memcg: move charge of file pages
[safe/jmp/linux-2.6] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include "internal.h"
51
52 #include <asm/uaccess.h>
53
54 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
55 #define MEM_CGROUP_RECLAIM_RETRIES      5
56 struct mem_cgroup *root_mem_cgroup __read_mostly;
57
58 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
59 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
60 int do_swap_account __read_mostly;
61 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
62 #else
63 #define do_swap_account         (0)
64 #endif
65
66 /*
67  * Per memcg event counter is incremented at every pagein/pageout. This counter
68  * is used for trigger some periodic events. This is straightforward and better
69  * than using jiffies etc. to handle periodic memcg event.
70  *
71  * These values will be used as !((event) & ((1 <<(thresh)) - 1))
72  */
73 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
74 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
75
76 /*
77  * Statistics for memory cgroup.
78  */
79 enum mem_cgroup_stat_index {
80         /*
81          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
82          */
83         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
84         MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
85         MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
86         MEM_CGROUP_STAT_PGPGIN_COUNT,   /* # of pages paged in */
87         MEM_CGROUP_STAT_PGPGOUT_COUNT,  /* # of pages paged out */
88         MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89         MEM_CGROUP_EVENTS,      /* incremented at every  pagein/pageout */
90
91         MEM_CGROUP_STAT_NSTATS,
92 };
93
94 struct mem_cgroup_stat_cpu {
95         s64 count[MEM_CGROUP_STAT_NSTATS];
96 };
97
98 /*
99  * per-zone information in memory controller.
100  */
101 struct mem_cgroup_per_zone {
102         /*
103          * spin_lock to protect the per cgroup LRU
104          */
105         struct list_head        lists[NR_LRU_LISTS];
106         unsigned long           count[NR_LRU_LISTS];
107
108         struct zone_reclaim_stat reclaim_stat;
109         struct rb_node          tree_node;      /* RB tree node */
110         unsigned long long      usage_in_excess;/* Set to the value by which */
111                                                 /* the soft limit is exceeded*/
112         bool                    on_tree;
113         struct mem_cgroup       *mem;           /* Back pointer, we cannot */
114                                                 /* use container_of        */
115 };
116 /* Macro for accessing counter */
117 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
118
119 struct mem_cgroup_per_node {
120         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
121 };
122
123 struct mem_cgroup_lru_info {
124         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
125 };
126
127 /*
128  * Cgroups above their limits are maintained in a RB-Tree, independent of
129  * their hierarchy representation
130  */
131
132 struct mem_cgroup_tree_per_zone {
133         struct rb_root rb_root;
134         spinlock_t lock;
135 };
136
137 struct mem_cgroup_tree_per_node {
138         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
139 };
140
141 struct mem_cgroup_tree {
142         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
143 };
144
145 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
146
147 struct mem_cgroup_threshold {
148         struct eventfd_ctx *eventfd;
149         u64 threshold;
150 };
151
152 /* For threshold */
153 struct mem_cgroup_threshold_ary {
154         /* An array index points to threshold just below usage. */
155         atomic_t current_threshold;
156         /* Size of entries[] */
157         unsigned int size;
158         /* Array of thresholds */
159         struct mem_cgroup_threshold entries[0];
160 };
161 /* for OOM */
162 struct mem_cgroup_eventfd_list {
163         struct list_head list;
164         struct eventfd_ctx *eventfd;
165 };
166
167 static void mem_cgroup_threshold(struct mem_cgroup *mem);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
169
170 /*
171  * The memory controller data structure. The memory controller controls both
172  * page cache and RSS per cgroup. We would eventually like to provide
173  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
174  * to help the administrator determine what knobs to tune.
175  *
176  * TODO: Add a water mark for the memory controller. Reclaim will begin when
177  * we hit the water mark. May be even add a low water mark, such that
178  * no reclaim occurs from a cgroup at it's low water mark, this is
179  * a feature that will be implemented much later in the future.
180  */
181 struct mem_cgroup {
182         struct cgroup_subsys_state css;
183         /*
184          * the counter to account for memory usage
185          */
186         struct res_counter res;
187         /*
188          * the counter to account for mem+swap usage.
189          */
190         struct res_counter memsw;
191         /*
192          * Per cgroup active and inactive list, similar to the
193          * per zone LRU lists.
194          */
195         struct mem_cgroup_lru_info info;
196
197         /*
198           protect against reclaim related member.
199         */
200         spinlock_t reclaim_param_lock;
201
202         int     prev_priority;  /* for recording reclaim priority */
203
204         /*
205          * While reclaiming in a hierarchy, we cache the last child we
206          * reclaimed from.
207          */
208         int last_scanned_child;
209         /*
210          * Should the accounting and control be hierarchical, per subtree?
211          */
212         bool use_hierarchy;
213         atomic_t        oom_lock;
214         atomic_t        refcnt;
215
216         unsigned int    swappiness;
217         /* OOM-Killer disable */
218         int             oom_kill_disable;
219
220         /* set when res.limit == memsw.limit */
221         bool            memsw_is_minimum;
222
223         /* protect arrays of thresholds */
224         struct mutex thresholds_lock;
225
226         /* thresholds for memory usage. RCU-protected */
227         struct mem_cgroup_threshold_ary *thresholds;
228
229         /* thresholds for mem+swap usage. RCU-protected */
230         struct mem_cgroup_threshold_ary *memsw_thresholds;
231
232         /* For oom notifier event fd */
233         struct list_head oom_notify;
234
235         /*
236          * Should we move charges of a task when a task is moved into this
237          * mem_cgroup ? And what type of charges should we move ?
238          */
239         unsigned long   move_charge_at_immigrate;
240         /*
241          * percpu counter.
242          */
243         struct mem_cgroup_stat_cpu *stat;
244 };
245
246 /* Stuffs for move charges at task migration. */
247 /*
248  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
249  * left-shifted bitmap of these types.
250  */
251 enum move_type {
252         MOVE_CHARGE_TYPE_ANON,  /* private anonymous page and swap of it */
253         MOVE_CHARGE_TYPE_FILE,  /* file page(including tmpfs) and swap of it */
254         NR_MOVE_TYPE,
255 };
256
257 /* "mc" and its members are protected by cgroup_mutex */
258 static struct move_charge_struct {
259         struct mem_cgroup *from;
260         struct mem_cgroup *to;
261         unsigned long precharge;
262         unsigned long moved_charge;
263         unsigned long moved_swap;
264         struct task_struct *moving_task;        /* a task moving charges */
265         wait_queue_head_t waitq;                /* a waitq for other context */
266 } mc = {
267         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
268 };
269
270 static bool move_anon(void)
271 {
272         return test_bit(MOVE_CHARGE_TYPE_ANON,
273                                         &mc.to->move_charge_at_immigrate);
274 }
275
276 static bool move_file(void)
277 {
278         return test_bit(MOVE_CHARGE_TYPE_FILE,
279                                         &mc.to->move_charge_at_immigrate);
280 }
281
282 /*
283  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
284  * limit reclaim to prevent infinite loops, if they ever occur.
