mm: ZERO_PAGE without PTE_SPECIAL
[safe/jmp/linux-2.6] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59
60 #include <asm/io.h>
61 #include <asm/pgalloc.h>
62 #include <asm/uaccess.h>
63 #include <asm/tlb.h>
64 #include <asm/tlbflush.h>
65 #include <asm/pgtable.h>
66
67 #include "internal.h"
68
69 #ifndef CONFIG_NEED_MULTIPLE_NODES
70 /* use the per-pgdat data instead for discontigmem - mbligh */
71 unsigned long max_mapnr;
72 struct page *mem_map;
73
74 EXPORT_SYMBOL(max_mapnr);
75 EXPORT_SYMBOL(mem_map);
76 #endif
77
78 unsigned long num_physpages;
79 /*
80  * A number of key systems in x86 including ioremap() rely on the assumption
81  * that high_memory defines the upper bound on direct map memory, then end
82  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
83  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
84  * and ZONE_HIGHMEM.
85  */
86 void * high_memory;
87
88 EXPORT_SYMBOL(num_physpages);
89 EXPORT_SYMBOL(high_memory);
90
91 /*
92  * Randomize the address space (stacks, mmaps, brk, etc.).
93  *
94  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95  *   as ancient (libc5 based) binaries can segfault. )
96  */
97 int randomize_va_space __read_mostly =
98 #ifdef CONFIG_COMPAT_BRK
99                                         1;
100 #else
101                                         2;
102 #endif
103
104 static int __init disable_randmaps(char *s)
105 {
106         randomize_va_space = 0;
107         return 1;
108 }
109 __setup("norandmaps", disable_randmaps);
110
111 unsigned long zero_pfn __read_mostly;
112
113 /*
114  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
115  */
116 static int __init init_zero_pfn(void)
117 {
118         zero_pfn = page_to_pfn(ZERO_PAGE(0));
119         return 0;
120 }
121 core_initcall(init_zero_pfn);
122
123 /*
124  * If a p?d_bad entry is found while walking page tables, report
125  * the error, before resetting entry to p?d_none.  Usually (but
126  * very seldom) called out from the p?d_none_or_clear_bad macros.
127  */
128
129 void pgd_clear_bad(pgd_t *pgd)
130 {
131         pgd_ERROR(*pgd);
132         pgd_clear(pgd);
133 }
134
135 void pud_clear_bad(pud_t *pud)
136 {
137         pud_ERROR(*pud);
138         pud_clear(pud);
139 }
140
141 void pmd_clear_bad(pmd_t *pmd)
142 {
143         pmd_ERROR(*pmd);
144         pmd_clear(pmd);
145 }
146
147 /*
148  * Note: this doesn't free the actual pages themselves. That
149  * has been handled earlier when unmapping all the memory regions.
150  */
151 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
152                            unsigned long addr)
153 {
154         pgtable_t token = pmd_pgtable(*pmd);
155         pmd_clear(pmd);
156         pte_free_tlb(tlb, token, addr);
157         tlb->mm->nr_ptes--;
158 }
159
160 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
161                                 unsigned long addr, unsigned long end,
162                                 unsigned long floor, unsigned long ceiling)
163 {
164         pmd_t *pmd;
165         unsigned long next;
166         unsigned long start;
167
168         start = addr;
169         pmd = pmd_offset(pud, addr);
170         do {
171                 next = pmd_addr_end(addr, end);
172                 if (pmd_none_or_clear_bad(pmd))
173                         continue;
174                 free_pte_range(tlb, pmd, addr);
175         } while (pmd++, addr = next, addr != end);
176
177         start &= PUD_MASK;
178         if (start < floor)
179                 return;
180         if (ceiling) {
181                 ceiling &= PUD_MASK;
182                 if (!ceiling)
183                         return;
184         }
185         if (end - 1 > ceiling - 1)
186                 return;
187
188         pmd = pmd_offset(pud, start);
189         pud_clear(pud);
190         pmd_free_tlb(tlb, pmd, start);
191 }
192
193 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
194                                 unsigned long addr, unsigned long end,
195                                 unsigned long floor, unsigned long ceiling)
196 {
197         pud_t *pud;
198         unsigned long next;
199         unsigned long start;
200
201         start = addr;
202         pud = pud_offset(pgd, addr);
203         do {
204                 next = pud_addr_end(addr, end);
205                 if (pud_none_or_clear_bad(pud))
206                         continue;
207                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
208         } while (pud++, addr = next, addr != end);
209
210         start &= PGDIR_MASK;
211         if (start < floor)
212                 return;
213         if (ceiling) {
214                 ceiling &= PGDIR_MASK;
215                 if (!ceiling)
216                         return;
217         }
218         if (end - 1 > ceiling - 1)
219                 return;
220
221         pud = pud_offset(pgd, start);
222         pgd_clear(pgd);
223         pud_free_tlb(tlb, pud, start);
224 }
225
226 /*
227  * This function frees user-level page tables of a process.
228  *
229  * Must be called with pagetable lock held.
230  */
231 void free_pgd_range(struct mmu_gather *tlb,
232                         unsigned long addr, unsigned long end,
233                         unsigned long floor, unsigned long ceiling)
234 {
235         pgd_t *pgd;
236         unsigned long next;
237         unsigned long start;
238
239         /*
240          * The next few lines have given us lots of grief...
241          *
242          * Why are we testing PMD* at this top level?  Because often
243          * there will be no work to do at all, and we'd prefer not to
244          * go all the way down to the bottom just to discover that.
245          *
246          * Why all these "- 1"s?  Because 0 represents both the bottom
247          * of the address space and the top of it (using -1 for the
248          * top wouldn't help much: the masks would do the wrong thing).
249          * The rule is that addr 0 and floor 0 refer to the bottom of
250          * the address space, but end 0 and ceiling 0 refer to the top
251          * Comparisons need to use "end - 1" and "ceiling - 1" (though
252          * that end 0 case should be mythical).
253          *
254          * Wherever addr is brought up or ceiling brought down, we must
255          * be careful to reject "the opposite 0" before it confuses the
256          * subsequent tests.  But what about where end is brought down
257          * by PMD_SIZE below? no, end can't go down to 0 there.
258          *
259          * Whereas we round start (addr) and ceiling down, by different
260          * masks at different levels, in order to test whether a table
261          * now has no other vmas using it, so can be freed, we don't
262          * bother to round floor or end up - the tests don't need that.
263          */
264
265         addr &= PMD_MASK;
266         if (addr < floor) {
267                 addr += PMD_SIZE;
268                 if (!addr)
269                         return;
270         }
271         if (ceiling) {
272                 ceiling &= PMD_MASK;
273                 if (!ceiling)
274                         return;
275         }
276         if (end - 1 > ceiling - 1)
277                 end -= PMD_SIZE;
278         if (addr > end - 1)
279                 return;
280
281         start = addr;
282         pgd = pgd_offset(tlb->mm, addr);
283         do {
284                 next = pgd_addr_end(addr, end);
285                 if (pgd_none_or_clear_bad(pgd))
286                         continue;
287                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
288         } while (pgd++, addr = next, addr != end);
289 }
290
291 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
292                 unsigned long floor, unsigned long ceiling)
293 {
294         while (vma) {
295                 struct vm_area_struct *next = vma->vm_next;
296                 unsigned long addr = vma->vm_start;
297
298                 /*
299                  * Hide vma from rmap and vmtruncate before freeing pgtables
300                  */
301                 anon_vma_unlink(vma);
302                 unlink_file_vma(vma);
303
304                 if (is_vm_hugetlb_page(vma)) {
305                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
306                                 floor, next? next->vm_start: ceiling);
307                 } else {
308                         /*
309                          * Optimization: gather nearby vmas into one call down
310                          */
311                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
312                                && !is_vm_hugetlb_page(next)) {
313                                 vma = next;
314                                 next = vma->vm_next;
315                                 anon_vma_unlink(vma);
316                                 unlink_file_vma(vma);
317                         }
318                         free_pgd_range(tlb, addr, vma->vm_end,
319                                 floor, next? next->vm_start: ceiling);
320                 }
321                 vma = next;
322         }
323 }
324
325 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
326 {
327         pgtable_t new = pte_alloc_one(mm, address);
328         if (!new)
329                 return -ENOMEM;
330
331         /*
332          * Ensure all pte setup (eg. pte page lock and page clearing) are
333          * visible before the pte is made visible to other CPUs by being
334          * put into page tables.
335          *
336          * The other side of the story is the pointer chasing in the page
337          * table walking code (when walking the page table without locking;
338          * ie. most of the time). Fortunately, these data accesses consist
339          * of a chain of data-dependent loads, meaning most CPUs (alpha
340          * being the notable exception) will already guarantee loads are
341          * seen in-order. See the alpha page table accessors for the
342          * smp_read_barrier_depends() barriers in page table walking code.
343          */
344         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
345
346         spin_lock(&mm->page_table_lock);
347         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
348                 mm->nr_ptes++;
349                 pmd_populate(mm, pmd, new);
350                 new = NULL;
351         }
352         spin_unlock(&mm->page_table_lock);
353         if (new)
354                 pte_free(mm, new);
355         return 0;
356 }
357
358 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
359 {
360         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
361         if (!new)
362                 return -ENOMEM;
363
364         smp_wmb(); /* See comment in __pte_alloc */
365
366         spin_lock(&init_mm.page_table_lock);
367         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
368                 pmd_populate_kernel(&init_mm, pmd, new);
369                 new = NULL;
370         }
371         spin_unlock(&init_mm.page_table_lock);
372         if (new)
373                 pte_free_kernel(&init_mm, new);
374         return 0;
375 }
376
377 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
378 {
379         if (file_rss)
380                 add_mm_counter(mm, file_rss, file_rss);
381         if (anon_rss)
382                 add_mm_counter(mm, anon_rss, anon_rss);
383 }
384
385 /*
386  * This function is called to print an error when a bad pte
387  * is found. For example, we might have a PFN-mapped pte in
388  * a region that doesn't allow it.
389  *
390  * The calling function must still handle the error.
391  */
392 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
393                           pte_t pte, struct page *page)
394 {
395         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
396         pud_t *pud = pud_offset(pgd, addr);
397         pmd_t *pmd = pmd_offset(pud, addr);
398         struct address_space *mapping;
399         pgoff_t index;
400         static unsigned long resume;
401         static unsigned long nr_shown;
402         static unsigned long nr_unshown;
403
404         /*
405          * Allow a burst of 60 reports, then keep quiet for that minute;
406          * or allow a steady drip of one report per second.
407          */
408         if (nr_shown == 60) {
409                 if (time_before(jiffies, resume)) {
410                         nr_unshown++;
411                         return;
412                 }
413                 if (nr_unshown) {
414                         printk(KERN_ALERT
415                                 "BUG: Bad page map: %lu messages suppressed\n",
416                                 nr_unshown);
417                         nr_unshown = 0;
418                 }
419                 nr_shown = 0;
420         }
421         if (nr_shown++ == 0)
422                 resume = jiffies + 60 * HZ;
423
424         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
425         index = linear_page_index(vma, addr);
426
427         printk(KERN_ALERT
428                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
429                 current->comm,
430                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
431         if (page) {
432                 printk(KERN_ALERT
433                 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
434                 page, (void *)page->flags, page_count(page),
435                 page_mapcount(page), page->mapping, page->index);
436         }
437         printk(KERN_ALERT
438                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
439                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
440         /*
441          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
442          */
443         if (vma->vm_ops)
444                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
445                                 (unsigned long)vma->vm_ops->fault);
446         if (vma->vm_file && vma->vm_file->f_op)
447                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
448                                 (unsigned long)vma->vm_file->f_op->mmap);
449         dump_stack();
450         add_taint(TAINT_BAD_PAGE);
451 }
452
453 static inline int is_cow_mapping(unsigned int flags)
454 {
455         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
456 }
457
458 #ifndef is_zero_pfn
459 static inline int is_zero_pfn(unsigned long pfn)
460 {
461         return pfn == zero_pfn;
462 }
463 #endif
464
465 #ifndef my_zero_pfn
466 static inline unsigned long my_zero_pfn(unsigned long addr)
467 {
468         return zero_pfn;
469 }
470 #endif
471
472 /*
473  * vm_normal_page -- This function gets the "struct page" associated with a pte.
474  *
475  * "Special" mappings do not wish to be associated with a "struct page" (either
476  * it doesn't exist, or it exists but they don't want to touch it). In this
477  * case, NULL is returned here. "Normal" mappings do have a struct page.
478  *
479  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
480  * pte bit, in which case this function is trivial. Secondly, an architecture
481  * may not have a spare pte bit, which requires a more complicated scheme,
482  * described below.
483  *
484  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
485  * special mapping (even if there are underlying and valid "struct pages").
486  * COWed pages of a VM_PFNMAP are always normal.
487  *
488  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
489  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
490  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
491  * mapping will always honor the rule
492  *
493  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
494  *
495  * And for normal mappings this is false.
496  *
497  * This restricts such mappings to be a linear translation from virtual address
498  * to pfn. To get around this restriction, we allow arbitrary mappings so long
499  * as the vma is not a COW mapping; in that case, we know that all ptes are
500  * special (because none can have been COWed).
501  *
502  *
503  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
504  *
505  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
506  * page" backing, however the difference is that _all_ pages with a struct
507  * page (that is, those where pfn_valid is true) are refcounted and considered
508  * normal pages by the VM. The disadvantage is that pages are refcounted
509  * (which can be slower and simply not an option for some PFNMAP users). The
510  * advantage is that we don't have to follow the strict linearity rule of
511  * PFNMAP mappings in order to support COWable mappings.
