7abd3899848bf9ff4f032fda6a48ad86e1f92d18
[safe/jmp/linux-2.6] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53
54 #include <asm/pgalloc.h>
55 #include <asm/uaccess.h>
56 #include <asm/tlb.h>
57 #include <asm/tlbflush.h>
58 #include <asm/pgtable.h>
59
60 #include <linux/swapops.h>
61 #include <linux/elf.h>
62
63 #ifndef CONFIG_NEED_MULTIPLE_NODES
64 /* use the per-pgdat data instead for discontigmem - mbligh */
65 unsigned long max_mapnr;
66 struct page *mem_map;
67
68 EXPORT_SYMBOL(max_mapnr);
69 EXPORT_SYMBOL(mem_map);
70 #endif
71
72 unsigned long num_physpages;
73 /*
74  * A number of key systems in x86 including ioremap() rely on the assumption
75  * that high_memory defines the upper bound on direct map memory, then end
76  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
77  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
78  * and ZONE_HIGHMEM.
79  */
80 void * high_memory;
81
82 EXPORT_SYMBOL(num_physpages);
83 EXPORT_SYMBOL(high_memory);
84
85 int randomize_va_space __read_mostly = 1;
86
87 static int __init disable_randmaps(char *s)
88 {
89         randomize_va_space = 0;
90         return 1;
91 }
92 __setup("norandmaps", disable_randmaps);
93
94
95 /*
96  * If a p?d_bad entry is found while walking page tables, report
97  * the error, before resetting entry to p?d_none.  Usually (but
98  * very seldom) called out from the p?d_none_or_clear_bad macros.
99  */
100
101 void pgd_clear_bad(pgd_t *pgd)
102 {
103         pgd_ERROR(*pgd);
104         pgd_clear(pgd);
105 }
106
107 void pud_clear_bad(pud_t *pud)
108 {
109         pud_ERROR(*pud);
110         pud_clear(pud);
111 }
112
113 void pmd_clear_bad(pmd_t *pmd)
114 {
115         pmd_ERROR(*pmd);
116         pmd_clear(pmd);
117 }
118
119 /*
120  * Note: this doesn't free the actual pages themselves. That
121  * has been handled earlier when unmapping all the memory regions.
122  */
123 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
124 {
125         struct page *page = pmd_page(*pmd);
126         pmd_clear(pmd);
127         pte_lock_deinit(page);
128         pte_free_tlb(tlb, page);
129         dec_zone_page_state(page, NR_PAGETABLE);
130         tlb->mm->nr_ptes--;
131 }
132
133 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
134                                 unsigned long addr, unsigned long end,
135                                 unsigned long floor, unsigned long ceiling)
136 {
137         pmd_t *pmd;
138         unsigned long next;
139         unsigned long start;
140
141         start = addr;
142         pmd = pmd_offset(pud, addr);
143         do {
144                 next = pmd_addr_end(addr, end);
145                 if (pmd_none_or_clear_bad(pmd))
146                         continue;
147                 free_pte_range(tlb, pmd);
148         } while (pmd++, addr = next, addr != end);
149
150         start &= PUD_MASK;
151         if (start < floor)
152                 return;
153         if (ceiling) {
154                 ceiling &= PUD_MASK;
155                 if (!ceiling)
156                         return;
157         }
158         if (end - 1 > ceiling - 1)
159                 return;
160
161         pmd = pmd_offset(pud, start);
162         pud_clear(pud);
163         pmd_free_tlb(tlb, pmd);
164 }
165
166 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
167                                 unsigned long addr, unsigned long end,
168                                 unsigned long floor, unsigned long ceiling)
169 {
170         pud_t *pud;
171         unsigned long next;
172         unsigned long start;
173
174         start = addr;
175         pud = pud_offset(pgd, addr);
176         do {
177                 next = pud_addr_end(addr, end);
178                 if (pud_none_or_clear_bad(pud))
179                         continue;
180                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
181         } while (pud++, addr = next, addr != end);
182
183         start &= PGDIR_MASK;
184         if (start < floor)
185                 return;
186         if (ceiling) {
187                 ceiling &= PGDIR_MASK;
188                 if (!ceiling)
189                         return;
190         }
191         if (end - 1 > ceiling - 1)
192                 return;
193
194         pud = pud_offset(pgd, start);
195         pgd_clear(pgd);
196         pud_free_tlb(tlb, pud);
197 }
198
199 /*
200  * This function frees user-level page tables of a process.
201  *
202  * Must be called with pagetable lock held.
203  */
204 void free_pgd_range(struct mmu_gather **tlb,
205                         unsigned long addr, unsigned long end,
206                         unsigned long floor, unsigned long ceiling)
207 {
208         pgd_t *pgd;
209         unsigned long next;
210         unsigned long start;
211
212         /*
213          * The next few lines have given us lots of grief...
214          *
215          * Why are we testing PMD* at this top level?  Because often
216          * there will be no work to do at all, and we'd prefer not to
217          * go all the way down to the bottom just to discover that.
218          *
219          * Why all these "- 1"s?  Because 0 represents both the bottom
220          * of the address space and the top of it (using -1 for the
221          * top wouldn't help much: the masks would do the wrong thing).
222          * The rule is that addr 0 and floor 0 refer to the bottom of
223          * the address space, but end 0 and ceiling 0 refer to the top
224          * Comparisons need to use "end - 1" and "ceiling - 1" (though
225          * that end 0 case should be mythical).
226          *
227          * Wherever addr is brought up or ceiling brought down, we must
228          * be careful to reject "the opposite 0" before it confuses the
229          * subsequent tests.  But what about where end is brought down
230          * by PMD_SIZE below? no, end can't go down to 0 there.
231          *
232          * Whereas we round start (addr) and ceiling down, by different
233          * masks at different levels, in order to test whether a table
234          * now has no other vmas using it, so can be freed, we don't
235          * bother to round floor or end up - the tests don't need that.
236          */
237
238         addr &= PMD_MASK;
239         if (addr < floor) {
240                 addr += PMD_SIZE;
241                 if (!addr)
242                         return;
243         }
244         if (ceiling) {
245                 ceiling &= PMD_MASK;
246                 if (!ceiling)
247                         return;
248         }
249         if (end - 1 > ceiling - 1)
250                 end -= PMD_SIZE;
251         if (addr > end - 1)
252                 return;
253
254         start = addr;
255         pgd = pgd_offset((*tlb)->mm, addr);
256         do {
257                 next = pgd_addr_end(addr, end);
258                 if (pgd_none_or_clear_bad(pgd))
259                         continue;
260                 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
261         } while (pgd++, addr = next, addr != end);
262
263         if (!(*tlb)->fullmm)
264                 flush_tlb_pgtables((*tlb)->mm, start, end);
265 }
266
267 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
268                 unsigned long floor, unsigned long ceiling)
269 {
270         while (vma) {
271                 struct vm_area_struct *next = vma->vm_next;
272                 unsigned long addr = vma->vm_start;
273
274                 /*
275                  * Hide vma from rmap and vmtruncate before freeing pgtables
276                  */
277                 anon_vma_unlink(vma);
278                 unlink_file_vma(vma);
279
280                 if (is_vm_hugetlb_page(vma)) {
281                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
282                                 floor, next? next->vm_start: ceiling);
283                 } else {
284                         /*
285                          * Optimization: gather nearby vmas into one call down
286                          */
287                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
288                                && !is_vm_hugetlb_page(next)) {
289                                 vma = next;
290                                 next = vma->vm_next;
291                                 anon_vma_unlink(vma);
292                                 unlink_file_vma(vma);
293                         }
294                         free_pgd_range(tlb, addr, vma->vm_end,
295                                 floor, next? next->vm_start: ceiling);
296                 }
297                 vma = next;
298         }
299 }
300
301 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
302 {
303         struct page *new = pte_alloc_one(mm, address);
304         if (!new)
305                 return -ENOMEM;
306
307         pte_lock_init(new);
308         spin_lock(&mm->page_table_lock);
309         if (pmd_present(*pmd)) {        /* Another has populated it */
310                 pte_lock_deinit(new);
311                 pte_free(new);
312         } else {
313                 mm->nr_ptes++;
314                 inc_zone_page_state(new, NR_PAGETABLE);
315                 pmd_populate(mm, pmd, new);
316         }
317         spin_unlock(&mm->page_table_lock);
318         return 0;
319 }
320
321 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
322 {
323         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
324         if (!new)
325                 return -ENOMEM;
326
327         spin_lock(&init_mm.page_table_lock);
328         if (pmd_present(*pmd))          /* Another has populated it */
329                 pte_free_kernel(new);
330         else
331                 pmd_populate_kernel(&init_mm, pmd, new);
332         spin_unlock(&init_mm.page_table_lock);
333         return 0;
334 }
335
336 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
337 {
338         if (file_rss)
339                 add_mm_counter(mm, file_rss, file_rss);
340         if (anon_rss)
341                 add_mm_counter(mm, anon_rss, anon_rss);
342 }
343
344 /*
345  * This function is called to print an error when a bad pte
346  * is found. For example, we might have a PFN-mapped pte in
347  * a region that doesn't allow it.
348  *
349  * The calling function must still handle the error.
350  */
351 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
352 {
353         printk(KERN_ERR "Bad pte = %08llx, process = %s, "
354                         "vm_flags = %lx, vaddr = %lx\n",
355                 (long long)pte_val(pte),
356                 (vma->vm_mm == current->mm ? current->comm : "???"),
357                 vma->vm_flags, vaddr);
358         dump_stack();
359 }
360
361 static inline int is_cow_mapping(unsigned int flags)
362 {
363         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
364 }
365
366 /*
367  * This function gets the "struct page" associated with a pte.
368  *
369  * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
370  * will have each page table entry just pointing to a raw page frame
371  * number, and as far as the VM layer is concerned, those do not have
372  * pages associated with them - even if the PFN might point to memory
373  * that otherwise is perfectly fine and has a "struct page".
374  *
375  * The way we recognize those mappings is through the rules set up
376  * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
377  * and the vm_pgoff will point to the first PFN mapped: thus every
378  * page that is a raw mapping will always honor the rule
379  *
380  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
381  *
382  * and if that isn't true, the page has been COW'ed (in which case it
383  * _does_ have a "struct page" associated with it even if it is in a
384  * VM_PFNMAP range).
385  */
386 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
387 {
388         unsigned long pfn = pte_pfn(pte);
389
390         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
391                 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
392                 if (pfn == vma->vm_pgoff + off)
393                         return NULL;
394                 if (!is_cow_mapping(vma->vm_flags))
395                         return NULL;
396         }
397
398         /*
399          * Add some anal sanity checks for now. Eventually,
400          * we should just do "return pfn_to_page(pfn)", but
401          * in the meantime we check that we get a valid pfn,
402          * and that the resulting page looks ok.
403          */
404         if (unlikely(!pfn_valid(pfn))) {
405                 print_bad_pte(vma, pte, addr);
406                 return NULL;
407         }
408
409         /*
410          * NOTE! We still have PageReserved() pages in the page 
411          * tables. 
412          *
413          * The PAGE_ZERO() pages and various VDSO mappings can
414          * cause them to exist.
415          */
416         return pfn_to_page(pfn);
417 }
418
419 /*
420  * copy one vm_area from one task to the other. Assumes the page tables
421  * already present in the new task to be cleared in the whole range
422  * covered by this vma.