285  */
286 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            (100)
287 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
288
289 enum charge_type {
290         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
291         MEM_CGROUP_CHARGE_TYPE_MAPPED,
292         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
293         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
294         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
295         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
296         NR_CHARGE_TYPE,
297 };
298
299 /* only for here (for easy reading.) */
300 #define PCGF_CACHE      (1UL << PCG_CACHE)
301 #define PCGF_USED       (1UL << PCG_USED)
302 #define PCGF_LOCK       (1UL << PCG_LOCK)
303 /* Not used, but added here for completeness */
304 #define PCGF_ACCT       (1UL << PCG_ACCT)
305
306 /* for encoding cft->private value on file */
307 #define _MEM                    (0)
308 #define _MEMSWAP                (1)
309 #define _OOM_TYPE               (2)
310 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
311 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
312 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
313 /* Used for OOM nofiier */
314 #define OOM_CONTROL             (0)
315
316 /*
317  * Reclaim flags for mem_cgroup_hierarchical_reclaim
318  */
319 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
320 #define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
321 #define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
322 #define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
323 #define MEM_CGROUP_RECLAIM_SOFT_BIT     0x2
324 #define MEM_CGROUP_RECLAIM_SOFT         (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
325
326 static void mem_cgroup_get(struct mem_cgroup *mem);
327 static void mem_cgroup_put(struct mem_cgroup *mem);
328 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
329 static void drain_all_stock_async(void);
330
331 static struct mem_cgroup_per_zone *
332 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
333 {
334         return &mem->info.nodeinfo[nid]->zoneinfo[zid];
335 }
336
337 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
338 {
339         return &mem->css;
340 }
341
342 static struct mem_cgroup_per_zone *
343 page_cgroup_zoneinfo(struct page_cgroup *pc)
344 {
345         struct mem_cgroup *mem = pc->mem_cgroup;
346         int nid = page_cgroup_nid(pc);
347         int zid = page_cgroup_zid(pc);
348
349         if (!mem)
350                 return NULL;
351
352         return mem_cgroup_zoneinfo(mem, nid, zid);
353 }
354
355 static struct mem_cgroup_tree_per_zone *
356 soft_limit_tree_node_zone(int nid, int zid)
357 {
358         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
359 }
360
361 static struct mem_cgroup_tree_per_zone *
362 soft_limit_tree_from_page(struct page *page)
363 {
364         int nid = page_to_nid(page);
365         int zid = page_zonenum(page);
366
367         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
368 }
369
370 static void
371 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
372                                 struct mem_cgroup_per_zone *mz,
373                                 struct mem_cgroup_tree_per_zone *mctz,
374                                 unsigned long long new_usage_in_excess)
375 {
376         struct rb_node **p = &mctz->rb_root.rb_node;
377         struct rb_node *parent = NULL;
378         struct mem_cgroup_per_zone *mz_node;
379
380         if (mz->on_tree)
381                 return;
382
383         mz->usage_in_excess = new_usage_in_excess;
384         if (!mz->usage_in_excess)
385                 return;
386         while (*p) {
387                 parent = *p;
388                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
389                                         tree_node);
390                 if (mz->usage_in_excess < mz_node->usage_in_excess)
391                         p = &(*p)->rb_left;
392                 /*
393                  * We can't avoid mem cgroups that are over their soft
394                  * limit by the same amount
395                  */
396                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
397                         p = &(*p)->rb_right;
398         }
399         rb_link_node(&mz->tree_node, parent, p);
400         rb_insert_color(&mz->tree_node, &mctz->rb_root);
401         mz->on_tree = true;
402 }
403
404 static void
405 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
406                                 struct mem_cgroup_per_zone *mz,
407                                 struct mem_cgroup_tree_per_zone *mctz)
408 {
409         if (!mz->on_tree)
410                 return;
411         rb_erase(&mz->tree_node, &mctz->rb_root);
412         mz->on_tree = false;
413 }
414
415 static void
416 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
417                                 struct mem_cgroup_per_zone *mz,
418                                 struct mem_cgroup_tree_per_zone *mctz)
419 {
420         spin_lock(&mctz->lock);
421         __mem_cgroup_remove_exceeded(mem, mz, mctz);
422         spin_unlock(&mctz->lock);
423 }
424
425
426 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
427 {
428         unsigned long long excess;
429         struct mem_cgroup_per_zone *mz;
430         struct mem_cgroup_tree_per_zone *mctz;
431         int nid = page_to_nid(page);
432         int zid = page_zonenum(page);
433         mctz = soft_limit_tree_from_page(page);
434
435         /*
436          * Necessary to update all ancestors when hierarchy is used.
437          * because their event counter is not touched.
438          */
439         for (; mem; mem = parent_mem_cgroup(mem)) {
440                 mz = mem_cgroup_zoneinfo(mem, nid, zid);
441                 excess = res_counter_soft_limit_excess(&mem->res);
442                 /*
443                  * We have to update the tree if mz is on RB-tree or
444                  * mem is over its softlimit.
445                  */
446                 if (excess || mz->on_tree) {
447                         spin_lock(&mctz->lock);
448                         /* if on-tree, remove it */
449                         if (mz->on_tree)
450                                 __mem_cgroup_remove_exceeded(mem, mz, mctz);
451                         /*
452                          * Insert again. mz->usage_in_excess will be updated.
453                          * If excess is 0, no tree ops.
454                          */
455                         __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
456                         spin_unlock(&mctz->lock);
457                 }
458         }
459 }
460
461 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
462 {
463         int node, zone;
464         struct mem_cgroup_per_zone *mz;
465         struct mem_cgroup_tree_per_zone *mctz;
466
467         for_each_node_state(node, N_POSSIBLE) {
468                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
469                         mz = mem_cgroup_zoneinfo(mem, node, zone);
470                         mctz = soft_limit_tree_node_zone(node, zone);
471                         mem_cgroup_remove_exceeded(mem, mz, mctz);
472                 }
473         }
474 }
475
476 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
477 {
478         return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
479 }
480
481 static struct mem_cgroup_per_zone *
482 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
483 {
484         struct rb_node *rightmost = NULL;
485         struct mem_cgroup_per_zone *mz;
486
487 retry:
488         mz = NULL;
489         rightmost = rb_last(&mctz->rb_root);
490         if (!rightmost)
491                 goto done;              /* Nothing to reclaim from */
492
493         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
494         /*
495          * Remove the node now but someone else can add it back,
496          * we will to add it back at the end of reclaim to its correct
497          * position in the tree.
498          */
499         __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
500         if (!res_counter_soft_limit_excess(&mz->mem->res) ||
501                 !css_tryget(&mz->mem->css))
502                 goto retry;
503 done:
504         return mz;
505 }
506
507 static struct mem_cgroup_per_zone *
508 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
509 {
510         struct mem_cgroup_per_zone *mz;
511
512         spin_lock(&mctz->lock);
513         mz = __mem_cgroup_largest_soft_limit_node(mctz);
514         spin_unlock(&mctz->lock);
515         return mz;
516 }
517
518 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
519                 enum mem_cgroup_stat_index idx)
520 {
521         int cpu;
522         s64 val = 0;
523
524         for_each_possible_cpu(cpu)
525                 val += per_cpu(mem->stat->count[idx], cpu);
526         return val;
527 }
528
529 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
530 {
531         s64 ret;
532
533         ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
534         ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
535         return ret;
536 }
537
538 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
539                                          bool charge)
540 {
541         int val = (charge) ? 1 : -1;
542         this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
543 }
544
545 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
546                                          struct page_cgroup *pc,
547                                          bool charge)
548 {
549         int val = (charge) ? 1 : -1;
550
551         preempt_disable();
552
553         if (PageCgroupCache(pc))
554                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
555         else
556                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
557
558         if (charge)
559                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
560         else
561                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
562         __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
563
564         preempt_enable();
565 }
566
567 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
568                                         enum lru_list idx)
569 {
570         int nid, zid;
571         struct mem_cgroup_per_zone *mz;
572         u64 total = 0;
573
574         for_each_online_node(nid)
575                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
576                         mz = mem_cgroup_zoneinfo(mem, nid, zid);
577                         total += MEM_CGROUP_ZSTAT(mz, idx);
578                 }
579         return total;
580 }
581
582 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
583 {
584         s64 val;
585
586         val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
587
588         return !(val & ((1 << event_mask_shift) - 1));
589 }
590
591 /*
592  * Check events in order.
593  *
594  */
595 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
596 {
597         /* threshold event is triggered in finer grain than soft limit */
598         if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
599                 mem_cgroup_threshold(mem);
600                 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
601                         mem_cgroup_update_tree(mem, page);
602         }
603 }
604
605 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
606 {
607         return container_of(cgroup_subsys_state(cont,
608                                 mem_cgroup_subsys_id), struct mem_cgroup,
609                                 css);
610 }
611
612 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
613 {
614         /*
615          * mm_update_next_owner() may clear mm->owner to NULL
616          * if it races with swapoff, page migration, etc.