512  *
513  */
514 #ifdef __HAVE_ARCH_PTE_SPECIAL
515 # define HAVE_PTE_SPECIAL 1
516 #else
517 # define HAVE_PTE_SPECIAL 0
518 #endif
519 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
520                                 pte_t pte)
521 {
522         unsigned long pfn = pte_pfn(pte);
523
524         if (HAVE_PTE_SPECIAL) {
525                 if (likely(!pte_special(pte)))
526                         goto check_pfn;
527                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
528                         return NULL;
529                 if (!is_zero_pfn(pfn))
530                         print_bad_pte(vma, addr, pte, NULL);
531                 return NULL;
532         }
533
534         /* !HAVE_PTE_SPECIAL case follows: */
535
536         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
537                 if (vma->vm_flags & VM_MIXEDMAP) {
538                         if (!pfn_valid(pfn))
539                                 return NULL;
540                         goto out;
541                 } else {
542                         unsigned long off;
543                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
544                         if (pfn == vma->vm_pgoff + off)
545                                 return NULL;
546                         if (!is_cow_mapping(vma->vm_flags))
547                                 return NULL;
548                 }
549         }
550
551         if (is_zero_pfn(pfn))
552                 return NULL;
553 check_pfn:
554         if (unlikely(pfn > highest_memmap_pfn)) {
555                 print_bad_pte(vma, addr, pte, NULL);
556                 return NULL;
557         }
558
559         /*
560          * NOTE! We still have PageReserved() pages in the page tables.
561          * eg. VDSO mappings can cause them to exist.
562          */
563 out:
564         return pfn_to_page(pfn);
565 }
566
567 /*
568  * copy one vm_area from one task to the other. Assumes the page tables
569  * already present in the new task to be cleared in the whole range
570  * covered by this vma.
571  */
572
573 static inline void
574 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
575                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
576                 unsigned long addr, int *rss)
577 {
578         unsigned long vm_flags = vma->vm_flags;
579         pte_t pte = *src_pte;
580         struct page *page;
581
582         /* pte contains position in swap or file, so copy. */
583         if (unlikely(!pte_present(pte))) {
584                 if (!pte_file(pte)) {
585                         swp_entry_t entry = pte_to_swp_entry(pte);
586
587                         swap_duplicate(entry);
588                         /* make sure dst_mm is on swapoff's mmlist. */
589                         if (unlikely(list_empty(&dst_mm->mmlist))) {
590                                 spin_lock(&mmlist_lock);
591                                 if (list_empty(&dst_mm->mmlist))
592                                         list_add(&dst_mm->mmlist,
593                                                  &src_mm->mmlist);
594                                 spin_unlock(&mmlist_lock);
595                         }
596                         if (is_write_migration_entry(entry) &&
597                                         is_cow_mapping(vm_flags)) {
598                                 /*
599                                  * COW mappings require pages in both parent
600                                  * and child to be set to read.
601                                  */
602                                 make_migration_entry_read(&entry);
603                                 pte = swp_entry_to_pte(entry);
604                                 set_pte_at(src_mm, addr, src_pte, pte);
605                         }
606                 }
607                 goto out_set_pte;
608         }
609
610         /*
611          * If it's a COW mapping, write protect it both
612          * in the parent and the child
613          */
614         if (is_cow_mapping(vm_flags)) {
615                 ptep_set_wrprotect(src_mm, addr, src_pte);
616                 pte = pte_wrprotect(pte);
617         }
618
619         /*
620          * If it's a shared mapping, mark it clean in
621          * the child
622          */
623         if (vm_flags & VM_SHARED)
624                 pte = pte_mkclean(pte);
625         pte = pte_mkold(pte);
626
627         page = vm_normal_page(vma, addr, pte);
628         if (page) {
629                 get_page(page);
630                 page_dup_rmap(page);
631                 rss[PageAnon(page)]++;
632         }
633
634 out_set_pte:
635         set_pte_at(dst_mm, addr, dst_pte, pte);
636 }
637
638 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
639                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
640                 unsigned long addr, unsigned long end)
641 {
642         pte_t *src_pte, *dst_pte;
643         spinlock_t *src_ptl, *dst_ptl;
644         int progress = 0;
645         int rss[2];
646
647 again:
648         rss[1] = rss[0] = 0;
649         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
650         if (!dst_pte)
651                 return -ENOMEM;
652         src_pte = pte_offset_map_nested(src_pmd, addr);
653         src_ptl = pte_lockptr(src_mm, src_pmd);
654         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
655         arch_enter_lazy_mmu_mode();
656
657         do {
658                 /*
659                  * We are holding two locks at this point - either of them
660                  * could generate latencies in another task on another CPU.
661                  */
662                 if (progress >= 32) {
663                         progress = 0;
664                         if (need_resched() ||
665                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
666                                 break;
667                 }
668                 if (pte_none(*src_pte)) {
669                         progress++;
670                         continue;
671                 }
672                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
673                 progress += 8;
674         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
675
676         arch_leave_lazy_mmu_mode();
677         spin_unlock(src_ptl);
678         pte_unmap_nested(src_pte - 1);
679         add_mm_rss(dst_mm, rss[0], rss[1]);
680         pte_unmap_unlock(dst_pte - 1, dst_ptl);
681         cond_resched();
682         if (addr != end)
683                 goto again;
684         return 0;
685 }
686
687 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
688                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
689                 unsigned long addr, unsigned long end)
690 {
691         pmd_t *src_pmd, *dst_pmd;
692         unsigned long next;
693
694         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
695         if (!dst_pmd)
696                 return -ENOMEM;
697         src_pmd = pmd_offset(src_pud, addr);
698         do {
699                 next = pmd_addr_end(addr, end);
700                 if (pmd_none_or_clear_bad(src_pmd))
701                         continue;
702                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
703                                                 vma, addr, next))
704                         return -ENOMEM;
705         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
706         return 0;
707 }
708
709 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
710                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
711                 unsigned long addr, unsigned long end)
712 {
713         pud_t *src_pud, *dst_pud;
714         unsigned long next;
715
716         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
717         if (!dst_pud)
718                 return -ENOMEM;
719         src_pud = pud_offset(src_pgd, addr);
720         do {
721                 next = pud_addr_end(addr, end);
722                 if (pud_none_or_clear_bad(src_pud))
723                         continue;
724                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
725                                                 vma, addr, next))
726                         return -ENOMEM;
727         } while (dst_pud++, src_pud++, addr = next, addr != end);
728         return 0;
729 }
730
731 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
732                 struct vm_area_struct *vma)
733 {
734         pgd_t *src_pgd, *dst_pgd;
735         unsigned long next;
736         unsigned long addr = vma->vm_start;
737         unsigned long end = vma->vm_end;
738         int ret;
739
740         /*
741          * Don't copy ptes where a page fault will fill them correctly.
742          * Fork becomes much lighter when there are big shared or private
743          * readonly mappings. The tradeoff is that copy_page_range is more
744          * efficient than faulting.
745          */
746         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
747                 if (!vma->anon_vma)
748                         return 0;
749         }
750
751         if (is_vm_hugetlb_page(vma))
752                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
753
754         if (unlikely(is_pfn_mapping(vma))) {
755                 /*
756                  * We do not free on error cases below as remove_vma
757                  * gets called on error from higher level routine
758                  */
759                 ret = track_pfn_vma_copy(vma);
760                 if (ret)
761                         return ret;
762         }
763
764         /*
765          * We need to invalidate the secondary MMU mappings only when
766          * there could be a permission downgrade on the ptes of the
767          * parent mm. And a permission downgrade will only happen if
768          * is_cow_mapping() returns true.
769          */
770         if (is_cow_mapping(vma->vm_flags))
771                 mmu_notifier_invalidate_range_start(src_mm, addr, end);
772
773         ret = 0;
774         dst_pgd = pgd_offset(dst_mm, addr);
775         src_pgd = pgd_offset(src_mm, addr);
776         do {
777                 next = pgd_addr_end(addr, end);
778                 if (pgd_none_or_clear_bad(src_pgd))
779                         continue;
780                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
781                                             vma, addr, next))) {
782                         ret = -ENOMEM;
783                         break;
784                 }
785         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
786
787         if (is_cow_mapping(vma->vm_flags))
788                 mmu_notifier_invalidate_range_end(src_mm,
789                                                   vma->vm_start, end);
790         return ret;
791 }
792
793 static unsigned long zap_pte_range(struct mmu_gather *tlb,
794                                 struct vm_area_struct *vma, pmd_t *pmd,
795                                 unsigned long addr, unsigned long end,
796                                 long *zap_work, struct zap_details *details)
797 {
798         struct mm_struct *mm = tlb->mm;
799         pte_t *pte;
800         spinlock_t *ptl;
801         int file_rss = 0;
802         int anon_rss = 0;
803
804         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
805         arch_enter_lazy_mmu_mode();
806         do {
807                 pte_t ptent = *pte;
808                 if (pte_none(ptent)) {
809                         (*zap_work)--;
810                         continue;
811                 }
812
813                 (*zap_work) -= PAGE_SIZE;
814
815                 if (pte_present(ptent)) {
816                         struct page *page;
817
818                         page = vm_normal_page(vma, addr, ptent);
819                         if (unlikely(details) && page) {
820                                 /*
821                                  * unmap_shared_mapping_pages() wants to
822                                  * invalidate cache without truncating:
823                                  * unmap shared but keep private pages.
824                                  */
825                                 if (details->check_mapping &&
826                                     details->check_mapping != page->mapping)
827                                         continue;
828                                 /*
829                                  * Each page->index must be checked when
830                                  * invalidating or truncating nonlinear.
831                                  */
832                                 if (details->nonlinear_vma &&
833                                     (page->index < details->first_index ||
834                                      page->index > details->last_index))
835                                         continue;
836                         }
837                         ptent = ptep_get_and_clear_full(mm, addr, pte,
838                                                         tlb->fullmm);
839                         tlb_remove_tlb_entry(tlb, pte, addr);
840                         if (unlikely(!page))
841                                 continue;
842                         if (unlikely(details) && details->nonlinear_vma
843                             && linear_page_index(details->nonlinear_vma,
844                                                 addr) != page->index)
845                                 set_pte_at(mm, addr, pte,
846                                            pgoff_to_pte(page->index));
847                         if (PageAnon(page))
848                                 anon_rss--;
849                         else {
850                                 if (pte_dirty(ptent))
851                                         set_page_dirty(page);
852                                 if (pte_young(ptent) &&
853                                     likely(!VM_SequentialReadHint(vma)))
854                                         mark_page_accessed(page);
855                                 file_rss--;
856                         }
857                         page_remove_rmap(page);
858                         if (unlikely(page_mapcount(page) < 0))
859                                 print_bad_pte(vma, addr, ptent, page);
860                         tlb_remove_page(tlb, page);
861                         continue;
862                 }
863                 /*
864                  * If details->check_mapping, we leave swap entries;
865                  * if details->nonlinear_vma, we leave file entries.
866                  */
867                 if (unlikely(details))
868                         continue;
869                 if (pte_file(ptent)) {
870                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
871                                 print_bad_pte(vma, addr, ptent, NULL);
872                 } else if
873                   (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
874                         print_bad_pte(vma, addr, ptent, NULL);
875                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
876         } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
877
878         add_mm_rss(mm, file_rss, anon_rss);
879         arch_leave_lazy_mmu_mode();
880         pte_unmap_unlock(pte - 1, ptl);
881
882         return addr;
883 }
884
885 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
886                                 struct vm_area_struct *vma, pud_t *pud,
887                                 unsigned long addr, unsigned long end,
888                                 long *zap_work, struct zap_details *details)
889 {
890         pmd_t *pmd;
891         unsigned long next;
892
893         pmd = pmd_offset(pud, addr);
894         do {
895                 next = pmd_addr_end(addr, end);
896                 if (pmd_none_or_clear_bad(pmd)) {
897                         (*zap_work)--;
898                         continue;
899                 }
900                 next = zap_pte_range(tlb, vma, pmd, addr, next,
901                                                 zap_work, details);
902         } while (pmd++, addr = next, (addr != end && *zap_work > 0));
903
904         return addr;
905 }
906
907 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
908                                 struct vm_area_struct *vma, pgd_t *pgd,
909                                 unsigned long addr, unsigned long end,
910                                 long *zap_work, struct zap_details *details)
911 {
912         pud_t *pud;
913         unsigned long next;
914
915         pud = pud_offset(pgd, addr);
916         do {
917                 next = pud_addr_end(addr, end);
918                 if (pud_none_or_clear_bad(pud)) {
919                         (*zap_work)--;
920                         continue;
921                 }
922                 next = zap_pmd_range(tlb, vma, pud, addr, next,
923                                                 zap_work, details);
924         } while (pud++, addr = next, (addr != end && *zap_work > 0));
925
926         return addr;
927 }
928
929 static unsigned long unmap_page_range(struct mmu_gather *tlb,
930                                 struct vm_area_struct *vma,
931                                 unsigned long addr, unsigned long end,
932                                 long *zap_work, struct zap_details *details)
933 {
934         pgd_t *pgd;
935         unsigned long next;
936
937         if (details && !details->check_mapping && !details->nonlinear_vma)
938                 details = NULL;
939
940         BUG_ON(addr >= end);
941         tlb_start_vma(tlb, vma);
942         pgd = pgd_offset(vma->vm_mm, addr);
943         do {
944                 next = pgd_addr_end(addr, end);
945                 if (pgd_none_or_clear_bad(pgd)) {
946                         (*zap_work)--;
947                         continue;
948                 }
949                 next = zap_pud_range(tlb, vma, pgd, addr, next,
950                                                 zap_work, details);
951         } while (pgd++, addr = next, (addr != end && *zap_work > 0));
952         tlb_end_vma(tlb, vma);
953
954         return addr;
955 }
956
957 #ifdef CONFIG_PREEMPT
958 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
959 #else
960 /* No preempt: go for improved straight-line efficiency */
961 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
962 #endif
963
964 /**
965  * unmap_vmas - unmap a range of memory covered by a list of vma's
966  * @tlbp: address of the caller's struct mmu_gather
967  * @vma: the starting vma
968  * @start_addr: virtual address at which to start unmapping
969  * @end_addr: virtual address at which to end unmapping
970  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
971  * @details: details of nonlinear truncation or shared cache invalidation
972  *
973  * Returns the end address of the unmapping (restart addr if interrupted).