423  */
424
425 static inline void
426 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
427                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
428                 unsigned long addr, int *rss)
429 {
430         unsigned long vm_flags = vma->vm_flags;
431         pte_t pte = *src_pte;
432         struct page *page;
433
434         /* pte contains position in swap or file, so copy. */
435         if (unlikely(!pte_present(pte))) {
436                 if (!pte_file(pte)) {
437                         swp_entry_t entry = pte_to_swp_entry(pte);
438
439                         swap_duplicate(entry);
440                         /* make sure dst_mm is on swapoff's mmlist. */
441                         if (unlikely(list_empty(&dst_mm->mmlist))) {
442                                 spin_lock(&mmlist_lock);
443                                 if (list_empty(&dst_mm->mmlist))
444                                         list_add(&dst_mm->mmlist,
445                                                  &src_mm->mmlist);
446                                 spin_unlock(&mmlist_lock);
447                         }
448                         if (is_write_migration_entry(entry) &&
449                                         is_cow_mapping(vm_flags)) {
450                                 /*
451                                  * COW mappings require pages in both parent
452                                  * and child to be set to read.
453                                  */
454                                 make_migration_entry_read(&entry);
455                                 pte = swp_entry_to_pte(entry);
456                                 set_pte_at(src_mm, addr, src_pte, pte);
457                         }
458                 }
459                 goto out_set_pte;
460         }
461
462         /*
463          * If it's a COW mapping, write protect it both
464          * in the parent and the child
465          */
466         if (is_cow_mapping(vm_flags)) {
467                 ptep_set_wrprotect(src_mm, addr, src_pte);
468                 pte = pte_wrprotect(pte);
469         }
470
471         /*
472          * If it's a shared mapping, mark it clean in
473          * the child
474          */
475         if (vm_flags & VM_SHARED)
476                 pte = pte_mkclean(pte);
477         pte = pte_mkold(pte);
478
479         page = vm_normal_page(vma, addr, pte);
480         if (page) {
481                 get_page(page);
482                 page_dup_rmap(page, vma, addr);
483                 rss[!!PageAnon(page)]++;
484         }
485
486 out_set_pte:
487         set_pte_at(dst_mm, addr, dst_pte, pte);
488 }
489
490 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
491                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
492                 unsigned long addr, unsigned long end)
493 {
494         pte_t *src_pte, *dst_pte;
495         spinlock_t *src_ptl, *dst_ptl;
496         int progress = 0;
497         int rss[2];
498
499 again:
500         rss[1] = rss[0] = 0;
501         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
502         if (!dst_pte)
503                 return -ENOMEM;
504         src_pte = pte_offset_map_nested(src_pmd, addr);
505         src_ptl = pte_lockptr(src_mm, src_pmd);
506         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
507         arch_enter_lazy_mmu_mode();
508
509         do {
510                 /*
511                  * We are holding two locks at this point - either of them
512                  * could generate latencies in another task on another CPU.
513                  */
514                 if (progress >= 32) {
515                         progress = 0;
516                         if (need_resched() ||
517                             need_lockbreak(src_ptl) ||
518                             need_lockbreak(dst_ptl))
519                                 break;
520                 }
521                 if (pte_none(*src_pte)) {
522                         progress++;
523                         continue;
524                 }
525                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
526                 progress += 8;
527         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
528
529         arch_leave_lazy_mmu_mode();
530         spin_unlock(src_ptl);
531         pte_unmap_nested(src_pte - 1);
532         add_mm_rss(dst_mm, rss[0], rss[1]);
533         pte_unmap_unlock(dst_pte - 1, dst_ptl);
534         cond_resched();
535         if (addr != end)
536                 goto again;
537         return 0;
538 }
539
540 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
541                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
542                 unsigned long addr, unsigned long end)
543 {
544         pmd_t *src_pmd, *dst_pmd;
545         unsigned long next;
546
547         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
548         if (!dst_pmd)
549                 return -ENOMEM;
550         src_pmd = pmd_offset(src_pud, addr);
551         do {
552                 next = pmd_addr_end(addr, end);
553                 if (pmd_none_or_clear_bad(src_pmd))
554                         continue;
555                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
556                                                 vma, addr, next))
557                         return -ENOMEM;
558         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
559         return 0;
560 }
561
562 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
563                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
564                 unsigned long addr, unsigned long end)
565 {
566         pud_t *src_pud, *dst_pud;
567         unsigned long next;
568
569         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
570         if (!dst_pud)
571                 return -ENOMEM;
572         src_pud = pud_offset(src_pgd, addr);
573         do {
574                 next = pud_addr_end(addr, end);
575                 if (pud_none_or_clear_bad(src_pud))
576                         continue;
577                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
578                                                 vma, addr, next))
579                         return -ENOMEM;
580         } while (dst_pud++, src_pud++, addr = next, addr != end);
581         return 0;
582 }
583
584 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
585                 struct vm_area_struct *vma)
586 {
587         pgd_t *src_pgd, *dst_pgd;
588         unsigned long next;
589         unsigned long addr = vma->vm_start;
590         unsigned long end = vma->vm_end;
591
592         /*
593          * Don't copy ptes where a page fault will fill them correctly.
594          * Fork becomes much lighter when there are big shared or private
595          * readonly mappings. The tradeoff is that copy_page_range is more
596          * efficient than faulting.
597          */
598         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
599                 if (!vma->anon_vma)
600                         return 0;
601         }
602
603         if (is_vm_hugetlb_page(vma))
604                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
605
606         dst_pgd = pgd_offset(dst_mm, addr);
607         src_pgd = pgd_offset(src_mm, addr);
608         do {
609                 next = pgd_addr_end(addr, end);
610                 if (pgd_none_or_clear_bad(src_pgd))
611                         continue;
612                 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
613                                                 vma, addr, next))
614                         return -ENOMEM;
615         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
616         return 0;
617 }
618
619 static unsigned long zap_pte_range(struct mmu_gather *tlb,
620                                 struct vm_area_struct *vma, pmd_t *pmd,
621                                 unsigned long addr, unsigned long end,
622                                 long *zap_work, struct zap_details *details)
623 {
624         struct mm_struct *mm = tlb->mm;
625         pte_t *pte;
626         spinlock_t *ptl;
627         int file_rss = 0;
628         int anon_rss = 0;
629
630         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
631         arch_enter_lazy_mmu_mode();
632         do {
633                 pte_t ptent = *pte;
634                 if (pte_none(ptent)) {
635                         (*zap_work)--;
636                         continue;
637                 }
638
639                 (*zap_work) -= PAGE_SIZE;
640
641                 if (pte_present(ptent)) {
642                         struct page *page;
643
644                         page = vm_normal_page(vma, addr, ptent);
645                         if (unlikely(details) && page) {
646                                 /*
647                                  * unmap_shared_mapping_pages() wants to
648                                  * invalidate cache without truncating:
649                                  * unmap shared but keep private pages.
650                                  */
651                                 if (details->check_mapping &&
652                                     details->check_mapping != page->mapping)
653                                         continue;
654                                 /*
655                                  * Each page->index must be checked when
656                                  * invalidating or truncating nonlinear.
657                                  */
658                                 if (details->nonlinear_vma &&
659                                     (page->index < details->first_index ||
660                                      page->index > details->last_index))
661                                         continue;
662                         }
663                         ptent = ptep_get_and_clear_full(mm, addr, pte,
664                                                         tlb->fullmm);
665                         tlb_remove_tlb_entry(tlb, pte, addr);
666                         if (unlikely(!page))
667                                 continue;
668                         if (unlikely(details) && details->nonlinear_vma
669                             && linear_page_index(details->nonlinear_vma,
670                                                 addr) != page->index)
671                                 set_pte_at(mm, addr, pte,
672                                            pgoff_to_pte(page->index));
673                         if (PageAnon(page))
674                                 anon_rss--;
675                         else {
676                                 if (pte_dirty(ptent))
677                                         set_page_dirty(page);
678                                 if (pte_young(ptent))
679                                         SetPageReferenced(page);
680                                 file_rss--;
681                         }
682                         page_remove_rmap(page, vma);
683                         tlb_remove_page(tlb, page);
684                         continue;
685                 }
686                 /*
687                  * If details->check_mapping, we leave swap entries;
688                  * if details->nonlinear_vma, we leave file entries.
689                  */
690                 if (unlikely(details))
691                         continue;
692                 if (!pte_file(ptent))
693                         free_swap_and_cache(pte_to_swp_entry(ptent));
694                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
695         } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
696
697         add_mm_rss(mm, file_rss, anon_rss);
698         arch_leave_lazy_mmu_mode();
699         pte_unmap_unlock(pte - 1, ptl);
700
701         return addr;
702 }
703
704 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
705                                 struct vm_area_struct *vma, pud_t *pud,
706                                 unsigned long addr, unsigned long end,
707                                 long *zap_work, struct zap_details *details)
708 {
709         pmd_t *pmd;
710         unsigned long next;
711
712         pmd = pmd_offset(pud, addr);
713         do {
714                 next = pmd_addr_end(addr, end);
715                 if (pmd_none_or_clear_bad(pmd)) {
716                         (*zap_work)--;
717                         continue;
718                 }
719                 next = zap_pte_range(tlb, vma, pmd, addr, next,
720                                                 zap_work, details);
721         } while (pmd++, addr = next, (addr != end && *zap_work > 0));
722
723         return addr;
724 }
725
726 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
727                                 struct vm_area_struct *vma, pgd_t *pgd,
728                                 unsigned long addr, unsigned long end,
729                                 long *zap_work, struct zap_details *details)
730 {
731         pud_t *pud;
732         unsigned long next;
733
734         pud = pud_offset(pgd, addr);
735         do {
736                 next = pud_addr_end(addr, end);
737                 if (pud_none_or_clear_bad(pud)) {
738                         (*zap_work)--;
739                         continue;
740                 }
741                 next = zap_pmd_range(tlb, vma, pud, addr, next,
742                                                 zap_work, details);
743         } while (pud++, addr = next, (addr != end && *zap_work > 0));
744
745         return addr;
746 }
747
748 static unsigned long unmap_page_range(struct mmu_gather *tlb,
749                                 struct vm_area_struct *vma,
750                                 unsigned long addr, unsigned long end,
751                                 long *zap_work, struct zap_details *details)
752 {
753         pgd_t *pgd;
754         unsigned long next;
755
756         if (details && !details->check_mapping && !details->nonlinear_vma)
757                 details = NULL;
758
759         BUG_ON(addr >= end);
760         tlb_start_vma(tlb, vma);
761         pgd = pgd_offset(vma->vm_mm, addr);
762         do {
763                 next = pgd_addr_end(addr, end);
764                 if (pgd_none_or_clear_bad(pgd)) {
765                         (*zap_work)--;
766                         continue;
767                 }
768                 next = zap_pud_range(tlb, vma, pgd, addr, next,
769                                                 zap_work, details);
770         } while (pgd++, addr = next, (addr != end && *zap_work > 0));
771         tlb_end_vma(tlb, vma);
772
773         return addr;
774 }
775
776 #ifdef CONFIG_PREEMPT
777 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
778 #else
779 /* No preempt: go for improved straight-line efficiency */
780 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
781 #endif
782
783 /**
784  * unmap_vmas - unmap a range of memory covered by a list of vma's
785  * @tlbp: address of the caller's struct mmu_gather
786  * @vma: the starting vma
787  * @start_addr: virtual address at which to start unmapping
788  * @end_addr: virtual address at which to end unmapping
789  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
790  * @details: details of nonlinear truncation or shared cache invalidation
791  *
792  * Returns the end address of the unmapping (restart addr if interrupted).
793  *
794  * Unmap all pages in the vma list.
795  *
796  * We aim to not hold locks for too long (for scheduling latency reasons).
797  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
798  * return the ending mmu_gather to the caller.
799  *
800  * Only addresses between `start' and `end' will be unmapped.