617          * So this can be called with p == NULL.
618          */
619         if (unlikely(!p))
620                 return NULL;
621
622         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
623                                 struct mem_cgroup, css);
624 }
625
626 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
627 {
628         struct mem_cgroup *mem = NULL;
629
630         if (!mm)
631                 return NULL;
632         /*
633          * Because we have no locks, mm->owner's may be being moved to other
634          * cgroup. We use css_tryget() here even if this looks
635          * pessimistic (rather than adding locks here).
636          */
637         rcu_read_lock();
638         do {
639                 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
640                 if (unlikely(!mem))
641                         break;
642         } while (!css_tryget(&mem->css));
643         rcu_read_unlock();
644         return mem;
645 }
646
647 /*
648  * Call callback function against all cgroup under hierarchy tree.
649  */
650 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
651                           int (*func)(struct mem_cgroup *, void *))
652 {
653         int found, ret, nextid;
654         struct cgroup_subsys_state *css;
655         struct mem_cgroup *mem;
656
657         if (!root->use_hierarchy)
658                 return (*func)(root, data);
659
660         nextid = 1;
661         do {
662                 ret = 0;
663                 mem = NULL;
664
665                 rcu_read_lock();
666                 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
667                                    &found);
668                 if (css && css_tryget(css))
669                         mem = container_of(css, struct mem_cgroup, css);
670                 rcu_read_unlock();
671
672                 if (mem) {
673                         ret = (*func)(mem, data);
674                         css_put(&mem->css);
675                 }
676                 nextid = found + 1;
677         } while (!ret && css);
678
679         return ret;
680 }
681
682 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
683 {
684         return (mem == root_mem_cgroup);
685 }
686
687 /*
688  * Following LRU functions are allowed to be used without PCG_LOCK.
689  * Operations are called by routine of global LRU independently from memcg.
690  * What we have to take care of here is validness of pc->mem_cgroup.
691  *
692  * Changes to pc->mem_cgroup happens when
693  * 1. charge
694  * 2. moving account
695  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
696  * It is added to LRU before charge.
697  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
698  * When moving account, the page is not on LRU. It's isolated.
699  */
700
701 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
702 {
703         struct page_cgroup *pc;
704         struct mem_cgroup_per_zone *mz;
705
706         if (mem_cgroup_disabled())
707                 return;
708         pc = lookup_page_cgroup(page);
709         /* can happen while we handle swapcache. */
710         if (!TestClearPageCgroupAcctLRU(pc))
711                 return;
712         VM_BUG_ON(!pc->mem_cgroup);
713         /*
714          * We don't check PCG_USED bit. It's cleared when the "page" is finally
715          * removed from global LRU.
716          */
717         mz = page_cgroup_zoneinfo(pc);
718         MEM_CGROUP_ZSTAT(mz, lru) -= 1;
719         if (mem_cgroup_is_root(pc->mem_cgroup))
720                 return;
721         VM_BUG_ON(list_empty(&pc->lru));
722         list_del_init(&pc->lru);
723         return;
724 }
725
726 void mem_cgroup_del_lru(struct page *page)
727 {
728         mem_cgroup_del_lru_list(page, page_lru(page));
729 }
730
731 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
732 {
733         struct mem_cgroup_per_zone *mz;
734         struct page_cgroup *pc;
735
736         if (mem_cgroup_disabled())
737                 return;
738
739         pc = lookup_page_cgroup(page);
740         /*
741          * Used bit is set without atomic ops but after smp_wmb().
742          * For making pc->mem_cgroup visible, insert smp_rmb() here.
743          */
744         smp_rmb();
745         /* unused or root page is not rotated. */
746         if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
747                 return;
748         mz = page_cgroup_zoneinfo(pc);
749         list_move(&pc->lru, &mz->lists[lru]);
750 }
751
752 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
753 {
754         struct page_cgroup *pc;
755         struct mem_cgroup_per_zone *mz;
756
757         if (mem_cgroup_disabled())
758                 return;
759         pc = lookup_page_cgroup(page);
760         VM_BUG_ON(PageCgroupAcctLRU(pc));
761         /*
762          * Used bit is set without atomic ops but after smp_wmb().
763          * For making pc->mem_cgroup visible, insert smp_rmb() here.
764          */
765         smp_rmb();
766         if (!PageCgroupUsed(pc))
767                 return;
768
769         mz = page_cgroup_zoneinfo(pc);
770         MEM_CGROUP_ZSTAT(mz, lru) += 1;
771         SetPageCgroupAcctLRU(pc);
772         if (mem_cgroup_is_root(pc->mem_cgroup))
773                 return;
774         list_add(&pc->lru, &mz->lists[lru]);
775 }
776
777 /*
778  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
779  * lru because the page may.be reused after it's fully uncharged (because of
780  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
781  * it again. This function is only used to charge SwapCache. It's done under
782  * lock_page and expected that zone->lru_lock is never held.
783  */
784 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
785 {
786         unsigned long flags;
787         struct zone *zone = page_zone(page);
788         struct page_cgroup *pc = lookup_page_cgroup(page);
789
790         spin_lock_irqsave(&zone->lru_lock, flags);
791         /*
792          * Forget old LRU when this page_cgroup is *not* used. This Used bit
793          * is guarded by lock_page() because the page is SwapCache.
794          */
795         if (!PageCgroupUsed(pc))
796                 mem_cgroup_del_lru_list(page, page_lru(page));
797         spin_unlock_irqrestore(&zone->lru_lock, flags);
798 }
799
800 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
801 {
802         unsigned long flags;
803         struct zone *zone = page_zone(page);
804         struct page_cgroup *pc = lookup_page_cgroup(page);
805
806         spin_lock_irqsave(&zone->lru_lock, flags);
807         /* link when the page is linked to LRU but page_cgroup isn't */
808         if (PageLRU(page) && !PageCgroupAcctLRU(pc))
809                 mem_cgroup_add_lru_list(page, page_lru(page));
810         spin_unlock_irqrestore(&zone->lru_lock, flags);
811 }
812
813
814 void mem_cgroup_move_lists(struct page *page,
815                            enum lru_list from, enum lru_list to)
816 {
817         if (mem_cgroup_disabled())
818                 return;
819         mem_cgroup_del_lru_list(page, from);
820         mem_cgroup_add_lru_list(page, to);
821 }
822
823 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
824 {
825         int ret;
826         struct mem_cgroup *curr = NULL;
827
828         task_lock(task);
829         rcu_read_lock();
830         curr = try_get_mem_cgroup_from_mm(task->mm);
831         rcu_read_unlock();
832         task_unlock(task);
833         if (!curr)
834                 return 0;
835         /*
836          * We should check use_hierarchy of "mem" not "curr". Because checking
837          * use_hierarchy of "curr" here make this function true if hierarchy is
838          * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
839          * hierarchy(even if use_hierarchy is disabled in "mem").
840          */
841         if (mem->use_hierarchy)
842                 ret = css_is_ancestor(&curr->css, &mem->css);
843         else
844                 ret = (curr == mem);
845         css_put(&curr->css);
846         return ret;
847 }
848
849 /*
850  * prev_priority control...this will be used in memory reclaim path.