974  *
975  * Unmap all pages in the vma list.
976  *
977  * We aim to not hold locks for too long (for scheduling latency reasons).
978  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
979  * return the ending mmu_gather to the caller.
980  *
981  * Only addresses between `start' and `end' will be unmapped.
982  *
983  * The VMA list must be sorted in ascending virtual address order.
984  *
985  * unmap_vmas() assumes that the caller will flush the whole unmapped address
986  * range after unmap_vmas() returns.  So the only responsibility here is to
987  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
988  * drops the lock and schedules.
989  */
990 unsigned long unmap_vmas(struct mmu_gather **tlbp,
991                 struct vm_area_struct *vma, unsigned long start_addr,
992                 unsigned long end_addr, unsigned long *nr_accounted,
993                 struct zap_details *details)
994 {
995         long zap_work = ZAP_BLOCK_SIZE;
996         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
997         int tlb_start_valid = 0;
998         unsigned long start = start_addr;
999         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1000         int fullmm = (*tlbp)->fullmm;
1001         struct mm_struct *mm = vma->vm_mm;
1002
1003         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1004         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1005                 unsigned long end;
1006
1007                 start = max(vma->vm_start, start_addr);
1008                 if (start >= vma->vm_end)
1009                         continue;
1010                 end = min(vma->vm_end, end_addr);
1011                 if (end <= vma->vm_start)
1012                         continue;
1013
1014                 if (vma->vm_flags & VM_ACCOUNT)
1015                         *nr_accounted += (end - start) >> PAGE_SHIFT;
1016
1017                 if (unlikely(is_pfn_mapping(vma)))
1018                         untrack_pfn_vma(vma, 0, 0);
1019
1020                 while (start != end) {
1021                         if (!tlb_start_valid) {
1022                                 tlb_start = start;
1023                                 tlb_start_valid = 1;
1024                         }
1025
1026                         if (unlikely(is_vm_hugetlb_page(vma))) {
1027                                 /*
1028                                  * It is undesirable to test vma->vm_file as it
1029                                  * should be non-null for valid hugetlb area.
1030                                  * However, vm_file will be NULL in the error
1031                                  * cleanup path of do_mmap_pgoff. When
1032                                  * hugetlbfs ->mmap method fails,
1033                                  * do_mmap_pgoff() nullifies vma->vm_file
1034                                  * before calling this function to clean up.
1035                                  * Since no pte has actually been setup, it is
1036                                  * safe to do nothing in this case.
1037                                  */
1038                                 if (vma->vm_file) {
1039                                         unmap_hugepage_range(vma, start, end, NULL);
1040                                         zap_work -= (end - start) /
1041                                         pages_per_huge_page(hstate_vma(vma));
1042                                 }
1043
1044                                 start = end;
1045                         } else
1046                                 start = unmap_page_range(*tlbp, vma,
1047                                                 start, end, &zap_work, details);
1048
1049                         if (zap_work > 0) {
1050                                 BUG_ON(start != end);
1051                                 break;
1052                         }
1053
1054                         tlb_finish_mmu(*tlbp, tlb_start, start);
1055
1056                         if (need_resched() ||
1057                                 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1058                                 if (i_mmap_lock) {
1059                                         *tlbp = NULL;
1060                                         goto out;
1061                                 }
1062                                 cond_resched();
1063                         }
1064
1065                         *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1066                         tlb_start_valid = 0;
1067                         zap_work = ZAP_BLOCK_SIZE;
1068                 }
1069         }
1070 out:
1071         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1072         return start;   /* which is now the end (or restart) address */
1073 }
1074
1075 /**
1076  * zap_page_range - remove user pages in a given range
1077  * @vma: vm_area_struct holding the applicable pages
1078  * @address: starting address of pages to zap
1079  * @size: number of bytes to zap
1080  * @details: details of nonlinear truncation or shared cache invalidation
1081  */
1082 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1083                 unsigned long size, struct zap_details *details)
1084 {
1085         struct mm_struct *mm = vma->vm_mm;
1086         struct mmu_gather *tlb;
1087         unsigned long end = address + size;
1088         unsigned long nr_accounted = 0;
1089
1090         lru_add_drain();
1091         tlb = tlb_gather_mmu(mm, 0);
1092         update_hiwater_rss(mm);
1093         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1094         if (tlb)
1095                 tlb_finish_mmu(tlb, address, end);
1096         return end;
1097 }
1098
1099 /**
1100  * zap_vma_ptes - remove ptes mapping the vma
1101  * @vma: vm_area_struct holding ptes to be zapped
1102  * @address: starting address of pages to zap
1103  * @size: number of bytes to zap
1104  *
1105  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1106  *
1107  * The entire address range must be fully contained within the vma.
1108  *
1109  * Returns 0 if successful.
1110  */
1111 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1112                 unsigned long size)
1113 {
1114         if (address < vma->vm_start || address + size > vma->vm_end ||
1115                         !(vma->vm_flags & VM_PFNMAP))
1116                 return -1;
1117         zap_page_range(vma, address, size, NULL);
1118         return 0;
1119 }
1120 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1121
1122 /*
1123  * Do a quick page-table lookup for a single page.
1124  */
1125 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1126                         unsigned int flags)
1127 {
1128         pgd_t *pgd;
1129         pud_t *pud;
1130         pmd_t *pmd;
1131         pte_t *ptep, pte;
1132         spinlock_t *ptl;
1133         struct page *page;
1134         struct mm_struct *mm = vma->vm_mm;
1135
1136         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1137         if (!IS_ERR(page)) {
1138                 BUG_ON(flags & FOLL_GET);
1139                 goto out;
1140         }
1141
1142         page = NULL;
1143         pgd = pgd_offset(mm, address);
1144         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1145                 goto no_page_table;
1146
1147         pud = pud_offset(pgd, address);
1148         if (pud_none(*pud))
1149                 goto no_page_table;
1150         if (pud_huge(*pud)) {
1151                 BUG_ON(flags & FOLL_GET);
1152                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1153                 goto out;
1154         }
1155         if (unlikely(pud_bad(*pud)))
1156                 goto no_page_table;
1157
1158         pmd = pmd_offset(pud, address);
1159         if (pmd_none(*pmd))
1160                 goto no_page_table;
1161         if (pmd_huge(*pmd)) {
1162                 BUG_ON(flags & FOLL_GET);
1163                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1164                 goto out;
1165         }
1166         if (unlikely(pmd_bad(*pmd)))
1167                 goto no_page_table;
1168
1169         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1170
1171         pte = *ptep;
1172         if (!pte_present(pte))
1173                 goto no_page;
1174         if ((flags & FOLL_WRITE) && !pte_write(pte))
1175                 goto unlock;
1176
1177         page = vm_normal_page(vma, address, pte);
1178         if (unlikely(!page)) {
1179                 if ((flags & FOLL_DUMP) ||
1180                     !is_zero_pfn(pte_pfn(pte)))
1181                         goto bad_page;
1182                 page = pte_page(pte);
1183         }
1184
1185         if (flags & FOLL_GET)
1186                 get_page(page);
1187         if (flags & FOLL_TOUCH) {
1188                 if ((flags & FOLL_WRITE) &&
1189                     !pte_dirty(pte) && !PageDirty(page))
1190                         set_page_dirty(page);
1191                 /*
1192                  * pte_mkyoung() would be more correct here, but atomic care
1193                  * is needed to avoid losing the dirty bit: it is easier to use
1194                  * mark_page_accessed().
1195                  */
1196                 mark_page_accessed(page);
1197         }
1198 unlock:
1199         pte_unmap_unlock(ptep, ptl);
1200 out:
1201         return page;
1202
1203 bad_page:
1204         pte_unmap_unlock(ptep, ptl);
1205         return ERR_PTR(-EFAULT);
1206
1207 no_page:
1208         pte_unmap_unlock(ptep, ptl);
1209         if (!pte_none(pte))
1210                 return page;
1211
1212 no_page_table:
1213         /*
1214          * When core dumping an enormous anonymous area that nobody
1215          * has touched so far, we don't want to allocate unnecessary pages or
1216          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1217          * then get_dump_page() will return NULL to leave a hole in the dump.
1218          * But we can only make this optimization where a hole would surely
1219          * be zero-filled if handle_mm_fault() actually did handle it.
1220          */
1221         if ((flags & FOLL_DUMP) &&
1222             (!vma->vm_ops || !vma->vm_ops->fault))
1223                 return ERR_PTR(-EFAULT);
1224         return page;
1225 }
1226
1227 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1228                      unsigned long start, int nr_pages, unsigned int gup_flags,
1229                      struct page **pages, struct vm_area_struct **vmas)
1230 {
1231         int i;
1232         unsigned long vm_flags;
1233
1234         if (nr_pages <= 0)
1235                 return 0;
1236
1237         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1238
1239         /* 
1240          * Require read or write permissions.
1241          * If FOLL_FORCE is set, we only require the "MAY" flags.
1242          */
1243         vm_flags  = (gup_flags & FOLL_WRITE) ?
1244                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1245         vm_flags &= (gup_flags & FOLL_FORCE) ?
1246                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1247         i = 0;
1248
1249         do {
1250                 struct vm_area_struct *vma;
1251
1252                 vma = find_extend_vma(mm, start);
1253                 if (!vma && in_gate_area(tsk, start)) {
1254                         unsigned long pg = start & PAGE_MASK;
1255                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1256                         pgd_t *pgd;
1257                         pud_t *pud;
1258                         pmd_t *pmd;
1259                         pte_t *pte;
1260
1261                         /* user gate pages are read-only */
1262                         if (gup_flags & FOLL_WRITE)
1263                                 return i ? : -EFAULT;
1264                         if (pg > TASK_SIZE)
1265                                 pgd = pgd_offset_k(pg);
1266                         else
1267                                 pgd = pgd_offset_gate(mm, pg);
1268                         BUG_ON(pgd_none(*pgd));
1269                         pud = pud_offset(pgd, pg);
1270                         BUG_ON(pud_none(*pud));
1271                         pmd = pmd_offset(pud, pg);
1272                         if (pmd_none(*pmd))
1273                                 return i ? : -EFAULT;
1274                         pte = pte_offset_map(pmd, pg);
1275                         if (pte_none(*pte)) {
1276                                 pte_unmap(pte);
1277                                 return i ? : -EFAULT;
1278                         }
1279                         if (pages) {
1280                                 struct page *page = vm_normal_page(gate_vma, start, *pte);
1281                                 pages[i] = page;
1282                                 if (page)
1283                                         get_page(page);
1284                         }
1285                         pte_unmap(pte);
1286                         if (vmas)
1287                                 vmas[i] = gate_vma;
1288                         i++;
1289                         start += PAGE_SIZE;
1290                         nr_pages--;
1291                         continue;
1292                 }
1293
1294                 if (!vma ||
1295                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1296                     !(vm_flags & vma->vm_flags))
1297                         return i ? : -EFAULT;
1298
1299                 if (is_vm_hugetlb_page(vma)) {
1300                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1301                                         &start, &nr_pages, i, gup_flags);
1302                         continue;
1303                 }
1304
1305                 do {
1306                         struct page *page;
1307                         unsigned int foll_flags = gup_flags;
1308
1309                         /*
1310                          * If we have a pending SIGKILL, don't keep faulting
1311                          * pages and potentially allocating memory.
1312                          */
1313                         if (unlikely(fatal_signal_pending(current)))
1314                                 return i ? i : -ERESTARTSYS;
1315
1316                         cond_resched();
1317                         while (!(page = follow_page(vma, start, foll_flags))) {
1318                                 int ret;
1319
1320                                 ret = handle_mm_fault(mm, vma, start,
1321                                         (foll_flags & FOLL_WRITE) ?
1322                                         FAULT_FLAG_WRITE : 0);
1323
1324                                 if (ret & VM_FAULT_ERROR) {
1325                                         if (ret & VM_FAULT_OOM)
1326                                                 return i ? i : -ENOMEM;
1327                                         else if (ret & VM_FAULT_SIGBUS)
1328                                                 return i ? i : -EFAULT;
1329                                         BUG();
1330                                 }
1331                                 if (ret & VM_FAULT_MAJOR)
1332                                         tsk->maj_flt++;
1333                                 else
1334                                         tsk->min_flt++;
1335
1336                                 /*
1337                                  * The VM_FAULT_WRITE bit tells us that
1338                                  * do_wp_page has broken COW when necessary,
1339                                  * even if maybe_mkwrite decided not to set
1340                                  * pte_write. We can thus safely do subsequent
1341                                  * page lookups as if they were reads. But only
1342                                  * do so when looping for pte_write is futile:
1343                                  * in some cases userspace may also be wanting
1344                                  * to write to the gotten user page, which a
1345                                  * read fault here might prevent (a readonly
1346                                  * page might get reCOWed by userspace write).