801  *
802  * The VMA list must be sorted in ascending virtual address order.
803  *
804  * unmap_vmas() assumes that the caller will flush the whole unmapped address
805  * range after unmap_vmas() returns.  So the only responsibility here is to
806  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
807  * drops the lock and schedules.
808  */
809 unsigned long unmap_vmas(struct mmu_gather **tlbp,
810                 struct vm_area_struct *vma, unsigned long start_addr,
811                 unsigned long end_addr, unsigned long *nr_accounted,
812                 struct zap_details *details)
813 {
814         long zap_work = ZAP_BLOCK_SIZE;
815         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
816         int tlb_start_valid = 0;
817         unsigned long start = start_addr;
818         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
819         int fullmm = (*tlbp)->fullmm;
820
821         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
822                 unsigned long end;
823
824                 start = max(vma->vm_start, start_addr);
825                 if (start >= vma->vm_end)
826                         continue;
827                 end = min(vma->vm_end, end_addr);
828                 if (end <= vma->vm_start)
829                         continue;
830
831                 if (vma->vm_flags & VM_ACCOUNT)
832                         *nr_accounted += (end - start) >> PAGE_SHIFT;
833
834                 while (start != end) {
835                         if (!tlb_start_valid) {
836                                 tlb_start = start;
837                                 tlb_start_valid = 1;
838                         }
839
840                         if (unlikely(is_vm_hugetlb_page(vma))) {
841                                 unmap_hugepage_range(vma, start, end);
842                                 zap_work -= (end - start) /
843                                                 (HPAGE_SIZE / PAGE_SIZE);
844                                 start = end;
845                         } else
846                                 start = unmap_page_range(*tlbp, vma,
847                                                 start, end, &zap_work, details);
848
849                         if (zap_work > 0) {
850                                 BUG_ON(start != end);
851                                 break;
852                         }
853
854                         tlb_finish_mmu(*tlbp, tlb_start, start);
855
856                         if (need_resched() ||
857                                 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
858                                 if (i_mmap_lock) {
859                                         *tlbp = NULL;
860                                         goto out;
861                                 }
862                                 cond_resched();
863                         }
864
865                         *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
866                         tlb_start_valid = 0;
867                         zap_work = ZAP_BLOCK_SIZE;
868                 }
869         }
870 out:
871         return start;   /* which is now the end (or restart) address */
872 }
873
874 /**
875  * zap_page_range - remove user pages in a given range
876  * @vma: vm_area_struct holding the applicable pages
877  * @address: starting address of pages to zap
878  * @size: number of bytes to zap
879  * @details: details of nonlinear truncation or shared cache invalidation
880  */
881 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
882                 unsigned long size, struct zap_details *details)
883 {
884         struct mm_struct *mm = vma->vm_mm;
885         struct mmu_gather *tlb;
886         unsigned long end = address + size;
887         unsigned long nr_accounted = 0;
888
889         lru_add_drain();
890         tlb = tlb_gather_mmu(mm, 0);
891         update_hiwater_rss(mm);
892         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
893         if (tlb)
894                 tlb_finish_mmu(tlb, address, end);
895         return end;
896 }
897
898 /*
899  * Do a quick page-table lookup for a single page.
900  */
901 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
902                         unsigned int flags)
903 {
904         pgd_t *pgd;
905         pud_t *pud;
906         pmd_t *pmd;
907         pte_t *ptep, pte;
908         spinlock_t *ptl;
909         struct page *page;
910         struct mm_struct *mm = vma->vm_mm;
911
912         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
913         if (!IS_ERR(page)) {
914                 BUG_ON(flags & FOLL_GET);
915                 goto out;
916         }
917
918         page = NULL;
919         pgd = pgd_offset(mm, address);
920         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
921                 goto no_page_table;
922
923         pud = pud_offset(pgd, address);
924         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
925                 goto no_page_table;
926         
927         pmd = pmd_offset(pud, address);
928         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
929                 goto no_page_table;
930
931         if (pmd_huge(*pmd)) {
932                 BUG_ON(flags & FOLL_GET);
933                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
934                 goto out;
935         }
936
937         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
938         if (!ptep)
939                 goto out;
940
941         pte = *ptep;
942         if (!pte_present(pte))
943                 goto unlock;
944         if ((flags & FOLL_WRITE) && !pte_write(pte))
945                 goto unlock;
946         page = vm_normal_page(vma, address, pte);
947         if (unlikely(!page))
948                 goto unlock;
949
950         if (flags & FOLL_GET)
951                 get_page(page);
952         if (flags & FOLL_TOUCH) {
953                 if ((flags & FOLL_WRITE) &&
954                     !pte_dirty(pte) && !PageDirty(page))
955                         set_page_dirty(page);
956                 mark_page_accessed(page);
957         }
958 unlock:
959         pte_unmap_unlock(ptep, ptl);
960 out:
961         return page;
962
963 no_page_table:
964         /*
965          * When core dumping an enormous anonymous area that nobody
966          * has touched so far, we don't want to allocate page tables.
967          */
968         if (flags & FOLL_ANON) {
969                 page = ZERO_PAGE(address);
970                 if (flags & FOLL_GET)
971                         get_page(page);
972                 BUG_ON(flags & FOLL_WRITE);
973         }
974         return page;
975 }
976
977 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
978                 unsigned long start, int len, int write, int force,
979                 struct page **pages, struct vm_area_struct **vmas)
980 {
981         int i;
982         unsigned int vm_flags;
983
984         /* 
985          * Require read or write permissions.
986          * If 'force' is set, we only require the "MAY" flags.
987          */
988         vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
989         vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
990         i = 0;
991
992         do {
993                 struct vm_area_struct *vma;
994                 unsigned int foll_flags;
995
996                 vma = find_extend_vma(mm, start);
997                 if (!vma && in_gate_area(tsk, start)) {
998                         unsigned long pg = start & PAGE_MASK;
999                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1000                         pgd_t *pgd;
1001                         pud_t *pud;
1002                         pmd_t *pmd;
1003                         pte_t *pte;
1004                         if (write) /* user gate pages are read-only */
1005                                 return i ? : -EFAULT;
1006                         if (pg > TASK_SIZE)
1007                                 pgd = pgd_offset_k(pg);
1008                         else
1009                                 pgd = pgd_offset_gate(mm, pg);
1010                         BUG_ON(pgd_none(*pgd));
1011                         pud = pud_offset(pgd, pg);
1012                         BUG_ON(pud_none(*pud));
1013                         pmd = pmd_offset(pud, pg);
1014                         if (pmd_none(*pmd))
1015                                 return i ? : -EFAULT;
1016                         pte = pte_offset_map(pmd, pg);
1017                         if (pte_none(*pte)) {
1018                                 pte_unmap(pte);
1019                                 return i ? : -EFAULT;
1020                         }
1021                         if (pages) {
1022                                 struct page *page = vm_normal_page(gate_vma, start, *pte);
1023                                 pages[i] = page;
1024                                 if (page)
1025                                         get_page(page);
1026                         }
1027                         pte_unmap(pte);
1028                         if (vmas)
1029                                 vmas[i] = gate_vma;
1030                         i++;
1031                         start += PAGE_SIZE;
1032                         len--;
1033                         continue;
1034                 }
1035
1036                 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1037                                 || !(vm_flags & vma->vm_flags))
1038                         return i ? : -EFAULT;
1039
1040                 if (is_vm_hugetlb_page(vma)) {
1041                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1042                                                 &start, &len, i);
1043                         continue;
1044                 }
1045
1046                 foll_flags = FOLL_TOUCH;
1047                 if (pages)
1048                         foll_flags |= FOLL_GET;
1049                 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1050                     (!vma->vm_ops || (!vma->vm_ops->nopage &&
1051                                         !vma->vm_ops->fault)))
1052                         foll_flags |= FOLL_ANON;
1053
1054                 do {
1055                         struct page *page;
1056
1057                         /*
1058                          * If tsk is ooming, cut off its access to large memory
1059                          * allocations. It has a pending SIGKILL, but it can't
1060                          * be processed until returning to user space.
1061                          */
1062                         if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1063                                 return -ENOMEM;
1064
1065                         if (write)
1066                                 foll_flags |= FOLL_WRITE;
1067
1068                         cond_resched();
1069                         while (!(page = follow_page(vma, start, foll_flags))) {
1070                                 int ret;
1071                                 ret = __handle_mm_fault(mm, vma, start,
1072                                                 foll_flags & FOLL_WRITE);
1073                                 /*
1074                                  * The VM_FAULT_WRITE bit tells us that do_wp_page has
1075                                  * broken COW when necessary, even if maybe_mkwrite
1076                                  * decided not to set pte_write. We can thus safely do
1077                                  * subsequent page lookups as if they were reads.
1078                                  */
1079                                 if (ret & VM_FAULT_WRITE)
1080                                         foll_flags &= ~FOLL_WRITE;
1081                                 
1082                                 switch (ret & ~VM_FAULT_WRITE) {
1083                                 case VM_FAULT_MINOR:
1084                                         tsk->min_flt++;
1085                                         break;
1086                                 case VM_FAULT_MAJOR:
1087                                         tsk->maj_flt++;
1088                                         break;
1089                                 case VM_FAULT_SIGBUS:
1090                                         return i ? i : -EFAULT;
1091                                 case VM_FAULT_OOM:
1092                                         return i ? i : -ENOMEM;
1093                                 default:
1094                                         BUG();
1095                                 }
1096                                 cond_resched();
1097                         }
1098                         if (pages) {
1099                                 pages[i] = page;
1100
1101                                 flush_anon_page(vma, page, start);
1102                                 flush_dcache_page(page);
1103                         }
1104                         if (vmas)
1105                                 vmas[i] = vma;
1106                         i++;
1107                         start += PAGE_SIZE;
1108                         len--;
1109                 } while (len && start < vma->vm_end);
1110         } while (len);
1111         return i;
1112 }
1113 EXPORT_SYMBOL(get_user_pages);
1114
1115 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1116                         unsigned long addr, unsigned long end, pgprot_t prot)
1117 {
1118         pte_t *pte;
1119         spinlock_t *ptl;
1120         int err = 0;
1121
1122         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1123         if (!pte)
1124                 return -EAGAIN;
1125         arch_enter_lazy_mmu_mode();
1126         do {
1127                 struct page *page = ZERO_PAGE(addr);
1128                 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1129
1130                 if (unlikely(!pte_none(*pte))) {
1131                         err = -EEXIST;
1132                         pte++;
1133                         break;
1134                 }
1135                 page_cache_get(page);
1136                 page_add_file_rmap(page);
1137                 inc_mm_counter(mm, file_rss);
1138                 set_pte_at(mm, addr, pte, zero_pte);
1139         } while (pte++, addr += PAGE_SIZE, addr != end);
1140         arch_leave_lazy_mmu_mode();
1141         pte_unmap_unlock(pte - 1, ptl);
1142         return err;
1143 }
1144
1145 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1146                         unsigned long addr, unsigned long end, pgprot_t prot)
1147 {
1148         pmd_t *pmd;
1149         unsigned long next;
1150         int err;
1151
1152         pmd = pmd_alloc(mm, pud, addr);
1153         if (!pmd)
1154                 return -EAGAIN;
1155         do {
1156                 next = pmd_addr_end(addr, end);
1157                 err = zeromap_pte_range(mm, pmd, addr, next, prot);
1158                 if (err)
1159                         break;
1160         } while (pmd++, addr = next, addr != end);
1161         return err;
1162 }
1163
1164 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1165                         unsigned long addr, unsigned long end, pgprot_t prot)
1166 {
1167         pud_t *pud;
1168         unsigned long next;
1169         int err;
1170
1171         pud = pud_alloc(mm, pgd, addr);
1172         if (!pud)
1173                 return -EAGAIN;
1174         do {
1175                 next = pud_addr_end(addr, end);
1176                 err = zeromap_pmd_range(mm, pud, addr, next, prot);
1177                 if (err)
1178                         break;
1179         } while (pud++, addr = next, addr != end);
1180         return err;
1181 }
1182
1183 int zeromap_page_range(struct vm_area_struct *vma,
1184                         unsigned long addr, unsigned long size, pgprot_t prot)
1185 {
1186         pgd_t *pgd;
1187         unsigned long next;
1188         unsigned long end = addr + size;
1189         struct mm_struct *mm = vma->vm_mm;
1190         int err;
1191
1192         BUG_ON(addr >= end);
1193         pgd = pgd_offset(mm, addr);
1194         flush_cache_range(vma, addr, end);
1195         do {
1196                 next = pgd_addr_end(addr, end);
1197                 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1198                 if (err)
1199                         break;
1200         } while (pgd++, addr = next, addr != end);
1201         return err;
1202 }
1203
1204 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1205 {
1206         pgd_t * pgd = pgd_offset(mm, addr);
1207         pud_t * pud = pud_alloc(mm, pgd, addr);
1208         if (pud) {
1209                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1210                 if (pmd)
1211                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1212         }
1213         return NULL;
1214 }
1215
1216 /*
1217  * This is the old fallback for page remapping.
