5c694f2b9c12d02d6a9ca129afb702d68237a9c9
[safe/jmp/linux-2.6] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59
60 #include <asm/io.h>
61 #include <asm/pgalloc.h>
62 #include <asm/uaccess.h>
63 #include <asm/tlb.h>
64 #include <asm/tlbflush.h>
65 #include <asm/pgtable.h>
66
67 #include "internal.h"
68
69 #ifndef CONFIG_NEED_MULTIPLE_NODES
70 /* use the per-pgdat data instead for discontigmem - mbligh */
71 unsigned long max_mapnr;
72 struct page *mem_map;
73
74 EXPORT_SYMBOL(max_mapnr);
75 EXPORT_SYMBOL(mem_map);
76 #endif
77
78 unsigned long num_physpages;
79 /*
80  * A number of key systems in x86 including ioremap() rely on the assumption
81  * that high_memory defines the upper bound on direct map memory, then end
82  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
83  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
84  * and ZONE_HIGHMEM.
85  */
86 void * high_memory;
87
88 EXPORT_SYMBOL(num_physpages);
89 EXPORT_SYMBOL(high_memory);
90
91 /*
92  * Randomize the address space (stacks, mmaps, brk, etc.).
93  *
94  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95  *   as ancient (libc5 based) binaries can segfault. )
96  */
97 int randomize_va_space __read_mostly =
98 #ifdef CONFIG_COMPAT_BRK
99                                         1;
100 #else
101                                         2;
102 #endif
103
104 static int __init disable_randmaps(char *s)
105 {
106         randomize_va_space = 0;
107         return 1;
108 }
109 __setup("norandmaps", disable_randmaps);
110
111 static unsigned long zero_pfn __read_mostly;
112
113 /*
114  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
115  */
116 static int __init init_zero_pfn(void)
117 {
118         zero_pfn = page_to_pfn(ZERO_PAGE(0));
119         return 0;
120 }
121 core_initcall(init_zero_pfn);
122
123 /*
124  * If a p?d_bad entry is found while walking page tables, report
125  * the error, before resetting entry to p?d_none.  Usually (but
126  * very seldom) called out from the p?d_none_or_clear_bad macros.
127  */
128
129 void pgd_clear_bad(pgd_t *pgd)
130 {
131         pgd_ERROR(*pgd);
132         pgd_clear(pgd);
133 }
134
135 void pud_clear_bad(pud_t *pud)
136 {
137         pud_ERROR(*pud);
138         pud_clear(pud);
139 }
140
141 void pmd_clear_bad(pmd_t *pmd)
142 {
143         pmd_ERROR(*pmd);
144         pmd_clear(pmd);
145 }
146
147 /*
148  * Note: this doesn't free the actual pages themselves. That
149  * has been handled earlier when unmapping all the memory regions.
150  */
151 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
152                            unsigned long addr)
153 {
154         pgtable_t token = pmd_pgtable(*pmd);
155         pmd_clear(pmd);
156         pte_free_tlb(tlb, token, addr);
157         tlb->mm->nr_ptes--;
158 }
159
160 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
161                                 unsigned long addr, unsigned long end,
162                                 unsigned long floor, unsigned long ceiling)
163 {
164         pmd_t *pmd;
165         unsigned long next;
166         unsigned long start;
167
168         start = addr;
169         pmd = pmd_offset(pud, addr);
170         do {
171                 next = pmd_addr_end(addr, end);
172                 if (pmd_none_or_clear_bad(pmd))
173                         continue;
174                 free_pte_range(tlb, pmd, addr);
175         } while (pmd++, addr = next, addr != end);
176
177         start &= PUD_MASK;
178         if (start < floor)
179                 return;
180         if (ceiling) {
181                 ceiling &= PUD_MASK;
182                 if (!ceiling)
183                         return;
184         }
185         if (end - 1 > ceiling - 1)
186                 return;
187
188         pmd = pmd_offset(pud, start);
189         pud_clear(pud);
190         pmd_free_tlb(tlb, pmd, start);
191 }
192
193 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
194                                 unsigned long addr, unsigned long end,
195                                 unsigned long floor, unsigned long ceiling)
196 {
197         pud_t *pud;
198         unsigned long next;
199         unsigned long start;
200
201         start = addr;
202         pud = pud_offset(pgd, addr);
203         do {
204                 next = pud_addr_end(addr, end);
205                 if (pud_none_or_clear_bad(pud))
206                         continue;
207                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
208         } while (pud++, addr = next, addr != end);
209
210         start &= PGDIR_MASK;
211         if (start < floor)
212                 return;
213         if (ceiling) {
214                 ceiling &= PGDIR_MASK;
215                 if (!ceiling)
216                         return;
217         }
218         if (end - 1 > ceiling - 1)
219                 return;
220
221         pud = pud_offset(pgd, start);
222         pgd_clear(pgd);
223         pud_free_tlb(tlb, pud, start);
224 }
225
226 /*
227  * This function frees user-level page tables of a process.
228  *
229  * Must be called with pagetable lock held.
230  */
231 void free_pgd_range(struct mmu_gather *tlb,
232                         unsigned long addr, unsigned long end,
233                         unsigned long floor, unsigned long ceiling)
234 {
235         pgd_t *pgd;
236         unsigned long next;
237         unsigned long start;
238
239         /*
240          * The next few lines have given us lots of grief...
241          *
242          * Why are we testing PMD* at this top level?  Because often
243          * there will be no work to do at all, and we'd prefer not to
244          * go all the way down to the bottom just to discover that.
245          *
246          * Why all these "- 1"s?  Because 0 represents both the bottom
247          * of the address space and the top of it (using -1 for the
248          * top wouldn't help much: the masks would do the wrong thing).
249          * The rule is that addr 0 and floor 0 refer to the bottom of
250          * the address space, but end 0 and ceiling 0 refer to the top
251          * Comparisons need to use "end - 1" and "ceiling - 1" (though
252          * that end 0 case should be mythical).
253          *
254          * Wherever addr is brought up or ceiling brought down, we must
255          * be careful to reject "the opposite 0" before it confuses the
256          * subsequent tests.  But what about where end is brought down
257          * by PMD_SIZE below? no, end can't go down to 0 there.
258          *
259          * Whereas we round start (addr) and ceiling down, by different
260          * masks at different levels, in order to test whether a table
261          * now has no other vmas using it, so can be freed, we don't
262          * bother to round floor or end up - the tests don't need that.
263          */
264
265         addr &= PMD_MASK;
266         if (addr < floor) {
267                 addr += PMD_SIZE;
268                 if (!addr)
269                         return;
270         }
271         if (ceiling) {
272                 ceiling &= PMD_MASK;
273                 if (!ceiling)
274                         return;
275         }
276         if (end - 1 > ceiling - 1)
277                 end -= PMD_SIZE;
278         if (addr > end - 1)
279                 return;
280
281         start = addr;
282         pgd = pgd_offset(tlb->mm, addr);
283         do {
284                 next = pgd_addr_end(addr, end);
285                 if (pgd_none_or_clear_bad(pgd))
286                         continue;
287                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
288         } while (pgd++, addr = next, addr != end);
289 }
290
291 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
292                 unsigned long floor, unsigned long ceiling)
293 {
294         while (vma) {
295                 struct vm_area_struct *next = vma->vm_next;
296                 unsigned long addr = vma->vm_start;
297
298                 /*
299                  * Hide vma from rmap and vmtruncate before freeing pgtables
300                  */
301                 anon_vma_unlink(vma);
302                 unlink_file_vma(vma);
303
304                 if (is_vm_hugetlb_page(vma)) {
305                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
306                                 floor, next? next->vm_start: ceiling);
307                 } else {
308                         /*
309                          * Optimization: gather nearby vmas into one call down
310                          */
311                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
312                                && !is_vm_hugetlb_page(next)) {
313                                 vma = next;
314                                 next = vma->vm_next;
315                                 anon_vma_unlink(vma);
316                                 unlink_file_vma(vma);
317                         }
318                         free_pgd_range(tlb, addr, vma->vm_end,
319                                 floor, next? next->vm_start: ceiling);
320                 }
321                 vma = next;
322         }
323 }
324
325 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
326 {
327         pgtable_t new = pte_alloc_one(mm, address);
328         if (!new)
329                 return -ENOMEM;
330
331         /*
332          * Ensure all pte setup (eg. pte page lock and page clearing) are
333          * visible before the pte is made visible to other CPUs by being
334          * put into page tables.
335          *
336          * The other side of the story is the pointer chasing in the page
337          * table walking code (when walking the page table without locking;
338          * ie. most of the time). Fortunately, these data accesses consist
339          * of a chain of data-dependent loads, meaning most CPUs (alpha
340          * being the notable exception) will already guarantee loads are
341          * seen in-order. See the alpha page table accessors for the
342          * smp_read_barrier_depends() barriers in page table walking code.
343          */
344         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
345
346         spin_lock(&mm->page_table_lock);
347         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
348                 mm->nr_ptes++;
349                 pmd_populate(mm, pmd, new);
350                 new = NULL;
351         }
352         spin_unlock(&mm->page_table_lock);
353         if (new)
354                 pte_free(mm, new);
355         return 0;
356 }
357
358 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
359 {
360         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
361         if (!new)
362                 return -ENOMEM;
363
364         smp_wmb(); /* See comment in __pte_alloc */
365
366         spin_lock(&init_mm.page_table_lock);
367         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
368                 pmd_populate_kernel(&init_mm, pmd, new);
369                 new = NULL;
370         }
371         spin_unlock(&init_mm.page_table_lock);
372         if (new)
373                 pte_free_kernel(&init_mm, new);
374         return 0;
375 }
376
377 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
378 {
379         if (file_rss)
380                 add_mm_counter(mm, file_rss, file_rss);
381         if (anon_rss)
382                 add_mm_counter(mm, anon_rss, anon_rss);
383 }
384
385 /*
386  * This function is called to print an error when a bad pte
387  * is found. For example, we might have a PFN-mapped pte in
388  * a region that doesn't allow it.
389  *
390  * The calling function must still handle the error.
391  */
392 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
393                           pte_t pte, struct page *page)
394 {
395         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
396         pud_t *pud = pud_offset(pgd, addr);
397         pmd_t *pmd = pmd_offset(pud, addr);
398         struct address_space *mapping;
399         pgoff_t index;
400         static unsigned long resume;
401         static unsigned long nr_shown;
402         static unsigned long nr_unshown;
403
404         /*
405          * Allow a burst of 60 reports, then keep quiet for that minute;
406          * or allow a steady drip of one report per second.
407          */
408         if (nr_shown == 60) {
409                 if (time_before(jiffies, resume)) {
410                         nr_unshown++;
411                         return;
412                 }
413                 if (nr_unshown) {
414                         printk(KERN_ALERT
415                                 "BUG: Bad page map: %lu messages suppressed\n",
416                                 nr_unshown);
417                         nr_unshown = 0;
418                 }
419                 nr_shown = 0;
420         }
421         if (nr_shown++ == 0)
422                 resume = jiffies + 60 * HZ;
423
424         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
425         index = linear_page_index(vma, addr);
426
427         printk(KERN_ALERT
428                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
429                 current->comm,
430                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
431         if (page) {
432                 printk(KERN_ALERT
433                 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
434                 page, (void *)page->flags, page_count(page),
435                 page_mapcount(page), page->mapping, page->index);
436         }
437         printk(KERN_ALERT
438                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
439                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
440         /*
441          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
442          */
443         if (vma->vm_ops)
444                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
445                                 (unsigned long)vma->vm_ops->fault);
446         if (vma->vm_file && vma->vm_file->f_op)
447                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
448                                 (unsigned long)vma->vm_file->f_op->mmap);
449         dump_stack();
450         add_taint(TAINT_BAD_PAGE);
451 }
452
453 static inline int is_cow_mapping(unsigned int flags)
454 {
455         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
456 }
457
458 /*
459  * vm_normal_page -- This function gets the "struct page" associated with a pte.
460  *
461  * "Special" mappings do not wish to be associated with a "struct page" (either
462  * it doesn't exist, or it exists but they don't want to touch it). In this
463  * case, NULL is returned here. "Normal" mappings do have a struct page.
464  *
465  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
466  * pte bit, in which case this function is trivial. Secondly, an architecture
467  * may not have a spare pte bit, which requires a more complicated scheme,
468  * described below.
469  *
470  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
471  * special mapping (even if there are underlying and valid "struct pages").
472  * COWed pages of a VM_PFNMAP are always normal.
473  *
474  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
475  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
476  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
477  * mapping will always honor the rule
478  *
479  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
480  *
481  * And for normal mappings this is false.
482  *
483  * This restricts such mappings to be a linear translation from virtual address
484  * to pfn. To get around this restriction, we allow arbitrary mappings so long
485  * as the vma is not a COW mapping; in that case, we know that all ptes are
486  * special (because none can have been COWed).
487  *
488  *
489  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
490  *
491  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
492  * page" backing, however the difference is that _all_ pages with a struct
493  * page (that is, those where pfn_valid is true) are refcounted and considered
494  * normal pages by the VM. The disadvantage is that pages are refcounted
495  * (which can be slower and simply not an option for some PFNMAP users). The
496  * advantage is that we don't have to follow the strict linearity rule of
497  * PFNMAP mappings in order to support COWable mappings.