1347                                  */
1348                                 if ((ret & VM_FAULT_WRITE) &&
1349                                     !(vma->vm_flags & VM_WRITE))
1350                                         foll_flags &= ~FOLL_WRITE;
1351
1352                                 cond_resched();
1353                         }
1354                         if (IS_ERR(page))
1355                                 return i ? i : PTR_ERR(page);
1356                         if (pages) {
1357                                 pages[i] = page;
1358
1359                                 flush_anon_page(vma, page, start);
1360                                 flush_dcache_page(page);
1361                         }
1362                         if (vmas)
1363                                 vmas[i] = vma;
1364                         i++;
1365                         start += PAGE_SIZE;
1366                         nr_pages--;
1367                 } while (nr_pages && start < vma->vm_end);
1368         } while (nr_pages);
1369         return i;
1370 }
1371
1372 /**
1373  * get_user_pages() - pin user pages in memory
1374  * @tsk:        task_struct of target task
1375  * @mm:         mm_struct of target mm
1376  * @start:      starting user address
1377  * @nr_pages:   number of pages from start to pin
1378  * @write:      whether pages will be written to by the caller
1379  * @force:      whether to force write access even if user mapping is
1380  *              readonly. This will result in the page being COWed even
1381  *              in MAP_SHARED mappings. You do not want this.
1382  * @pages:      array that receives pointers to the pages pinned.
1383  *              Should be at least nr_pages long. Or NULL, if caller
1384  *              only intends to ensure the pages are faulted in.
1385  * @vmas:       array of pointers to vmas corresponding to each page.
1386  *              Or NULL if the caller does not require them.
1387  *
1388  * Returns number of pages pinned. This may be fewer than the number
1389  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1390  * were pinned, returns -errno. Each page returned must be released
1391  * with a put_page() call when it is finished with. vmas will only
1392  * remain valid while mmap_sem is held.
1393  *
1394  * Must be called with mmap_sem held for read or write.
1395  *
1396  * get_user_pages walks a process's page tables and takes a reference to
1397  * each struct page that each user address corresponds to at a given
1398  * instant. That is, it takes the page that would be accessed if a user
1399  * thread accesses the given user virtual address at that instant.
1400  *
1401  * This does not guarantee that the page exists in the user mappings when
1402  * get_user_pages returns, and there may even be a completely different
1403  * page there in some cases (eg. if mmapped pagecache has been invalidated
1404  * and subsequently re faulted). However it does guarantee that the page
1405  * won't be freed completely. And mostly callers simply care that the page
1406  * contains data that was valid *at some point in time*. Typically, an IO
1407  * or similar operation cannot guarantee anything stronger anyway because
1408  * locks can't be held over the syscall boundary.
1409  *
1410  * If write=0, the page must not be written to. If the page is written to,
1411  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1412  * after the page is finished with, and before put_page is called.
1413  *
1414  * get_user_pages is typically used for fewer-copy IO operations, to get a
1415  * handle on the memory by some means other than accesses via the user virtual
1416  * addresses. The pages may be submitted for DMA to devices or accessed via
1417  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1418  * use the correct cache flushing APIs.
1419  *
1420  * See also get_user_pages_fast, for performance critical applications.
1421  */
1422 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1423                 unsigned long start, int nr_pages, int write, int force,
1424                 struct page **pages, struct vm_area_struct **vmas)
1425 {
1426         int flags = FOLL_TOUCH;
1427
1428         if (pages)
1429                 flags |= FOLL_GET;
1430         if (write)
1431                 flags |= FOLL_WRITE;
1432         if (force)
1433                 flags |= FOLL_FORCE;
1434
1435         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1436 }
1437 EXPORT_SYMBOL(get_user_pages);
1438
1439 /**
1440  * get_dump_page() - pin user page in memory while writing it to core dump
1441  * @addr: user address
1442  *
1443  * Returns struct page pointer of user page pinned for dump,
1444  * to be freed afterwards by page_cache_release() or put_page().
1445  *
1446  * Returns NULL on any kind of failure - a hole must then be inserted into
1447  * the corefile, to preserve alignment with its headers; and also returns
1448  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1449  * allowing a hole to be left in the corefile to save diskspace.
1450  *
1451  * Called without mmap_sem, but after all other threads have been killed.
1452  */
1453 #ifdef CONFIG_ELF_CORE
1454 struct page *get_dump_page(unsigned long addr)
1455 {
1456         struct vm_area_struct *vma;
1457         struct page *page;
1458
1459         if (__get_user_pages(current, current->mm, addr, 1,
1460                         FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
1461                 return NULL;
1462         flush_cache_page(vma, addr, page_to_pfn(page));
1463         return page;
1464 }
1465 #endif /* CONFIG_ELF_CORE */
1466
1467 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1468                         spinlock_t **ptl)
1469 {
1470         pgd_t * pgd = pgd_offset(mm, addr);
1471         pud_t * pud = pud_alloc(mm, pgd, addr);
1472         if (pud) {
1473                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1474                 if (pmd)
1475                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1476         }
1477         return NULL;
1478 }
1479
1480 /*
1481  * This is the old fallback for page remapping.
1482  *
1483  * For historical reasons, it only allows reserved pages. Only
1484  * old drivers should use this, and they needed to mark their
1485  * pages reserved for the old functions anyway.
1486  */
1487 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1488                         struct page *page, pgprot_t prot)
1489 {
1490         struct mm_struct *mm = vma->vm_mm;
1491         int retval;
1492         pte_t *pte;
1493         spinlock_t *ptl;
1494
1495         retval = -EINVAL;
1496         if (PageAnon(page))
1497                 goto out;
1498         retval = -ENOMEM;
1499         flush_dcache_page(page);
1500         pte = get_locked_pte(mm, addr, &ptl);
1501         if (!pte)
1502                 goto out;
1503         retval = -EBUSY;
1504         if (!pte_none(*pte))
1505                 goto out_unlock;
1506
1507         /* Ok, finally just insert the thing.. */
1508         get_page(page);
1509         inc_mm_counter(mm, file_rss);
1510         page_add_file_rmap(page);
1511         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1512
1513         retval = 0;
1514         pte_unmap_unlock(pte, ptl);
1515         return retval;
1516 out_unlock:
1517         pte_unmap_unlock(pte, ptl);
1518 out:
1519         return retval;
1520 }
1521
1522 /**
1523  * vm_insert_page - insert single page into user vma
1524  * @vma: user vma to map to
1525  * @addr: target user address of this page
1526  * @page: source kernel page
1527  *
1528  * This allows drivers to insert individual pages they've allocated
1529  * into a user vma.
1530  *
1531  * The page has to be a nice clean _individual_ kernel allocation.
1532  * If you allocate a compound page, you need to have marked it as
1533  * such (__GFP_COMP), or manually just split the page up yourself
1534  * (see split_page()).
1535  *
1536  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1537  * took an arbitrary page protection parameter. This doesn't allow
1538  * that. Your vma protection will have to be set up correctly, which
1539  * means that if you want a shared writable mapping, you'd better
1540  * ask for a shared writable mapping!
1541  *
1542  * The page does not need to be reserved.
1543  */
1544 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1545                         struct page *page)
1546 {
1547         if (addr < vma->vm_start || addr >= vma->vm_end)
1548                 return -EFAULT;
1549         if (!page_count(page))
1550                 return -EINVAL;
1551         vma->vm_flags |= VM_INSERTPAGE;
1552         return insert_page(vma, addr, page, vma->vm_page_prot);
1553 }
1554 EXPORT_SYMBOL(vm_insert_page);
1555
1556 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1557                         unsigned long pfn, pgprot_t prot)
1558 {
1559         struct mm_struct *mm = vma->vm_mm;
1560         int retval;
1561         pte_t *pte, entry;
1562         spinlock_t *ptl;
1563
1564         retval = -ENOMEM;
1565         pte = get_locked_pte(mm, addr, &ptl);
1566         if (!pte)
1567                 goto out;
1568         retval = -EBUSY;
1569         if (!pte_none(*pte))
1570                 goto out_unlock;
1571
1572         /* Ok, finally just insert the thing.. */
1573         entry = pte_mkspecial(pfn_pte(pfn, prot));
1574         set_pte_at(mm, addr, pte, entry);
1575         update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1576
1577         retval = 0;
1578 out_unlock:
1579         pte_unmap_unlock(pte, ptl);
1580 out:
1581         return retval;
1582 }
1583
1584 /**
1585  * vm_insert_pfn - insert single pfn into user vma
1586  * @vma: user vma to map to
1587  * @addr: target user address of this page
1588  * @pfn: source kernel pfn
1589  *
1590  * Similar to vm_inert_page, this allows drivers to insert individual pages
1591  * they've allocated into a user vma. Same comments apply.
1592  *
1593  * This function should only be called from a vm_ops->fault handler, and
1594  * in that case the handler should return NULL.
1595  *
1596  * vma cannot be a COW mapping.
1597  *
1598  * As this is called only for pages that do not currently exist, we
1599  * do not need to flush old virtual caches or the TLB.
1600  */
1601 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1602                         unsigned long pfn)
1603 {
1604         int ret;
1605         pgprot_t pgprot = vma->vm_page_prot;
1606         /*
1607          * Technically, architectures with pte_special can avoid all these
1608          * restrictions (same for remap_pfn_range).  However we would like
1609          * consistency in testing and feature parity among all, so we should
1610          * try to keep these invariants in place for everybody.
1611          */
1612         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1613         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1614                                                 (VM_PFNMAP|VM_MIXEDMAP));
1615         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1616         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1617
1618         if (addr < vma->vm_start || addr >= vma->vm_end)
1619                 return -EFAULT;
1620         if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1621                 return -EINVAL;
1622
1623         ret = insert_pfn(vma, addr, pfn, pgprot);
1624
1625         if (ret)
1626                 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1627
1628         return ret;
1629 }
1630 EXPORT_SYMBOL(vm_insert_pfn);
1631
1632 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1633                         unsigned long pfn)
1634 {
1635         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1636
1637         if (addr < vma->vm_start || addr >= vma->vm_end)
1638                 return -EFAULT;
1639
1640         /*
1641          * If we don't have pte special, then we have to use the pfn_valid()
1642          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1643          * refcount the page if pfn_valid is true (hence insert_page rather
1644          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1645          * without pte special, it would there be refcounted as a normal page.
1646          */
1647         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1648                 struct page *page;
1649
1650                 page = pfn_to_page(pfn);
1651                 return insert_page(vma, addr, page, vma->vm_page_prot);
1652         }
1653         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1654 }
1655 EXPORT_SYMBOL(vm_insert_mixed);
1656
1657 /*
1658  * maps a range of physical memory into the requested pages. the old
1659  * mappings are removed. any references to nonexistent pages results
1660  * in null mappings (currently treated as "copy-on-access")
1661  */
1662 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1663                         unsigned long addr, unsigned long end,
1664                         unsigned long pfn, pgprot_t prot)
1665 {
1666         pte_t *pte;
1667         spinlock_t *ptl;
1668
1669         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1670         if (!pte)
1671                 return -ENOMEM;
1672         arch_enter_lazy_mmu_mode();
1673         do {
1674                 BUG_ON(!pte_none(*pte));
1675                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1676                 pfn++;
1677         } while (pte++, addr += PAGE_SIZE, addr != end);
1678         arch_leave_lazy_mmu_mode();
1679         pte_unmap_unlock(pte - 1, ptl);
1680         return 0;
1681 }
1682
1683 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1684                         unsigned long addr, unsigned long end,
1685                         unsigned long pfn, pgprot_t prot)
1686 {
1687         pmd_t *pmd;
1688         unsigned long next;
1689
1690         pfn -= addr >> PAGE_SHIFT;
1691         pmd = pmd_alloc(mm, pud, addr);
1692         if (!pmd)
1693                 return -ENOMEM;
1694         do {
1695                 next = pmd_addr_end(addr, end);
1696                 if (remap_pte_range(mm, pmd, addr, next,
1697                                 pfn + (addr >> PAGE_SHIFT), prot))
1698                         return -ENOMEM;
1699         } while (pmd++, addr = next, addr != end);
1700         return 0;
1701 }
1702
1703 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1704                         unsigned long addr, unsigned long end,
1705                         unsigned long pfn, pgprot_t prot)
1706 {
1707         pud_t *pud;
1708         unsigned long next;
1709
1710         pfn -= addr >> PAGE_SHIFT;
1711         pud = pud_alloc(mm, pgd, addr);
1712         if (!pud)
1713                 return -ENOMEM;
1714         do {
1715                 next = pud_addr_end(addr, end);
1716                 if (remap_pmd_range(mm, pud, addr, next,
1717                                 pfn + (addr >> PAGE_SHIFT), prot))
1718                         return -ENOMEM;
1719         } while (pud++, addr = next, addr != end);
1720         return 0;
1721 }
1722
1723 /**
1724  * remap_pfn_range - remap kernel memory to userspace
1725  * @vma: user vma to map to
1726  * @addr: target user address to start at
1727  * @pfn: physical address of kernel memory
1728  * @size: size of map area
1729  * @prot: page protection flags for this mapping
1730  *
1731  *  Note: this is only safe if the mm semaphore is held when called.
1732  */
1733 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1734                     unsigned long pfn, unsigned long size, pgprot_t prot)
1735 {
1736         pgd_t *pgd;
1737         unsigned long next;
1738         unsigned long end = addr + PAGE_ALIGN(size);
1739         struct mm_struct *mm = vma->vm_mm;
1740         int err;
1741
1742         /*
1743          * Physically remapped pages are special. Tell the
1744          * rest of the world about it:
1745          *   VM_IO tells people not to look at these pages
1746          *      (accesses can have side effects).
1747          *   VM_RESERVED is specified all over the place, because
1748          *      in 2.4 it kept swapout's vma scan off this vma; but
1749          *      in 2.6 the LRU scan won't even find its pages, so this
1750          *      flag means no more than count its pages in reserved_vm,
1751          *      and omit it from core dump, even when VM_IO turned off.