1218  *
1219  * For historical reasons, it only allows reserved pages. Only
1220  * old drivers should use this, and they needed to mark their
1221  * pages reserved for the old functions anyway.
1222  */
1223 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1224 {
1225         int retval;
1226         pte_t *pte;
1227         spinlock_t *ptl;  
1228
1229         retval = -EINVAL;
1230         if (PageAnon(page))
1231                 goto out;
1232         retval = -ENOMEM;
1233         flush_dcache_page(page);
1234         pte = get_locked_pte(mm, addr, &ptl);
1235         if (!pte)
1236                 goto out;
1237         retval = -EBUSY;
1238         if (!pte_none(*pte))
1239                 goto out_unlock;
1240
1241         /* Ok, finally just insert the thing.. */
1242         get_page(page);
1243         inc_mm_counter(mm, file_rss);
1244         page_add_file_rmap(page);
1245         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1246
1247         retval = 0;
1248 out_unlock:
1249         pte_unmap_unlock(pte, ptl);
1250 out:
1251         return retval;
1252 }
1253
1254 /**
1255  * vm_insert_page - insert single page into user vma
1256  * @vma: user vma to map to
1257  * @addr: target user address of this page
1258  * @page: source kernel page
1259  *
1260  * This allows drivers to insert individual pages they've allocated
1261  * into a user vma.
1262  *
1263  * The page has to be a nice clean _individual_ kernel allocation.
1264  * If you allocate a compound page, you need to have marked it as
1265  * such (__GFP_COMP), or manually just split the page up yourself
1266  * (see split_page()).
1267  *
1268  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1269  * took an arbitrary page protection parameter. This doesn't allow
1270  * that. Your vma protection will have to be set up correctly, which
1271  * means that if you want a shared writable mapping, you'd better
1272  * ask for a shared writable mapping!
1273  *
1274  * The page does not need to be reserved.
1275  */
1276 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1277 {
1278         if (addr < vma->vm_start || addr >= vma->vm_end)
1279                 return -EFAULT;
1280         if (!page_count(page))
1281                 return -EINVAL;
1282         vma->vm_flags |= VM_INSERTPAGE;
1283         return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1284 }
1285 EXPORT_SYMBOL(vm_insert_page);
1286
1287 /**
1288  * vm_insert_pfn - insert single pfn into user vma
1289  * @vma: user vma to map to
1290  * @addr: target user address of this page
1291  * @pfn: source kernel pfn
1292  *
1293  * Similar to vm_inert_page, this allows drivers to insert individual pages
1294  * they've allocated into a user vma. Same comments apply.
1295  *
1296  * This function should only be called from a vm_ops->fault handler, and
1297  * in that case the handler should return NULL.
1298  */
1299 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1300                 unsigned long pfn)
1301 {
1302         struct mm_struct *mm = vma->vm_mm;
1303         int retval;
1304         pte_t *pte, entry;
1305         spinlock_t *ptl;
1306
1307         BUG_ON(!(vma->vm_flags & VM_PFNMAP));
1308         BUG_ON(is_cow_mapping(vma->vm_flags));
1309
1310         retval = -ENOMEM;
1311         pte = get_locked_pte(mm, addr, &ptl);
1312         if (!pte)
1313                 goto out;
1314         retval = -EBUSY;
1315         if (!pte_none(*pte))
1316                 goto out_unlock;
1317
1318         /* Ok, finally just insert the thing.. */
1319         entry = pfn_pte(pfn, vma->vm_page_prot);
1320         set_pte_at(mm, addr, pte, entry);
1321         update_mmu_cache(vma, addr, entry);
1322
1323         retval = 0;
1324 out_unlock:
1325         pte_unmap_unlock(pte, ptl);
1326
1327 out:
1328         return retval;
1329 }
1330 EXPORT_SYMBOL(vm_insert_pfn);
1331
1332 /*
1333  * maps a range of physical memory into the requested pages. the old
1334  * mappings are removed. any references to nonexistent pages results
1335  * in null mappings (currently treated as "copy-on-access")
1336  */
1337 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1338                         unsigned long addr, unsigned long end,
1339                         unsigned long pfn, pgprot_t prot)
1340 {
1341         pte_t *pte;
1342         spinlock_t *ptl;
1343
1344         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1345         if (!pte)
1346                 return -ENOMEM;
1347         arch_enter_lazy_mmu_mode();
1348         do {
1349                 BUG_ON(!pte_none(*pte));
1350                 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1351                 pfn++;
1352         } while (pte++, addr += PAGE_SIZE, addr != end);
1353         arch_leave_lazy_mmu_mode();
1354         pte_unmap_unlock(pte - 1, ptl);
1355         return 0;
1356 }
1357
1358 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1359                         unsigned long addr, unsigned long end,
1360                         unsigned long pfn, pgprot_t prot)
1361 {
1362         pmd_t *pmd;
1363         unsigned long next;
1364
1365         pfn -= addr >> PAGE_SHIFT;
1366         pmd = pmd_alloc(mm, pud, addr);
1367         if (!pmd)
1368                 return -ENOMEM;
1369         do {
1370                 next = pmd_addr_end(addr, end);
1371                 if (remap_pte_range(mm, pmd, addr, next,
1372                                 pfn + (addr >> PAGE_SHIFT), prot))
1373                         return -ENOMEM;
1374         } while (pmd++, addr = next, addr != end);
1375         return 0;
1376 }
1377
1378 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1379                         unsigned long addr, unsigned long end,
1380                         unsigned long pfn, pgprot_t prot)
1381 {
1382         pud_t *pud;
1383         unsigned long next;
1384
1385         pfn -= addr >> PAGE_SHIFT;
1386         pud = pud_alloc(mm, pgd, addr);
1387         if (!pud)
1388                 return -ENOMEM;
1389         do {
1390                 next = pud_addr_end(addr, end);
1391                 if (remap_pmd_range(mm, pud, addr, next,
1392                                 pfn + (addr >> PAGE_SHIFT), prot))
1393                         return -ENOMEM;
1394         } while (pud++, addr = next, addr != end);
1395         return 0;
1396 }
1397
1398 /**
1399  * remap_pfn_range - remap kernel memory to userspace
1400  * @vma: user vma to map to
1401  * @addr: target user address to start at
1402  * @pfn: physical address of kernel memory
1403  * @size: size of map area
1404  * @prot: page protection flags for this mapping
1405  *
1406  *  Note: this is only safe if the mm semaphore is held when called.
1407  */
1408 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1409                     unsigned long pfn, unsigned long size, pgprot_t prot)
1410 {
1411         pgd_t *pgd;
1412         unsigned long next;
1413         unsigned long end = addr + PAGE_ALIGN(size);
1414         struct mm_struct *mm = vma->vm_mm;
1415         int err;
1416
1417         /*
1418          * Physically remapped pages are special. Tell the
1419          * rest of the world about it:
1420          *   VM_IO tells people not to look at these pages
1421          *      (accesses can have side effects).
1422          *   VM_RESERVED is specified all over the place, because
1423          *      in 2.4 it kept swapout's vma scan off this vma; but
1424          *      in 2.6 the LRU scan won't even find its pages, so this
1425          *      flag means no more than count its pages in reserved_vm,
1426          *      and omit it from core dump, even when VM_IO turned off.
1427          *   VM_PFNMAP tells the core MM that the base pages are just
1428          *      raw PFN mappings, and do not have a "struct page" associated
1429          *      with them.
1430          *
1431          * There's a horrible special case to handle copy-on-write
1432          * behaviour that some programs depend on. We mark the "original"
1433          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1434          */
1435         if (is_cow_mapping(vma->vm_flags)) {
1436                 if (addr != vma->vm_start || end != vma->vm_end)
1437                         return -EINVAL;
1438                 vma->vm_pgoff = pfn;
1439         }
1440
1441         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1442
1443         BUG_ON(addr >= end);
1444         pfn -= addr >> PAGE_SHIFT;
1445         pgd = pgd_offset(mm, addr);
1446         flush_cache_range(vma, addr, end);
1447         do {
1448                 next = pgd_addr_end(addr, end);
1449                 err = remap_pud_range(mm, pgd, addr, next,
1450                                 pfn + (addr >> PAGE_SHIFT), prot);
1451                 if (err)
1452                         break;
1453         } while (pgd++, addr = next, addr != end);
1454         return err;
1455 }
1456 EXPORT_SYMBOL(remap_pfn_range);
1457
1458 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1459                                      unsigned long addr, unsigned long end,
1460                                      pte_fn_t fn, void *data)
1461 {
1462         pte_t *pte;
1463         int err;
1464         struct page *pmd_page;
1465         spinlock_t *uninitialized_var(ptl);
1466
1467         pte = (mm == &init_mm) ?
1468                 pte_alloc_kernel(pmd, addr) :
1469                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1470         if (!pte)
1471                 return -ENOMEM;
1472
1473         BUG_ON(pmd_huge(*pmd));
1474
1475         pmd_page = pmd_page(*pmd);
1476
1477         do {
1478                 err = fn(pte, pmd_page, addr, data);
1479                 if (err)
1480                         break;
1481         } while (pte++, addr += PAGE_SIZE, addr != end);
1482
1483         if (mm != &init_mm)
1484                 pte_unmap_unlock(pte-1, ptl);
1485         return err;
1486 }
1487
1488 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1489                                      unsigned long addr, unsigned long end,
1490                                      pte_fn_t fn, void *data)
1491 {
1492         pmd_t *pmd;
1493         unsigned long next;
1494         int err;
1495
1496         pmd = pmd_alloc(mm, pud, addr);
1497         if (!pmd)
1498                 return -ENOMEM;
1499         do {
1500                 next = pmd_addr_end(addr, end);
1501                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1502                 if (err)
1503                         break;
1504         } while (pmd++, addr = next, addr != end);
1505         return err;
1506 }
1507
1508 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1509                                      unsigned long addr, unsigned long end,
1510                                      pte_fn_t fn, void *data)
1511 {
1512         pud_t *pud;
1513         unsigned long next;
1514         int err;
1515
1516         pud = pud_alloc(mm, pgd, addr);
1517         if (!pud)
1518                 return -ENOMEM;
1519         do {
1520                 next = pud_addr_end(addr, end);
1521                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1522                 if (err)
1523                         break;
1524         } while (pud++, addr = next, addr != end);
1525         return err;
1526 }
1527
1528 /*
1529  * Scan a region of virtual memory, filling in page tables as necessary
1530  * and calling a provided function on each leaf page table.