498  *
499  */
500 #ifdef __HAVE_ARCH_PTE_SPECIAL
501 # define HAVE_PTE_SPECIAL 1
502 #else
503 # define HAVE_PTE_SPECIAL 0
504 #endif
505 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
506                                 pte_t pte)
507 {
508         unsigned long pfn = pte_pfn(pte);
509
510         if (HAVE_PTE_SPECIAL) {
511                 if (likely(!pte_special(pte)))
512                         goto check_pfn;
513                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
514                         return NULL;
515                 if (pfn != zero_pfn)
516                         print_bad_pte(vma, addr, pte, NULL);
517                 return NULL;
518         }
519
520         /* !HAVE_PTE_SPECIAL case follows: */
521
522         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
523                 if (vma->vm_flags & VM_MIXEDMAP) {
524                         if (!pfn_valid(pfn))
525                                 return NULL;
526                         goto out;
527                 } else {
528                         unsigned long off;
529                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
530                         if (pfn == vma->vm_pgoff + off)
531                                 return NULL;
532                         if (!is_cow_mapping(vma->vm_flags))
533                                 return NULL;
534                 }
535         }
536
537 check_pfn:
538         if (unlikely(pfn > highest_memmap_pfn)) {
539                 print_bad_pte(vma, addr, pte, NULL);
540                 return NULL;
541         }
542
543         /*
544          * NOTE! We still have PageReserved() pages in the page tables.
545          * eg. VDSO mappings can cause them to exist.
546          */
547 out:
548         return pfn_to_page(pfn);
549 }
550
551 /*
552  * copy one vm_area from one task to the other. Assumes the page tables
553  * already present in the new task to be cleared in the whole range
554  * covered by this vma.
555  */
556
557 static inline void
558 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
559                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
560                 unsigned long addr, int *rss)
561 {
562         unsigned long vm_flags = vma->vm_flags;
563         pte_t pte = *src_pte;
564         struct page *page;
565
566         /* pte contains position in swap or file, so copy. */
567         if (unlikely(!pte_present(pte))) {
568                 if (!pte_file(pte)) {
569                         swp_entry_t entry = pte_to_swp_entry(pte);
570
571                         swap_duplicate(entry);
572                         /* make sure dst_mm is on swapoff's mmlist. */
573                         if (unlikely(list_empty(&dst_mm->mmlist))) {
574                                 spin_lock(&mmlist_lock);
575                                 if (list_empty(&dst_mm->mmlist))
576                                         list_add(&dst_mm->mmlist,
577                                                  &src_mm->mmlist);
578                                 spin_unlock(&mmlist_lock);
579                         }
580                         if (is_write_migration_entry(entry) &&
581                                         is_cow_mapping(vm_flags)) {
582                                 /*
583                                  * COW mappings require pages in both parent
584                                  * and child to be set to read.
585                                  */
586                                 make_migration_entry_read(&entry);
587                                 pte = swp_entry_to_pte(entry);
588                                 set_pte_at(src_mm, addr, src_pte, pte);
589                         }
590                 }
591                 goto out_set_pte;
592         }
593
594         /*
595          * If it's a COW mapping, write protect it both
596          * in the parent and the child
597          */
598         if (is_cow_mapping(vm_flags)) {
599                 ptep_set_wrprotect(src_mm, addr, src_pte);
600                 pte = pte_wrprotect(pte);
601         }
602
603         /*
604          * If it's a shared mapping, mark it clean in
605          * the child
606          */
607         if (vm_flags & VM_SHARED)
608                 pte = pte_mkclean(pte);
609         pte = pte_mkold(pte);
610
611         page = vm_normal_page(vma, addr, pte);
612         if (page) {
613                 get_page(page);
614                 page_dup_rmap(page);
615                 rss[PageAnon(page)]++;
616         }
617
618 out_set_pte:
619         set_pte_at(dst_mm, addr, dst_pte, pte);
620 }
621
622 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
623                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
624                 unsigned long addr, unsigned long end)
625 {
626         pte_t *src_pte, *dst_pte;
627         spinlock_t *src_ptl, *dst_ptl;
628         int progress = 0;
629         int rss[2];
630
631 again:
632         rss[1] = rss[0] = 0;
633         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
634         if (!dst_pte)
635                 return -ENOMEM;
636         src_pte = pte_offset_map_nested(src_pmd, addr);
637         src_ptl = pte_lockptr(src_mm, src_pmd);
638         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
639         arch_enter_lazy_mmu_mode();
640
641         do {
642                 /*
643                  * We are holding two locks at this point - either of them
644                  * could generate latencies in another task on another CPU.
645                  */
646                 if (progress >= 32) {
647                         progress = 0;
648                         if (need_resched() ||
649                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
650                                 break;
651                 }
652                 if (pte_none(*src_pte)) {
653                         progress++;
654                         continue;
655                 }
656                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
657                 progress += 8;
658         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
659
660         arch_leave_lazy_mmu_mode();
661         spin_unlock(src_ptl);
662         pte_unmap_nested(src_pte - 1);
663         add_mm_rss(dst_mm, rss[0], rss[1]);
664         pte_unmap_unlock(dst_pte - 1, dst_ptl);
665         cond_resched();
666         if (addr != end)
667                 goto again;
668         return 0;
669 }
670
671 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
672                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
673                 unsigned long addr, unsigned long end)
674 {
675         pmd_t *src_pmd, *dst_pmd;
676         unsigned long next;
677
678         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
679         if (!dst_pmd)
680                 return -ENOMEM;
681         src_pmd = pmd_offset(src_pud, addr);
682         do {
683                 next = pmd_addr_end(addr, end);
684                 if (pmd_none_or_clear_bad(src_pmd))
685                         continue;
686                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
687                                                 vma, addr, next))
688                         return -ENOMEM;
689         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
690         return 0;
691 }
692
693 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
694                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
695                 unsigned long addr, unsigned long end)
696 {
697         pud_t *src_pud, *dst_pud;
698         unsigned long next;
699
700         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
701         if (!dst_pud)
702                 return -ENOMEM;
703         src_pud = pud_offset(src_pgd, addr);
704         do {
705                 next = pud_addr_end(addr, end);
706                 if (pud_none_or_clear_bad(src_pud))
707                         continue;
708                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
709                                                 vma, addr, next))
710                         return -ENOMEM;
711         } while (dst_pud++, src_pud++, addr = next, addr != end);
712         return 0;
713 }
714
715 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
716                 struct vm_area_struct *vma)
717 {
718         pgd_t *src_pgd, *dst_pgd;
719         unsigned long next;
720         unsigned long addr = vma->vm_start;
721         unsigned long end = vma->vm_end;
722         int ret;
723
724         /*
725          * Don't copy ptes where a page fault will fill them correctly.
726          * Fork becomes much lighter when there are big shared or private
727          * readonly mappings. The tradeoff is that copy_page_range is more
728          * efficient than faulting.
729          */
730         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
731                 if (!vma->anon_vma)
732                         return 0;
733         }
734
735         if (is_vm_hugetlb_page(vma))
736                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
737
738         if (unlikely(is_pfn_mapping(vma))) {
739                 /*
740                  * We do not free on error cases below as remove_vma
741                  * gets called on error from higher level routine
742                  */
743                 ret = track_pfn_vma_copy(vma);
744                 if (ret)
745                         return ret;
746         }
747
748         /*
749          * We need to invalidate the secondary MMU mappings only when
750          * there could be a permission downgrade on the ptes of the
751          * parent mm. And a permission downgrade will only happen if
752          * is_cow_mapping() returns true.
753          */
754         if (is_cow_mapping(vma->vm_flags))
755                 mmu_notifier_invalidate_range_start(src_mm, addr, end);
756
757         ret = 0;
758         dst_pgd = pgd_offset(dst_mm, addr);
759         src_pgd = pgd_offset(src_mm, addr);
760         do {
761                 next = pgd_addr_end(addr, end);
762                 if (pgd_none_or_clear_bad(src_pgd))
763                         continue;
764                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
765                                             vma, addr, next))) {
766                         ret = -ENOMEM;
767                         break;
768                 }
769         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
770
771         if (is_cow_mapping(vma->vm_flags))
772                 mmu_notifier_invalidate_range_end(src_mm,
773                                                   vma->vm_start, end);
774         return ret;
775 }
776
777 static unsigned long zap_pte_range(struct mmu_gather *tlb,
778                                 struct vm_area_struct *vma, pmd_t *pmd,
779                                 unsigned long addr, unsigned long end,
780                                 long *zap_work, struct zap_details *details)
781 {
782         struct mm_struct *mm = tlb->mm;
783         pte_t *pte;
784         spinlock_t *ptl;
785         int file_rss = 0;
786         int anon_rss = 0;
787
788         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
789         arch_enter_lazy_mmu_mode();
790         do {
791                 pte_t ptent = *pte;
792                 if (pte_none(ptent)) {
793                         (*zap_work)--;
794                         continue;
795                 }
796
797                 (*zap_work) -= PAGE_SIZE;
798
799                 if (pte_present(ptent)) {
800                         struct page *page;
801
802                         page = vm_normal_page(vma, addr, ptent);
803                         if (unlikely(details) && page) {
804                                 /*
805                                  * unmap_shared_mapping_pages() wants to
806                                  * invalidate cache without truncating:
807                                  * unmap shared but keep private pages.
808                                  */
809                                 if (details->check_mapping &&
810                                     details->check_mapping != page->mapping)
811                                         continue;
812                                 /*
813                                  * Each page->index must be checked when
814                                  * invalidating or truncating nonlinear.
815                                  */
816                                 if (details->nonlinear_vma &&
817                                     (page->index < details->first_index ||
818                                      page->index > details->last_index))
819                                         continue;
820                         }
821                         ptent = ptep_get_and_clear_full(mm, addr, pte,
822                                                         tlb->fullmm);
823                         tlb_remove_tlb_entry(tlb, pte, addr);
824                         if (unlikely(!page))
825                                 continue;
826                         if (unlikely(details) && details->nonlinear_vma
827                             && linear_page_index(details->nonlinear_vma,
828                                                 addr) != page->index)
829                                 set_pte_at(mm, addr, pte,
830                                            pgoff_to_pte(page->index));
831                         if (PageAnon(page))
832                                 anon_rss--;
833                         else {
834                                 if (pte_dirty(ptent))
835                                         set_page_dirty(page);
836                                 if (pte_young(ptent) &&
837                                     likely(!VM_SequentialReadHint(vma)))
838                                         mark_page_accessed(page);
839                                 file_rss--;
840                         }
841                         page_remove_rmap(page);
842                         if (unlikely(page_mapcount(page) < 0))
843                                 print_bad_pte(vma, addr, ptent, page);
844                         tlb_remove_page(tlb, page);
845                         continue;
846                 }
847                 /*
848                  * If details->check_mapping, we leave swap entries;
849                  * if details->nonlinear_vma, we leave file entries.
850                  */
851                 if (unlikely(details))
852                         continue;
853                 if (pte_file(ptent)) {
854                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
855                                 print_bad_pte(vma, addr, ptent, NULL);
856                 } else if
857                   (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
858                         print_bad_pte(vma, addr, ptent, NULL);
859                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
860         } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
861
862         add_mm_rss(mm, file_rss, anon_rss);
863         arch_leave_lazy_mmu_mode();
864         pte_unmap_unlock(pte - 1, ptl);
865
866         return addr;
867 }
868
869 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
870                                 struct vm_area_struct *vma, pud_t *pud,
871                                 unsigned long addr, unsigned long end,
872                                 long *zap_work, struct zap_details *details)
873 {
874         pmd_t *pmd;
875         unsigned long next;
876
877         pmd = pmd_offset(pud, addr);
878         do {
879                 next = pmd_addr_end(addr, end);
880                 if (pmd_none_or_clear_bad(pmd)) {
881                         (*zap_work)--;
882                         continue;
883                 }
884                 next = zap_pte_range(tlb, vma, pmd, addr, next,
885                                                 zap_work, details);
886         } while (pmd++, addr = next, (addr != end && *zap_work > 0));
887
888         return addr;
889 }
890
891 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
892                                 struct vm_area_struct *vma, pgd_t *pgd,
893                                 unsigned long addr, unsigned long end,
894                                 long *zap_work, struct zap_details *details)
895 {
896         pud_t *pud;
897         unsigned long next;
898
899         pud = pud_offset(pgd, addr);
900         do {
901                 next = pud_addr_end(addr, end);
902                 if (pud_none_or_clear_bad(pud)) {
903                         (*zap_work)--;
904                         continue;
905                 }
906                 next = zap_pmd_range(tlb, vma, pud, addr, next,
907                                                 zap_work, details);
908         } while (pud++, addr = next, (addr != end && *zap_work > 0));
909
910         return addr;
911 }
912
913 static unsigned long unmap_page_range(struct mmu_gather *tlb,
914                                 struct vm_area_struct *vma,
915                                 unsigned long addr, unsigned long end,
916                                 long *zap_work, struct zap_details *details)
917 {
918         pgd_t *pgd;
919         unsigned long next;
920
921         if (details && !details->check_mapping && !details->nonlinear_vma)
922                 details = NULL;
923
924         BUG_ON(addr >= end);
925         tlb_start_vma(tlb, vma);
926         pgd = pgd_offset(vma->vm_mm, addr);
927         do {
928                 next = pgd_addr_end(addr, end);
929                 if (pgd_none_or_clear_bad(pgd)) {
930                         (*zap_work)--;
931                         continue;
932                 }
933                 next = zap_pud_range(tlb, vma, pgd, addr, next,
934                                                 zap_work, details);
935         } while (pgd++, addr = next, (addr != end && *zap_work > 0));
936         tlb_end_vma(tlb, vma);
937
938         return addr;
939 }
940
941 #ifdef CONFIG_PREEMPT
942 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
943 #else
944 /* No preempt: go for improved straight-line efficiency */
945 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
946 #endif
947
948 /**
949  * unmap_vmas - unmap a range of memory covered by a list of vma's
950  * @tlbp: address of the caller's struct mmu_gather
951  * @vma: the starting vma
952  * @start_addr: virtual address at which to start unmapping
953  * @end_addr: virtual address at which to end unmapping
954  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
955  * @details: details of nonlinear truncation or shared cache invalidation
956  *
957  * Returns the end address of the unmapping (restart addr if interrupted).