1752          *   VM_PFNMAP tells the core MM that the base pages are just
1753          *      raw PFN mappings, and do not have a "struct page" associated
1754          *      with them.
1755          *
1756          * There's a horrible special case to handle copy-on-write
1757          * behaviour that some programs depend on. We mark the "original"
1758          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1759          */
1760         if (addr == vma->vm_start && end == vma->vm_end) {
1761                 vma->vm_pgoff = pfn;
1762                 vma->vm_flags |= VM_PFN_AT_MMAP;
1763         } else if (is_cow_mapping(vma->vm_flags))
1764                 return -EINVAL;
1765
1766         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1767
1768         err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1769         if (err) {
1770                 /*
1771                  * To indicate that track_pfn related cleanup is not
1772                  * needed from higher level routine calling unmap_vmas
1773                  */
1774                 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1775                 vma->vm_flags &= ~VM_PFN_AT_MMAP;
1776                 return -EINVAL;
1777         }
1778
1779         BUG_ON(addr >= end);
1780         pfn -= addr >> PAGE_SHIFT;
1781         pgd = pgd_offset(mm, addr);
1782         flush_cache_range(vma, addr, end);
1783         do {
1784                 next = pgd_addr_end(addr, end);
1785                 err = remap_pud_range(mm, pgd, addr, next,
1786                                 pfn + (addr >> PAGE_SHIFT), prot);
1787                 if (err)
1788                         break;
1789         } while (pgd++, addr = next, addr != end);
1790
1791         if (err)
1792                 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1793
1794         return err;
1795 }
1796 EXPORT_SYMBOL(remap_pfn_range);
1797
1798 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1799                                      unsigned long addr, unsigned long end,
1800                                      pte_fn_t fn, void *data)
1801 {
1802         pte_t *pte;
1803         int err;
1804         pgtable_t token;
1805         spinlock_t *uninitialized_var(ptl);
1806
1807         pte = (mm == &init_mm) ?
1808                 pte_alloc_kernel(pmd, addr) :
1809                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1810         if (!pte)
1811                 return -ENOMEM;
1812
1813         BUG_ON(pmd_huge(*pmd));
1814
1815         arch_enter_lazy_mmu_mode();
1816
1817         token = pmd_pgtable(*pmd);
1818
1819         do {
1820                 err = fn(pte, token, addr, data);
1821                 if (err)
1822                         break;
1823         } while (pte++, addr += PAGE_SIZE, addr != end);
1824
1825         arch_leave_lazy_mmu_mode();
1826
1827         if (mm != &init_mm)
1828                 pte_unmap_unlock(pte-1, ptl);
1829         return err;
1830 }
1831
1832 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1833                                      unsigned long addr, unsigned long end,
1834                                      pte_fn_t fn, void *data)
1835 {
1836         pmd_t *pmd;
1837         unsigned long next;
1838         int err;
1839
1840         BUG_ON(pud_huge(*pud));
1841
1842         pmd = pmd_alloc(mm, pud, addr);
1843         if (!pmd)
1844                 return -ENOMEM;
1845         do {
1846                 next = pmd_addr_end(addr, end);
1847                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1848                 if (err)
1849                         break;
1850         } while (pmd++, addr = next, addr != end);
1851         return err;
1852 }
1853
1854 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1855                                      unsigned long addr, unsigned long end,
1856                                      pte_fn_t fn, void *data)
1857 {
1858         pud_t *pud;
1859         unsigned long next;
1860         int err;
1861
1862         pud = pud_alloc(mm, pgd, addr);
1863         if (!pud)
1864                 return -ENOMEM;
1865         do {
1866                 next = pud_addr_end(addr, end);
1867                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1868                 if (err)
1869                         break;
1870         } while (pud++, addr = next, addr != end);
1871         return err;
1872 }
1873
1874 /*
1875  * Scan a region of virtual memory, filling in page tables as necessary
1876  * and calling a provided function on each leaf page table.
1877  */
1878 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1879                         unsigned long size, pte_fn_t fn, void *data)
1880 {
1881         pgd_t *pgd;
1882         unsigned long next;
1883         unsigned long start = addr, end = addr + size;
1884         int err;
1885
1886         BUG_ON(addr >= end);
1887         mmu_notifier_invalidate_range_start(mm, start, end);
1888         pgd = pgd_offset(mm, addr);
1889         do {
1890                 next = pgd_addr_end(addr, end);
1891                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1892                 if (err)
1893                         break;
1894         } while (pgd++, addr = next, addr != end);
1895         mmu_notifier_invalidate_range_end(mm, start, end);
1896         return err;
1897 }
1898 EXPORT_SYMBOL_GPL(apply_to_page_range);
1899
1900 /*
1901  * handle_pte_fault chooses page fault handler according to an entry
1902  * which was read non-atomically.  Before making any commitment, on
1903  * those architectures or configurations (e.g. i386 with PAE) which
1904  * might give a mix of unmatched parts, do_swap_page and do_file_page
1905  * must check under lock before unmapping the pte and proceeding
1906  * (but do_wp_page is only called after already making such a check;
1907  * and do_anonymous_page and do_no_page can safely check later on).
1908  */
1909 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1910                                 pte_t *page_table, pte_t orig_pte)
1911 {
1912         int same = 1;
1913 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1914         if (sizeof(pte_t) > sizeof(unsigned long)) {
1915                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1916                 spin_lock(ptl);
1917                 same = pte_same(*page_table, orig_pte);
1918                 spin_unlock(ptl);
1919         }
1920 #endif
1921         pte_unmap(page_table);
1922         return same;
1923 }
1924
1925 /*
1926  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1927  * servicing faults for write access.  In the normal case, do always want
1928  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1929  * that do not have writing enabled, when used by access_process_vm.
1930  */
1931 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1932 {
1933         if (likely(vma->vm_flags & VM_WRITE))
1934                 pte = pte_mkwrite(pte);
1935         return pte;
1936 }
1937
1938 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1939 {
1940         /*
1941          * If the source page was a PFN mapping, we don't have
1942          * a "struct page" for it. We do a best-effort copy by
1943          * just copying from the original user address. If that
1944          * fails, we just zero-fill it. Live with it.
1945          */
1946         if (unlikely(!src)) {
1947                 void *kaddr = kmap_atomic(dst, KM_USER0);
1948                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1949
1950                 /*
1951                  * This really shouldn't fail, because the page is there
1952                  * in the page tables. But it might just be unreadable,
1953                  * in which case we just give up and fill the result with
1954                  * zeroes.
1955                  */
1956                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1957                         memset(kaddr, 0, PAGE_SIZE);
1958                 kunmap_atomic(kaddr, KM_USER0);
1959                 flush_dcache_page(dst);
1960         } else
1961                 copy_user_highpage(dst, src, va, vma);
1962 }
1963
1964 /*
1965  * This routine handles present pages, when users try to write
1966  * to a shared page. It is done by copying the page to a new address
1967  * and decrementing the shared-page counter for the old page.
1968  *
1969  * Note that this routine assumes that the protection checks have been
1970  * done by the caller (the low-level page fault routine in most cases).
1971  * Thus we can safely just mark it writable once we've done any necessary
1972  * COW.
1973  *
1974  * We also mark the page dirty at this point even though the page will
1975  * change only once the write actually happens. This avoids a few races,
1976  * and potentially makes it more efficient.
1977  *
1978  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1979  * but allow concurrent faults), with pte both mapped and locked.
1980  * We return with mmap_sem still held, but pte unmapped and unlocked.
1981  */
1982 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1983                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1984                 spinlock_t *ptl, pte_t orig_pte)
1985 {
1986         struct page *old_page, *new_page;
1987         pte_t entry;
1988         int reuse = 0, ret = 0;
1989         int page_mkwrite = 0;
1990         struct page *dirty_page = NULL;
1991
1992         old_page = vm_normal_page(vma, address, orig_pte);
1993         if (!old_page) {
1994                 /*
1995                  * VM_MIXEDMAP !pfn_valid() case
1996                  *
1997                  * We should not cow pages in a shared writeable mapping.
1998                  * Just mark the pages writable as we can't do any dirty
1999                  * accounting on raw pfn maps.
2000                  */
2001                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2002                                      (VM_WRITE|VM_SHARED))
2003                         goto reuse;
2004                 goto gotten;
2005         }
2006
2007         /*
2008          * Take out anonymous pages first, anonymous shared vmas are
2009          * not dirty accountable.
2010          */
2011         if (PageAnon(old_page) && !PageKsm(old_page)) {
2012                 if (!trylock_page(old_page)) {
2013                         page_cache_get(old_page);
2014                         pte_unmap_unlock(page_table, ptl);
2015                         lock_page(old_page);
2016                         page_table = pte_offset_map_lock(mm, pmd, address,
2017                                                          &ptl);
2018                         if (!pte_same(*page_table, orig_pte)) {
2019                                 unlock_page(old_page);
2020                                 page_cache_release(old_page);
2021                                 goto unlock;
2022                         }
2023                         page_cache_release(old_page);
2024                 }
2025                 reuse = reuse_swap_page(old_page);
2026                 unlock_page(old_page);
2027         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2028                                         (VM_WRITE|VM_SHARED))) {
2029                 /*
2030                  * Only catch write-faults on shared writable pages,
2031                  * read-only shared pages can get COWed by
2032                  * get_user_pages(.write=1, .force=1).
2033                  */
2034                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2035                         struct vm_fault vmf;
2036                         int tmp;
2037
2038                         vmf.virtual_address = (void __user *)(address &
2039                                                                 PAGE_MASK);
2040                         vmf.pgoff = old_page->index;
2041                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2042                         vmf.page = old_page;
2043
2044                         /*
2045                          * Notify the address space that the page is about to
2046                          * become writable so that it can prohibit this or wait
2047                          * for the page to get into an appropriate state.
2048                          *
2049                          * We do this without the lock held, so that it can
2050                          * sleep if it needs to.
2051                          */
2052                         page_cache_get(old_page);
2053                         pte_unmap_unlock(page_table, ptl);
2054
2055                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2056                         if (unlikely(tmp &
2057                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2058                                 ret = tmp;
2059                                 goto unwritable_page;
2060                         }
2061                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2062                                 lock_page(old_page);
2063                                 if (!old_page->mapping) {
2064                                         ret = 0; /* retry the fault */
2065                                         unlock_page(old_page);
2066                                         goto unwritable_page;
2067                                 }
2068                         } else
2069                                 VM_BUG_ON(!PageLocked(old_page));
2070
2071                         /*
2072                          * Since we dropped the lock we need to revalidate
2073                          * the PTE as someone else may have changed it.  If
2074                          * they did, we just return, as we can count on the
2075                          * MMU to tell us if they didn't also make it writable.
2076                          */
2077                         page_table = pte_offset_map_lock(mm, pmd, address,
2078                                                          &ptl);
2079                         if (!pte_same(*page_table, orig_pte)) {
2080                                 unlock_page(old_page);
2081                                 page_cache_release(old_page);
2082                                 goto unlock;
2083                         }
2084
2085                         page_mkwrite = 1;
2086                 }
2087                 dirty_page = old_page;
2088                 get_page(dirty_page);
2089                 reuse = 1;
2090         }
2091
2092         if (reuse) {
2093 reuse:
2094                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2095                 entry = pte_mkyoung(orig_pte);
2096                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2097                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2098                         update_mmu_cache(vma, address, entry);
2099                 ret |= VM_FAULT_WRITE;
2100                 goto unlock;
2101         }
2102
2103         /*
2104          * Ok, we need to copy. Oh, well..
2105          */
2106         page_cache_get(old_page);
2107 gotten:
2108         pte_unmap_unlock(page_table, ptl);
2109
2110         if (unlikely(anon_vma_prepare(vma)))
2111                 goto oom;
2112
2113         if (is_zero_pfn(pte_pfn(orig_pte))) {
2114                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2115                 if (!new_page)
2116                         goto oom;
2117         } else {
2118                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2119                 if (!new_page)
2120                         goto oom;
2121                 cow_user_page(new_page, old_page, address, vma);
2122         }
2123         __SetPageUptodate(new_page);
2124
2125         /*
2126          * Don't let another task, with possibly unlocked vma,
2127          * keep the mlocked page.
2128          */
2129         if ((vma->vm_flags & VM_LOCKED) && old_page) {
2130                 lock_page(old_page);    /* for LRU manipulation */
2131                 clear_page_mlock(old_page);
2132                 unlock_page(old_page);
2133         }
2134
2135         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2136                 goto oom_free_new;
2137
2138         /*
2139          * Re-check the pte - we dropped the lock
2140          */
2141         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2142         if (likely(pte_same(*page_table, orig_pte))) {
2143                 if (old_page) {
2144                         if (!PageAnon(old_page)) {
2145                                 dec_mm_counter(mm, file_rss);
2146                                 inc_mm_counter(mm, anon_rss);
2147                         }
2148                 } else
2149                         inc_mm_counter(mm, anon_rss);
2150                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2151                 entry = mk_pte(new_page, vma->vm_page_prot);
2152                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2153                 /*
2154                  * Clear the pte entry and flush it first, before updating the
2155                  * pte with the new entry. This will avoid a race condition
2156                  * seen in the presence of one thread doing SMC and another
2157                  * thread doing COW.
2158                  */
2159                 ptep_clear_flush(vma, address, page_table);
2160                 page_add_new_anon_rmap(new_page, vma, address);
2161                 /*
2162                  * We call the notify macro here because, when using secondary
2163                  * mmu page tables (such as kvm shadow page tables), we want the
2164                  * new page to be mapped directly into the secondary page table.