851  */
852 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
853 {
854         int prev_priority;
855
856         spin_lock(&mem->reclaim_param_lock);
857         prev_priority = mem->prev_priority;
858         spin_unlock(&mem->reclaim_param_lock);
859
860         return prev_priority;
861 }
862
863 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
864 {
865         spin_lock(&mem->reclaim_param_lock);
866         if (priority < mem->prev_priority)
867                 mem->prev_priority = priority;
868         spin_unlock(&mem->reclaim_param_lock);
869 }
870
871 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
872 {
873         spin_lock(&mem->reclaim_param_lock);
874         mem->prev_priority = priority;
875         spin_unlock(&mem->reclaim_param_lock);
876 }
877
878 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
879 {
880         unsigned long active;
881         unsigned long inactive;
882         unsigned long gb;
883         unsigned long inactive_ratio;
884
885         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
886         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
887
888         gb = (inactive + active) >> (30 - PAGE_SHIFT);
889         if (gb)
890                 inactive_ratio = int_sqrt(10 * gb);
891         else
892                 inactive_ratio = 1;
893
894         if (present_pages) {
895                 present_pages[0] = inactive;
896                 present_pages[1] = active;
897         }
898
899         return inactive_ratio;
900 }
901
902 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
903 {
904         unsigned long active;
905         unsigned long inactive;
906         unsigned long present_pages[2];
907         unsigned long inactive_ratio;
908
909         inactive_ratio = calc_inactive_ratio(memcg, present_pages);
910
911         inactive = present_pages[0];
912         active = present_pages[1];
913
914         if (inactive * inactive_ratio < active)
915                 return 1;
916
917         return 0;
918 }
919
920 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
921 {
922         unsigned long active;
923         unsigned long inactive;
924
925         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
926         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
927
928         return (active > inactive);
929 }
930
931 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
932                                        struct zone *zone,
933                                        enum lru_list lru)
934 {
935         int nid = zone->zone_pgdat->node_id;
936         int zid = zone_idx(zone);
937         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
938
939         return MEM_CGROUP_ZSTAT(mz, lru);
940 }
941
942 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
943                                                       struct zone *zone)
944 {
945         int nid = zone->zone_pgdat->node_id;
946         int zid = zone_idx(zone);
947         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
948
949         return &mz->reclaim_stat;
950 }
951
952 struct zone_reclaim_stat *
953 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
954 {
955         struct page_cgroup *pc;
956         struct mem_cgroup_per_zone *mz;
957
958         if (mem_cgroup_disabled())
959                 return NULL;
960
961         pc = lookup_page_cgroup(page);
962         /*
963          * Used bit is set without atomic ops but after smp_wmb().
964          * For making pc->mem_cgroup visible, insert smp_rmb() here.
965          */
966         smp_rmb();
967         if (!PageCgroupUsed(pc))
968                 return NULL;
969
970         mz = page_cgroup_zoneinfo(pc);
971         if (!mz)
972                 return NULL;
973
974         return &mz->reclaim_stat;
975 }
976
977 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
978                                         struct list_head *dst,
979                                         unsigned long *scanned, int order,
980                                         int mode, struct zone *z,
981                                         struct mem_cgroup *mem_cont,
982                                         int active, int file)
983 {
984         unsigned long nr_taken = 0;
985         struct page *page;
986         unsigned long scan;
987         LIST_HEAD(pc_list);
988         struct list_head *src;
989         struct page_cgroup *pc, *tmp;
990         int nid = z->zone_pgdat->node_id;
991         int zid = zone_idx(z);
992         struct mem_cgroup_per_zone *mz;
993         int lru = LRU_FILE * file + active;
994         int ret;
995
996         BUG_ON(!mem_cont);
997         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
998         src = &mz->lists[lru];
999
1000         scan = 0;
1001         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1002                 if (scan >= nr_to_scan)
1003                         break;
1004
1005                 page = pc->page;
1006                 if (unlikely(!PageCgroupUsed(pc)))
1007                         continue;
1008                 if (unlikely(!PageLRU(page)))
1009                         continue;
1010
1011                 scan++;
1012                 ret = __isolate_lru_page(page, mode, file);
1013                 switch (ret) {
1014                 case 0:
1015                         list_move(&page->lru, dst);
1016                         mem_cgroup_del_lru(page);
1017                         nr_taken++;
1018                         break;
1019                 case -EBUSY:
1020                         /* we don't affect global LRU but rotate in our LRU */
1021                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1022                         break;
1023                 default:
1024                         break;
1025                 }
1026         }
1027
1028         *scanned = scan;
1029         return nr_taken;
1030 }
1031
1032 #define mem_cgroup_from_res_counter(counter, member)    \
1033         container_of(counter, struct mem_cgroup, member)
1034
1035 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1036 {
1037         if (do_swap_account) {
1038                 if (res_counter_check_under_limit(&mem->res) &&
1039                         res_counter_check_under_limit(&mem->memsw))
1040                         return true;
1041         } else
1042                 if (res_counter_check_under_limit(&mem->res))
1043                         return true;
1044         return false;
1045 }
1046
1047 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1048 {
1049         struct cgroup *cgrp = memcg->css.cgroup;
1050         unsigned int swappiness;
1051
1052         /* root ? */
1053         if (cgrp->parent == NULL)
1054                 return vm_swappiness;
1055
1056         spin_lock(&memcg->reclaim_param_lock);
1057         swappiness = memcg->swappiness;
1058         spin_unlock(&memcg->reclaim_param_lock);
1059
1060         return swappiness;
1061 }
1062
1063 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
1064 {
1065         int *val = data;
1066         (*val)++;
1067         return 0;
1068 }
1069
1070 /**
1071  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1072  * @memcg: The memory cgroup that went over limit
1073  * @p: Task that is going to be killed
1074  *
1075  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1076  * enabled
1077  */
1078 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1079 {
1080         struct cgroup *task_cgrp;
1081         struct cgroup *mem_cgrp;
1082         /*
1083          * Need a buffer in BSS, can't rely on allocations. The code relies
1084          * on the assumption that OOM is serialized for memory controller.
1085          * If this assumption is broken, revisit this code.
1086          */
1087         static char memcg_name[PATH_MAX];
1088         int ret;
1089
1090         if (!memcg || !p)
1091                 return;
1092
1093
1094         rcu_read_lock();
1095
1096         mem_cgrp = memcg->css.cgroup;
1097         task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1098
1099         ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1100         if (ret < 0) {
1101                 /*
1102                  * Unfortunately, we are unable to convert to a useful name
1103                  * But we'll still print out the usage information
1104                  */
1105                 rcu_read_unlock();
1106                 goto done;
1107         }
1108         rcu_read_unlock();
1109
1110         printk(KERN_INFO "Task in %s killed", memcg_name);
1111
1112         rcu_read_lock();
1113         ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1114         if (ret < 0) {
1115                 rcu_read_unlock();
1116                 goto done;
1117         }
1118         rcu_read_unlock();
1119
1120         /*
1121          * Continues from above, so we don't need an KERN_ level
1122          */
1123         printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1124 done:
1125
1126         printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1127                 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1128                 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1129                 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1130         printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1131                 "failcnt %llu\n",
1132                 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1133                 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1134                 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1135 }
1136
1137 /*
1138  * This function returns the number of memcg under hierarchy tree. Returns
1139  * 1(self count) if no children.
1140  */
1141 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1142 {
1143         int num = 0;
1144         mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1145         return num;
1146 }
1147
1148 /*
1149  * Visit the first child (need not be the first child as per the ordering
1150  * of the cgroup list, since we track last_scanned_child) of @mem and use
1151  * that to reclaim free pages from.
1152  */
1153 static struct mem_cgroup *
1154 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1155 {
1156         struct mem_cgroup *ret = NULL;
1157         struct cgroup_subsys_state *css;
1158         int nextid, found;
1159
1160         if (!root_mem->use_hierarchy) {
1161                 css_get(&root_mem->css);
1162                 ret = root_mem;
1163         }
1164
1165         while (!ret) {
1166                 rcu_read_lock();
1167                 nextid = root_mem->last_scanned_child + 1;
1168                 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1169                                    &found);
1170                 if (css && css_tryget(css))
1171                         ret = container_of(css, struct mem_cgroup, css);
1172
1173                 rcu_read_unlock();
1174                 /* Updates scanning parameter */
1175                 spin_lock(&root_mem->reclaim_param_lock);
1176                 if (!css) {
1177                         /* this means start scan from ID:1 */
1178                         root_mem->last_scanned_child = 0;
1179                 } else
1180                         root_mem->last_scanned_child = found;
1181                 spin_unlock(&root_mem->reclaim_param_lock);
1182         }
1183
1184         return ret;
1185 }
1186
1187 /*
1188  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1189  * we reclaimed from, so that we don't end up penalizing one child extensively
1190  * based on its position in the children list.