958  *
959  * Unmap all pages in the vma list.
960  *
961  * We aim to not hold locks for too long (for scheduling latency reasons).
962  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
963  * return the ending mmu_gather to the caller.
964  *
965  * Only addresses between `start' and `end' will be unmapped.
966  *
967  * The VMA list must be sorted in ascending virtual address order.
968  *
969  * unmap_vmas() assumes that the caller will flush the whole unmapped address
970  * range after unmap_vmas() returns.  So the only responsibility here is to
971  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
972  * drops the lock and schedules.
973  */
974 unsigned long unmap_vmas(struct mmu_gather **tlbp,
975                 struct vm_area_struct *vma, unsigned long start_addr,
976                 unsigned long end_addr, unsigned long *nr_accounted,
977                 struct zap_details *details)
978 {
979         long zap_work = ZAP_BLOCK_SIZE;
980         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
981         int tlb_start_valid = 0;
982         unsigned long start = start_addr;
983         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
984         int fullmm = (*tlbp)->fullmm;
985         struct mm_struct *mm = vma->vm_mm;
986
987         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
988         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
989                 unsigned long end;
990
991                 start = max(vma->vm_start, start_addr);
992                 if (start >= vma->vm_end)
993                         continue;
994                 end = min(vma->vm_end, end_addr);
995                 if (end <= vma->vm_start)
996                         continue;
997
998                 if (vma->vm_flags & VM_ACCOUNT)
999                         *nr_accounted += (end - start) >> PAGE_SHIFT;
1000
1001                 if (unlikely(is_pfn_mapping(vma)))
1002                         untrack_pfn_vma(vma, 0, 0);
1003
1004                 while (start != end) {
1005                         if (!tlb_start_valid) {
1006                                 tlb_start = start;
1007                                 tlb_start_valid = 1;
1008                         }
1009
1010                         if (unlikely(is_vm_hugetlb_page(vma))) {
1011                                 /*
1012                                  * It is undesirable to test vma->vm_file as it
1013                                  * should be non-null for valid hugetlb area.
1014                                  * However, vm_file will be NULL in the error
1015                                  * cleanup path of do_mmap_pgoff. When
1016                                  * hugetlbfs ->mmap method fails,
1017                                  * do_mmap_pgoff() nullifies vma->vm_file
1018                                  * before calling this function to clean up.
1019                                  * Since no pte has actually been setup, it is
1020                                  * safe to do nothing in this case.
1021                                  */
1022                                 if (vma->vm_file) {
1023                                         unmap_hugepage_range(vma, start, end, NULL);
1024                                         zap_work -= (end - start) /
1025                                         pages_per_huge_page(hstate_vma(vma));
1026                                 }
1027
1028                                 start = end;
1029                         } else
1030                                 start = unmap_page_range(*tlbp, vma,
1031                                                 start, end, &zap_work, details);
1032
1033                         if (zap_work > 0) {
1034                                 BUG_ON(start != end);
1035                                 break;
1036                         }
1037
1038                         tlb_finish_mmu(*tlbp, tlb_start, start);
1039
1040                         if (need_resched() ||
1041                                 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1042                                 if (i_mmap_lock) {
1043                                         *tlbp = NULL;
1044                                         goto out;
1045                                 }
1046                                 cond_resched();
1047                         }
1048
1049                         *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1050                         tlb_start_valid = 0;
1051                         zap_work = ZAP_BLOCK_SIZE;
1052                 }
1053         }
1054 out:
1055         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1056         return start;   /* which is now the end (or restart) address */
1057 }
1058
1059 /**
1060  * zap_page_range - remove user pages in a given range
1061  * @vma: vm_area_struct holding the applicable pages
1062  * @address: starting address of pages to zap
1063  * @size: number of bytes to zap
1064  * @details: details of nonlinear truncation or shared cache invalidation
1065  */
1066 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1067                 unsigned long size, struct zap_details *details)
1068 {
1069         struct mm_struct *mm = vma->vm_mm;
1070         struct mmu_gather *tlb;
1071         unsigned long end = address + size;
1072         unsigned long nr_accounted = 0;
1073
1074         lru_add_drain();
1075         tlb = tlb_gather_mmu(mm, 0);
1076         update_hiwater_rss(mm);
1077         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1078         if (tlb)
1079                 tlb_finish_mmu(tlb, address, end);
1080         return end;
1081 }
1082
1083 /**
1084  * zap_vma_ptes - remove ptes mapping the vma
1085  * @vma: vm_area_struct holding ptes to be zapped
1086  * @address: starting address of pages to zap
1087  * @size: number of bytes to zap
1088  *
1089  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1090  *
1091  * The entire address range must be fully contained within the vma.
1092  *
1093  * Returns 0 if successful.
1094  */
1095 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1096                 unsigned long size)
1097 {
1098         if (address < vma->vm_start || address + size > vma->vm_end ||
1099                         !(vma->vm_flags & VM_PFNMAP))
1100                 return -1;
1101         zap_page_range(vma, address, size, NULL);
1102         return 0;
1103 }
1104 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1105
1106 /*
1107  * Do a quick page-table lookup for a single page.
1108  */
1109 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1110                         unsigned int flags)
1111 {
1112         pgd_t *pgd;
1113         pud_t *pud;
1114         pmd_t *pmd;
1115         pte_t *ptep, pte;
1116         spinlock_t *ptl;
1117         struct page *page;
1118         struct mm_struct *mm = vma->vm_mm;
1119
1120         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1121         if (!IS_ERR(page)) {
1122                 BUG_ON(flags & FOLL_GET);
1123                 goto out;
1124         }
1125
1126         page = NULL;
1127         pgd = pgd_offset(mm, address);
1128         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1129                 goto no_page_table;
1130
1131         pud = pud_offset(pgd, address);
1132         if (pud_none(*pud))
1133                 goto no_page_table;
1134         if (pud_huge(*pud)) {
1135                 BUG_ON(flags & FOLL_GET);
1136                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1137                 goto out;
1138         }
1139         if (unlikely(pud_bad(*pud)))
1140                 goto no_page_table;
1141
1142         pmd = pmd_offset(pud, address);
1143         if (pmd_none(*pmd))
1144                 goto no_page_table;
1145         if (pmd_huge(*pmd)) {
1146                 BUG_ON(flags & FOLL_GET);
1147                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1148                 goto out;
1149         }
1150         if (unlikely(pmd_bad(*pmd)))
1151                 goto no_page_table;
1152
1153         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1154
1155         pte = *ptep;
1156         if (!pte_present(pte))
1157                 goto no_page;
1158         if ((flags & FOLL_WRITE) && !pte_write(pte))
1159                 goto unlock;
1160
1161         page = vm_normal_page(vma, address, pte);
1162         if (unlikely(!page)) {
1163                 if ((flags & FOLL_DUMP) ||
1164                     pte_pfn(pte) != zero_pfn)
1165                         goto bad_page;
1166                 page = pte_page(pte);
1167         }
1168
1169         if (flags & FOLL_GET)
1170                 get_page(page);
1171         if (flags & FOLL_TOUCH) {
1172                 if ((flags & FOLL_WRITE) &&
1173                     !pte_dirty(pte) && !PageDirty(page))
1174                         set_page_dirty(page);
1175                 /*
1176                  * pte_mkyoung() would be more correct here, but atomic care
1177                  * is needed to avoid losing the dirty bit: it is easier to use
1178                  * mark_page_accessed().
1179                  */
1180                 mark_page_accessed(page);
1181         }
1182 unlock:
1183         pte_unmap_unlock(ptep, ptl);
1184 out:
1185         return page;
1186
1187 bad_page:
1188         pte_unmap_unlock(ptep, ptl);
1189         return ERR_PTR(-EFAULT);
1190
1191 no_page:
1192         pte_unmap_unlock(ptep, ptl);
1193         if (!pte_none(pte))
1194                 return page;
1195
1196 no_page_table:
1197         /*
1198          * When core dumping an enormous anonymous area that nobody
1199          * has touched so far, we don't want to allocate unnecessary pages or
1200          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1201          * then get_dump_page() will return NULL to leave a hole in the dump.
1202          * But we can only make this optimization where a hole would surely
1203          * be zero-filled if handle_mm_fault() actually did handle it.
1204          */
1205         if ((flags & FOLL_DUMP) &&
1206             (!vma->vm_ops || !vma->vm_ops->fault))
1207                 return ERR_PTR(-EFAULT);
1208         return page;
1209 }
1210
1211 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1212                      unsigned long start, int nr_pages, unsigned int gup_flags,
1213                      struct page **pages, struct vm_area_struct **vmas)
1214 {
1215         int i;
1216         unsigned long vm_flags;
1217
1218         if (nr_pages <= 0)
1219                 return 0;
1220
1221         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1222
1223         /* 
1224          * Require read or write permissions.
1225          * If FOLL_FORCE is set, we only require the "MAY" flags.
1226          */
1227         vm_flags  = (gup_flags & FOLL_WRITE) ?
1228                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1229         vm_flags &= (gup_flags & FOLL_FORCE) ?
1230                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1231         i = 0;
1232
1233         do {
1234                 struct vm_area_struct *vma;
1235
1236                 vma = find_extend_vma(mm, start);
1237                 if (!vma && in_gate_area(tsk, start)) {
1238                         unsigned long pg = start & PAGE_MASK;
1239                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1240                         pgd_t *pgd;
1241                         pud_t *pud;
1242                         pmd_t *pmd;
1243                         pte_t *pte;
1244
1245                         /* user gate pages are read-only */
1246                         if (gup_flags & FOLL_WRITE)
1247                                 return i ? : -EFAULT;
1248                         if (pg > TASK_SIZE)
1249                                 pgd = pgd_offset_k(pg);
1250                         else
1251                                 pgd = pgd_offset_gate(mm, pg);
1252                         BUG_ON(pgd_none(*pgd));
1253                         pud = pud_offset(pgd, pg);
1254                         BUG_ON(pud_none(*pud));
1255                         pmd = pmd_offset(pud, pg);
1256                         if (pmd_none(*pmd))
1257                                 return i ? : -EFAULT;
1258                         pte = pte_offset_map(pmd, pg);
1259                         if (pte_none(*pte)) {
1260                                 pte_unmap(pte);
1261                                 return i ? : -EFAULT;
1262                         }
1263                         if (pages) {
1264                                 struct page *page = vm_normal_page(gate_vma, start, *pte);
1265                                 pages[i] = page;
1266                                 if (page)
1267                                         get_page(page);
1268                         }
1269                         pte_unmap(pte);
1270                         if (vmas)
1271                                 vmas[i] = gate_vma;
1272                         i++;
1273                         start += PAGE_SIZE;
1274                         nr_pages--;
1275                         continue;
1276                 }
1277
1278                 if (!vma ||
1279                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1280                     !(vm_flags & vma->vm_flags))
1281                         return i ? : -EFAULT;
1282
1283                 if (is_vm_hugetlb_page(vma)) {
1284                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1285                                         &start, &nr_pages, i, gup_flags);
1286                         continue;
1287                 }
1288
1289                 do {
1290                         struct page *page;
1291                         unsigned int foll_flags = gup_flags;
1292
1293                         /*
1294                          * If we have a pending SIGKILL, don't keep faulting
1295                          * pages and potentially allocating memory.
1296                          */
1297                         if (unlikely(fatal_signal_pending(current)))
1298                                 return i ? i : -ERESTARTSYS;
1299
1300                         cond_resched();
1301                         while (!(page = follow_page(vma, start, foll_flags))) {
1302                                 int ret;
1303
1304                                 ret = handle_mm_fault(mm, vma, start,
1305                                         (foll_flags & FOLL_WRITE) ?
1306                                         FAULT_FLAG_WRITE : 0);
1307
1308                                 if (ret & VM_FAULT_ERROR) {
1309                                         if (ret & VM_FAULT_OOM)
1310                                                 return i ? i : -ENOMEM;
1311                                         else if (ret & VM_FAULT_SIGBUS)
1312                                                 return i ? i : -EFAULT;
1313                                         BUG();
1314                                 }
1315                                 if (ret & VM_FAULT_MAJOR)
1316                                         tsk->maj_flt++;
1317                                 else
1318                                         tsk->min_flt++;
1319
1320                                 /*
1321                                  * The VM_FAULT_WRITE bit tells us that
1322                                  * do_wp_page has broken COW when necessary,
1323                                  * even if maybe_mkwrite decided not to set
1324                                  * pte_write. We can thus safely do subsequent
1325                                  * page lookups as if they were reads. But only
1326                                  * do so when looping for pte_write is futile:
1327                                  * in some cases userspace may also be wanting
1328                                  * to write to the gotten user page, which a
1329                                  * read fault here might prevent (a readonly
1330                                  * page might get reCOWed by userspace write).
1331                                  */
1332                                 if ((ret & VM_FAULT_WRITE) &&
1333                                     !(vma->vm_flags & VM_WRITE))
1334                                         foll_flags &= ~FOLL_WRITE;
1335
1336                                 cond_resched();
1337                         }
1338                         if (IS_ERR(page))
1339                                 return i ? i : PTR_ERR(page);
1340                         if (pages) {
1341                                 pages[i] = page;
1342
1343                                 flush_anon_page(vma, page, start);
1344                                 flush_dcache_page(page);
1345                         }
1346                         if (vmas)
1347                                 vmas[i] = vma;
1348                         i++;
1349                         start += PAGE_SIZE;
1350                         nr_pages--;
1351                 } while (nr_pages && start < vma->vm_end);
1352         } while (nr_pages);
1353         return i;
1354 }
1355
1356 /**
1357  * get_user_pages() - pin user pages in memory
1358  * @tsk:        task_struct of target task
1359  * @mm:         mm_struct of target mm
1360  * @start:      starting user address
1361  * @nr_pages:   number of pages from start to pin
1362  * @write:      whether pages will be written to by the caller
1363  * @force:      whether to force write access even if user mapping is
1364  *              readonly. This will result in the page being COWed even
1365  *              in MAP_SHARED mappings. You do not want this.