1531  */
1532 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1533                         unsigned long size, pte_fn_t fn, void *data)
1534 {
1535         pgd_t *pgd;
1536         unsigned long next;
1537         unsigned long end = addr + size;
1538         int err;
1539
1540         BUG_ON(addr >= end);
1541         pgd = pgd_offset(mm, addr);
1542         do {
1543                 next = pgd_addr_end(addr, end);
1544                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1545                 if (err)
1546                         break;
1547         } while (pgd++, addr = next, addr != end);
1548         return err;
1549 }
1550 EXPORT_SYMBOL_GPL(apply_to_page_range);
1551
1552 /*
1553  * handle_pte_fault chooses page fault handler according to an entry
1554  * which was read non-atomically.  Before making any commitment, on
1555  * those architectures or configurations (e.g. i386 with PAE) which
1556  * might give a mix of unmatched parts, do_swap_page and do_file_page
1557  * must check under lock before unmapping the pte and proceeding
1558  * (but do_wp_page is only called after already making such a check;
1559  * and do_anonymous_page and do_no_page can safely check later on).
1560  */
1561 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1562                                 pte_t *page_table, pte_t orig_pte)
1563 {
1564         int same = 1;
1565 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1566         if (sizeof(pte_t) > sizeof(unsigned long)) {
1567                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1568                 spin_lock(ptl);
1569                 same = pte_same(*page_table, orig_pte);
1570                 spin_unlock(ptl);
1571         }
1572 #endif
1573         pte_unmap(page_table);
1574         return same;
1575 }
1576
1577 /*
1578  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1579  * servicing faults for write access.  In the normal case, do always want
1580  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1581  * that do not have writing enabled, when used by access_process_vm.
1582  */
1583 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1584 {
1585         if (likely(vma->vm_flags & VM_WRITE))
1586                 pte = pte_mkwrite(pte);
1587         return pte;
1588 }
1589
1590 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1591 {
1592         /*
1593          * If the source page was a PFN mapping, we don't have
1594          * a "struct page" for it. We do a best-effort copy by
1595          * just copying from the original user address. If that
1596          * fails, we just zero-fill it. Live with it.
1597          */
1598         if (unlikely(!src)) {
1599                 void *kaddr = kmap_atomic(dst, KM_USER0);
1600                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1601
1602                 /*
1603                  * This really shouldn't fail, because the page is there
1604                  * in the page tables. But it might just be unreadable,
1605                  * in which case we just give up and fill the result with
1606                  * zeroes.
1607                  */
1608                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1609                         memset(kaddr, 0, PAGE_SIZE);
1610                 kunmap_atomic(kaddr, KM_USER0);
1611                 flush_dcache_page(dst);
1612                 return;
1613
1614         }
1615         copy_user_highpage(dst, src, va, vma);
1616 }
1617
1618 /*
1619  * This routine handles present pages, when users try to write
1620  * to a shared page. It is done by copying the page to a new address
1621  * and decrementing the shared-page counter for the old page.
1622  *
1623  * Note that this routine assumes that the protection checks have been
1624  * done by the caller (the low-level page fault routine in most cases).
1625  * Thus we can safely just mark it writable once we've done any necessary
1626  * COW.
1627  *
1628  * We also mark the page dirty at this point even though the page will
1629  * change only once the write actually happens. This avoids a few races,
1630  * and potentially makes it more efficient.
1631  *
1632  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1633  * but allow concurrent faults), with pte both mapped and locked.
1634  * We return with mmap_sem still held, but pte unmapped and unlocked.
1635  */
1636 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1637                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1638                 spinlock_t *ptl, pte_t orig_pte)
1639 {
1640         struct page *old_page, *new_page;
1641         pte_t entry;
1642         int reuse = 0, ret = VM_FAULT_MINOR;
1643         struct page *dirty_page = NULL;
1644
1645         old_page = vm_normal_page(vma, address, orig_pte);
1646         if (!old_page)
1647                 goto gotten;
1648
1649         /*
1650          * Take out anonymous pages first, anonymous shared vmas are
1651          * not dirty accountable.
1652          */
1653         if (PageAnon(old_page)) {
1654                 if (!TestSetPageLocked(old_page)) {
1655                         reuse = can_share_swap_page(old_page);
1656                         unlock_page(old_page);
1657                 }
1658         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1659                                         (VM_WRITE|VM_SHARED))) {
1660                 /*
1661                  * Only catch write-faults on shared writable pages,
1662                  * read-only shared pages can get COWed by
1663                  * get_user_pages(.write=1, .force=1).
1664                  */
1665                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1666                         /*
1667                          * Notify the address space that the page is about to
1668                          * become writable so that it can prohibit this or wait
1669                          * for the page to get into an appropriate state.
1670                          *
1671                          * We do this without the lock held, so that it can
1672                          * sleep if it needs to.
1673                          */
1674                         page_cache_get(old_page);
1675                         pte_unmap_unlock(page_table, ptl);
1676
1677                         if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1678                                 goto unwritable_page;
1679
1680                         /*
1681                          * Since we dropped the lock we need to revalidate
1682                          * the PTE as someone else may have changed it.  If
1683                          * they did, we just return, as we can count on the
1684                          * MMU to tell us if they didn't also make it writable.
1685                          */
1686                         page_table = pte_offset_map_lock(mm, pmd, address,
1687                                                          &ptl);
1688                         page_cache_release(old_page);
1689                         if (!pte_same(*page_table, orig_pte))
1690                                 goto unlock;
1691                 }
1692                 dirty_page = old_page;
1693                 get_page(dirty_page);
1694                 reuse = 1;
1695         }
1696
1697         if (reuse) {
1698                 flush_cache_page(vma, address, pte_pfn(orig_pte));
1699                 entry = pte_mkyoung(orig_pte);
1700                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1701                 if (ptep_set_access_flags(vma, address, page_table, entry,1)) {
1702                         update_mmu_cache(vma, address, entry);
1703                         lazy_mmu_prot_update(entry);
1704                 }
1705                 ret |= VM_FAULT_WRITE;
1706                 goto unlock;
1707         }
1708
1709         /*
1710          * Ok, we need to copy. Oh, well..
1711          */
1712         page_cache_get(old_page);
1713 gotten:
1714         pte_unmap_unlock(page_table, ptl);
1715
1716         if (unlikely(anon_vma_prepare(vma)))
1717                 goto oom;
1718         if (old_page == ZERO_PAGE(address)) {
1719                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
1720                 if (!new_page)
1721                         goto oom;
1722         } else {
1723                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1724                 if (!new_page)
1725                         goto oom;
1726                 cow_user_page(new_page, old_page, address, vma);
1727         }
1728
1729         /*
1730          * Re-check the pte - we dropped the lock
1731          */
1732         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1733         if (likely(pte_same(*page_table, orig_pte))) {
1734                 if (old_page) {
1735                         page_remove_rmap(old_page, vma);
1736                         if (!PageAnon(old_page)) {
1737                                 dec_mm_counter(mm, file_rss);
1738                                 inc_mm_counter(mm, anon_rss);
1739                         }
1740                 } else
1741                         inc_mm_counter(mm, anon_rss);
1742                 flush_cache_page(vma, address, pte_pfn(orig_pte));
1743                 entry = mk_pte(new_page, vma->vm_page_prot);
1744                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1745                 lazy_mmu_prot_update(entry);
1746                 /*
1747                  * Clear the pte entry and flush it first, before updating the
1748                  * pte with the new entry. This will avoid a race condition
1749                  * seen in the presence of one thread doing SMC and another
1750                  * thread doing COW.
1751                  */
1752                 ptep_clear_flush(vma, address, page_table);
1753                 set_pte_at(mm, address, page_table, entry);
1754                 update_mmu_cache(vma, address, entry);
1755                 lru_cache_add_active(new_page);
1756                 page_add_new_anon_rmap(new_page, vma, address);
1757
1758                 /* Free the old page.. */
1759                 new_page = old_page;
1760                 ret |= VM_FAULT_WRITE;
1761         }
1762         if (new_page)
1763                 page_cache_release(new_page);
1764         if (old_page)
1765                 page_cache_release(old_page);
1766 unlock:
1767         pte_unmap_unlock(page_table, ptl);
1768         if (dirty_page) {
1769                 set_page_dirty_balance(dirty_page);
1770                 put_page(dirty_page);
1771         }
1772         return ret;
1773 oom:
1774         if (old_page)
1775                 page_cache_release(old_page);
1776         return VM_FAULT_OOM;
1777
1778 unwritable_page:
1779         page_cache_release(old_page);
1780         return VM_FAULT_SIGBUS;
1781 }
1782
1783 /*
1784  * Helper functions for unmap_mapping_range().
1785  *
1786  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1787  *
1788  * We have to restart searching the prio_tree whenever we drop the lock,
1789  * since the iterator is only valid while the lock is held, and anyway
1790  * a later vma might be split and reinserted earlier while lock dropped.
1791  *
1792  * The list of nonlinear vmas could be handled more efficiently, using
1793  * a placeholder, but handle it in the same way until a need is shown.
1794  * It is important to search the prio_tree before nonlinear list: a vma
1795  * may become nonlinear and be shifted from prio_tree to nonlinear list
1796  * while the lock is dropped; but never shifted from list to prio_tree.
1797  *
1798  * In order to make forward progress despite restarting the search,
1799  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1800  * quickly skip it next time around.  Since the prio_tree search only
1801  * shows us those vmas affected by unmapping the range in question, we
1802  * can't efficiently keep all vmas in step with mapping->truncate_count:
1803  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1804  * mapping->truncate_count and vma->vm_truncate_count are protected by
1805  * i_mmap_lock.
1806  *
1807  * In order to make forward progress despite repeatedly restarting some
1808  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1809  * and restart from that address when we reach that vma again.  It might
1810  * have been split or merged, shrunk or extended, but never shifted: so
1811  * restart_addr remains valid so long as it remains in the vma's range.
1812  * unmap_mapping_range forces truncate_count to leap over page-aligned
1813  * values so we can save vma's restart_addr in its truncate_count field.
1814  */
1815 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1816
1817 static void reset_vma_truncate_counts(struct address_space *mapping)
1818 {
1819         struct vm_area_struct *vma;
1820         struct prio_tree_iter iter;
1821
1822         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1823                 vma->vm_truncate_count = 0;
1824         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1825                 vma->vm_truncate_count = 0;
1826 }
1827
1828 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1829                 unsigned long start_addr, unsigned long end_addr,
1830                 struct zap_details *details)
1831 {
1832         unsigned long restart_addr;
1833         int need_break;
1834
1835         /*
1836          * files that support invalidating or truncating portions of the
1837          * file from under mmaped areas must set the VM_CAN_INVALIDATE flag, and
1838          * have their .nopage function return the page locked.