1191  *
1192  * root_mem is the original ancestor that we've been reclaim from.
1193  *
1194  * We give up and return to the caller when we visit root_mem twice.
1195  * (other groups can be removed while we're walking....)
1196  *
1197  * If shrink==true, for avoiding to free too much, this returns immedieately.
1198  */
1199 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1200                                                 struct zone *zone,
1201                                                 gfp_t gfp_mask,
1202                                                 unsigned long reclaim_options)
1203 {
1204         struct mem_cgroup *victim;
1205         int ret, total = 0;
1206         int loop = 0;
1207         bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1208         bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1209         bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1210         unsigned long excess = mem_cgroup_get_excess(root_mem);
1211
1212         /* If memsw_is_minimum==1, swap-out is of-no-use. */
1213         if (root_mem->memsw_is_minimum)
1214                 noswap = true;
1215
1216         while (1) {
1217                 victim = mem_cgroup_select_victim(root_mem);
1218                 if (victim == root_mem) {
1219                         loop++;
1220                         if (loop >= 1)
1221                                 drain_all_stock_async();
1222                         if (loop >= 2) {
1223                                 /*
1224                                  * If we have not been able to reclaim
1225                                  * anything, it might because there are
1226                                  * no reclaimable pages under this hierarchy
1227                                  */
1228                                 if (!check_soft || !total) {
1229                                         css_put(&victim->css);
1230                                         break;
1231                                 }
1232                                 /*
1233                                  * We want to do more targetted reclaim.
1234                                  * excess >> 2 is not to excessive so as to
1235                                  * reclaim too much, nor too less that we keep
1236                                  * coming back to reclaim from this cgroup
1237                                  */
1238                                 if (total >= (excess >> 2) ||
1239                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1240                                         css_put(&victim->css);
1241                                         break;
1242                                 }
1243                         }
1244                 }
1245                 if (!mem_cgroup_local_usage(victim)) {
1246                         /* this cgroup's local usage == 0 */
1247                         css_put(&victim->css);
1248                         continue;
1249                 }
1250                 /* we use swappiness of local cgroup */
1251                 if (check_soft)
1252                         ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1253                                 noswap, get_swappiness(victim), zone,
1254                                 zone->zone_pgdat->node_id);
1255                 else
1256                         ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1257                                                 noswap, get_swappiness(victim));
1258                 css_put(&victim->css);
1259                 /*
1260                  * At shrinking usage, we can't check we should stop here or
1261                  * reclaim more. It's depends on callers. last_scanned_child
1262                  * will work enough for keeping fairness under tree.
1263                  */
1264                 if (shrink)
1265                         return ret;
1266                 total += ret;
1267                 if (check_soft) {
1268                         if (res_counter_check_under_soft_limit(&root_mem->res))
1269                                 return total;
1270                 } else if (mem_cgroup_check_under_limit(root_mem))
1271                         return 1 + total;
1272         }
1273         return total;
1274 }
1275
1276 static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
1277 {
1278         int *val = (int *)data;
1279         int x;
1280         /*
1281          * Logically, we can stop scanning immediately when we find
1282          * a memcg is already locked. But condidering unlock ops and
1283          * creation/removal of memcg, scan-all is simple operation.
1284          */
1285         x = atomic_inc_return(&mem->oom_lock);
1286         *val = max(x, *val);
1287         return 0;
1288 }
1289 /*
1290  * Check OOM-Killer is already running under our hierarchy.
1291  * If someone is running, return false.
1292  */
1293 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1294 {
1295         int lock_count = 0;
1296
1297         mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);
1298
1299         if (lock_count == 1)
1300                 return true;
1301         return false;
1302 }
1303
1304 static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
1305 {
1306         /*
1307          * When a new child is created while the hierarchy is under oom,
1308          * mem_cgroup_oom_lock() may not be called. We have to use
1309          * atomic_add_unless() here.
1310          */
1311         atomic_add_unless(&mem->oom_lock, -1, 0);
1312         return 0;
1313 }
1314
1315 static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1316 {
1317         mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_unlock_cb);
1318 }
1319
1320 static DEFINE_MUTEX(memcg_oom_mutex);
1321 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1322
1323 struct oom_wait_info {
1324         struct mem_cgroup *mem;
1325         wait_queue_t    wait;
1326 };
1327
1328 static int memcg_oom_wake_function(wait_queue_t *wait,
1329         unsigned mode, int sync, void *arg)
1330 {
1331         struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1332         struct oom_wait_info *oom_wait_info;
1333
1334         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1335
1336         if (oom_wait_info->mem == wake_mem)
1337                 goto wakeup;
1338         /* if no hierarchy, no match */
1339         if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1340                 return 0;
1341         /*
1342          * Both of oom_wait_info->mem and wake_mem are stable under us.
1343          * Then we can use css_is_ancestor without taking care of RCU.
1344          */
1345         if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1346             !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1347                 return 0;
1348
1349 wakeup:
1350         return autoremove_wake_function(wait, mode, sync, arg);
1351 }
1352
1353 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1354 {
1355         /* for filtering, pass "mem" as argument. */
1356         __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1357 }
1358
1359 static void memcg_oom_recover(struct mem_cgroup *mem)
1360 {
1361         if (mem->oom_kill_disable && atomic_read(&mem->oom_lock))
1362                 memcg_wakeup_oom(mem);
1363 }
1364
1365 /*
1366  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1367  */
1368 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1369 {
1370         struct oom_wait_info owait;
1371         bool locked, need_to_kill;
1372
1373         owait.mem = mem;
1374         owait.wait.flags = 0;
1375         owait.wait.func = memcg_oom_wake_function;
1376         owait.wait.private = current;
1377         INIT_LIST_HEAD(&owait.wait.task_list);
1378         need_to_kill = true;
1379         /* At first, try to OOM lock hierarchy under mem.*/
1380         mutex_lock(&memcg_oom_mutex);
1381         locked = mem_cgroup_oom_lock(mem);
1382         /*
1383          * Even if signal_pending(), we can't quit charge() loop without
1384          * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1385          * under OOM is always welcomed, use TASK_KILLABLE here.
1386          */
1387         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1388         if (!locked || mem->oom_kill_disable)
1389                 need_to_kill = false;
1390         if (locked)
1391                 mem_cgroup_oom_notify(mem);
1392         mutex_unlock(&memcg_oom_mutex);
1393
1394         if (need_to_kill) {
1395                 finish_wait(&memcg_oom_waitq, &owait.wait);
1396                 mem_cgroup_out_of_memory(mem, mask);
1397         } else {
1398                 schedule();
1399                 finish_wait(&memcg_oom_waitq, &owait.wait);
1400         }
1401         mutex_lock(&memcg_oom_mutex);
1402         mem_cgroup_oom_unlock(mem);
1403         memcg_wakeup_oom(mem);
1404         mutex_unlock(&memcg_oom_mutex);
1405
1406         if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1407                 return false;
1408         /* Give chance to dying process */
1409         schedule_timeout(1);
1410         return true;
1411 }
1412
1413 /*
1414  * Currently used to update mapped file statistics, but the routine can be
1415  * generalized to update other statistics as well.