2165                  */
2166                 set_pte_at_notify(mm, address, page_table, entry);
2167                 update_mmu_cache(vma, address, entry);
2168                 if (old_page) {
2169                         /*
2170                          * Only after switching the pte to the new page may
2171                          * we remove the mapcount here. Otherwise another
2172                          * process may come and find the rmap count decremented
2173                          * before the pte is switched to the new page, and
2174                          * "reuse" the old page writing into it while our pte
2175                          * here still points into it and can be read by other
2176                          * threads.
2177                          *
2178                          * The critical issue is to order this
2179                          * page_remove_rmap with the ptp_clear_flush above.
2180                          * Those stores are ordered by (if nothing else,)
2181                          * the barrier present in the atomic_add_negative
2182                          * in page_remove_rmap.
2183                          *
2184                          * Then the TLB flush in ptep_clear_flush ensures that
2185                          * no process can access the old page before the
2186                          * decremented mapcount is visible. And the old page
2187                          * cannot be reused until after the decremented
2188                          * mapcount is visible. So transitively, TLBs to
2189                          * old page will be flushed before it can be reused.
2190                          */
2191                         page_remove_rmap(old_page);
2192                 }
2193
2194                 /* Free the old page.. */
2195                 new_page = old_page;
2196                 ret |= VM_FAULT_WRITE;
2197         } else
2198                 mem_cgroup_uncharge_page(new_page);
2199
2200         if (new_page)
2201                 page_cache_release(new_page);
2202         if (old_page)
2203                 page_cache_release(old_page);
2204 unlock:
2205         pte_unmap_unlock(page_table, ptl);
2206         if (dirty_page) {
2207                 /*
2208                  * Yes, Virginia, this is actually required to prevent a race
2209                  * with clear_page_dirty_for_io() from clearing the page dirty
2210                  * bit after it clear all dirty ptes, but before a racing
2211                  * do_wp_page installs a dirty pte.
2212                  *
2213                  * do_no_page is protected similarly.
2214                  */
2215                 if (!page_mkwrite) {
2216                         wait_on_page_locked(dirty_page);
2217                         set_page_dirty_balance(dirty_page, page_mkwrite);
2218                 }
2219                 put_page(dirty_page);
2220                 if (page_mkwrite) {
2221                         struct address_space *mapping = dirty_page->mapping;
2222
2223                         set_page_dirty(dirty_page);
2224                         unlock_page(dirty_page);
2225                         page_cache_release(dirty_page);
2226                         if (mapping)    {
2227                                 /*
2228                                  * Some device drivers do not set page.mapping
2229                                  * but still dirty their pages
2230                                  */
2231                                 balance_dirty_pages_ratelimited(mapping);
2232                         }
2233                 }
2234
2235                 /* file_update_time outside page_lock */
2236                 if (vma->vm_file)
2237                         file_update_time(vma->vm_file);
2238         }
2239         return ret;
2240 oom_free_new:
2241         page_cache_release(new_page);
2242 oom:
2243         if (old_page) {
2244                 if (page_mkwrite) {
2245                         unlock_page(old_page);
2246                         page_cache_release(old_page);
2247                 }
2248                 page_cache_release(old_page);
2249         }
2250         return VM_FAULT_OOM;
2251
2252 unwritable_page:
2253         page_cache_release(old_page);
2254         return ret;
2255 }
2256
2257 /*
2258  * Helper functions for unmap_mapping_range().
2259  *
2260  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2261  *
2262  * We have to restart searching the prio_tree whenever we drop the lock,
2263  * since the iterator is only valid while the lock is held, and anyway
2264  * a later vma might be split and reinserted earlier while lock dropped.
2265  *
2266  * The list of nonlinear vmas could be handled more efficiently, using
2267  * a placeholder, but handle it in the same way until a need is shown.
2268  * It is important to search the prio_tree before nonlinear list: a vma
2269  * may become nonlinear and be shifted from prio_tree to nonlinear list
2270  * while the lock is dropped; but never shifted from list to prio_tree.
2271  *
2272  * In order to make forward progress despite restarting the search,
2273  * vm_truncate_count is used to mark a vma as now dealt with, so we can
2274  * quickly skip it next time around.  Since the prio_tree search only
2275  * shows us those vmas affected by unmapping the range in question, we
2276  * can't efficiently keep all vmas in step with mapping->truncate_count:
2277  * so instead reset them all whenever it wraps back to 0 (then go to 1).
2278  * mapping->truncate_count and vma->vm_truncate_count are protected by
2279  * i_mmap_lock.
2280  *
2281  * In order to make forward progress despite repeatedly restarting some
2282  * large vma, note the restart_addr from unmap_vmas when it breaks out:
2283  * and restart from that address when we reach that vma again.  It might
2284  * have been split or merged, shrunk or extended, but never shifted: so
2285  * restart_addr remains valid so long as it remains in the vma's range.
2286  * unmap_mapping_range forces truncate_count to leap over page-aligned
2287  * values so we can save vma's restart_addr in its truncate_count field.
2288  */
2289 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2290
2291 static void reset_vma_truncate_counts(struct address_space *mapping)
2292 {
2293         struct vm_area_struct *vma;
2294         struct prio_tree_iter iter;
2295
2296         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2297                 vma->vm_truncate_count = 0;
2298         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2299                 vma->vm_truncate_count = 0;
2300 }
2301
2302 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2303                 unsigned long start_addr, unsigned long end_addr,
2304                 struct zap_details *details)
2305 {
2306         unsigned long restart_addr;
2307         int need_break;
2308
2309         /*
2310          * files that support invalidating or truncating portions of the
2311          * file from under mmaped areas must have their ->fault function
2312          * return a locked page (and set VM_FAULT_LOCKED in the return).
2313          * This provides synchronisation against concurrent unmapping here.
2314          */
2315
2316 again:
2317         restart_addr = vma->vm_truncate_count;
2318         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2319                 start_addr = restart_addr;
2320                 if (start_addr >= end_addr) {
2321                         /* Top of vma has been split off since last time */
2322                         vma->vm_truncate_count = details->truncate_count;
2323                         return 0;
2324                 }
2325         }
2326
2327         restart_addr = zap_page_range(vma, start_addr,
2328                                         end_addr - start_addr, details);
2329         need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2330
2331         if (restart_addr >= end_addr) {
2332                 /* We have now completed this vma: mark it so */
2333                 vma->vm_truncate_count = details->truncate_count;
2334                 if (!need_break)
2335                         return 0;
2336         } else {
2337                 /* Note restart_addr in vma's truncate_count field */
2338                 vma->vm_truncate_count = restart_addr;
2339                 if (!need_break)
2340                         goto again;
2341         }
2342
2343         spin_unlock(details->i_mmap_lock);
2344         cond_resched();
2345         spin_lock(details->i_mmap_lock);
2346         return -EINTR;
2347 }
2348
2349 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2350                                             struct zap_details *details)
2351 {
2352         struct vm_area_struct *vma;
2353         struct prio_tree_iter iter;
2354         pgoff_t vba, vea, zba, zea;
2355
2356 restart:
2357         vma_prio_tree_foreach(vma, &iter, root,
2358                         details->first_index, details->last_index) {
2359                 /* Skip quickly over those we have already dealt with */
2360                 if (vma->vm_truncate_count == details->truncate_count)
2361                         continue;
2362
2363                 vba = vma->vm_pgoff;
2364                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2365                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2366                 zba = details->first_index;
2367                 if (zba < vba)
2368                         zba = vba;
2369                 zea = details->last_index;
2370                 if (zea > vea)
2371                         zea = vea;
2372
2373                 if (unmap_mapping_range_vma(vma,
2374                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2375                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2376                                 details) < 0)
2377                         goto restart;
2378         }
2379 }
2380
2381 static inline void unmap_mapping_range_list(struct list_head *head,
2382                                             struct zap_details *details)
2383 {
2384         struct vm_area_struct *vma;
2385
2386         /*
2387          * In nonlinear VMAs there is no correspondence between virtual address
2388          * offset and file offset.  So we must perform an exhaustive search
2389          * across *all* the pages in each nonlinear VMA, not just the pages
2390          * whose virtual address lies outside the file truncation point.
2391          */
2392 restart:
2393         list_for_each_entry(vma, head, shared.vm_set.list) {
2394                 /* Skip quickly over those we have already dealt with */
2395                 if (vma->vm_truncate_count == details->truncate_count)
2396                         continue;
2397                 details->nonlinear_vma = vma;
2398                 if (unmap_mapping_range_vma(vma, vma->vm_start,
2399                                         vma->vm_end, details) < 0)
2400                         goto restart;
2401         }
2402 }
2403
2404 /**
2405  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2406  * @mapping: the address space containing mmaps to be unmapped.
2407  * @holebegin: byte in first page to unmap, relative to the start of
2408  * the underlying file.  This will be rounded down to a PAGE_SIZE
2409  * boundary.  Note that this is different from vmtruncate(), which
2410  * must keep the partial page.  In contrast, we must get rid of
2411  * partial pages.
2412  * @holelen: size of prospective hole in bytes.  This will be rounded
2413  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2414  * end of the file.
2415  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2416  * but 0 when invalidating pagecache, don't throw away private data.
2417  */
2418 void unmap_mapping_range(struct address_space *mapping,
2419                 loff_t const holebegin, loff_t const holelen, int even_cows)
2420 {
2421         struct zap_details details;
2422         pgoff_t hba = holebegin >> PAGE_SHIFT;
2423         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2424
2425         /* Check for overflow. */
2426         if (sizeof(holelen) > sizeof(hlen)) {
2427                 long long holeend =
2428                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2429                 if (holeend & ~(long long)ULONG_MAX)
2430                         hlen = ULONG_MAX - hba + 1;
2431         }
2432
2433         details.check_mapping = even_cows? NULL: mapping;
2434         details.nonlinear_vma = NULL;
2435         details.first_index = hba;
2436         details.last_index = hba + hlen - 1;
2437         if (details.last_index < details.first_index)
2438                 details.last_index = ULONG_MAX;
2439         details.i_mmap_lock = &mapping->i_mmap_lock;
2440
2441         spin_lock(&mapping->i_mmap_lock);
2442
2443         /* Protect against endless unmapping loops */
2444         mapping->truncate_count++;
2445         if (unlikely(is_restart_addr(mapping->truncate_count))) {
2446                 if (mapping->truncate_count == 0)
2447                         reset_vma_truncate_counts(mapping);
2448                 mapping->truncate_count++;
2449         }
2450         details.truncate_count = mapping->truncate_count;
2451
2452         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2453                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2454         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2455                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2456         spin_unlock(&mapping->i_mmap_lock);
2457 }
2458 EXPORT_SYMBOL(unmap_mapping_range);
2459
2460 /**
2461  * vmtruncate - unmap mappings "freed" by truncate() syscall
2462  * @inode: inode of the file used
2463  * @offset: file offset to start truncating
2464  *
2465  * NOTE! We have to be ready to update the memory sharing
2466  * between the file and the memory map for a potential last
2467  * incomplete page.  Ugly, but necessary.
2468  */
2469 int vmtruncate(struct inode * inode, loff_t offset)
2470 {
2471         if (inode->i_size < offset) {
2472                 unsigned long limit;
2473
2474                 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2475                 if (limit != RLIM_INFINITY && offset > limit)
2476                         goto out_sig;
2477                 if (offset > inode->i_sb->s_maxbytes)
2478                         goto out_big;
2479                 i_size_write(inode, offset);
2480         } else {
2481                 struct address_space *mapping = inode->i_mapping;
2482
2483                 /*
2484                  * truncation of in-use swapfiles is disallowed - it would
2485                  * cause subsequent swapout to scribble on the now-freed
2486                  * blocks.
2487                  */
2488                 if (IS_SWAPFILE(inode))
2489                         return -ETXTBSY;
2490                 i_size_write(inode, offset);
2491
2492                 /*
2493                  * unmap_mapping_range is called twice, first simply for
2494                  * efficiency so that truncate_inode_pages does fewer
2495                  * single-page unmaps.  However after this first call, and
2496                  * before truncate_inode_pages finishes, it is possible for
2497                  * private pages to be COWed, which remain after
2498                  * truncate_inode_pages finishes, hence the second
2499                  * unmap_mapping_range call must be made for correctness.
2500                  */
2501                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2502                 truncate_inode_pages(mapping, offset);
2503                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2504         }
2505
2506         if (inode->i_op->truncate)
2507                 inode->i_op->truncate(inode);
2508         return 0;
2509
2510 out_sig:
2511         send_sig(SIGXFSZ, current, 0);
2512 out_big:
2513         return -EFBIG;
2514 }
2515 EXPORT_SYMBOL(vmtruncate);
2516
2517 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2518 {
2519         struct address_space *mapping = inode->i_mapping;
2520
2521         /*
2522          * If the underlying filesystem is not going to provide
2523          * a way to truncate a range of blocks (punch a hole) -
2524          * we should return failure right now.
2525          */
2526         if (!inode->i_op->truncate_range)
2527                 return -ENOSYS;
2528
2529         mutex_lock(&inode->i_mutex);
2530         down_write(&inode->i_alloc_sem);
2531         unmap_mapping_range(mapping, offset, (end - offset), 1);
2532         truncate_inode_pages_range(mapping, offset, end);
2533         unmap_mapping_range(mapping, offset, (end - offset), 1);
2534         inode->i_op->truncate_range(inode, offset, end);
2535         up_write(&inode->i_alloc_sem);
2536         mutex_unlock(&inode->i_mutex);
2537
2538         return 0;
2539 }
2540
2541 /*
2542  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2543  * but allow concurrent faults), and pte mapped but not yet locked.
2544  * We return with mmap_sem still held, but pte unmapped and unlocked.