1839          */
1840         BUG_ON(!(vma->vm_flags & VM_CAN_INVALIDATE));
1841
1842 again:
1843         restart_addr = vma->vm_truncate_count;
1844         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1845                 start_addr = restart_addr;
1846                 if (start_addr >= end_addr) {
1847                         /* Top of vma has been split off since last time */
1848                         vma->vm_truncate_count = details->truncate_count;
1849                         return 0;
1850                 }
1851         }
1852
1853         restart_addr = zap_page_range(vma, start_addr,
1854                                         end_addr - start_addr, details);
1855         need_break = need_resched() ||
1856                         need_lockbreak(details->i_mmap_lock);
1857
1858         if (restart_addr >= end_addr) {
1859                 /* We have now completed this vma: mark it so */
1860                 vma->vm_truncate_count = details->truncate_count;
1861                 if (!need_break)
1862                         return 0;
1863         } else {
1864                 /* Note restart_addr in vma's truncate_count field */
1865                 vma->vm_truncate_count = restart_addr;
1866                 if (!need_break)
1867                         goto again;
1868         }
1869
1870         spin_unlock(details->i_mmap_lock);
1871         cond_resched();
1872         spin_lock(details->i_mmap_lock);
1873         return -EINTR;
1874 }
1875
1876 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1877                                             struct zap_details *details)
1878 {
1879         struct vm_area_struct *vma;
1880         struct prio_tree_iter iter;
1881         pgoff_t vba, vea, zba, zea;
1882
1883 restart:
1884         vma_prio_tree_foreach(vma, &iter, root,
1885                         details->first_index, details->last_index) {
1886                 /* Skip quickly over those we have already dealt with */
1887                 if (vma->vm_truncate_count == details->truncate_count)
1888                         continue;
1889
1890                 vba = vma->vm_pgoff;
1891                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1892                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1893                 zba = details->first_index;
1894                 if (zba < vba)
1895                         zba = vba;
1896                 zea = details->last_index;
1897                 if (zea > vea)
1898                         zea = vea;
1899
1900                 if (unmap_mapping_range_vma(vma,
1901                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1902                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1903                                 details) < 0)
1904                         goto restart;
1905         }
1906 }
1907
1908 static inline void unmap_mapping_range_list(struct list_head *head,
1909                                             struct zap_details *details)
1910 {
1911         struct vm_area_struct *vma;
1912
1913         /*
1914          * In nonlinear VMAs there is no correspondence between virtual address
1915          * offset and file offset.  So we must perform an exhaustive search
1916          * across *all* the pages in each nonlinear VMA, not just the pages
1917          * whose virtual address lies outside the file truncation point.
1918          */
1919 restart:
1920         list_for_each_entry(vma, head, shared.vm_set.list) {
1921                 /* Skip quickly over those we have already dealt with */
1922                 if (vma->vm_truncate_count == details->truncate_count)
1923                         continue;
1924                 details->nonlinear_vma = vma;
1925                 if (unmap_mapping_range_vma(vma, vma->vm_start,
1926                                         vma->vm_end, details) < 0)
1927                         goto restart;
1928         }
1929 }
1930
1931 /**
1932  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1933  * @mapping: the address space containing mmaps to be unmapped.
1934  * @holebegin: byte in first page to unmap, relative to the start of
1935  * the underlying file.  This will be rounded down to a PAGE_SIZE
1936  * boundary.  Note that this is different from vmtruncate(), which
1937  * must keep the partial page.  In contrast, we must get rid of
1938  * partial pages.
1939  * @holelen: size of prospective hole in bytes.  This will be rounded
1940  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1941  * end of the file.
1942  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1943  * but 0 when invalidating pagecache, don't throw away private data.
1944  */
1945 void unmap_mapping_range(struct address_space *mapping,
1946                 loff_t const holebegin, loff_t const holelen, int even_cows)
1947 {
1948         struct zap_details details;
1949         pgoff_t hba = holebegin >> PAGE_SHIFT;
1950         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1951
1952         /* Check for overflow. */
1953         if (sizeof(holelen) > sizeof(hlen)) {
1954                 long long holeend =
1955                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1956                 if (holeend & ~(long long)ULONG_MAX)
1957                         hlen = ULONG_MAX - hba + 1;
1958         }
1959
1960         details.check_mapping = even_cows? NULL: mapping;
1961         details.nonlinear_vma = NULL;
1962         details.first_index = hba;
1963         details.last_index = hba + hlen - 1;
1964         if (details.last_index < details.first_index)
1965                 details.last_index = ULONG_MAX;
1966         details.i_mmap_lock = &mapping->i_mmap_lock;
1967
1968         spin_lock(&mapping->i_mmap_lock);
1969
1970         /* Protect against endless unmapping loops */
1971         mapping->truncate_count++;
1972         if (unlikely(is_restart_addr(mapping->truncate_count))) {
1973                 if (mapping->truncate_count == 0)
1974                         reset_vma_truncate_counts(mapping);
1975                 mapping->truncate_count++;
1976         }
1977         details.truncate_count = mapping->truncate_count;
1978
1979         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1980                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1981         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1982                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1983         spin_unlock(&mapping->i_mmap_lock);
1984 }
1985 EXPORT_SYMBOL(unmap_mapping_range);
1986
1987 /**
1988  * vmtruncate - unmap mappings "freed" by truncate() syscall
1989  * @inode: inode of the file used
1990  * @offset: file offset to start truncating
1991  *
1992  * NOTE! We have to be ready to update the memory sharing
1993  * between the file and the memory map for a potential last
1994  * incomplete page.  Ugly, but necessary.
1995  */
1996 int vmtruncate(struct inode * inode, loff_t offset)
1997 {
1998         struct address_space *mapping = inode->i_mapping;
1999         unsigned long limit;
2000
2001         if (inode->i_size < offset)
2002                 goto do_expand;
2003         /*
2004          * truncation of in-use swapfiles is disallowed - it would cause
2005          * subsequent swapout to scribble on the now-freed blocks.
2006          */
2007         if (IS_SWAPFILE(inode))
2008                 goto out_busy;
2009         i_size_write(inode, offset);
2010
2011         /*
2012          * unmap_mapping_range is called twice, first simply for efficiency
2013          * so that truncate_inode_pages does fewer single-page unmaps. However
2014          * after this first call, and before truncate_inode_pages finishes,
2015          * it is possible for private pages to be COWed, which remain after
2016          * truncate_inode_pages finishes, hence the second unmap_mapping_range
2017          * call must be made for correctness.
2018          */
2019         unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2020         truncate_inode_pages(mapping, offset);
2021         unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2022         goto out_truncate;
2023
2024 do_expand:
2025         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2026         if (limit != RLIM_INFINITY && offset > limit)
2027                 goto out_sig;
2028         if (offset > inode->i_sb->s_maxbytes)
2029                 goto out_big;
2030         i_size_write(inode, offset);
2031
2032 out_truncate:
2033         if (inode->i_op && inode->i_op->truncate)
2034                 inode->i_op->truncate(inode);
2035         return 0;
2036 out_sig:
2037         send_sig(SIGXFSZ, current, 0);
2038 out_big:
2039         return -EFBIG;
2040 out_busy:
2041         return -ETXTBSY;
2042 }
2043 EXPORT_SYMBOL(vmtruncate);
2044
2045 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2046 {
2047         struct address_space *mapping = inode->i_mapping;
2048
2049         /*
2050          * If the underlying filesystem is not going to provide
2051          * a way to truncate a range of blocks (punch a hole) -
2052          * we should return failure right now.
2053          */
2054         if (!inode->i_op || !inode->i_op->truncate_range)
2055                 return -ENOSYS;
2056
2057         mutex_lock(&inode->i_mutex);
2058         down_write(&inode->i_alloc_sem);
2059         unmap_mapping_range(mapping, offset, (end - offset), 1);
2060         truncate_inode_pages_range(mapping, offset, end);
2061         unmap_mapping_range(mapping, offset, (end - offset), 1);
2062         inode->i_op->truncate_range(inode, offset, end);
2063         up_write(&inode->i_alloc_sem);
2064         mutex_unlock(&inode->i_mutex);
2065
2066         return 0;
2067 }
2068
2069 /**
2070  * swapin_readahead - swap in pages in hope we need them soon
2071  * @entry: swap entry of this memory
2072  * @addr: address to start
2073  * @vma: user vma this addresses belong to
2074  *
2075  * Primitive swap readahead code. We simply read an aligned block of
2076  * (1 << page_cluster) entries in the swap area. This method is chosen
2077  * because it doesn't cost us any seek time.  We also make sure to queue
2078  * the 'original' request together with the readahead ones...
2079  *
2080  * This has been extended to use the NUMA policies from the mm triggering
2081  * the readahead.
2082  *
2083  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
2084  */
2085 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
2086 {
2087 #ifdef CONFIG_NUMA
2088         struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
2089 #endif
2090         int i, num;
2091         struct page *new_page;
2092         unsigned long offset;
2093
2094         /*
2095          * Get the number of handles we should do readahead io to.
2096          */
2097         num = valid_swaphandles(entry, &offset);
2098         for (i = 0; i < num; offset++, i++) {
2099                 /* Ok, do the async read-ahead now */
2100                 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
2101                                                            offset), vma, addr);
2102                 if (!new_page)
2103                         break;
2104                 page_cache_release(new_page);
2105 #ifdef CONFIG_NUMA
2106                 /*
2107                  * Find the next applicable VMA for the NUMA policy.
2108                  */
2109                 addr += PAGE_SIZE;
2110                 if (addr == 0)
2111                         vma = NULL;
2112                 if (vma) {
2113                         if (addr >= vma->vm_end) {
2114                                 vma = next_vma;
2115                                 next_vma = vma ? vma->vm_next : NULL;
2116                         }
2117                         if (vma && addr < vma->vm_start)
2118                                 vma = NULL;
2119                 } else {
2120                         if (next_vma && addr >= next_vma->vm_start) {
2121                                 vma = next_vma;
2122                                 next_vma = vma->vm_next;
2123                         }
2124                 }
2125 #endif
2126         }
2127         lru_add_drain();        /* Push any new pages onto the LRU now */
2128 }
2129
2130 /*
2131  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2132  * but allow concurrent faults), and pte mapped but not yet locked.
2133  * We return with mmap_sem still held, but pte unmapped and unlocked.
2134  */
2135 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2136                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2137                 int write_access, pte_t orig_pte)
2138 {
2139         spinlock_t *ptl;
2140         struct page *page;
2141         swp_entry_t entry;
2142         pte_t pte;
2143         int ret = VM_FAULT_MINOR;
2144
2145         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2146                 goto out;
2147
2148         entry = pte_to_swp_entry(orig_pte);
2149         if (is_migration_entry(entry)) {
2150                 migration_entry_wait(mm, pmd, address);
2151                 goto out;
2152         }
2153         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2154         page = lookup_swap_cache(entry);
2155         if (!page) {
2156                 grab_swap_token(); /* Contend for token _before_ read-in */
2157                 swapin_readahead(entry, address, vma);
2158                 page = read_swap_cache_async(entry, vma, address);
2159                 if (!page) {
2160                         /*
2161                          * Back out if somebody else faulted in this pte
2162                          * while we released the pte lock.
2163                          */
2164                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2165                         if (likely(pte_same(*page_table, orig_pte)))
2166                                 ret = VM_FAULT_OOM;
2167                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2168                         goto unlock;
2169                 }
2170
2171                 /* Had to read the page from swap area: Major fault */
2172                 ret = VM_FAULT_MAJOR;
2173                 count_vm_event(PGMAJFAULT);
2174         }
2175
2176         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2177         mark_page_accessed(page);
2178         lock_page(page);
2179
2180         /*
2181          * Back out if somebody else already faulted in this pte.