1416  */
1417 void mem_cgroup_update_file_mapped(struct page *page, int val)
1418 {
1419         struct mem_cgroup *mem;
1420         struct page_cgroup *pc;
1421
1422         pc = lookup_page_cgroup(page);
1423         if (unlikely(!pc))
1424                 return;
1425
1426         lock_page_cgroup(pc);
1427         mem = pc->mem_cgroup;
1428         if (!mem || !PageCgroupUsed(pc))
1429                 goto done;
1430
1431         /*
1432          * Preemption is already disabled. We can use __this_cpu_xxx
1433          */
1434         if (val > 0) {
1435                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1436                 SetPageCgroupFileMapped(pc);
1437         } else {
1438                 __this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1439                 ClearPageCgroupFileMapped(pc);
1440         }
1441
1442 done:
1443         unlock_page_cgroup(pc);
1444 }
1445
1446 /*
1447  * size of first charge trial. "32" comes from vmscan.c's magic value.
1448  * TODO: maybe necessary to use big numbers in big irons.
1449  */
1450 #define CHARGE_SIZE     (32 * PAGE_SIZE)
1451 struct memcg_stock_pcp {
1452         struct mem_cgroup *cached; /* this never be root cgroup */
1453         int charge;
1454         struct work_struct work;
1455 };
1456 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1457 static atomic_t memcg_drain_count;
1458
1459 /*
1460  * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1461  * from local stock and true is returned. If the stock is 0 or charges from a
1462  * cgroup which is not current target, returns false. This stock will be
1463  * refilled.
1464  */
1465 static bool consume_stock(struct mem_cgroup *mem)
1466 {
1467         struct memcg_stock_pcp *stock;
1468         bool ret = true;
1469
1470         stock = &get_cpu_var(memcg_stock);
1471         if (mem == stock->cached && stock->charge)
1472                 stock->charge -= PAGE_SIZE;
1473         else /* need to call res_counter_charge */
1474                 ret = false;
1475         put_cpu_var(memcg_stock);
1476         return ret;
1477 }
1478
1479 /*
1480  * Returns stocks cached in percpu to res_counter and reset cached information.
1481  */
1482 static void drain_stock(struct memcg_stock_pcp *stock)
1483 {
1484         struct mem_cgroup *old = stock->cached;
1485
1486         if (stock->charge) {
1487                 res_counter_uncharge(&old->res, stock->charge);
1488                 if (do_swap_account)
1489                         res_counter_uncharge(&old->memsw, stock->charge);
1490         }
1491         stock->cached = NULL;
1492         stock->charge = 0;
1493 }
1494
1495 /*
1496  * This must be called under preempt disabled or must be called by
1497  * a thread which is pinned to local cpu.
1498  */
1499 static void drain_local_stock(struct work_struct *dummy)
1500 {
1501         struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1502         drain_stock(stock);
1503 }
1504
1505 /*
1506  * Cache charges(val) which is from res_counter, to local per_cpu area.
1507  * This will be consumed by consume_stock() function, later.
1508  */
1509 static void refill_stock(struct mem_cgroup *mem, int val)
1510 {
1511         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1512
1513         if (stock->cached != mem) { /* reset if necessary */
1514                 drain_stock(stock);
1515                 stock->cached = mem;
1516         }
1517         stock->charge += val;
1518         put_cpu_var(memcg_stock);
1519 }
1520
1521 /*
1522  * Tries to drain stocked charges in other cpus. This function is asynchronous
1523  * and just put a work per cpu for draining localy on each cpu. Caller can
1524  * expects some charges will be back to res_counter later but cannot wait for
1525  * it.
1526  */
1527 static void drain_all_stock_async(void)
1528 {
1529         int cpu;
1530         /* This function is for scheduling "drain" in asynchronous way.
1531          * The result of "drain" is not directly handled by callers. Then,
1532          * if someone is calling drain, we don't have to call drain more.
1533          * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1534          * there is a race. We just do loose check here.
1535          */
1536         if (atomic_read(&memcg_drain_count))
1537                 return;
1538         /* Notify other cpus that system-wide "drain" is running */
1539         atomic_inc(&memcg_drain_count);
1540         get_online_cpus();
1541         for_each_online_cpu(cpu) {
1542                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1543                 schedule_work_on(cpu, &stock->work);
1544         }
1545         put_online_cpus();
1546         atomic_dec(&memcg_drain_count);
1547         /* We don't wait for flush_work */
1548 }
1549
1550 /* This is a synchronous drain interface. */
1551 static void drain_all_stock_sync(void)
1552 {
1553         /* called when force_empty is called */
1554         atomic_inc(&memcg_drain_count);
1555         schedule_on_each_cpu(drain_local_stock);
1556         atomic_dec(&memcg_drain_count);
1557 }
1558
1559 static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
1560                                         unsigned long action,
1561                                         void *hcpu)
1562 {
1563         int cpu = (unsigned long)hcpu;
1564         struct memcg_stock_pcp *stock;
1565
1566         if (action != CPU_DEAD)
1567                 return NOTIFY_OK;
1568         stock = &per_cpu(memcg_stock, cpu);
1569         drain_stock(stock);
1570         return NOTIFY_OK;
1571 }
1572
1573 /*
1574  * Unlike exported interface, "oom" parameter is added. if oom==true,
1575  * oom-killer can be invoked.
1576  */
1577 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1578                         gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1579 {
1580         struct mem_cgroup *mem, *mem_over_limit;
1581         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1582         struct res_counter *fail_res;
1583         int csize = CHARGE_SIZE;
1584
1585         /*
1586          * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1587          * in system level. So, allow to go ahead dying process in addition to
1588          * MEMDIE process.
1589          */
1590         if (unlikely(test_thread_flag(TIF_MEMDIE)
1591                      || fatal_signal_pending(current)))
1592                 goto bypass;
1593
1594         /*
1595          * We always charge the cgroup the mm_struct belongs to.
1596          * The mm_struct's mem_cgroup changes on task migration if the
1597          * thread group leader migrates. It's possible that mm is not
1598          * set, if so charge the init_mm (happens for pagecache usage).
1599          */
1600         mem = *memcg;
1601         if (likely(!mem)) {
1602                 mem = try_get_mem_cgroup_from_mm(mm);
1603                 *memcg = mem;
1604         } else {
1605                 css_get(&mem->css);
1606         }
1607         if (unlikely(!mem))
1608                 return 0;
1609
1610         VM_BUG_ON(css_is_removed(&mem->css));
1611         if (mem_cgroup_is_root(mem))
1612                 goto done;
1613
1614         while (1) {
1615                 int ret = 0;
1616                 unsigned long flags = 0;
1617
1618                 if (consume_stock(mem))
1619                         goto done;
1620
1621                 ret = res_counter_charge(&mem->res, csize, &fail_res);
1622                 if (likely(!ret)) {
1623                         if (!do_swap_account)
1624                                 break;
1625                         ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1626                         if (likely(!ret))
1627                                 break;
1628                         /* mem+swap counter fails */
1629                         res_counter_uncharge(&mem->res, csize);
1630                         flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1631                         mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1632                                                                         memsw);
1633                 } else
1634                         /* mem counter fails */
1635                         mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1636                                                                         res);
1637
1638                 /* reduce request size and retry */
1639                 if (csize > PAGE_SIZE) {
1640                         csize = PAGE_SIZE;
1641                         continue;
1642                 }
1643                 if (!(gfp_mask & __GFP_WAIT))
1644                         goto nomem;
1645
1646                 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1647                                                 gfp_mask, flags);
1648                 if (ret)
1649                         continue;
1650
1651                 /*
1652                  * try_to_free_mem_cgroup_pages() might not give us a full
1653                  * picture of reclaim. Some pages are reclaimed and might be
1654                  * moved to swap cache or just unmapped from the cgroup.
1655                  * Check the limit again to see if the reclaim reduced the
1656                  * current usage of the cgroup before giving up
1657                  *
1658                  */
1659                 if (mem_cgroup_check_under_limit(mem_over_limit))
1660                         continue;
1661
1662                 /* try to avoid oom while someone is moving charge */
1663                 if (mc.moving_task && current != mc.moving_task) {
1664                         struct mem_cgroup *from, *to;
1665                         bool do_continue = false;
1666                         /*
1667                          * There is a small race that "from" or "to" can be
1668                          * freed by rmdir, so we use css_tryget().