2545  */
2546 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2547                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2548                 unsigned int flags, pte_t orig_pte)
2549 {
2550         spinlock_t *ptl;
2551         struct page *page;
2552         swp_entry_t entry;
2553         pte_t pte;
2554         struct mem_cgroup *ptr = NULL;
2555         int ret = 0;
2556
2557         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2558                 goto out;
2559
2560         entry = pte_to_swp_entry(orig_pte);
2561         if (is_migration_entry(entry)) {
2562                 migration_entry_wait(mm, pmd, address);
2563                 goto out;
2564         }
2565         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2566         page = lookup_swap_cache(entry);
2567         if (!page) {
2568                 grab_swap_token(mm); /* Contend for token _before_ read-in */
2569                 page = swapin_readahead(entry,
2570                                         GFP_HIGHUSER_MOVABLE, vma, address);
2571                 if (!page) {
2572                         /*
2573                          * Back out if somebody else faulted in this pte
2574                          * while we released the pte lock.
2575                          */
2576                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2577                         if (likely(pte_same(*page_table, orig_pte)))
2578                                 ret = VM_FAULT_OOM;
2579                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2580                         goto unlock;
2581                 }
2582
2583                 /* Had to read the page from swap area: Major fault */
2584                 ret = VM_FAULT_MAJOR;
2585                 count_vm_event(PGMAJFAULT);
2586         }
2587
2588         lock_page(page);
2589         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2590
2591         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2592                 ret = VM_FAULT_OOM;
2593                 goto out_page;
2594         }
2595
2596         /*
2597          * Back out if somebody else already faulted in this pte.
2598          */
2599         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2600         if (unlikely(!pte_same(*page_table, orig_pte)))
2601                 goto out_nomap;
2602
2603         if (unlikely(!PageUptodate(page))) {
2604                 ret = VM_FAULT_SIGBUS;
2605                 goto out_nomap;
2606         }
2607
2608         /*
2609          * The page isn't present yet, go ahead with the fault.
2610          *
2611          * Be careful about the sequence of operations here.
2612          * To get its accounting right, reuse_swap_page() must be called
2613          * while the page is counted on swap but not yet in mapcount i.e.
2614          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2615          * must be called after the swap_free(), or it will never succeed.
2616          * Because delete_from_swap_page() may be called by reuse_swap_page(),
2617          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2618          * in page->private. In this case, a record in swap_cgroup  is silently
2619          * discarded at swap_free().
2620          */
2621
2622         inc_mm_counter(mm, anon_rss);
2623         pte = mk_pte(page, vma->vm_page_prot);
2624         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2625                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2626                 flags &= ~FAULT_FLAG_WRITE;
2627         }
2628         flush_icache_page(vma, page);
2629         set_pte_at(mm, address, page_table, pte);
2630         page_add_anon_rmap(page, vma, address);
2631         /* It's better to call commit-charge after rmap is established */
2632         mem_cgroup_commit_charge_swapin(page, ptr);
2633
2634         swap_free(entry);
2635         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2636                 try_to_free_swap(page);
2637         unlock_page(page);
2638
2639         if (flags & FAULT_FLAG_WRITE) {
2640                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2641                 if (ret & VM_FAULT_ERROR)
2642                         ret &= VM_FAULT_ERROR;
2643                 goto out;
2644         }
2645
2646         /* No need to invalidate - it was non-present before */
2647         update_mmu_cache(vma, address, pte);
2648 unlock:
2649         pte_unmap_unlock(page_table, ptl);
2650 out:
2651         return ret;
2652 out_nomap:
2653         mem_cgroup_cancel_charge_swapin(ptr);
2654         pte_unmap_unlock(page_table, ptl);
2655 out_page:
2656         unlock_page(page);
2657         page_cache_release(page);
2658         return ret;
2659 }
2660
2661 /*
2662  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2663  * but allow concurrent faults), and pte mapped but not yet locked.
2664  * We return with mmap_sem still held, but pte unmapped and unlocked.
2665  */
2666 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2667                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2668                 unsigned int flags)
2669 {
2670         struct page *page;
2671         spinlock_t *ptl;
2672         pte_t entry;
2673
2674         if (!(flags & FAULT_FLAG_WRITE)) {
2675                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2676                                                 vma->vm_page_prot));
2677                 ptl = pte_lockptr(mm, pmd);
2678                 spin_lock(ptl);
2679                 if (!pte_none(*page_table))
2680                         goto unlock;
2681                 goto setpte;
2682         }
2683
2684         /* Allocate our own private page. */
2685         pte_unmap(page_table);
2686
2687         if (unlikely(anon_vma_prepare(vma)))
2688                 goto oom;
2689         page = alloc_zeroed_user_highpage_movable(vma, address);
2690         if (!page)
2691                 goto oom;
2692         __SetPageUptodate(page);
2693
2694         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2695                 goto oom_free_page;
2696
2697         entry = mk_pte(page, vma->vm_page_prot);
2698         if (vma->vm_flags & VM_WRITE)
2699                 entry = pte_mkwrite(pte_mkdirty(entry));
2700
2701         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2702         if (!pte_none(*page_table))
2703                 goto release;
2704
2705         inc_mm_counter(mm, anon_rss);
2706         page_add_new_anon_rmap(page, vma, address);
2707 setpte:
2708         set_pte_at(mm, address, page_table, entry);
2709
2710         /* No need to invalidate - it was non-present before */
2711         update_mmu_cache(vma, address, entry);
2712 unlock:
2713         pte_unmap_unlock(page_table, ptl);
2714         return 0;
2715 release:
2716         mem_cgroup_uncharge_page(page);
2717         page_cache_release(page);
2718         goto unlock;
2719 oom_free_page:
2720         page_cache_release(page);
2721 oom:
2722         return VM_FAULT_OOM;
2723 }
2724
2725 /*
2726  * __do_fault() tries to create a new page mapping. It aggressively
2727  * tries to share with existing pages, but makes a separate copy if
2728  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2729  * the next page fault.
2730  *
2731  * As this is called only for pages that do not currently exist, we
2732  * do not need to flush old virtual caches or the TLB.
2733  *
2734  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2735  * but allow concurrent faults), and pte neither mapped nor locked.
2736  * We return with mmap_sem still held, but pte unmapped and unlocked.
2737  */
2738 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2739                 unsigned long address, pmd_t *pmd,
2740                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2741 {
2742         pte_t *page_table;
2743         spinlock_t *ptl;
2744         struct page *page;
2745         pte_t entry;
2746         int anon = 0;
2747         int charged = 0;
2748         struct page *dirty_page = NULL;
2749         struct vm_fault vmf;
2750         int ret;
2751         int page_mkwrite = 0;
2752
2753         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2754         vmf.pgoff = pgoff;
2755         vmf.flags = flags;
2756         vmf.page = NULL;
2757
2758         ret = vma->vm_ops->fault(vma, &vmf);
2759         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2760                 return ret;
2761
2762         /*
2763          * For consistency in subsequent calls, make the faulted page always
2764          * locked.
2765          */
2766         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2767                 lock_page(vmf.page);
2768         else
2769                 VM_BUG_ON(!PageLocked(vmf.page));
2770
2771         /*
2772          * Should we do an early C-O-W break?
2773          */
2774         page = vmf.page;
2775         if (flags & FAULT_FLAG_WRITE) {
2776                 if (!(vma->vm_flags & VM_SHARED)) {
2777                         anon = 1;
2778                         if (unlikely(anon_vma_prepare(vma))) {
2779                                 ret = VM_FAULT_OOM;
2780                                 goto out;
2781                         }
2782                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2783                                                 vma, address);
2784                         if (!page) {
2785                                 ret = VM_FAULT_OOM;
2786                                 goto out;
2787                         }
2788                         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2789                                 ret = VM_FAULT_OOM;
2790                                 page_cache_release(page);
2791                                 goto out;
2792                         }
2793                         charged = 1;
2794                         /*
2795                          * Don't let another task, with possibly unlocked vma,
2796                          * keep the mlocked page.
2797                          */
2798                         if (vma->vm_flags & VM_LOCKED)
2799                                 clear_page_mlock(vmf.page);
2800                         copy_user_highpage(page, vmf.page, address, vma);
2801                         __SetPageUptodate(page);
2802                 } else {
2803                         /*
2804                          * If the page will be shareable, see if the backing
2805                          * address space wants to know that the page is about
2806                          * to become writable
2807                          */
2808                         if (vma->vm_ops->page_mkwrite) {
2809                                 int tmp;
2810
2811                                 unlock_page(page);
2812                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2813                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2814                                 if (unlikely(tmp &
2815                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2816                                         ret = tmp;
2817                                         goto unwritable_page;
2818                                 }
2819                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2820                                         lock_page(page);
2821                                         if (!page->mapping) {
2822                                                 ret = 0; /* retry the fault */
2823                                                 unlock_page(page);
2824                                                 goto unwritable_page;
2825                                         }
2826                                 } else
2827                                         VM_BUG_ON(!PageLocked(page));
2828                                 page_mkwrite = 1;
2829                         }
2830                 }
2831
2832         }
2833
2834         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2835
2836         /*
2837          * This silly early PAGE_DIRTY setting removes a race
2838          * due to the bad i386 page protection. But it's valid
2839          * for other architectures too.
2840          *
2841          * Note that if FAULT_FLAG_WRITE is set, we either now have
2842          * an exclusive copy of the page, or this is a shared mapping,
2843          * so we can make it writable and dirty to avoid having to
2844          * handle that later.
2845          */
2846         /* Only go through if we didn't race with anybody else... */
2847         if (likely(pte_same(*page_table, orig_pte))) {
2848                 flush_icache_page(vma, page);
2849                 entry = mk_pte(page, vma->vm_page_prot);
2850                 if (flags & FAULT_FLAG_WRITE)
2851                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2852                 if (anon) {
2853                         inc_mm_counter(mm, anon_rss);
2854                         page_add_new_anon_rmap(page, vma, address);
2855                 } else {
2856                         inc_mm_counter(mm, file_rss);
2857                         page_add_file_rmap(page);
2858                         if (flags & FAULT_FLAG_WRITE) {
2859                                 dirty_page = page;
2860                                 get_page(dirty_page);
2861                         }
2862                 }
2863                 set_pte_at(mm, address, page_table, entry);
2864
2865                 /* no need to invalidate: a not-present page won't be cached */
2866                 update_mmu_cache(vma, address, entry);
2867         } else {
2868                 if (charged)
2869                         mem_cgroup_uncharge_page(page);
2870                 if (anon)
2871                         page_cache_release(page);
2872                 else
2873                         anon = 1; /* no anon but release faulted_page */
2874         }
2875
2876         pte_unmap_unlock(page_table, ptl);
2877
2878 out:
2879         if (dirty_page) {
2880                 struct address_space *mapping = page->mapping;
2881
2882                 if (set_page_dirty(dirty_page))
2883                         page_mkwrite = 1;
2884                 unlock_page(dirty_page);
2885                 put_page(dirty_page);
2886                 if (page_mkwrite && mapping) {
2887                         /*
2888                          * Some device drivers do not set page.mapping but still
2889                          * dirty their pages
2890                          */
2891                         balance_dirty_pages_ratelimited(mapping);
2892                 }
2893
2894                 /* file_update_time outside page_lock */
2895                 if (vma->vm_file)
2896                         file_update_time(vma->vm_file);
2897         } else {
2898                 unlock_page(vmf.page);
2899                 if (anon)
2900                         page_cache_release(vmf.page);
2901         }
2902
2903         return ret;
2904
2905 unwritable_page:
2906         page_cache_release(page);
2907         return ret;
2908 }
2909
2910 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2911                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2912                 unsigned int flags, pte_t orig_pte)
2913 {
2914         pgoff_t pgoff = (((address & PAGE_MASK)
2915                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2916
2917         pte_unmap(page_table);
2918         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2919 }
2920
2921 /*
2922  * Fault of a previously existing named mapping. Repopulate the pte
2923  * from the encoded file_pte if possible. This enables swappable
2924  * nonlinear vmas.
2925  *
2926  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2927  * but allow concurrent faults), and pte mapped but not yet locked.
2928  * We return with mmap_sem still held, but pte unmapped and unlocked.
2929  */
2930 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2931                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2932                 unsigned int flags, pte_t orig_pte)
2933 {
2934         pgoff_t pgoff;
2935
2936         flags |= FAULT_FLAG_NONLINEAR;
2937
2938         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2939                 return 0;
2940
2941         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2942                 /*
2943                  * Page table corrupted: show pte and kill process.
2944                  */
2945                 print_bad_pte(vma, address, orig_pte, NULL);
2946                 return VM_FAULT_OOM;
2947         }
2948
2949         pgoff = pte_to_pgoff(orig_pte);
2950         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2951 }
2952
2953 /*
2954  * These routines also need to handle stuff like marking pages dirty
2955  * and/or accessed for architectures that don't do it in hardware (most
2956  * RISC architectures).  The early dirtying is also good on the i386.
2957  *
2958  * There is also a hook called "update_mmu_cache()" that architectures
2959  * with external mmu caches can use to update those (ie the Sparc or
2960  * PowerPC hashed page tables that act as extended TLBs).
2961  *
2962  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2963  * but allow concurrent faults), and pte mapped but not yet locked.
2964  * We return with mmap_sem still held, but pte unmapped and unlocked.