2182          */
2183         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2184         if (unlikely(!pte_same(*page_table, orig_pte)))
2185                 goto out_nomap;
2186
2187         if (unlikely(!PageUptodate(page))) {
2188                 ret = VM_FAULT_SIGBUS;
2189                 goto out_nomap;
2190         }
2191
2192         /* The page isn't present yet, go ahead with the fault. */
2193
2194         inc_mm_counter(mm, anon_rss);
2195         pte = mk_pte(page, vma->vm_page_prot);
2196         if (write_access && can_share_swap_page(page)) {
2197                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2198                 write_access = 0;
2199         }
2200
2201         flush_icache_page(vma, page);
2202         set_pte_at(mm, address, page_table, pte);
2203         page_add_anon_rmap(page, vma, address);
2204
2205         swap_free(entry);
2206         if (vm_swap_full())
2207                 remove_exclusive_swap_page(page);
2208         unlock_page(page);
2209
2210         if (write_access) {
2211                 if (do_wp_page(mm, vma, address,
2212                                 page_table, pmd, ptl, pte) == VM_FAULT_OOM)
2213                         ret = VM_FAULT_OOM;
2214                 goto out;
2215         }
2216
2217         /* No need to invalidate - it was non-present before */
2218         update_mmu_cache(vma, address, pte);
2219 unlock:
2220         pte_unmap_unlock(page_table, ptl);
2221 out:
2222         return ret;
2223 out_nomap:
2224         pte_unmap_unlock(page_table, ptl);
2225         unlock_page(page);
2226         page_cache_release(page);
2227         return ret;
2228 }
2229
2230 /*
2231  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2232  * but allow concurrent faults), and pte mapped but not yet locked.
2233  * We return with mmap_sem still held, but pte unmapped and unlocked.
2234  */
2235 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2236                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2237                 int write_access)
2238 {
2239         struct page *page;
2240         spinlock_t *ptl;
2241         pte_t entry;
2242
2243         if (write_access) {
2244                 /* Allocate our own private page. */
2245                 pte_unmap(page_table);
2246
2247                 if (unlikely(anon_vma_prepare(vma)))
2248                         goto oom;
2249                 page = alloc_zeroed_user_highpage_movable(vma, address);
2250                 if (!page)
2251                         goto oom;
2252
2253                 entry = mk_pte(page, vma->vm_page_prot);
2254                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2255
2256                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2257                 if (!pte_none(*page_table))
2258                         goto release;
2259                 inc_mm_counter(mm, anon_rss);
2260                 lru_cache_add_active(page);
2261                 page_add_new_anon_rmap(page, vma, address);
2262         } else {
2263                 /* Map the ZERO_PAGE - vm_page_prot is readonly */
2264                 page = ZERO_PAGE(address);
2265                 page_cache_get(page);
2266                 entry = mk_pte(page, vma->vm_page_prot);
2267
2268                 ptl = pte_lockptr(mm, pmd);
2269                 spin_lock(ptl);
2270                 if (!pte_none(*page_table))
2271                         goto release;
2272                 inc_mm_counter(mm, file_rss);
2273                 page_add_file_rmap(page);
2274         }
2275
2276         set_pte_at(mm, address, page_table, entry);
2277
2278         /* No need to invalidate - it was non-present before */
2279         update_mmu_cache(vma, address, entry);
2280         lazy_mmu_prot_update(entry);
2281 unlock:
2282         pte_unmap_unlock(page_table, ptl);
2283         return VM_FAULT_MINOR;
2284 release:
2285         page_cache_release(page);
2286         goto unlock;
2287 oom:
2288         return VM_FAULT_OOM;
2289 }
2290
2291 /*
2292  * __do_fault() tries to create a new page mapping. It aggressively
2293  * tries to share with existing pages, but makes a separate copy if
2294  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2295  * the next page fault.
2296  *
2297  * As this is called only for pages that do not currently exist, we
2298  * do not need to flush old virtual caches or the TLB.
2299  *
2300  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2301  * but allow concurrent faults), and pte mapped but not yet locked.
2302  * We return with mmap_sem still held, but pte unmapped and unlocked.
2303  */
2304 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2305                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2306                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2307 {
2308         spinlock_t *ptl;
2309         struct page *page, *faulted_page;
2310         pte_t entry;
2311         int anon = 0;
2312         struct page *dirty_page = NULL;
2313         struct fault_data fdata;
2314
2315         fdata.address = address & PAGE_MASK;
2316         fdata.pgoff = pgoff;
2317         fdata.flags = flags;
2318
2319         pte_unmap(page_table);
2320         BUG_ON(vma->vm_flags & VM_PFNMAP);
2321
2322         if (likely(vma->vm_ops->fault)) {
2323                 fdata.type = -1;
2324                 faulted_page = vma->vm_ops->fault(vma, &fdata);
2325                 WARN_ON(fdata.type == -1);
2326                 if (unlikely(!faulted_page))
2327                         return fdata.type;
2328         } else {
2329                 /* Legacy ->nopage path */
2330                 fdata.type = VM_FAULT_MINOR;
2331                 faulted_page = vma->vm_ops->nopage(vma, address & PAGE_MASK,
2332                                                                 &fdata.type);
2333                 /* no page was available -- either SIGBUS or OOM */
2334                 if (unlikely(faulted_page == NOPAGE_SIGBUS))
2335                         return VM_FAULT_SIGBUS;
2336                 else if (unlikely(faulted_page == NOPAGE_OOM))
2337                         return VM_FAULT_OOM;
2338         }
2339
2340         /*
2341          * For consistency in subsequent calls, make the faulted_page always
2342          * locked.
2343          */
2344         if (unlikely(!(vma->vm_flags & VM_CAN_INVALIDATE)))
2345                 lock_page(faulted_page);
2346         else
2347                 BUG_ON(!PageLocked(faulted_page));
2348
2349         /*
2350          * Should we do an early C-O-W break?
2351          */
2352         page = faulted_page;
2353         if (flags & FAULT_FLAG_WRITE) {
2354                 if (!(vma->vm_flags & VM_SHARED)) {
2355                         anon = 1;
2356                         if (unlikely(anon_vma_prepare(vma))) {
2357                                 fdata.type = VM_FAULT_OOM;
2358                                 goto out;
2359                         }
2360                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2361                         if (!page) {
2362                                 fdata.type = VM_FAULT_OOM;
2363                                 goto out;
2364                         }
2365                         copy_user_highpage(page, faulted_page, address, vma);
2366                 } else {
2367                         /*
2368                          * If the page will be shareable, see if the backing
2369                          * address space wants to know that the page is about
2370                          * to become writable
2371                          */
2372                         if (vma->vm_ops->page_mkwrite) {
2373                                 unlock_page(page);
2374                                 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2375                                         fdata.type = VM_FAULT_SIGBUS;
2376                                         anon = 1; /* no anon but release faulted_page */
2377                                         goto out_unlocked;
2378                                 }
2379                                 lock_page(page);
2380                         }
2381                 }
2382
2383         }
2384
2385         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2386
2387         /*
2388          * This silly early PAGE_DIRTY setting removes a race
2389          * due to the bad i386 page protection. But it's valid
2390          * for other architectures too.
2391          *
2392          * Note that if write_access is true, we either now have
2393          * an exclusive copy of the page, or this is a shared mapping,
2394          * so we can make it writable and dirty to avoid having to
2395          * handle that later.
2396          */
2397         /* Only go through if we didn't race with anybody else... */
2398         if (likely(pte_same(*page_table, orig_pte))) {
2399                 flush_icache_page(vma, page);
2400                 entry = mk_pte(page, vma->vm_page_prot);
2401                 if (flags & FAULT_FLAG_WRITE)
2402                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2403                 set_pte_at(mm, address, page_table, entry);
2404                 if (anon) {
2405                         inc_mm_counter(mm, anon_rss);
2406                         lru_cache_add_active(page);
2407                         page_add_new_anon_rmap(page, vma, address);
2408                 } else {
2409                         inc_mm_counter(mm, file_rss);
2410                         page_add_file_rmap(page);
2411                         if (flags & FAULT_FLAG_WRITE) {
2412                                 dirty_page = page;
2413                                 get_page(dirty_page);
2414                         }
2415                 }
2416
2417                 /* no need to invalidate: a not-present page won't be cached */
2418                 update_mmu_cache(vma, address, entry);
2419                 lazy_mmu_prot_update(entry);
2420         } else {
2421                 if (anon)
2422                         page_cache_release(page);
2423                 else
2424                         anon = 1; /* no anon but release faulted_page */
2425         }
2426
2427         pte_unmap_unlock(page_table, ptl);
2428
2429 out:
2430         unlock_page(faulted_page);
2431 out_unlocked:
2432         if (anon)
2433                 page_cache_release(faulted_page);
2434         else if (dirty_page) {
2435                 set_page_dirty_balance(dirty_page);
2436                 put_page(dirty_page);
2437         }
2438
2439         return fdata.type;
2440 }
2441
2442 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2443                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2444                 int write_access, pte_t orig_pte)
2445 {
2446         pgoff_t pgoff = (((address & PAGE_MASK)
2447                         - vma->vm_start) >> PAGE_CACHE_SHIFT) + vma->vm_pgoff;
2448         unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2449
2450         return __do_fault(mm, vma, address, page_table, pmd, pgoff, flags, orig_pte);
2451 }
2452
2453 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2454                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2455                 int write_access, pgoff_t pgoff, pte_t orig_pte)
2456 {
2457         unsigned int flags = FAULT_FLAG_NONLINEAR |
2458                                 (write_access ? FAULT_FLAG_WRITE : 0);
2459
2460         return __do_fault(mm, vma, address, page_table, pmd, pgoff, flags, orig_pte);
2461 }
2462
2463 /*
2464  * do_no_pfn() tries to create a new page mapping for a page without
2465  * a struct_page backing it
2466  *
2467  * As this is called only for pages that do not currently exist, we
2468  * do not need to flush old virtual caches or the TLB.
2469  *
2470  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2471  * but allow concurrent faults), and pte mapped but not yet locked.
2472  * We return with mmap_sem still held, but pte unmapped and unlocked.
2473  *
2474  * It is expected that the ->nopfn handler always returns the same pfn
2475  * for a given virtual mapping.
2476  *
2477  * Mark this `noinline' to prevent it from bloating the main pagefault code.
2478  */
2479 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2480                      unsigned long address, pte_t *page_table, pmd_t *pmd,
2481                      int write_access)
2482 {
2483         spinlock_t *ptl;
2484         pte_t entry;
2485         unsigned long pfn;
2486         int ret = VM_FAULT_MINOR;
2487
2488         pte_unmap(page_table);
2489         BUG_ON(!(vma->vm_flags & VM_PFNMAP));
2490         BUG_ON(is_cow_mapping(vma->vm_flags));
2491
2492         pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2493         if (unlikely(pfn == NOPFN_OOM))
2494                 return VM_FAULT_OOM;
2495         else if (unlikely(pfn == NOPFN_SIGBUS))
2496                 return VM_FAULT_SIGBUS;
2497         else if (unlikely(pfn == NOPFN_REFAULT))
2498                 return VM_FAULT_MINOR;
2499
2500         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2501
2502         /* Only go through if we didn't race with anybody else... */
2503         if (pte_none(*page_table)) {
2504                 entry = pfn_pte(pfn, vma->vm_page_prot);
2505                 if (write_access)
2506                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2507                 set_pte_at(mm, address, page_table, entry);
2508         }
2509         pte_unmap_unlock(page_table, ptl);
2510         return ret;
2511 }
2512
2513 /*
2514  * Fault of a previously existing named mapping. Repopulate the pte
2515  * from the encoded file_pte if possible. This enables swappable
2516  * nonlinear vmas.
2517  *
2518  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2519  * but allow concurrent faults), and pte mapped but not yet locked.
2520  * We return with mmap_sem still held, but pte unmapped and unlocked.