1669                          */
1670                         from = mc.from;
1671                         to = mc.to;
1672                         if (from && css_tryget(&from->css)) {
1673                                 if (mem_over_limit->use_hierarchy)
1674                                         do_continue = css_is_ancestor(
1675                                                         &from->css,
1676                                                         &mem_over_limit->css);
1677                                 else
1678                                         do_continue = (from == mem_over_limit);
1679                                 css_put(&from->css);
1680                         }
1681                         if (!do_continue && to && css_tryget(&to->css)) {
1682                                 if (mem_over_limit->use_hierarchy)
1683                                         do_continue = css_is_ancestor(
1684                                                         &to->css,
1685                                                         &mem_over_limit->css);
1686                                 else
1687                                         do_continue = (to == mem_over_limit);
1688                                 css_put(&to->css);
1689                         }
1690                         if (do_continue) {
1691                                 DEFINE_WAIT(wait);
1692                                 prepare_to_wait(&mc.waitq, &wait,
1693                                                         TASK_INTERRUPTIBLE);
1694                                 /* moving charge context might have finished. */
1695                                 if (mc.moving_task)
1696                                         schedule();
1697                                 finish_wait(&mc.waitq, &wait);
1698                                 continue;
1699                         }
1700                 }
1701
1702                 if (!nr_retries--) {
1703                         if (!oom)
1704                                 goto nomem;
1705                         if (mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) {
1706                                 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1707                                 continue;
1708                         }
1709                         /* When we reach here, current task is dying .*/
1710                         css_put(&mem->css);
1711                         goto bypass;
1712                 }
1713         }
1714         if (csize > PAGE_SIZE)
1715                 refill_stock(mem, csize - PAGE_SIZE);
1716 done:
1717         return 0;
1718 nomem:
1719         css_put(&mem->css);
1720         return -ENOMEM;
1721 bypass:
1722         *memcg = NULL;
1723         return 0;
1724 }
1725
1726 /*
1727  * Somemtimes we have to undo a charge we got by try_charge().
1728  * This function is for that and do uncharge, put css's refcnt.
1729  * gotten by try_charge().
1730  */
1731 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
1732                                                         unsigned long count)
1733 {
1734         if (!mem_cgroup_is_root(mem)) {
1735                 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1736                 if (do_swap_account)
1737                         res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
1738                 VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
1739                 WARN_ON_ONCE(count > INT_MAX);
1740                 __css_put(&mem->css, (int)count);
1741         }
1742         /* we don't need css_put for root */
1743 }
1744
1745 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
1746 {
1747         __mem_cgroup_cancel_charge(mem, 1);
1748 }
1749
1750 /*
1751  * A helper function to get mem_cgroup from ID. must be called under
1752  * rcu_read_lock(). The caller must check css_is_removed() or some if
1753  * it's concern. (dropping refcnt from swap can be called against removed
1754  * memcg.)
1755  */
1756 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1757 {
1758         struct cgroup_subsys_state *css;
1759
1760         /* ID 0 is unused ID */
1761         if (!id)
1762                 return NULL;
1763         css = css_lookup(&mem_cgroup_subsys, id);
1764         if (!css)
1765                 return NULL;
1766         return container_of(css, struct mem_cgroup, css);
1767 }
1768
1769 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1770 {
1771         struct mem_cgroup *mem = NULL;
1772         struct page_cgroup *pc;
1773         unsigned short id;
1774         swp_entry_t ent;
1775
1776         VM_BUG_ON(!PageLocked(page));
1777
1778         pc = lookup_page_cgroup(page);
1779         lock_page_cgroup(pc);
1780         if (PageCgroupUsed(pc)) {
1781                 mem = pc->mem_cgroup;
1782                 if (mem && !css_tryget(&mem->css))
1783                         mem = NULL;
1784         } else if (PageSwapCache(page)) {
1785                 ent.val = page_private(page);
1786                 id = lookup_swap_cgroup(ent);
1787                 rcu_read_lock();
1788                 mem = mem_cgroup_lookup(id);
1789                 if (mem && !css_tryget(&mem->css))
1790                         mem = NULL;
1791                 rcu_read_unlock();
1792         }
1793         unlock_page_cgroup(pc);
1794         return mem;
1795 }
1796
1797 /*
1798  * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1799  * USED state. If already USED, uncharge and return.
1800  */
1801
1802 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1803                                      struct page_cgroup *pc,
1804                                      enum charge_type ctype)
1805 {
1806         /* try_charge() can return NULL to *memcg, taking care of it. */
1807         if (!mem)
1808                 return;
1809
1810         lock_page_cgroup(pc);
1811         if (unlikely(PageCgroupUsed(pc))) {
1812                 unlock_page_cgroup(pc);
1813                 mem_cgroup_cancel_charge(mem);
1814                 return;
1815         }
1816
1817         pc->mem_cgroup = mem;
1818         /*
1819          * We access a page_cgroup asynchronously without lock_page_cgroup().
1820          * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1821          * is accessed after testing USED bit. To make pc->mem_cgroup visible
1822          * before USED bit, we need memory barrier here.
1823          * See mem_cgroup_add_lru_list(), etc.
1824          */
1825         smp_wmb();
1826         switch (ctype) {
1827         case MEM_CGROUP_CHARGE_TYPE_CACHE:
1828         case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1829                 SetPageCgroupCache(pc);
1830                 SetPageCgroupUsed(pc);
1831                 break;
1832         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1833                 ClearPageCgroupCache(pc);
1834                 SetPageCgroupUsed(pc);
1835                 break;
1836         default:
1837                 break;
1838         }
1839
1840         mem_cgroup_charge_statistics(mem, pc, true);
1841
1842         unlock_page_cgroup(pc);
1843         /*
1844          * "charge_statistics" updated event counter. Then, check it.
1845          * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1846          * if they exceeds softlimit.
1847          */
1848         memcg_check_events(mem, pc->page);
1849 }
1850
1851 /**
1852  * __mem_cgroup_move_account - move account of the page
1853  * @pc: page_cgroup of the page.
1854  * @from: mem_cgroup which the page is moved from.
1855  * @to: mem_cgroup which the page is moved to. @from != @to.
1856  * @uncharge: whether we should call uncharge and css_put against @from.
1857  *
1858  * The caller must confirm following.
1859  * - page is not on LRU (isolate_page() is useful.)
1860  * - the pc is locked, used, and ->mem_cgroup points to @from.
1861  *
1862  * This function doesn't do "charge" nor css_get to new cgroup. It should be
1863  * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
1864  * true, this function does "uncharge" from old cgroup, but it doesn't if
1865  * @uncharge is false, so a caller should do "uncharge".
1866  */
1867
1868 static void __mem_cgroup_move_account(struct page_cgroup *pc,
1869         struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1870 {
1871         VM_BUG_ON(from == to);
1872         VM_BUG_ON(PageLRU(pc->page));
1873         VM_BUG_ON(!PageCgroupLocked(pc));
1874         VM_BUG_ON(!PageCgroupUsed(pc));
1875         VM_BUG_ON(pc->mem_cgroup != from);
1876
1877         if (PageCgroupFileMapped(pc)) {
1878                 /* Update mapped_file data for mem_cgroup */
1879                 preempt_disable();
1880                 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1881                 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1882                 preempt_enable();
1883         }
1884         mem_cgroup_charge_statistics(from, pc, false);
1885         if (uncharge)
1886                 /* This is not "cancel", but cancel_charge does all we need. */
1887                 mem_cgroup_cancel_charge(from);
1888
1889         /* caller should have done css_get */
1890         pc->mem_cgroup = to;
1891         mem_cgroup_charge_statistics(to, pc, true);
1892         /*
1893          * We charges against "to" which may not have any tasks. Then, "to"
1894          * can be under rmdir(). But in current implementation, caller of
1895          * this function is just force_empty() and move charge, so it's
1896          * garanteed that "to" is never removed. So, we don't check rmdir
1897          * status here.