2965  */
2966 static inline int handle_pte_fault(struct mm_struct *mm,
2967                 struct vm_area_struct *vma, unsigned long address,
2968                 pte_t *pte, pmd_t *pmd, unsigned int flags)
2969 {
2970         pte_t entry;
2971         spinlock_t *ptl;
2972
2973         entry = *pte;
2974         if (!pte_present(entry)) {
2975                 if (pte_none(entry)) {
2976                         if (vma->vm_ops) {
2977                                 if (likely(vma->vm_ops->fault))
2978                                         return do_linear_fault(mm, vma, address,
2979                                                 pte, pmd, flags, entry);
2980                         }
2981                         return do_anonymous_page(mm, vma, address,
2982                                                  pte, pmd, flags);
2983                 }
2984                 if (pte_file(entry))
2985                         return do_nonlinear_fault(mm, vma, address,
2986                                         pte, pmd, flags, entry);
2987                 return do_swap_page(mm, vma, address,
2988                                         pte, pmd, flags, entry);
2989         }
2990
2991         ptl = pte_lockptr(mm, pmd);
2992         spin_lock(ptl);
2993         if (unlikely(!pte_same(*pte, entry)))
2994                 goto unlock;
2995         if (flags & FAULT_FLAG_WRITE) {
2996                 if (!pte_write(entry))
2997                         return do_wp_page(mm, vma, address,
2998                                         pte, pmd, ptl, entry);
2999                 entry = pte_mkdirty(entry);
3000         }
3001         entry = pte_mkyoung(entry);
3002         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3003                 update_mmu_cache(vma, address, entry);
3004         } else {
3005                 /*
3006                  * This is needed only for protection faults but the arch code
3007                  * is not yet telling us if this is a protection fault or not.
3008                  * This still avoids useless tlb flushes for .text page faults
3009                  * with threads.
3010                  */
3011                 if (flags & FAULT_FLAG_WRITE)
3012                         flush_tlb_page(vma, address);
3013         }
3014 unlock:
3015         pte_unmap_unlock(pte, ptl);
3016         return 0;
3017 }
3018
3019 /*
3020  * By the time we get here, we already hold the mm semaphore
3021  */
3022 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3023                 unsigned long address, unsigned int flags)
3024 {
3025         pgd_t *pgd;
3026         pud_t *pud;
3027         pmd_t *pmd;
3028         pte_t *pte;
3029
3030         __set_current_state(TASK_RUNNING);
3031
3032         count_vm_event(PGFAULT);
3033
3034         if (unlikely(is_vm_hugetlb_page(vma)))
3035                 return hugetlb_fault(mm, vma, address, flags);
3036
3037         pgd = pgd_offset(mm, address);
3038         pud = pud_alloc(mm, pgd, address);
3039         if (!pud)
3040                 return VM_FAULT_OOM;
3041         pmd = pmd_alloc(mm, pud, address);
3042         if (!pmd)
3043                 return VM_FAULT_OOM;
3044         pte = pte_alloc_map(mm, pmd, address);
3045         if (!pte)
3046                 return VM_FAULT_OOM;
3047
3048         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3049 }
3050
3051 #ifndef __PAGETABLE_PUD_FOLDED
3052 /*
3053  * Allocate page upper directory.
3054  * We've already handled the fast-path in-line.
3055  */
3056 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3057 {
3058         pud_t *new = pud_alloc_one(mm, address);
3059         if (!new)
3060                 return -ENOMEM;
3061
3062         smp_wmb(); /* See comment in __pte_alloc */
3063
3064         spin_lock(&mm->page_table_lock);
3065         if (pgd_present(*pgd))          /* Another has populated it */
3066                 pud_free(mm, new);
3067         else
3068                 pgd_populate(mm, pgd, new);
3069         spin_unlock(&mm->page_table_lock);
3070         return 0;
3071 }
3072 #endif /* __PAGETABLE_PUD_FOLDED */
3073
3074 #ifndef __PAGETABLE_PMD_FOLDED
3075 /*
3076  * Allocate page middle directory.
3077  * We've already handled the fast-path in-line.
3078  */
3079 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3080 {
3081         pmd_t *new = pmd_alloc_one(mm, address);
3082         if (!new)
3083                 return -ENOMEM;
3084
3085         smp_wmb(); /* See comment in __pte_alloc */
3086
3087         spin_lock(&mm->page_table_lock);
3088 #ifndef __ARCH_HAS_4LEVEL_HACK
3089         if (pud_present(*pud))          /* Another has populated it */
3090                 pmd_free(mm, new);
3091         else
3092                 pud_populate(mm, pud, new);
3093 #else
3094         if (pgd_present(*pud))          /* Another has populated it */
3095                 pmd_free(mm, new);
3096         else
3097                 pgd_populate(mm, pud, new);
3098 #endif /* __ARCH_HAS_4LEVEL_HACK */
3099         spin_unlock(&mm->page_table_lock);
3100         return 0;
3101 }
3102 #endif /* __PAGETABLE_PMD_FOLDED */
3103
3104 int make_pages_present(unsigned long addr, unsigned long end)
3105 {
3106         int ret, len, write;
3107         struct vm_area_struct * vma;
3108
3109         vma = find_vma(current->mm, addr);
3110         if (!vma)
3111                 return -ENOMEM;
3112         write = (vma->vm_flags & VM_WRITE) != 0;
3113         BUG_ON(addr >= end);
3114         BUG_ON(end > vma->vm_end);
3115         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3116         ret = get_user_pages(current, current->mm, addr,
3117                         len, write, 0, NULL, NULL);
3118         if (ret < 0)
3119                 return ret;
3120         return ret == len ? 0 : -EFAULT;
3121 }
3122
3123 #if !defined(__HAVE_ARCH_GATE_AREA)
3124
3125 #if defined(AT_SYSINFO_EHDR)
3126 static struct vm_area_struct gate_vma;
3127
3128 static int __init gate_vma_init(void)
3129 {
3130         gate_vma.vm_mm = NULL;
3131         gate_vma.vm_start = FIXADDR_USER_START;
3132         gate_vma.vm_end = FIXADDR_USER_END;
3133         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3134         gate_vma.vm_page_prot = __P101;
3135         /*
3136          * Make sure the vDSO gets into every core dump.
3137          * Dumping its contents makes post-mortem fully interpretable later
3138          * without matching up the same kernel and hardware config to see
3139          * what PC values meant.
3140          */
3141         gate_vma.vm_flags |= VM_ALWAYSDUMP;
3142         return 0;
3143 }
3144 __initcall(gate_vma_init);
3145 #endif
3146
3147 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3148 {
3149 #ifdef AT_SYSINFO_EHDR
3150         return &gate_vma;
3151 #else
3152         return NULL;
3153 #endif
3154 }
3155
3156 int in_gate_area_no_task(unsigned long addr)
3157 {
3158 #ifdef AT_SYSINFO_EHDR
3159         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3160                 return 1;
3161 #endif
3162         return 0;
3163 }
3164
3165 #endif  /* __HAVE_ARCH_GATE_AREA */
3166
3167 static int follow_pte(struct mm_struct *mm, unsigned long address,
3168                 pte_t **ptepp, spinlock_t **ptlp)
3169 {
3170         pgd_t *pgd;
3171         pud_t *pud;
3172         pmd_t *pmd;
3173         pte_t *ptep;
3174
3175         pgd = pgd_offset(mm, address);
3176         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3177                 goto out;
3178
3179         pud = pud_offset(pgd, address);
3180         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3181                 goto out;
3182
3183         pmd = pmd_offset(pud, address);
3184         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3185                 goto out;
3186
3187         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3188         if (pmd_huge(*pmd))
3189                 goto out;
3190
3191         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3192         if (!ptep)
3193                 goto out;
3194         if (!pte_present(*ptep))
3195                 goto unlock;
3196         *ptepp = ptep;
3197         return 0;
3198 unlock:
3199         pte_unmap_unlock(ptep, *ptlp);
3200 out:
3201         return -EINVAL;
3202 }
3203
3204 /**
3205  * follow_pfn - look up PFN at a user virtual address
3206  * @vma: memory mapping
3207  * @address: user virtual address
3208  * @pfn: location to store found PFN
3209  *
3210  * Only IO mappings and raw PFN mappings are allowed.
3211  *
3212  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3213  */
3214 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3215         unsigned long *pfn)
3216 {
3217         int ret = -EINVAL;
3218         spinlock_t *ptl;
3219         pte_t *ptep;
3220
3221         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3222                 return ret;
3223
3224         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3225         if (ret)
3226                 return ret;
3227         *pfn = pte_pfn(*ptep);
3228         pte_unmap_unlock(ptep, ptl);
3229         return 0;
3230 }
3231 EXPORT_SYMBOL(follow_pfn);
3232
3233 #ifdef CONFIG_HAVE_IOREMAP_PROT
3234 int follow_phys(struct vm_area_struct *vma,
3235                 unsigned long address, unsigned int flags,
3236                 unsigned long *prot, resource_size_t *phys)
3237 {
3238         int ret = -EINVAL;
3239         pte_t *ptep, pte;
3240         spinlock_t *ptl;
3241
3242         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3243                 goto out;
3244
3245         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3246                 goto out;
3247         pte = *ptep;
3248
3249         if ((flags & FOLL_WRITE) && !pte_write(pte))
3250                 goto unlock;
3251
3252         *prot = pgprot_val(pte_pgprot(pte));
3253         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3254
3255         ret = 0;
3256 unlock:
3257         pte_unmap_unlock(ptep, ptl);
3258 out:
3259         return ret;
3260 }
3261
3262 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3263                         void *buf, int len, int write)
3264 {
3265         resource_size_t phys_addr;
3266         unsigned long prot = 0;
3267         void __iomem *maddr;
3268         int offset = addr & (PAGE_SIZE-1);
3269
3270         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3271                 return -EINVAL;
3272
3273         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3274         if (write)
3275                 memcpy_toio(maddr + offset, buf, len);
3276         else
3277                 memcpy_fromio(buf, maddr + offset, len);
3278         iounmap(maddr);
3279
3280         return len;
3281 }
3282 #endif
3283
3284 /*
3285  * Access another process' address space.
3286  * Source/target buffer must be kernel space,
3287  * Do not walk the page table directly, use get_user_pages
3288  */
3289 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3290 {
3291         struct mm_struct *mm;
3292         struct vm_area_struct *vma;
3293         void *old_buf = buf;
3294
3295         mm = get_task_mm(tsk);
3296         if (!mm)
3297                 return 0;
3298
3299         down_read(&mm->mmap_sem);
3300         /* ignore errors, just check how much was successfully transferred */
3301         while (len) {
3302                 int bytes, ret, offset;
3303                 void *maddr;
3304                 struct page *page = NULL;
3305
3306                 ret = get_user_pages(tsk, mm, addr, 1,
3307                                 write, 1, &page, &vma);
3308                 if (ret <= 0) {
3309                         /*
3310                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3311                          * we can access using slightly different code.
3312                          */
3313 #ifdef CONFIG_HAVE_IOREMAP_PROT
3314                         vma = find_vma(mm, addr);
3315                         if (!vma)
3316                                 break;
3317                         if (vma->vm_ops && vma->vm_ops->access)
3318                                 ret = vma->vm_ops->access(vma, addr, buf,
3319                                                           len, write);
3320                         if (ret <= 0)
3321 #endif
3322                                 break;
3323                         bytes = ret;
3324                 } else {
3325                         bytes = len;
3326                         offset = addr & (PAGE_SIZE-1);
3327                         if (bytes > PAGE_SIZE-offset)
3328                                 bytes = PAGE_SIZE-offset;
3329
3330                         maddr = kmap(page);
3331                         if (write) {
3332                                 copy_to_user_page(vma, page, addr,
3333                                                   maddr + offset, buf, bytes);
3334                                 set_page_dirty_lock(page);
3335                         } else {
3336                                 copy_from_user_page(vma, page, addr,
3337                                                     buf, maddr + offset, bytes);
3338                         }
3339                         kunmap(page);
3340                         page_cache_release(page);
3341                 }
3342                 len -= bytes;
3343                 buf += bytes;
3344                 addr += bytes;
3345         }
3346         up_read(&mm->mmap_sem);
3347         mmput(mm);
3348
3349         return buf - old_buf;
3350 }
3351
3352 /*
3353  * Print the name of a VMA.
3354  */
3355 void print_vma_addr(char *prefix, unsigned long ip)
3356 {
3357         struct mm_struct *mm = current->mm;
3358         struct vm_area_struct *vma;
3359
3360         /*
3361          * Do not print if we are in atomic
3362          * contexts (in exception stacks, etc.):
3363          */
3364         if (preempt_count())
3365                 return;
3366
3367         down_read(&mm->mmap_sem);
3368         vma = find_vma(mm, ip);
3369         if (vma && vma->vm_file) {
3370                 struct file *f = vma->vm_file;
3371                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3372                 if (buf) {
3373                         char *p, *s;
3374
3375                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3376                         if (IS_ERR(p))
3377                                 p = "?";
3378                         s = strrchr(p, '/');
3379                         if (s)
3380                                 p = s+1;
3381                         printk("%s%s[%lx+%lx]", prefix, p,
3382                                         vma->vm_start,
3383                                         vma->vm_end - vma->vm_start);
3384                         free_page((unsigned long)buf);
3385                 }
3386         }
3387         up_read(&current->mm->mmap_sem);
3388 }
3389
3390 #ifdef CONFIG_PROVE_LOCKING
3391 void might_fault(void)
3392 {
3393         /*
3394          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3395          * holding the mmap_sem, this is safe because kernel memory doesn't
3396          * get paged out, therefore we'll never actually fault, and the
3397          * below annotations will generate false positives.
3398          */
3399         if (segment_eq(get_fs(), KERNEL_DS))
3400                 return;
3401
3402         might_sleep();
3403         /*
3404          * it would be nicer only to annotate paths which are not under
3405          * pagefault_disable, however that requires a larger audit and
3406          * providing helpers like get_user_atomic.
3407          */
3408         if (!in_atomic() && current->mm)
3409                 might_lock_read(&current->mm->mmap_sem);
3410 }
3411 EXPORT_SYMBOL(might_fault);
3412 #endif