2521  */
2522 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
2523                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2524                 int write_access, pte_t orig_pte)
2525 {
2526         pgoff_t pgoff;
2527         int err;
2528
2529         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2530                 return VM_FAULT_MINOR;
2531
2532         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2533                 /*
2534                  * Page table corrupted: show pte and kill process.
2535                  */
2536                 print_bad_pte(vma, orig_pte, address);
2537                 return VM_FAULT_OOM;
2538         }
2539
2540         pgoff = pte_to_pgoff(orig_pte);
2541
2542         if (vma->vm_ops && vma->vm_ops->fault)
2543                 return do_nonlinear_fault(mm, vma, address, page_table, pmd,
2544                                         write_access, pgoff, orig_pte);
2545
2546         /* We can then assume vm->vm_ops && vma->vm_ops->populate */
2547         err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
2548                                         vma->vm_page_prot, pgoff, 0);
2549         if (err == -ENOMEM)
2550                 return VM_FAULT_OOM;
2551         if (err)
2552                 return VM_FAULT_SIGBUS;
2553         return VM_FAULT_MAJOR;
2554 }
2555
2556 /*
2557  * These routines also need to handle stuff like marking pages dirty
2558  * and/or accessed for architectures that don't do it in hardware (most
2559  * RISC architectures).  The early dirtying is also good on the i386.
2560  *
2561  * There is also a hook called "update_mmu_cache()" that architectures
2562  * with external mmu caches can use to update those (ie the Sparc or
2563  * PowerPC hashed page tables that act as extended TLBs).
2564  *
2565  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2566  * but allow concurrent faults), and pte mapped but not yet locked.
2567  * We return with mmap_sem still held, but pte unmapped and unlocked.
2568  */
2569 static inline int handle_pte_fault(struct mm_struct *mm,
2570                 struct vm_area_struct *vma, unsigned long address,
2571                 pte_t *pte, pmd_t *pmd, int write_access)
2572 {
2573         pte_t entry;
2574         spinlock_t *ptl;
2575
2576         entry = *pte;
2577         if (!pte_present(entry)) {
2578                 if (pte_none(entry)) {
2579                         if (vma->vm_ops) {
2580                                 if (vma->vm_ops->fault || vma->vm_ops->nopage)
2581                                         return do_linear_fault(mm, vma, address,
2582                                                 pte, pmd, write_access, entry);
2583                                 if (unlikely(vma->vm_ops->nopfn))
2584                                         return do_no_pfn(mm, vma, address, pte,
2585                                                          pmd, write_access);
2586                         }
2587                         return do_anonymous_page(mm, vma, address,
2588                                                  pte, pmd, write_access);
2589                 }
2590                 if (pte_file(entry))
2591                         return do_file_page(mm, vma, address,
2592                                         pte, pmd, write_access, entry);
2593                 return do_swap_page(mm, vma, address,
2594                                         pte, pmd, write_access, entry);
2595         }
2596
2597         ptl = pte_lockptr(mm, pmd);
2598         spin_lock(ptl);
2599         if (unlikely(!pte_same(*pte, entry)))
2600                 goto unlock;
2601         if (write_access) {
2602                 if (!pte_write(entry))
2603                         return do_wp_page(mm, vma, address,
2604                                         pte, pmd, ptl, entry);
2605                 entry = pte_mkdirty(entry);
2606         }
2607         entry = pte_mkyoung(entry);
2608         if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2609                 update_mmu_cache(vma, address, entry);
2610                 lazy_mmu_prot_update(entry);
2611         } else {
2612                 /*
2613                  * This is needed only for protection faults but the arch code
2614                  * is not yet telling us if this is a protection fault or not.
2615                  * This still avoids useless tlb flushes for .text page faults
2616                  * with threads.
2617                  */
2618                 if (write_access)
2619                         flush_tlb_page(vma, address);
2620         }
2621 unlock:
2622         pte_unmap_unlock(pte, ptl);
2623         return VM_FAULT_MINOR;
2624 }
2625
2626 /*
2627  * By the time we get here, we already hold the mm semaphore
2628  */
2629 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2630                 unsigned long address, int write_access)
2631 {
2632         pgd_t *pgd;
2633         pud_t *pud;
2634         pmd_t *pmd;
2635         pte_t *pte;
2636
2637         __set_current_state(TASK_RUNNING);
2638
2639         count_vm_event(PGFAULT);
2640
2641         if (unlikely(is_vm_hugetlb_page(vma)))
2642                 return hugetlb_fault(mm, vma, address, write_access);
2643
2644         pgd = pgd_offset(mm, address);
2645         pud = pud_alloc(mm, pgd, address);
2646         if (!pud)
2647                 return VM_FAULT_OOM;
2648         pmd = pmd_alloc(mm, pud, address);
2649         if (!pmd)
2650                 return VM_FAULT_OOM;
2651         pte = pte_alloc_map(mm, pmd, address);
2652         if (!pte)
2653                 return VM_FAULT_OOM;
2654
2655         return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2656 }
2657
2658 EXPORT_SYMBOL_GPL(__handle_mm_fault);
2659
2660 #ifndef __PAGETABLE_PUD_FOLDED
2661 /*
2662  * Allocate page upper directory.
2663  * We've already handled the fast-path in-line.
2664  */
2665 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2666 {
2667         pud_t *new = pud_alloc_one(mm, address);
2668         if (!new)
2669                 return -ENOMEM;
2670
2671         spin_lock(&mm->page_table_lock);
2672         if (pgd_present(*pgd))          /* Another has populated it */
2673                 pud_free(new);
2674         else
2675                 pgd_populate(mm, pgd, new);
2676         spin_unlock(&mm->page_table_lock);
2677         return 0;
2678 }
2679 #endif /* __PAGETABLE_PUD_FOLDED */
2680
2681 #ifndef __PAGETABLE_PMD_FOLDED
2682 /*
2683  * Allocate page middle directory.
2684  * We've already handled the fast-path in-line.
2685  */
2686 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2687 {
2688         pmd_t *new = pmd_alloc_one(mm, address);
2689         if (!new)
2690                 return -ENOMEM;
2691
2692         spin_lock(&mm->page_table_lock);
2693 #ifndef __ARCH_HAS_4LEVEL_HACK
2694         if (pud_present(*pud))          /* Another has populated it */
2695                 pmd_free(new);
2696         else
2697                 pud_populate(mm, pud, new);
2698 #else
2699         if (pgd_present(*pud))          /* Another has populated it */
2700                 pmd_free(new);
2701         else
2702                 pgd_populate(mm, pud, new);
2703 #endif /* __ARCH_HAS_4LEVEL_HACK */
2704         spin_unlock(&mm->page_table_lock);
2705         return 0;
2706 }
2707 #endif /* __PAGETABLE_PMD_FOLDED */
2708
2709 int make_pages_present(unsigned long addr, unsigned long end)
2710 {
2711         int ret, len, write;
2712         struct vm_area_struct * vma;
2713
2714         vma = find_vma(current->mm, addr);
2715         if (!vma)
2716                 return -1;
2717         write = (vma->vm_flags & VM_WRITE) != 0;
2718         BUG_ON(addr >= end);
2719         BUG_ON(end > vma->vm_end);
2720         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2721         ret = get_user_pages(current, current->mm, addr,
2722                         len, write, 0, NULL, NULL);
2723         if (ret < 0)
2724                 return ret;
2725         return ret == len ? 0 : -1;
2726 }
2727
2728 /* 
2729  * Map a vmalloc()-space virtual address to the physical page.
2730  */
2731 struct page * vmalloc_to_page(void * vmalloc_addr)
2732 {
2733         unsigned long addr = (unsigned long) vmalloc_addr;
2734         struct page *page = NULL;
2735         pgd_t *pgd = pgd_offset_k(addr);
2736         pud_t *pud;
2737         pmd_t *pmd;
2738         pte_t *ptep, pte;
2739   
2740         if (!pgd_none(*pgd)) {
2741                 pud = pud_offset(pgd, addr);
2742                 if (!pud_none(*pud)) {
2743                         pmd = pmd_offset(pud, addr);
2744                         if (!pmd_none(*pmd)) {
2745                                 ptep = pte_offset_map(pmd, addr);
2746                                 pte = *ptep;
2747                                 if (pte_present(pte))
2748                                         page = pte_page(pte);
2749                                 pte_unmap(ptep);
2750                         }
2751                 }
2752         }
2753         return page;
2754 }
2755
2756 EXPORT_SYMBOL(vmalloc_to_page);
2757
2758 /*
2759  * Map a vmalloc()-space virtual address to the physical page frame number.
2760  */
2761 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2762 {
2763         return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2764 }
2765
2766 EXPORT_SYMBOL(vmalloc_to_pfn);
2767
2768 #if !defined(__HAVE_ARCH_GATE_AREA)
2769
2770 #if defined(AT_SYSINFO_EHDR)
2771 static struct vm_area_struct gate_vma;
2772
2773 static int __init gate_vma_init(void)
2774 {
2775         gate_vma.vm_mm = NULL;
2776         gate_vma.vm_start = FIXADDR_USER_START;
2777         gate_vma.vm_end = FIXADDR_USER_END;
2778         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2779         gate_vma.vm_page_prot = __P101;
2780         /*
2781          * Make sure the vDSO gets into every core dump.
2782          * Dumping its contents makes post-mortem fully interpretable later
2783          * without matching up the same kernel and hardware config to see
2784          * what PC values meant.
2785          */
2786         gate_vma.vm_flags |= VM_ALWAYSDUMP;
2787         return 0;
2788 }
2789 __initcall(gate_vma_init);
2790 #endif
2791
2792 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2793 {
2794 #ifdef AT_SYSINFO_EHDR
2795         return &gate_vma;
2796 #else
2797         return NULL;
2798 #endif
2799 }
2800
2801 int in_gate_area_no_task(unsigned long addr)
2802 {
2803 #ifdef AT_SYSINFO_EHDR
2804         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2805                 return 1;
2806 #endif
2807         return 0;
2808 }
2809
2810 #endif  /* __HAVE_ARCH_GATE_AREA */
2811
2812 /*
2813  * Access another process' address space.
2814  * Source/target buffer must be kernel space,
2815  * Do not walk the page table directly, use get_user_pages
2816  */
2817 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2818 {
2819         struct mm_struct *mm;
2820         struct vm_area_struct *vma;
2821         struct page *page;
2822         void *old_buf = buf;
2823
2824         mm = get_task_mm(tsk);
2825         if (!mm)
2826                 return 0;
2827
2828         down_read(&mm->mmap_sem);
2829         /* ignore errors, just check how much was sucessfully transfered */
2830         while (len) {
2831                 int bytes, ret, offset;
2832                 void *maddr;
2833
2834                 ret = get_user_pages(tsk, mm, addr, 1,
2835                                 write, 1, &page, &vma);
2836                 if (ret <= 0)
2837                         break;
2838
2839                 bytes = len;
2840                 offset = addr & (PAGE_SIZE-1);
2841                 if (bytes > PAGE_SIZE-offset)
2842                         bytes = PAGE_SIZE-offset;
2843
2844                 maddr = kmap(page);
2845                 if (write) {
2846                         copy_to_user_page(vma, page, addr,
2847                                           maddr + offset, buf, bytes);
2848                         set_page_dirty_lock(page);
2849                 } else {
2850                         copy_from_user_page(vma, page, addr,
2851                                             buf, maddr + offset, bytes);
2852                 }
2853                 kunmap(page);
2854                 page_cache_release(page);
2855                 len -= bytes;
2856                 buf += bytes;
2857                 addr += bytes;
2858         }
2859         up_read(&mm->mmap_sem);
2860         mmput(mm);
2861
2862         return buf - old_buf;
2863 }