1366  * @pages:      array that receives pointers to the pages pinned.
1367  *              Should be at least nr_pages long. Or NULL, if caller
1368  *              only intends to ensure the pages are faulted in.
1369  * @vmas:       array of pointers to vmas corresponding to each page.
1370  *              Or NULL if the caller does not require them.
1371  *
1372  * Returns number of pages pinned. This may be fewer than the number
1373  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1374  * were pinned, returns -errno. Each page returned must be released
1375  * with a put_page() call when it is finished with. vmas will only
1376  * remain valid while mmap_sem is held.
1377  *
1378  * Must be called with mmap_sem held for read or write.
1379  *
1380  * get_user_pages walks a process's page tables and takes a reference to
1381  * each struct page that each user address corresponds to at a given
1382  * instant. That is, it takes the page that would be accessed if a user
1383  * thread accesses the given user virtual address at that instant.
1384  *
1385  * This does not guarantee that the page exists in the user mappings when
1386  * get_user_pages returns, and there may even be a completely different
1387  * page there in some cases (eg. if mmapped pagecache has been invalidated
1388  * and subsequently re faulted). However it does guarantee that the page
1389  * won't be freed completely. And mostly callers simply care that the page
1390  * contains data that was valid *at some point in time*. Typically, an IO
1391  * or similar operation cannot guarantee anything stronger anyway because
1392  * locks can't be held over the syscall boundary.
1393  *
1394  * If write=0, the page must not be written to. If the page is written to,
1395  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1396  * after the page is finished with, and before put_page is called.
1397  *
1398  * get_user_pages is typically used for fewer-copy IO operations, to get a
1399  * handle on the memory by some means other than accesses via the user virtual
1400  * addresses. The pages may be submitted for DMA to devices or accessed via
1401  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1402  * use the correct cache flushing APIs.
1403  *
1404  * See also get_user_pages_fast, for performance critical applications.
1405  */
1406 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1407                 unsigned long start, int nr_pages, int write, int force,
1408                 struct page **pages, struct vm_area_struct **vmas)
1409 {
1410         int flags = FOLL_TOUCH;
1411
1412         if (pages)
1413                 flags |= FOLL_GET;
1414         if (write)
1415                 flags |= FOLL_WRITE;
1416         if (force)
1417                 flags |= FOLL_FORCE;
1418
1419         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1420 }
1421 EXPORT_SYMBOL(get_user_pages);
1422
1423 /**
1424  * get_dump_page() - pin user page in memory while writing it to core dump
1425  * @addr: user address
1426  *
1427  * Returns struct page pointer of user page pinned for dump,
1428  * to be freed afterwards by page_cache_release() or put_page().
1429  *
1430  * Returns NULL on any kind of failure - a hole must then be inserted into
1431  * the corefile, to preserve alignment with its headers; and also returns
1432  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1433  * allowing a hole to be left in the corefile to save diskspace.
1434  *
1435  * Called without mmap_sem, but after all other threads have been killed.
1436  */
1437 #ifdef CONFIG_ELF_CORE
1438 struct page *get_dump_page(unsigned long addr)
1439 {
1440         struct vm_area_struct *vma;
1441         struct page *page;
1442
1443         if (__get_user_pages(current, current->mm, addr, 1,
1444                         FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
1445                 return NULL;
1446         if (page == ZERO_PAGE(0)) {
1447                 page_cache_release(page);
1448                 return NULL;
1449         }
1450         flush_cache_page(vma, addr, page_to_pfn(page));
1451         return page;
1452 }
1453 #endif /* CONFIG_ELF_CORE */
1454
1455 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1456                         spinlock_t **ptl)
1457 {
1458         pgd_t * pgd = pgd_offset(mm, addr);
1459         pud_t * pud = pud_alloc(mm, pgd, addr);
1460         if (pud) {
1461                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1462                 if (pmd)
1463                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1464         }
1465         return NULL;
1466 }
1467
1468 /*
1469  * This is the old fallback for page remapping.
1470  *
1471  * For historical reasons, it only allows reserved pages. Only
1472  * old drivers should use this, and they needed to mark their
1473  * pages reserved for the old functions anyway.
1474  */
1475 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1476                         struct page *page, pgprot_t prot)
1477 {
1478         struct mm_struct *mm = vma->vm_mm;
1479         int retval;
1480         pte_t *pte;
1481         spinlock_t *ptl;
1482
1483         retval = -EINVAL;
1484         if (PageAnon(page))
1485                 goto out;
1486         retval = -ENOMEM;
1487         flush_dcache_page(page);
1488         pte = get_locked_pte(mm, addr, &ptl);
1489         if (!pte)
1490                 goto out;
1491         retval = -EBUSY;
1492         if (!pte_none(*pte))
1493                 goto out_unlock;
1494
1495         /* Ok, finally just insert the thing.. */
1496         get_page(page);
1497         inc_mm_counter(mm, file_rss);
1498         page_add_file_rmap(page);
1499         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1500
1501         retval = 0;
1502         pte_unmap_unlock(pte, ptl);
1503         return retval;
1504 out_unlock:
1505         pte_unmap_unlock(pte, ptl);
1506 out:
1507         return retval;
1508 }
1509
1510 /**
1511  * vm_insert_page - insert single page into user vma
1512  * @vma: user vma to map to
1513  * @addr: target user address of this page
1514  * @page: source kernel page
1515  *
1516  * This allows drivers to insert individual pages they've allocated
1517  * into a user vma.
1518  *
1519  * The page has to be a nice clean _individual_ kernel allocation.
1520  * If you allocate a compound page, you need to have marked it as
1521  * such (__GFP_COMP), or manually just split the page up yourself
1522  * (see split_page()).
1523  *
1524  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1525  * took an arbitrary page protection parameter. This doesn't allow
1526  * that. Your vma protection will have to be set up correctly, which
1527  * means that if you want a shared writable mapping, you'd better
1528  * ask for a shared writable mapping!
1529  *
1530  * The page does not need to be reserved.
1531  */
1532 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1533                         struct page *page)
1534 {
1535         if (addr < vma->vm_start || addr >= vma->vm_end)
1536                 return -EFAULT;
1537         if (!page_count(page))
1538                 return -EINVAL;
1539         vma->vm_flags |= VM_INSERTPAGE;
1540         return insert_page(vma, addr, page, vma->vm_page_prot);
1541 }
1542 EXPORT_SYMBOL(vm_insert_page);
1543
1544 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1545                         unsigned long pfn, pgprot_t prot)
1546 {
1547         struct mm_struct *mm = vma->vm_mm;
1548         int retval;
1549         pte_t *pte, entry;
1550         spinlock_t *ptl;
1551
1552         retval = -ENOMEM;
1553         pte = get_locked_pte(mm, addr, &ptl);
1554         if (!pte)
1555                 goto out;
1556         retval = -EBUSY;
1557         if (!pte_none(*pte))
1558                 goto out_unlock;
1559
1560         /* Ok, finally just insert the thing.. */
1561         entry = pte_mkspecial(pfn_pte(pfn, prot));
1562         set_pte_at(mm, addr, pte, entry);
1563         update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1564
1565         retval = 0;
1566 out_unlock:
1567         pte_unmap_unlock(pte, ptl);
1568 out:
1569         return retval;
1570 }
1571
1572 /**
1573  * vm_insert_pfn - insert single pfn into user vma
1574  * @vma: user vma to map to
1575  * @addr: target user address of this page
1576  * @pfn: source kernel pfn
1577  *
1578  * Similar to vm_inert_page, this allows drivers to insert individual pages
1579  * they've allocated into a user vma. Same comments apply.
1580  *
1581  * This function should only be called from a vm_ops->fault handler, and
1582  * in that case the handler should return NULL.
1583  *
1584  * vma cannot be a COW mapping.
1585  *
1586  * As this is called only for pages that do not currently exist, we
1587  * do not need to flush old virtual caches or the TLB.
1588  */
1589 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1590                         unsigned long pfn)
1591 {
1592         int ret;
1593         pgprot_t pgprot = vma->vm_page_prot;
1594         /*
1595          * Technically, architectures with pte_special can avoid all these
1596          * restrictions (same for remap_pfn_range).  However we would like
1597          * consistency in testing and feature parity among all, so we should
1598          * try to keep these invariants in place for everybody.
1599          */
1600         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1601         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1602                                                 (VM_PFNMAP|VM_MIXEDMAP));
1603         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1604         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1605
1606         if (addr < vma->vm_start || addr >= vma->vm_end)
1607                 return -EFAULT;
1608         if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1609                 return -EINVAL;
1610
1611         ret = insert_pfn(vma, addr, pfn, pgprot);
1612
1613         if (ret)
1614                 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1615
1616         return ret;
1617 }
1618 EXPORT_SYMBOL(vm_insert_pfn);
1619
1620 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1621                         unsigned long pfn)
1622 {
1623         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1624
1625         if (addr < vma->vm_start || addr >= vma->vm_end)
1626                 return -EFAULT;
1627
1628         /*
1629          * If we don't have pte special, then we have to use the pfn_valid()
1630          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1631          * refcount the page if pfn_valid is true (hence insert_page rather
1632          * than insert_pfn).
1633          */
1634         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1635                 struct page *page;
1636
1637                 page = pfn_to_page(pfn);
1638                 return insert_page(vma, addr, page, vma->vm_page_prot);
1639         }
1640         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1641 }
1642 EXPORT_SYMBOL(vm_insert_mixed);
1643
1644 /*
1645  * maps a range of physical memory into the requested pages. the old
1646  * mappings are removed. any references to nonexistent pages results
1647  * in null mappings (currently treated as "copy-on-access")
1648  */
1649 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1650                         unsigned long addr, unsigned long end,
1651                         unsigned long pfn, pgprot_t prot)
1652 {
1653         pte_t *pte;
1654         spinlock_t *ptl;
1655
1656         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1657         if (!pte)
1658                 return -ENOMEM;
1659         arch_enter_lazy_mmu_mode();
1660         do {
1661                 BUG_ON(!pte_none(*pte));
1662                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1663                 pfn++;
1664         } while (pte++, addr += PAGE_SIZE, addr != end);
1665         arch_leave_lazy_mmu_mode();
1666         pte_unmap_unlock(pte - 1, ptl);
1667         return 0;
1668 }
1669
1670 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1671                         unsigned long addr, unsigned long end,
1672                         unsigned long pfn, pgprot_t prot)
1673 {
1674         pmd_t *pmd;
1675         unsigned long next;
1676
1677         pfn -= addr >> PAGE_SHIFT;
1678         pmd = pmd_alloc(mm, pud, addr);
1679         if (!pmd)
1680                 return -ENOMEM;
1681         do {
1682                 next = pmd_addr_end(addr, end);
1683                 if (remap_pte_range(mm, pmd, addr, next,
1684                                 pfn + (addr >> PAGE_SHIFT), prot))
1685                         return -ENOMEM;
1686         } while (pmd++, addr = next, addr != end);
1687         return 0;
1688 }
1689
1690 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1691                         unsigned long addr, unsigned long end,
1692                         unsigned long pfn, pgprot_t prot)
1693 {
1694         pud_t *pud;
1695         unsigned long next;
1696
1697         pfn -= addr >> PAGE_SHIFT;
1698         pud = pud_alloc(mm, pgd, addr);
1699         if (!pud)
1700                 return -ENOMEM;
1701         do {
1702                 next = pud_addr_end(addr, end);
1703                 if (remap_pmd_range(mm, pud, addr, next,
1704                                 pfn + (addr >> PAGE_SHIFT), prot))
1705                         return -ENOMEM;
1706         } while (pud++, addr = next, addr != end);
1707         return 0;
1708 }
1709
1710 /**
1711  * remap_pfn_range - remap kernel memory to userspace
1712  * @vma: user vma to map to
1713  * @addr: target user address to start at
1714  * @pfn: physical address of kernel memory
1715  * @size: size of map area
1716  * @prot: page protection flags for this mapping
1717  *
1718  *  Note: this is only safe if the mm semaphore is held when called.
1719  */
1720 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1721                     unsigned long pfn, unsigned long size, pgprot_t prot)
1722 {
1723         pgd_t *pgd;
1724         unsigned long next;
1725         unsigned long end = addr + PAGE_ALIGN(size);
1726         struct mm_struct *mm = vma->vm_mm;
1727         int err;
1728
1729         /*
1730          * Physically remapped pages are special. Tell the
1731          * rest of the world about it:
1732          *   VM_IO tells people not to look at these pages
1733          *      (accesses can have side effects).
1734          *   VM_RESERVED is specified all over the place, because
1735          *      in 2.4 it kept swapout's vma scan off this vma; but
1736          *      in 2.6 the LRU scan won't even find its pages, so this
1737          *      flag means no more than count its pages in reserved_vm,
1738          *      and omit it from core dump, even when VM_IO turned off.
1739          *   VM_PFNMAP tells the core MM that the base pages are just
1740          *      raw PFN mappings, and do not have a "struct page" associated
1741          *      with them.
