAULT_OOM;
2046         pmd = pmd_alloc(mm, pud, address);
2047         if (!pmd)
2048                 return VM_FAULT_OOM;
2049         pte = pte_alloc_map(mm, pmd, address);
2050         if (!pte)
2051                 return VM_FAULT_OOM;
2052
2053         return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2054 }
2055
2056 #ifndef __PAGETABLE_PUD_FOLDED
2057 /*
2058  * Allocate page upper directory.
2059  * We've already handled the fast-path in-line.
2060  */
2061 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2062 {
2063         pud_t *new = pud_alloc_one(mm, address);
2064         if (!new)
2065                 return -ENOMEM;
2066
2067         spin_lock(&mm->page_table_lock);
2068         if (pgd_present(*pgd))          /* Another has populated it */
2069                 pud_free(new);
2070         else
2071                 pgd_populate(mm, pgd, new);
2072         spin_unlock(&mm->page_table_lock);
2073         return 0;
2074 }
2075 #endif /* __PAGETABLE_PUD_FOLDED */
2076
2077 #ifndef __PAGETABLE_PMD_FOLDED
2078 /*
2079  * Allocate page middle directory.
2080  * We've already handled the fast-path in-line.
2081  */
2082 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2083 {
2084         pmd_t *new = pmd_alloc_one(mm, address);
2085         if (!new)
2086                 return -ENOMEM;
2087
2088         spin_lock(&mm->page_table_lock);
2089 #ifndef __ARCH_HAS_4LEVEL_HACK
2090         if (pud_present(*pud))          /* Another has populated it */
2091                 pmd_free(new);
2092         else
2093                 pud_populate(mm, pud, new);
2094 #else
2095         if (pgd_present(*pud))          /* Another has populated it */
2096                 pmd_free(new);
2097         else
2098                 pgd_populate(mm, pud, new);
2099 #endif /* __ARCH_HAS_4LEVEL_HACK */
2100         spin_unlock(&mm->page_table_lock);
2101         return 0;
2102 }
2103 #endif /* __PAGETABLE_PMD_FOLDED */
2104
2105 int make_pages_present(unsigned long addr, unsigned long end)
2106 {
2107         int ret, len, write;
2108         struct vm_area_struct * vma;
2109
2110         vma = find_vma(current->mm, addr);
2111         if (!vma)
2112                 return -1;
2113         write = (vma->vm_flags & VM_WRITE) != 0;
2114         if (addr >= end)
2115                 BUG();
2116         if (end > vma->vm_end)
2117                 BUG();
2118         len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2119         ret = get_user_pages(current, current->mm, addr,
2120                         len, write, 0, NULL, NULL);
2121         if (ret < 0)
2122                 return ret;
2123         return ret == len ? 0 : -1;
2124 }
2125
2126 /* 
2127  * Map a vmalloc()-space virtual address to the physical page.
2128  */
2129 struct page * vmalloc_to_page(void * vmalloc_addr)
2130 {
2131         unsigned long addr = (unsigned long) vmalloc_addr;
2132         struct page *page = NULL;
2133         pgd_t *pgd = pgd_offset_k(addr);
2134         pud_t *pud;
2135         pmd_t *pmd;
2136         pte_t *ptep, pte;
2137   
2138         if (!pgd_none(*pgd)) {
2139                 pud = pud_offset(pgd, addr);
2140                 if (!pud_none(*pud)) {
2141                         pmd = pmd_offset(pud, addr);
2142                         if (!pmd_none(*pmd)) {
2143                                 ptep = pte_offset_map(pmd, addr);
2144                                 pte = *ptep;
2145                                 if (pte_present(pte))
2146                                         page = pte_page(pte);
2147                                 pte_unmap(ptep);
2148                         }
2149                 }
2150         }
2151         return page;
2152 }
2153
2154 EXPORT_SYMBOL(vmalloc_to_page);
2155
2156 /*
2157  * Map a vmalloc()-space virtual address to the physical page frame number.
2158  */
2159 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2160 {
2161         return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2162 }
2163
2164 EXPORT_SYMBOL(vmalloc_to_pfn);
2165
2166 #if !defined(__HAVE_ARCH_GATE_AREA)
2167
2168 #if defined(AT_SYSINFO_EHDR)
2169 static struct vm_area_struct gate_vma;
2170
2171 static int __init gate_vma_init(void)
2172 {
2173         gate_vma.vm_mm = NULL;
2174         gate_vma.vm_start = FIXADDR_USER_START;
2175         gate_vma.vm_end = FIXADDR_USER_END;
2176         gate_vma.vm_page_prot = PAGE_READONLY;
2177         gate_vma.vm_flags = VM_RESERVED;
2178         return 0;
2179 }
2180 __initcall(gate_vma_init);
2181 #endif
2182
2183 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2184 {
2185 #ifdef AT_SYSINFO_EHDR
2186         return &gate_vma;
2187 #else
2188         return NULL;
2189 #endif
2190 }
2191
2192 int in_gate_area_no_task(unsigned long addr)
2193 {
2194 #ifdef AT_SYSINFO_EHDR
2195         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2196                 return 1;
2197 #endif
2198         return 0;
2199 }
2200
2201 #endif  /* __HAVE_ARCH_GATE_AREA */