1742          *
1743          * There's a horrible special case to handle copy-on-write
1744          * behaviour that some programs depend on. We mark the "original"
1745          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1746          */
1747         if (addr == vma->vm_start && end == vma->vm_end) {
1748                 vma->vm_pgoff = pfn;
1749                 vma->vm_flags |= VM_PFN_AT_MMAP;
1750         } else if (is_cow_mapping(vma->vm_flags))
1751                 return -EINVAL;
1752
1753         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1754
1755         err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1756         if (err) {
1757                 /*
1758                  * To indicate that track_pfn related cleanup is not
1759                  * needed from higher level routine calling unmap_vmas
1760                  */
1761                 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1762                 vma->vm_flags &= ~VM_PFN_AT_MMAP;
1763                 return -EINVAL;
1764         }
1765
1766         BUG_ON(addr >= end);
1767         pfn -= addr >> PAGE_SHIFT;
1768         pgd = pgd_offset(mm, addr);
1769         flush_cache_range(vma, addr, end);
1770         do {
1771                 next = pgd_addr_end(addr, end);
1772                 err = remap_pud_range(mm, pgd, addr, next,
1773                                 pfn + (addr >> PAGE_SHIFT), prot);
1774                 if (err)
1775                         break;
1776         } while (pgd++, addr = next, addr != end);
1777
1778         if (err)
1779                 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1780
1781         return err;
1782 }
1783 EXPORT_SYMBOL(remap_pfn_range);
1784
1785 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1786                                      unsigned long addr, unsigned long end,
1787                                      pte_fn_t fn, void *data)
1788 {
1789         pte_t *pte;
1790         int err;
1791         pgtable_t token;
1792         spinlock_t *uninitialized_var(ptl);
1793
1794         pte = (mm == &init_mm) ?
1795                 pte_alloc_kernel(pmd, addr) :
1796                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1797         if (!pte)
1798                 return -ENOMEM;
1799
1800         BUG_ON(pmd_huge(*pmd));
1801
1802         arch_enter_lazy_mmu_mode();
1803
1804         token = pmd_pgtable(*pmd);
1805
1806         do {
1807                 err = fn(pte, token, addr, data);
1808                 if (err)
1809                         break;
1810         } while (pte++, addr += PAGE_SIZE, addr != end);
1811
1812         arch_leave_lazy_mmu_mode();
1813
1814         if (mm != &init_mm)
1815                 pte_unmap_unlock(pte-1, ptl);
1816         return err;
1817 }
1818
1819 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1820                                      unsigned long addr, unsigned long end,
1821                                      pte_fn_t fn, void *data)
1822 {
1823         pmd_t *pmd;
1824         unsigned long next;
1825         int err;
1826
1827         BUG_ON(pud_huge(*pud));
1828
1829         pmd = pmd_alloc(mm, pud, addr);
1830         if (!pmd)
1831                 return -ENOMEM;
1832         do {
1833                 next = pmd_addr_end(addr, end);
1834                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1835                 if (err)
1836                         break;
1837         } while (pmd++, addr = next, addr != end);
1838         return err;
1839 }
1840
1841 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1842                                      unsigned long addr, unsigned long end,
1843                                      pte_fn_t fn, void *data)
1844 {
1845         pud_t *pud;
1846         unsigned long next;
1847         int err;
1848
1849         pud = pud_alloc(mm, pgd, addr);
1850         if (!pud)
1851                 return -ENOMEM;
1852         do {
1853                 next = pud_addr_end(addr, end);
1854                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1855                 if (err)
1856                         break;
1857         } while (pud++, addr = next, addr != end);
1858         return err;
1859 }
1860
1861 /*
1862  * Scan a region of virtual memory, filling in page tables as necessary
1863  * and calling a provided function on each leaf page table.
1864  */
1865 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1866                         unsigned long size, pte_fn_t fn, void *data)
1867 {
1868         pgd_t *pgd;
1869         unsigned long next;
1870         unsigned long start = addr, end = addr + size;
1871         int err;
1872
1873         BUG_ON(addr >= end);
1874         mmu_notifier_invalidate_range_start(mm, start, end);
1875         pgd = pgd_offset(mm, addr);
1876         do {
1877                 next = pgd_addr_end(addr, end);
1878                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1879                 if (err)
1880                         break;
1881         } while (pgd++, addr = next, addr != end);
1882         mmu_notifier_invalidate_range_end(mm, start, end);
1883         return err;
1884 }
1885 EXPORT_SYMBOL_GPL(apply_to_page_range);
1886
1887 /*
1888  * handle_pte_fault chooses page fault handler according to an entry
1889  * which was read non-atomically.  Before making any commitment, on
1890  * those architectures or configurations (e.g. i386 with PAE) which
1891  * might give a mix of unmatched parts, do_swap_page and do_file_page
1892  * must check under lock before unmapping the pte and proceeding
1893  * (but do_wp_page is only called after already making such a check;
1894  * and do_anonymous_page and do_no_page can safely check later on).
1895  */
1896 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1897                                 pte_t *page_table, pte_t orig_pte)
1898 {
1899         int same = 1;
1900 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1901         if (sizeof(pte_t) > sizeof(unsigned long)) {
1902                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1903                 spin_lock(ptl);
1904                 same = pte_same(*page_table, orig_pte);
1905                 spin_unlock(ptl);
1906         }
1907 #endif
1908         pte_unmap(page_table);
1909         return same;
1910 }
1911
1912 /*
1913  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1914  * servicing faults for write access.  In the normal case, do always want
1915  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1916  * that do not have writing enabled, when used by access_process_vm.
1917  */
1918 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1919 {
1920         if (likely(vma->vm_flags & VM_WRITE))
1921                 pte = pte_mkwrite(pte);
1922         return pte;
1923 }
1924
1925 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1926 {
1927         /*
1928          * If the source page was a PFN mapping, we don't have
1929          * a "struct page" for it. We do a best-effort copy by
1930          * just copying from the original user address. If that
1931          * fails, we just zero-fill it. Live with it.
1932          */
1933         if (unlikely(!src)) {
1934                 void *kaddr = kmap_atomic(dst, KM_USER0);
1935                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1936
1937                 /*
1938                  * This really shouldn't fail, because the page is there
1939                  * in the page tables. But it might just be unreadable,
1940                  * in which case we just give up and fill the result with
1941                  * zeroes.
1942                  */
1943                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1944                         memset(kaddr, 0, PAGE_SIZE);
1945                 kunmap_atomic(kaddr, KM_USER0);
1946                 flush_dcache_page(dst);
1947         } else
1948                 copy_user_highpage(dst, src, va, vma);
1949 }
1950
1951 /*
1952  * This routine handles present pages, when users try to write
1953  * to a shared page. It is done by copying the page to a new address
1954  * and decrementing the shared-page counter for the old page.
1955  *
1956  * Note that this routine assumes that the protection checks have been
1957  * done by the caller (the low-level page fault routine in most cases).
1958  * Thus we can safely just mark it writable once we've done any necessary
1959  * COW.
1960  *
1961  * We also mark the page dirty at this point even though the page will
1962  * change only once the write actually happens. This avoids a few races,
1963  * and potentially makes it more efficient.
1964  *
1965  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1966  * but allow concurrent faults), with pte both mapped and locked.
1967  * We return with mmap_sem still held, but pte unmapped and unlocked.
1968  */
1969 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1970                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1971                 spinlock_t *ptl, pte_t orig_pte)
1972 {
1973         struct page *old_page, *new_page;
1974         pte_t entry;
1975         int reuse = 0, ret = 0;
1976         int page_mkwrite = 0;
1977         struct page *dirty_page = NULL;
1978
1979         old_page = vm_normal_page(vma, address, orig_pte);
1980         if (!old_page) {
1981                 /*
1982                  * VM_MIXEDMAP !pfn_valid() case
1983                  *
1984                  * We should not cow pages in a shared writeable mapping.
1985                  * Just mark the pages writable as we can't do any dirty
1986                  * accounting on raw pfn maps.
1987                  */
1988                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1989                                      (VM_WRITE|VM_SHARED))
1990                         goto reuse;
1991                 goto gotten;
1992         }
1993
1994         /*
1995          * Take out anonymous pages first, anonymous shared vmas are
1996          * not dirty accountable.
1997          */
1998         if (PageAnon(old_page) && !PageKsm(old_page)) {
1999                 if (!trylock_page(old_page)) {
2000                         page_cache_get(old_page);
2001                         pte_unmap_unlock(page_table, ptl);
2002                         lock_page(old_page);
2003                         page_table = pte_offset_map_lock(mm, pmd, address,
2004                                                          &ptl);
2005                         if (!pte_same(*page_table, orig_pte)) {
2006                                 unlock_page(old_page);
2007                                 page_cache_release(old_page);
2008                                 goto unlock;
2009                         }
2010                         page_cache_release(old_page);
2011                 }
2012                 reuse = reuse_swap_page(old_page);
2013                 unlock_page(old_page);
2014         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2015                                         (VM_WRITE|VM_SHARED))) {
2016                 /*
2017                  * Only catch write-faults on shared writable pages,
2018                  * read-only shared pages can get COWed by
2019                  * get_user_pages(.write=1, .force=1).
2020                  */
2021                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2022                         struct vm_fault vmf;
2023                         int tmp;
2024
2025                         vmf.virtual_address = (void __user *)(address &
2026                                                                 PAGE_MASK);
2027                         vmf.pgoff = old_page->index;
2028                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2029                         vmf.page = old_page;
2030
2031                         /*
2032                          * Notify the address space that the page is about to
2033                          * become writable so that it can prohibit this or wait
2034                          * for the page to get into an appropriate state.
2035                          *
2036                          * We do this without the lock held, so that it can
2037                          * sleep if it needs to.
2038                          */
2039                         page_cache_get(old_page);
2040                         pte_unmap_unlock(page_table, ptl);
2041
2042                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2043                         if (unlikely(tmp &
2044                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2045                                 ret = tmp;
2046                                 goto unwritable_page;
2047                         }
2048                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2049                                 lock_page(old_page);
2050                                 if (!old_page->mapping) {
2051                                         ret = 0; /* retry the fault */
2052                                         unlock_page(old_page);
2053                                         goto unwritable_page;
2054                                 }
2055                         } else
2056                                 VM_BUG_ON(!PageLocked(old_page));
2057
2058                         /*
2059                          * Since we dropped the lock we need to revalidate
2060                          * the PTE as someone else may have changed it.  If
2061                          * they did, we just return, as we can count on the
2062                          * MMU to tell us if they didn't also make it writable.
2063                          */
2064                         page_table = pte_offset_map_lock(mm, pmd, address,
2065                                                          &ptl);
2066                         if (!pte_same(*page_table, orig_pte)) {
2067                                 unlock_page(old_page);
2068                                 page_cache_release(old_page);
2069                                 goto unlock;
2070                         }
2071
2072                         page_mkwrite = 1;
2073                 }
2074                 dirty_page = old_page;
2075                 get_page(dirty_page);
2076                 reuse = 1;
2077         }
2078
2079         if (reuse) {
2080 reuse:
2081                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2082                 entry = pte_mkyoung(orig_pte);
2083                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2084                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2085                         update_mmu_cache(vma, address, entry);
2086                 ret |= VM_FAULT_WRITE;
2087                 goto unlock;
2088         }
2089
2090         /*
2091          * Ok, we need to copy. Oh, well..
2092          */
2093         page_cache_get(old_page);
2094 gotten:
2095         pte_unmap_unlock(page_table, ptl);
2096
2097         if (unlikely(anon_vma_prepare(vma)))
2098                 goto oom;
2099
2100         if (pte_pfn(orig_pte) == zero_pfn) {
2101                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2102                 if (!new_page)
2103                         goto oom;
2104         } else {
2105                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2106                 if (!new_page)
2107                         goto oom;
2108                 cow_user_page(new_page, old_page, address, vma);
2109         }
2110         __SetPageUptodate(new_page);
2111
2112         /*
2113          * Don't let another task, with possibly unlocked vma,
2114          * keep the mlocked page.
2115          */
2116         if ((vma->vm_flags & VM_LOCKED) && old_page) {
2117                 lock_page(old_page);    /* for LRU manipulation */
2118                 clear_page_mlock(old_page);
2119                 unlock_page(old_page);
2120         }
2121
2122         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2123                 goto oom_free_new;
2124
2125         /*
2126          * Re-check the pte - we dropped the lock
2127          */
2128         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2129         if (likely(pte_same(*page_table, orig_pte))) {
2130                 if (old_page) {
2131                         if (!PageAnon(old_page)) {
2132                                 dec_mm_counter(mm, file_rss);
2133                                 inc_mm_counter(mm, anon_rss);
2134                         }
2135                 } else
2136                         inc_mm_counter(mm, anon_rss);
2137                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2138                 entry = mk_pte(new_page, vma->vm_page_prot);
2139                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2140                 /*
2141                  * Clear the pte entry and flush it first, before updating the
2142                  * pte with the new entry. This will avoid a race condition
2143                  * seen in the presence of one thread doing SMC and another
2144                  * thread doing COW.
2145                  */
2146                 ptep_clear_flush(vma, address, page_table);
2147                 page_add_new_anon_rmap(new_page, vma, address);
2148                 /*
2149                  * We call the notify macro here because, when using secondary
2150                  * mmu page tables (such as kvm shadow page tables), we want the
2151                  * new page to be mapped directly into the secondary page table.
2152                  */
2153                 set_pte_at_notify(mm, address, page_table, entry);
2154                 update_mmu_cache(vma, address, entry);
2155                 if (old_page) {
2156                         /*
2157                          * Only after switching the pte to the new page may
2158                          * we remove the mapcount here. Otherwise another
2159                          * process may come and find the rmap count decremented
2160                          * before the pte is switched to the new page, and
2161                          * "reuse" the old page writing into it while our pte
2162                          * here still points into it and can be read by other
2163                          * threads.
2164                          *
2165                          * The critical issue is to order this
2166                          * page_remove_rmap with the ptp_clear_flush above.
2167                          * Those stores are ordered by (if nothing else,)
2168                          * the barrier present in the atomic_add_negative
2169                          * in page_remove_rmap.
2170                          *
2171                          * Then the TLB flush in ptep_clear_flush ensures that
2172                          * no process can access the old page before the
2173                          * decremented mapcount is visible. And the old page
2174                          * cannot be reused until after the decremented
2175                          * mapcount is visible. So transitively, TLBs to
2176                          * old page will be flushed before it can be reused.
2177                          */
2178                         page_remove_rmap(old_page);
2179                 }
2180
2181                 /* Free the old page.. */
2182                 new_page = old_page;
2183                 ret |= VM_FAULT_WRITE;
2184         } else
2185                 mem_cgroup_uncharge_page(new_page);
2186
2187         if (new_page)
2188                 page_cache_release(new_page);
2189         if (old_page)
2190                 page_cache_release(old_page);
2191 unlock:
2192         pte_unmap_unlock(page_table, ptl);
2193         if (dirty_page) {
2194                 /*
2195                  * Yes, Virginia, this is actually required to prevent a race
2196                  * with clear_page_dirty_for_io() from clearing the page dirty
2197                  * bit after it clear all dirty ptes, but before a racing
2198                  * do_wp_page installs a dirty pte.
2199                  *
2200                  * do_no_page is protected similarly.
2201                  */
2202                 if (!page_mkwrite) {
2203                         wait_on_page_locked(dirty_page);
2204                         set_page_dirty_balance(dirty_page, page_mkwrite);
2205                 }
2206                 put_page(dirty_page);
2207                 if (page_mkwrite) {
2208                         struct address_space *mapping = dirty_page->mapping;
2209
2210                         set_page_dirty(dirty_page);
2211                         unlock_page(dirty_page);
2212                         page_cache_release(dirty_page);
2213                         if (mapping)    {
2214                                 /*
2215                                  * Some device drivers do not set page.mapping
2216                                  * but still dirty their pages
2217                                  */
2218                                 balance_dirty_pages_ratelimited(mapping);
2219                         }
2220                 }
2221
2222                 /* file_update_time outside page_lock */
2223                 if (vma->vm_file)
2224                         file_update_time(vma->vm_file);
2225         }
2226         return ret;
2227 oom_free_new:
2228         page_cache_release(new_page);
2229 oom:
2230         if (old_page) {
2231                 if (page_mkwrite) {
2232                         unlock_page(old_page);
2233                         page_cache_release(old_page);
2234                 }
2235                 page_cache_release(old_page);
2236         }
2237         return VM_FAULT_OOM;
2238
2239 unwritable_page:
2240         page_cache_release(old_page);
2241         return ret;
2242 }
2243
2244 /*
2245  * Helper functions for unmap_mapping_range().
2246  *
2247  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2248  *
2249  * We have to restart searching the prio_tree whenever we drop the lock,
2250  * since the iterator is only valid while the lock is held, and anyway
2251  * a later vma might be split and reinserted earlier while lock dropped.
2252  *
2253  * The list of nonlinear vmas could be handled more efficiently, using
2254  * a placeholder, but handle it in the same way until a need is shown.
2255  * It is important to search the prio_tree before nonlinear list: a vma
2256  * may become nonlinear and be shifted from prio_tree to nonlinear list
2257  * while the lock is dropped; but never shifted from list to prio_tree.
2258  *
2259  * In order to make forward progress despite restarting the search,
2260  * vm_truncate_count is used to mark a vma as now dealt with, so we can
2261  * quickly skip it next time around.  Since the prio_tree search only
2262  * shows us those vmas affected by unmapping the range in question, we
2263  * can't efficiently keep all vmas in step with mapping->truncate_count:
2264  * so instead reset them all whenever it wraps back to 0 (then go to 1).
2265  * mapping->truncate_count and vma->vm_truncate_count are protected by
2266  * i_mmap_lock.
2267  *
2268  * In order to make forward progress despite repeatedly restarting some
2269  * large vma, note the restart_addr from unmap_vmas when it breaks out:
2270  * and restart from that address when we reach that vma again.  It might
2271  * have been split or merged, shrunk or extended, but never shifted: so
2272  * restart_addr remains valid so long as it remains in the vma's range.
2273  * unmap_mapping_range forces truncate_count to leap over page-aligned
2274  * values so we can save vma's restart_addr in its truncate_count field.
2275  */
2276 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2277
2278 static void reset_vma_truncate_counts(struct address_space *mapping)
2279 {
2280         struct vm_area_struct *vma;
2281         struct prio_tree_iter iter;
2282
2283         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2284                 vma->vm_truncate_count = 0;
2285         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2286                 vma->vm_truncate_count = 0;
2287 }
2288
2289 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2290                 unsigned long start_addr, unsigned long end_addr,
2291                 struct zap_details *details)
2292 {
2293         unsigned long restart_addr;
2294         int need_break;
2295
2296         /*
2297          * files that support invalidating or truncating portions of the
2298          * file from under mmaped areas must have their ->fault function
2299          * return a locked page (and set VM_FAULT_LOCKED in the return).
2300          * This provides synchronisation against concurrent unmapping here.
2301          */
2302
2303 again:
2304         restart_addr = vma->vm_truncate_count;
2305         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2306                 start_addr = restart_addr;
2307                 if (start_addr >= end_addr) {
2308                         /* Top of vma has been split off since last time */
2309                         vma->vm_truncate_count = details->truncate_count;
2310                         return 0;
2311                 }
2312         }
2313
2314         restart_addr = zap_page_range(vma, start_addr,
2315                                         end_addr - start_addr, details);
2316         need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2317
2318         if (restart_addr >= end_addr) {
2319                 /* We have now completed this vma: mark it so */
2320                 vma->vm_truncate_count = details->truncate_count;
2321                 if (!need_break)
2322                         return 0;
2323         } else {
2324                 /* Note restart_addr in vma's truncate_count field */
2325                 vma->vm_truncate_count = restart_addr;
2326                 if (!need_break)
2327                         goto again;
2328         }
2329
2330         spin_unlock(details->i_mmap_lock);
2331         cond_resched();
2332         spin_lock(details->i_mmap_lock);
2333         return -EINTR;
2334 }
2335
2336 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2337                                             struct zap_details *details)
2338 {
2339         struct vm_area_struct *vma;
2340         struct prio_tree_iter iter;
2341         pgoff_t vba, vea, zba, zea;
2342
2343 restart:
2344         vma_prio_tree_foreach(vma, &iter, root,
2345                         details->first_index, details->last_index) {
2346                 /* Skip quickly over those we have already dealt with */
2347                 if (vma->vm_truncate_count == details->truncate_count)
2348                         continue;
2349
2350                 vba = vma->vm_pgoff;
2351                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2352                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2353                 zba = details->first_index;
2354                 if (zba < vba)
2355                         zba = vba;
2356                 zea = details->last_index;
2357                 if (zea > vea)
2358                         zea = vea;
2359
2360                 if (unmap_mapping_range_vma(vma,
2361                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2362                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2363                                 details) < 0)
2364                         goto restart;
2365         }
2366 }
2367
2368 static inline void unmap_mapping_range_list(struct list_head *head,
2369                                             struct zap_details *details)
2370 {
2371         struct vm_area_struct *vma;
2372
2373         /*
2374          * In nonlinear VMAs there is no correspondence between virtual address
2375          * offset and file offset.  So we must perform an exhaustive search
2376          * across *all* the pages in each nonlinear VMA, not just the pages
2377          * whose virtual address lies outside the file truncation point.
2378          */
2379 restart:
2380         list_for_each_entry(vma, head, shared.vm_set.list) {
2381                 /* Skip quickly over those we have already dealt with */
2382                 if (vma->vm_truncate_count == details->truncate_count)
2383                         continue;
2384                 details->nonlinear_vma = vma;
2385                 if (unmap_mapping_range_vma(vma, vma->vm_start,
2386                                         vma->vm_end, details) < 0)
2387                         goto restart;
2388         }
2389 }
2390
2391 /**
2392  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2393  * @mapping: the address space containing mmaps to be unmapped.
2394  * @holebegin: byte in first page to unmap, relative to the start of
2395  * the underlying file.  This will be rounded down to a PAGE_SIZE
2396  * boundary.  Note that this is different from vmtruncate(), which
2397  * must keep the partial page.  In contrast, we must get rid of
2398  * partial pages.
2399  * @holelen: size of prospective hole in bytes.  This will be rounded
2400  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2401  * end of the file.
2402  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2403  * but 0 when invalidating pagecache, don't throw away private data.
2404  */
2405 void unmap_mapping_range(struct address_space *mapping,
2406                 loff_t const holebegin, loff_t const holelen, int even_cows)
2407 {
2408         struct zap_details details;
2409         pgoff_t hba = holebegin >> PAGE_SHIFT;
2410         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2411
2412         /* Check for overflow. */
2413         if (sizeof(holelen) > sizeof(hlen)) {
2414                 long long holeend =
2415                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2416                 if (holeend & ~(long long)ULONG_MAX)
2417                         hlen = ULONG_MAX - hba + 1;
2418         }
2419
2420         details.check_mapping = even_cows? NULL: mapping;
2421         details.nonlinear_vma = NULL;
2422         details.first_index = hba;
2423         details.last_index = hba + hlen - 1;
2424         if (details.last_index < details.first_index)
2425                 details.last_index = ULONG_MAX;
2426         details.i_mmap_lock = &mapping->i_mmap_lock;
2427
2428         spin_lock(&mapping->i_mmap_lock);
2429
2430         /* Protect against endless unmapping loops */
2431         mapping->truncate_count++;
2432         if (unlikely(is_restart_addr(mapping->truncate_count))) {
2433                 if (mapping->truncate_count == 0)
2434                         reset_vma_truncate_counts(mapping);
2435                 mapping->truncate_count++;
2436         }
2437         details.truncate_count = mapping->truncate_count;
2438
2439         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2440                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2441         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2442                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2443         spin_unlock(&mapping->i_mmap_lock);
2444 }
2445 EXPORT_SYMBOL(unmap_mapping_range);
2446
2447 /**
2448  * vmtruncate - unmap mappings "freed" by truncate() syscall
2449  * @inode: inode of the file used
2450  * @offset: file offset to start truncating
2451  *
2452  * NOTE! We have to be ready to update the memory sharing
2453  * between the file and the memory map for a potential last
2454  * incomplete page.  Ugly, but necessary.
2455  */
2456 int vmtruncate(struct inode * inode, loff_t offset)
2457 {
2458         if (inode->i_size < offset) {
2459                 unsigned long limit;
2460
2461                 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2462                 if (limit != RLIM_INFINITY && offset > limit)
2463                         goto out_sig;
2464                 if (offset > inode->i_sb->s_maxbytes)
2465                         goto out_big;
2466                 i_size_write(inode, offset);
2467         } else {
2468                 struct address_space *mapping = inode->i_mapping;
2469
2470                 /*
2471                  * truncation of in-use swapfiles is disallowed - it would
2472                  * cause subsequent swapout to scribble on the now-freed
2473                  * blocks.
2474                  */
2475                 if (IS_SWAPFILE(inode))
2476                         return -ETXTBSY;
2477                 i_size_write(inode, offset);
2478
2479                 /*
2480                  * unmap_mapping_range is called twice, first simply for
2481                  * efficiency so that truncate_inode_pages does fewer
2482                  * single-page unmaps.  However after this first call, and
2483                  * before truncate_inode_pages finishes, it is possible for
2484                  * private pages to be COWed, which remain after
2485                  * truncate_inode_pages finishes, hence the second
2486                  * unmap_mapping_range call must be made for correctness.
2487                  */
2488                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2489                 truncate_inode_pages(mapping, offset);
2490                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2491         }
2492
2493         if (inode->i_op->truncate)
2494                 inode->i_op->truncate(inode);
2495         return 0;
2496
2497 out_sig:
2498         send_sig(SIGXFSZ, current, 0);
2499 out_big:
2500         return -EFBIG;
2501 }
2502 EXPORT_SYMBOL(vmtruncate);
2503
2504 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2505 {
2506         struct address_space *mapping = inode->i_mapping;
2507
2508         /*
2509          * If the underlying filesystem is not going to provide
2510          * a way to truncate a range of blocks (punch a hole) -
2511          * we should return failure right now.
2512          */
2513         if (!inode->i_op->truncate_range)
2514                 return -ENOSYS;
2515
2516         mutex_lock(&inode->i_mutex);
2517         down_write(&inode->i_alloc_sem);
2518         unmap_mapping_range(mapping, offset, (end - offset), 1);
2519         truncate_inode_pages_range(mapping, offset, end);
2520         unmap_mapping_range(mapping, offset, (end - offset), 1);
2521         inode->i_op->truncate_range(inode, offset, end);
2522         up_write(&inode->i_alloc_sem);
2523         mutex_unlock(&inode->i_mutex);
2524
2525         return 0;
2526 }
2527
2528 /*
2529  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2530  * but allow concurrent faults), and pte mapped but not yet locked.
2531  * We return with mmap_sem still held, but pte unmapped and unlocked.
2532  */
2533 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2534                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2535                 unsigned int flags, pte_t orig_pte)
2536 {
2537         spinlock_t *ptl;
2538         struct page *page;
2539         swp_entry_t entry;
2540         pte_t pte;
2541         struct mem_cgroup *ptr = NULL;
2542         int ret = 0;
2543
2544         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2545                 goto out;
2546
2547         entry = pte_to_swp_entry(orig_pte);
2548         if (is_migration_entry(entry)) {
2549                 migration_entry_wait(mm, pmd, address);
2550                 goto out;
2551         }
2552         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2553         page = lookup_swap_cache(entry);
2554         if (!page) {
2555                 grab_swap_token(mm); /* Contend for token _before_ read-in */
2556                 page = swapin_readahead(entry,
2557                                         GFP_HIGHUSER_MOVABLE, vma, address);
2558                 if (!page) {
2559                         /*
2560                          * Back out if somebody else faulted in this pte
2561                          * while we released the pte lock.
2562                          */
2563                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2564                         if (likely(pte_same(*page_table, orig_pte)))
2565                                 ret = VM_FAULT_OOM;
2566                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2567                         goto unlock;
2568                 }
2569
2570                 /* Had to read the page from swap area: Major fault */
2571                 ret = VM_FAULT_MAJOR;
2572                 count_vm_event(PGMAJFAULT);
2573         }
2574
2575         lock_page(page);
2576         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2577
2578         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2579                 ret = VM_FAULT_OOM;
2580                 goto out_page;
2581         }
2582
2583         /*
2584          * Back out if somebody else already faulted in this pte.
2585          */
2586         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2587         if (unlikely(!pte_same(*page_table, orig_pte)))
2588                 goto out_nomap;
2589
2590         if (unlikely(!PageUptodate(page))) {
2591                 ret = VM_FAULT_SIGBUS;
2592                 goto out_nomap;
2593         }
2594
2595         /*
2596          * The page isn't present yet, go ahead with the fault.
2597          *
2598          * Be careful about the sequence of operations here.
2599          * To get its accounting right, reuse_swap_page() must be called
2600          * while the page is counted on swap but not yet in mapcount i.e.
2601          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2602          * must be called after the swap_free(), or it will never succeed.
2603          * Because delete_from_swap_page() may be called by reuse_swap_page(),
2604          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2605          * in page->private. In this case, a record in swap_cgroup  is silently
2606          * discarded at swap_free().
2607          */
2608
2609         inc_mm_counter(mm, anon_rss);
2610         pte = mk_pte(page, vma->vm_page_prot);
2611         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2612                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2613                 flags &= ~FAULT_FLAG_WRITE;
2614         }
2615         flush_icache_page(vma, page);
2616         set_pte_at(mm, address, page_table, pte);
2617         page_add_anon_rmap(page, vma, address);
2618         /* It's better to call commit-charge after rmap is established */
2619         mem_cgroup_commit_charge_swapin(page, ptr);
2620
2621         swap_free(entry);
2622         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2623                 try_to_free_swap(page);
2624         unlock_page(page);
2625
2626         if (flags & FAULT_FLAG_WRITE) {
2627                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2628                 if (ret & VM_FAULT_ERROR)
2629                         ret &= VM_FAULT_ERROR;
2630                 goto out;
2631         }
2632
2633         /* No need to invalidate - it was non-present before */
2634         update_mmu_cache(vma, address, pte);
2635 unlock:
2636         pte_unmap_unlock(page_table, ptl);
2637 out:
2638         return ret;
2639 out_nomap:
2640         mem_cgroup_cancel_charge_swapin(ptr);
2641         pte_unmap_unlock(page_table, ptl);
2642 out_page:
2643         unlock_page(page);
2644         page_cache_release(page);
2645         return ret;
2646 }
2647
2648 /*
2649  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2650  * but allow concurrent faults), and pte mapped but not yet locked.
2651  * We return with mmap_sem still held, but pte unmapped and unlocked.
2652  */
2653 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2654                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2655                 unsigned int flags)
2656 {
2657         struct page *page;
2658         spinlock_t *ptl;
2659         pte_t entry;
2660
2661         if (HAVE_PTE_SPECIAL && !(flags & FAULT_FLAG_WRITE)) {
2662                 entry = pte_mkspecial(pfn_pte(zero_pfn, vma->vm_page_prot));
2663                 ptl = pte_lockptr(mm, pmd);
2664                 spin_lock(ptl);
2665                 if (!pte_none(*page_table))
2666                         goto unlock;
2667                 goto setpte;
2668         }
2669
2670         /* Allocate our own private page. */
2671         pte_unmap(page_table);
2672
2673         if (unlikely(anon_vma_prepare(vma)))
2674                 goto oom;
2675         page = alloc_zeroed_user_highpage_movable(vma, address);
2676         if (!page)
2677                 goto oom;
2678         __SetPageUptodate(page);
2679
2680         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2681                 goto oom_free_page;
2682
2683         entry = mk_pte(page, vma->vm_page_prot);
2684         if (vma->vm_flags & VM_WRITE)
2685                 entry = pte_mkwrite(pte_mkdirty(entry));
2686
2687         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2688         if (!pte_none(*page_table))
2689                 goto release;
2690
2691         inc_mm_counter(mm, anon_rss);
2692         page_add_new_anon_rmap(page, vma, address);
2693 setpte:
2694         set_pte_at(mm, address, page_table, entry);
2695
2696         /* No need to invalidate - it was non-present before */
2697         update_mmu_cache(vma, address, entry);
2698 unlock:
2699         pte_unmap_unlock(page_table, ptl);
2700         return 0;
2701 release:
2702         mem_cgroup_uncharge_page(page);
2703         page_cache_release(page);
2704         goto unlock;
2705 oom_free_page:
2706         page_cache_release(page);
2707 oom:
2708         return VM_FAULT_OOM;
2709 }
2710
2711 /*
2712  * __do_fault() tries to create a new page mapping. It aggressively
2713  * tries to share with existing pages, but makes a separate copy if
2714  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2715  * the next page fault.
2716  *
2717  * As this is called only for pages that do not currently exist, we
2718  * do not need to flush old virtual caches or the TLB.
2719  *
2720  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2721  * but allow concurrent faults), and pte neither mapped nor locked.
2722  * We return with mmap_sem still held, but pte unmapped and unlocked.
2723  */
2724 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2725                 unsigned long address, pmd_t *pmd,
2726                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2727 {
2728         pte_t *page_table;
2729         spinlock_t *ptl;
2730         struct page *page;
2731         pte_t entry;
2732         int anon = 0;
2733         int charged = 0;
2734         struct page *dirty_page = NULL;
2735         struct vm_fault vmf;
2736         int ret;
2737         int page_mkwrite = 0;
2738
2739         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2740         vmf.pgoff = pgoff;
2741         vmf.flags = flags;
2742         vmf.page = NULL;
2743
2744         ret = vma->vm_ops->fault(vma, &vmf);
2745         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2746                 return ret;
2747
2748         /*
2749          * For consistency in subsequent calls, make the faulted page always
2750          * locked.
2751          */
2752         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2753                 lock_page(vmf.page);
2754         else
2755                 VM_BUG_ON(!PageLocked(vmf.page));
2756
2757         /*
2758          * Should we do an early C-O-W break?
2759          */
2760         page = vmf.page;
2761         if (flags & FAULT_FLAG_WRITE) {
2762                 if (!(vma->vm_flags & VM_SHARED)) {
2763                         anon = 1;
2764                         if (unlikely(anon_vma_prepare(vma))) {
2765                                 ret = VM_FAULT_OOM;
2766                                 goto out;
2767                         }
2768                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2769                                                 vma, address);
2770                         if (!page) {
2771                                 ret = VM_FAULT_OOM;
2772                                 goto out;
2773                         }
2774                         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2775                                 ret = VM_FAULT_OOM;
2776                                 page_cache_release(page);
2777                                 goto out;
2778                         }
2779                         charged = 1;
2780                         /*
2781                          * Don't let another task, with possibly unlocked vma,
2782                          * keep the mlocked page.
2783                          */
2784                         if (vma->vm_flags & VM_LOCKED)
2785                                 clear_page_mlock(vmf.page);
2786                         copy_user_highpage(page, vmf.page, address, vma);
2787                         __SetPageUptodate(page);
2788                 } else {
2789                         /*
2790                          * If the page will be shareable, see if the backing
2791                          * address space wants to know that the page is about
2792                          * to become writable
2793                          */
2794                         if (vma->vm_ops->page_mkwrite) {
2795                                 int tmp;
2796
2797                                 unlock_page(page);
2798                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2799                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2800                                 if (unlikely(tmp &
2801                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2802                                         ret = tmp;
2803                                         goto unwritable_page;
2804                                 }
2805                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2806                                         lock_page(page);
2807                                         if (!page->mapping) {
2808                                                 ret = 0; /* retry the fault */
2809                                                 unlock_page(page);
2810                                                 goto unwritable_page;
2811                                         }
2812                                 } else
2813                                         VM_BUG_ON(!PageLocked(page));
2814                                 page_mkwrite = 1;
2815                         }
2816                 }
2817
2818         }
2819
2820         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2821
2822         /*
2823          * This silly early PAGE_DIRTY setting removes a race
2824          * due to the bad i386 page protection. But it's valid
2825          * for other architectures too.
2826          *
2827          * Note that if FAULT_FLAG_WRITE is set, we either now have
2828          * an exclusive copy of the page, or this is a shared mapping,
2829          * so we can make it writable and dirty to avoid having to
2830          * handle that later.
2831          */
2832         /* Only go through if we didn't race with anybody else... */
2833         if (likely(pte_same(*page_table, orig_pte))) {
2834                 flush_icache_page(vma, page);
2835                 entry = mk_pte(page, vma->vm_page_prot);
2836                 if (flags & FAULT_FLAG_WRITE)
2837                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2838                 if (anon) {
2839                         inc_mm_counter(mm, anon_rss);
2840                         page_add_new_anon_rmap(page, vma, address);
2841                 } else {
2842                         inc_mm_counter(mm, file_rss);
2843                         page_add_file_rmap(page);
2844                         if (flags & FAULT_FLAG_WRITE) {
2845                                 dirty_page = page;
2846                                 get_page(dirty_page);
2847                         }
2848                 }
2849                 set_pte_at(mm, address, page_table, entry);
2850
2851                 /* no need to invalidate: a not-present page won't be cached */
2852                 update_mmu_cache(vma, address, entry);
2853         } else {
2854                 if (charged)
2855                         mem_cgroup_uncharge_page(page);
2856                 if (anon)
2857                         page_cache_release(page);
2858                 else
2859                         anon = 1; /* no anon but release faulted_page */
2860         }
2861
2862         pte_unmap_unlock(page_table, ptl);
2863
2864 out:
2865         if (dirty_page) {
2866                 struct address_space *mapping = page->mapping;
2867
2868                 if (set_page_dirty(dirty_page))
2869                         page_mkwrite = 1;
2870                 unlock_page(dirty_page);
2871                 put_page(dirty_page);
2872                 if (page_mkwrite && mapping) {
2873                         /*
2874                          * Some device drivers do not set page.mapping but still
2875                          * dirty their pages
2876                          */
2877                         balance_dirty_pages_ratelimited(mapping);
2878                 }
2879
2880                 /* file_update_time outside page_lock */
2881                 if (vma->vm_file)
2882                         file_update_time(vma->vm_file);
2883         } else {
2884                 unlock_page(vmf.page);
2885                 if (anon)
2886                         page_cache_release(vmf.page);
2887         }
2888
2889         return ret;
2890
2891 unwritable_page:
2892         page_cache_release(page);
2893         return ret;
2894 }
2895
2896 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2897                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2898                 unsigned int flags, pte_t orig_pte)
2899 {
2900         pgoff_t pgoff = (((address & PAGE_MASK)
2901                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2902
2903         pte_unmap(page_table);
2904         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2905 }
2906
2907 /*
2908  * Fault of a previously existing named mapping. Repopulate the pte
2909  * from the encoded file_pte if possible. This enables swappable
2910  * nonlinear vmas.
2911  *
2912  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2913  * but allow concurrent faults), and pte mapped but not yet locked.
2914  * We return with mmap_sem still held, but pte unmapped and unlocked.
2915  */
2916 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2917                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2918                 unsigned int flags, pte_t orig_pte)
2919 {
2920         pgoff_t pgoff;
2921
2922         flags |= FAULT_FLAG_NONLINEAR;
2923
2924         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2925                 return 0;
2926
2927         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2928                 /*
2929                  * Page table corrupted: show pte and kill process.
2930                  */
2931                 print_bad_pte(vma, address, orig_pte, NULL);
2932                 return VM_FAULT_OOM;
2933         }
2934
2935         pgoff = pte_to_pgoff(orig_pte);
2936         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2937 }
2938
2939 /*
2940  * These routines also need to handle stuff like marking pages dirty
2941  * and/or accessed for architectures that don't do it in hardware (most
2942  * RISC architectures).  The early dirtying is also good on the i386.
2943  *
2944  * There is also a hook called "update_mmu_cache()" that architectures
2945  * with external mmu caches can use to update those (ie the Sparc or
2946  * PowerPC hashed page tables that act as extended TLBs).
2947  *
2948  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2949  * but allow concurrent faults), and pte mapped but not yet locked.
2950  * We return with mmap_sem still held, but pte unmapped and unlocked.
2951  */
2952 static inline int handle_pte_fault(struct mm_struct *mm,
2953                 struct vm_area_struct *vma, unsigned long address,
2954                 pte_t *pte, pmd_t *pmd, unsigned int flags)
2955 {
2956         pte_t entry;
2957         spinlock_t *ptl;
2958
2959         entry = *pte;
2960         if (!pte_present(entry)) {
2961                 if (pte_none(entry)) {
2962                         if (vma->vm_ops) {
2963                                 if (likely(vma->vm_ops->fault))
2964                                         return do_linear_fault(mm, vma, address,
2965                                                 pte, pmd, flags, entry);
2966                         }
2967                         return do_anonymous_page(mm, vma, address,
2968                                                  pte, pmd, flags);
2969                 }
2970                 if (pte_file(entry))
2971                         return do_nonlinear_fault(mm, vma, address,
2972                                         pte, pmd, flags, entry);
2973                 return do_swap_page(mm, vma, address,
2974                                         pte, pmd, flags, entry);
2975         }
2976
2977         ptl = pte_lockptr(mm, pmd);
2978         spin_lock(ptl);
2979         if (unlikely(!pte_same(*pte, entry)))
2980                 goto unlock;
2981         if (flags & FAULT_FLAG_WRITE) {
2982                 if (!pte_write(entry))
2983                         return do_wp_page(mm, vma, address,
2984                                         pte, pmd, ptl, entry);
2985                 entry = pte_mkdirty(entry);
2986         }
2987         entry = pte_mkyoung(entry);
2988         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
2989                 update_mmu_cache(vma, address, entry);
2990         } else {
2991                 /*
2992                  * This is needed only for protection faults but the arch code
2993                  * is not yet telling us if this is a protection fault or not.
2994                  * This still avoids useless tlb flushes for .text page faults
2995                  * with threads.
2996                  */
2997                 if (flags & FAULT_FLAG_WRITE)
2998                         flush_tlb_page(vma, address);
2999         }
3000 unlock:
3001         pte_unmap_unlock(pte, ptl);
3002         return 0;
3003 }
3004
3005 /*
3006  * By the time we get here, we already hold the mm semaphore
3007  */
3008 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3009                 unsigned long address, unsigned int flags)
3010 {
3011         pgd_t *pgd;
3012         pud_t *pud;
3013         pmd_t *pmd;
3014         pte_t *pte;
3015
3016         __set_current_state(TASK_RUNNING);
3017
3018         count_vm_event(PGFAULT);
3019
3020         if (unlikely(is_vm_hugetlb_page(vma)))
3021                 return hugetlb_fault(mm, vma, address, flags);
3022
3023         pgd = pgd_offset(mm, address);
3024         pud = pud_alloc(mm, pgd, address);
3025         if (!pud)
3026                 return VM_FAULT_OOM;
3027         pmd = pmd_alloc(mm, pud, address);
3028         if (!pmd)
3029                 return VM_FAULT_OOM;
3030         pte = pte_alloc_map(mm, pmd, address);
3031         if (!pte)
3032                 return VM_FAULT_OOM;
3033
3034         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3035 }
3036
3037 #ifndef __PAGETABLE_PUD_FOLDED
3038 /*
3039  * Allocate page upper directory.
3040  * We've already handled the fast-path in-line.
3041  */
3042 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3043 {
3044         pud_t *new = pud_alloc_one(mm, address);
3045         if (!new)
3046                 return -ENOMEM;
3047
3048         smp_wmb(); /* See comment in __pte_alloc */
3049
3050         spin_lock(&mm->page_table_lock);
3051         if (pgd_present(*pgd))          /* Another has populated it */
3052                 pud_free(mm, new);
3053         else
3054                 pgd_populate(mm, pgd, new);
3055         spin_unlock(&mm->page_table_lock);
3056         return 0;
3057 }
3058 #endif /* __PAGETABLE_PUD_FOLDED */
3059
3060 #ifndef __PAGETABLE_PMD_FOLDED
3061 /*
3062  * Allocate page middle directory.
3063  * We've already handled the fast-path in-line.
3064  */
3065 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3066 {
3067         pmd_t *new = pmd_alloc_one(mm, address);
3068         if (!new)
3069                 return -ENOMEM;
3070
3071         smp_wmb(); /* See comment in __pte_alloc */
3072
3073         spin_lock(&mm->page_table_lock);
3074 #ifndef __ARCH_HAS_4LEVEL_HACK
3075         if (pud_present(*pud))          /* Another has populated it */
3076                 pmd_free(mm, new);
3077         else
3078                 pud_populate(mm, pud, new);
3079 #else
3080         if (pgd_present(*pud))          /* Another has populated it */
3081                 pmd_free(mm, new);
3082         else
3083                 pgd_populate(mm, pud, new);
3084 #endif /* __ARCH_HAS_4LEVEL_HACK */
3085         spin_unlock(&mm->page_table_lock);
3086         return 0;
3087 }
3088 #endif /* __PAGETABLE_PMD_FOLDED */
3089
3090 int make_pages_present(unsigned long addr, unsigned long end)
3091 {
3092         int ret, len, write;
3093         struct vm_area_struct * vma;
3094
3095         vma = find_vma(current->mm, addr);
3096         if (!vma)
3097                 return -ENOMEM;
3098         write = (vma->vm_flags & VM_WRITE) != 0;
3099         BUG_ON(addr >= end);
3100         BUG_ON(end > vma->vm_end);
3101         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3102         ret = get_user_pages(current, current->mm, addr,
3103                         len, write, 0, NULL, NULL);
3104         if (ret < 0)
3105                 return ret;
3106         return ret == len ? 0 : -EFAULT;
3107 }
3108
3109 #if !defined(__HAVE_ARCH_GATE_AREA)
3110
3111 #if defined(AT_SYSINFO_EHDR)
3112 static struct vm_area_struct gate_vma;
3113
3114 static int __init gate_vma_init(void)
3115 {
3116         gate_vma.vm_mm = NULL;
3117         gate_vma.vm_start = FIXADDR_USER_START;
3118         gate_vma.vm_end = FIXADDR_USER_END;
3119         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3120         gate_vma.vm_page_prot = __P101;
3121         /*
3122          * Make sure the vDSO gets into every core dump.
3123          * Dumping its contents makes post-mortem fully interpretable later
3124          * without matching up the same kernel and hardware config to see
3125          * what PC values meant.
3126          */
3127         gate_vma.vm_flags |= VM_ALWAYSDUMP;
3128         return 0;
3129 }
3130 __initcall(gate_vma_init);
3131 #endif
3132
3133 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3134 {
3135 #ifdef AT_SYSINFO_EHDR
3136         return &gate_vma;
3137 #else
3138         return NULL;
3139 #endif
3140 }
3141
3142 int in_gate_area_no_task(unsigned long addr)
3143 {
3144 #ifdef AT_SYSINFO_EHDR
3145         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3146                 return 1;
3147 #endif
3148         return 0;
3149 }
3150
3151 #endif  /* __HAVE_ARCH_GATE_AREA */
3152
3153 static int follow_pte(struct mm_struct *mm, unsigned long address,
3154                 pte_t **ptepp, spinlock_t **ptlp)
3155 {
3156         pgd_t *pgd;
3157         pud_t *pud;
3158         pmd_t *pmd;
3159         pte_t *ptep;
3160
3161         pgd = pgd_offset(mm, address);
3162         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3163                 goto out;
3164
3165         pud = pud_offset(pgd, address);
3166         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3167                 goto out;
3168
3169         pmd = pmd_offset(pud, address);
3170         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3171                 goto out;
3172
3173         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3174         if (pmd_huge(*pmd))
3175                 goto out;
3176
3177         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3178         if (!ptep)
3179                 goto out;
3180         if (!pte_present(*ptep))
3181                 goto unlock;
3182         *ptepp = ptep;
3183         return 0;
3184 unlock:
3185         pte_unmap_unlock(ptep, *ptlp);
3186 out:
3187         return -EINVAL;
3188 }
3189
3190 /**
3191  * follow_pfn - look up PFN at a user virtual address
3192  * @vma: memory mapping
3193  * @address: user virtual address
3194  * @pfn: location to store found PFN
3195  *
3196  * Only IO mappings and raw PFN mappings are allowed.
3197  *
3198  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3199  */
3200 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3201         unsigned long *pfn)
3202 {
3203         int ret = -EINVAL;
3204         spinlock_t *ptl;
3205         pte_t *ptep;
3206
3207         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3208                 return ret;
3209
3210         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3211         if (ret)
3212                 return ret;
3213         *pfn = pte_pfn(*ptep);
3214         pte_unmap_unlock(ptep, ptl);
3215         return 0;
3216 }
3217 EXPORT_SYMBOL(follow_pfn);
3218
3219 #ifdef CONFIG_HAVE_IOREMAP_PROT
3220 int follow_phys(struct vm_area_struct *vma,
3221                 unsigned long address, unsigned int flags,
3222                 unsigned long *prot, resource_size_t *phys)
3223 {
3224         int ret = -EINVAL;
3225         pte_t *ptep, pte;
3226         spinlock_t *ptl;
3227
3228         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3229                 goto out;
3230
3231         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3232                 goto out;
3233         pte = *ptep;
3234
3235         if ((flags & FOLL_WRITE) && !pte_write(pte))
3236                 goto unlock;
3237
3238         *prot = pgprot_val(pte_pgprot(pte));
3239         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3240
3241         ret = 0;
3242 unlock:
3243         pte_unmap_unlock(ptep, ptl);
3244 out:
3245         return ret;
3246 }
3247
3248 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3249                         void *buf, int len, int write)
3250 {
3251         resource_size_t phys_addr;
3252         unsigned long prot = 0;
3253         void __iomem *maddr;
3254         int offset = addr & (PAGE_SIZE-1);
3255
3256         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3257                 return -EINVAL;
3258
3259         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3260         if (write)
3261                 memcpy_toio(maddr + offset, buf, len);
3262         else
3263                 memcpy_fromio(buf, maddr + offset, len);
3264         iounmap(maddr);
3265
3266         return len;
3267 }
3268 #endif
3269
3270 /*
3271  * Access another process' address space.
3272  * Source/target buffer must be kernel space,
3273  * Do not walk the page table directly, use get_user_pages
3274  */
3275 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3276 {
3277         struct mm_struct *mm;
3278         struct vm_area_struct *vma;
3279         void *old_buf = buf;
3280
3281         mm = get_task_mm(tsk);
3282         if (!mm)
3283                 return 0;
3284
3285         down_read(&mm->mmap_sem);
3286         /* ignore errors, just check how much was successfully transferred */
3287         while (len) {
3288                 int bytes, ret, offset;
3289                 void *maddr;
3290                 struct page *page = NULL;
3291
3292                 ret = get_user_pages(tsk, mm, addr, 1,
3293                                 write, 1, &page, &vma);
3294                 if (ret <= 0) {
3295                         /*
3296                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3297                          * we can access using slightly different code.
3298                          */
3299 #ifdef CONFIG_HAVE_IOREMAP_PROT
3300                         vma = find_vma(mm, addr);
3301                         if (!vma)
3302                                 break;
3303                         if (vma->vm_ops && vma->vm_ops->access)
3304                                 ret = vma->vm_ops->access(vma, addr, buf,
3305                                                           len, write);
3306                         if (ret <= 0)
3307 #endif
3308                                 break;
3309                         bytes = ret;
3310                 } else {
3311                         bytes = len;
3312                         offset = addr & (PAGE_SIZE-1);
3313                         if (bytes > PAGE_SIZE-offset)
3314                                 bytes = PAGE_SIZE-offset;
3315
3316                         maddr = kmap(page);
3317                         if (write) {
3318                                 copy_to_user_page(vma, page, addr,
3319                                                   maddr + offset, buf, bytes);
3320                                 set_page_dirty_lock(page);
3321                         } else {
3322                                 copy_from_user_page(vma, page, addr,
3323                                                     buf, maddr + offset, bytes);
3324                         }
3325                         kunmap(page);
3326                         page_cache_release(page);
3327                 }
3328                 len -= bytes;
3329                 buf += bytes;
3330                 addr += bytes;
3331         }
3332         up_read(&mm->mmap_sem);
3333         mmput(mm);
3334
3335         return buf - old_buf;
3336 }
3337
3338 /*
3339  * Print the name of a VMA.
3340  */
3341 void print_vma_addr(char *prefix, unsigned long ip)
3342 {
3343         struct mm_struct *mm = current->mm;
3344         struct vm_area_struct *vma;
3345
3346         /*
3347          * Do not print if we are in atomic
3348          * contexts (in exception stacks, etc.):
3349          */
3350         if (preempt_count())
3351                 return;
3352
3353         down_read(&mm->mmap_sem);
3354         vma = find_vma(mm, ip);
3355         if (vma && vma->vm_file) {
3356                 struct file *f = vma->vm_file;
3357                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3358                 if (buf) {
3359                         char *p, *s;
3360
3361                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3362                         if (IS_ERR(p))
3363                                 p = "?";
3364                         s = strrchr(p, '/');
3365                         if (s)
3366                                 p = s+1;
3367                         printk("%s%s[%lx+%lx]", prefix, p,
3368                                         vma->vm_start,
3369                                         vma->vm_end - vma->vm_start);
3370                         free_page((unsigned long)buf);
3371                 }
3372         }
3373         up_read(&current->mm->mmap_sem);
3374 }
3375
3376 #ifdef CONFIG_PROVE_LOCKING
3377 void might_fault(void)
3378 {
3379         /*
3380          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3381          * holding the mmap_sem, this is safe because kernel memory doesn't
3382          * get paged out, therefore we'll never actually fault, and the
3383          * below annotations will generate false positives.
3384          */
3385         if (segment_eq(get_fs(), KERNEL_DS))
3386                 return;
3387
3388         might_sleep();
3389         /*
3390          * it would be nicer only to annotate paths which are not under
3391          * pagefault_disable, however that requires a larger audit and
3392          * providing helpers like get_user_atomic.
3393          */
3394         if (!in_atomic() && current->mm)
3395                 might_lock_read(&current->mm->mmap_sem);
3396 }
3397 EXPORT_SYMBOL(might_fault);
3398 #endif