1898          */
1899 }
1900
1901 /*
1902  * check whether the @pc is valid for moving account and call
1903  * __mem_cgroup_move_account()
1904  */
1905 static int mem_cgroup_move_account(struct page_cgroup *pc,
1906                 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1907 {
1908         int ret = -EINVAL;
1909         lock_page_cgroup(pc);
1910         if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1911                 __mem_cgroup_move_account(pc, from, to, uncharge);
1912                 ret = 0;
1913         }
1914         unlock_page_cgroup(pc);
1915         /*
1916          * check events
1917          */
1918         memcg_check_events(to, pc->page);
1919         memcg_check_events(from, pc->page);
1920         return ret;
1921 }
1922
1923 /*
1924  * move charges to its parent.
1925  */
1926
1927 static int mem_cgroup_move_parent(struct page_cgroup *pc,
1928                                   struct mem_cgroup *child,
1929                                   gfp_t gfp_mask)
1930 {
1931         struct page *page = pc->page;
1932         struct cgroup *cg = child->css.cgroup;
1933         struct cgroup *pcg = cg->parent;
1934         struct mem_cgroup *parent;
1935         int ret;
1936
1937         /* Is ROOT ? */
1938         if (!pcg)
1939                 return -EINVAL;
1940
1941         ret = -EBUSY;
1942         if (!get_page_unless_zero(page))
1943                 goto out;
1944         if (isolate_lru_page(page))
1945                 goto put;
1946
1947         parent = mem_cgroup_from_cont(pcg);
1948         ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1949         if (ret || !parent)
1950                 goto put_back;
1951
1952         ret = mem_cgroup_move_account(pc, child, parent, true);
1953         if (ret)
1954                 mem_cgroup_cancel_charge(parent);
1955 put_back:
1956         putback_lru_page(page);
1957 put:
1958         put_page(page);
1959 out:
1960         return ret;
1961 }
1962
1963 /*
1964  * Charge the memory controller for page usage.
1965  * Return
1966  * 0 if the charge was successful
1967  * < 0 if the cgroup is over its limit
1968  */
1969 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1970                                 gfp_t gfp_mask, enum charge_type ctype,
1971                                 struct mem_cgroup *memcg)
1972 {
1973         struct mem_cgroup *mem;
1974         struct page_cgroup *pc;
1975         int ret;
1976
1977         pc = lookup_page_cgroup(page);
1978         /* can happen at boot */
1979         if (unlikely(!pc))
1980                 return 0;
1981         prefetchw(pc);
1982
1983         mem = memcg;
1984         ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1985         if (ret || !mem)
1986                 return ret;
1987
1988         __mem_cgroup_commit_charge(mem, pc, ctype);
1989         return 0;
1990 }
1991
1992 int mem_cgroup_newpage_charge(struct page *page,
1993                               struct mm_struct *mm, gfp_t gfp_mask)
1994 {
1995         if (mem_cgroup_disabled())
1996                 return 0;
1997         if (PageCompound(page))
1998                 return 0;
1999         /*
2000          * If already mapped, we don't have to account.
2001          * If page cache, page->mapping has address_space.
2002          * But page->mapping may have out-of-use anon_vma pointer,
2003          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2004          * is NULL.
2005          */
2006         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2007                 return 0;
2008         if (unlikely(!mm))
2009                 mm = &init_mm;
2010         return mem_cgroup_charge_common(page, mm, gfp_mask,
2011                                 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
2012 }
2013
2014 static void
2015 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2016                                         enum charge_type ctype);
2017
2018 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2019                                 gfp_t gfp_mask)
2020 {
2021         struct mem_cgroup *mem = NULL;
2022         int ret;
2023
2024         if (mem_cgroup_disabled())
2025                 return 0;
2026         if (PageCompound(page))
2027                 return 0;
2028         /*
2029          * Corner case handling. This is called from add_to_page_cache()
2030          * in usual. But some FS (shmem) precharges this page before calling it
2031          * and call add_to_page_cache() with GFP_NOWAIT.
2032          *
2033          * For GFP_NOWAIT case, the page may be pre-charged before calling
2034          * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2035          * charge twice. (It works but has to pay a bit larger cost.)
2036          * And when the page is SwapCache, it should take swap information
2037          * into account. This is under lock_page() now.
2038          */
2039         if (!(gfp_mask & __GFP_WAIT)) {
2040                 struct page_cgroup *pc;
2041
2042
2043                 pc = lookup_page_cgroup(page);
2044                 if (!pc)
2045                         return 0;
2046                 lock_page_cgroup(pc);
2047                 if (PageCgroupUsed(pc)) {
2048                         unlock_page_cgroup(pc);
2049                         return 0;
2050                 }
2051                 unlock_page_cgroup(pc);
2052         }
2053
2054         if (unlikely(!mm && !mem))
2055                 mm = &init_mm;
2056
2057         if (page_is_file_cache(page))
2058                 return mem_cgroup_charge_common(page, mm, gfp_mask,
2059                                 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
2060
2061         /* shmem */
2062         if (PageSwapCache(page)) {
2063                 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2064                 if (!ret)
2065                         __mem_cgroup_commit_charge_swapin(page, mem,
2066                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2067         } else
2068                 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2069                                         MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
2070
2071         return ret;
2072 }
2073
2074 /*
2075  * While swap-in, try_charge -> commit or cancel, the page is locked.
2076  * And when try_charge() successfully returns, one refcnt to memcg without
2077  * struct page_cgroup is acquired. This refcnt will be consumed by
2078  * "commit()" or removed by "cancel()"
2079  */
2080 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2081                                  struct page *page,
2082                                  gfp_t mask, struct mem_cgroup **ptr)
2083 {
2084         struct mem_cgroup *mem;
2085         int ret;
2086
2087         if (mem_cgroup_disabled())
2088                 return 0;
2089
2090         if (!do_swap_account)
2091                 goto charge_cur_mm;
2092         /*
2093          * A racing thread's fault, or swapoff, may have already updated
2094          * the pte, and even removed page from swap cache: in those cases
2095          * do_swap_page()'s pte_same() test will fail; but there's also a
2096          * KSM case which does need to charge the page.
2097          */
2098         if (!PageSwapCache(page))
2099                 goto charge_cur_mm;
2100         mem = try_get_mem_cgroup_from_page(page);
2101         if (!mem)
2102                 goto charge_cur_mm;
2103         *ptr = mem;
2104         ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2105         /* drop extra refcnt from tryget */
2106         css_put(&mem->css);
2107         return ret;
2108 charge_cur_mm:
2109         if (unlikely(!mm))
2110                 mm = &init_mm;
2111         return __mem_cgroup_try_charge(mm, mask, ptr, true);
2112 }
2113
2114 static void
2115 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2116                                         enum charge_type ctype)
2117 {
2118         struct page_cgroup *pc;
2119
2120         if (mem_cgroup_disabled())
2121                 return;
2122         if (!ptr)
2123                 return;
2124         cgroup_exclude_rmdir(&ptr->css);
2125         pc = lookup_page_cgroup(page);
2126         mem_cgroup_lru_del_before_commit_swapcache(page);
2127         __mem_cgroup_commit_charge(ptr, pc, ctype);
2128         mem_cgroup_lru_add_after_commit_swapcache(page);
2129         /*
2130          * Now swap is on-memory. This means this page may be
2131          * counted both as mem and swap....double count.
2132          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2133          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2134          * may call delete_from_swap_cache() before reach here.
2135          */
2136         if (do_swap_account && PageSwapCache(page)) {
2137                 swp_entry_t ent = {.val = page_private(page)};
2138                 unsigned short id;
2139                 struct mem_cgroup *memcg;
2140
2141                 id = swap_cgroup_record(ent, 0);
2142                 rcu_read_lock();
2143                 memcg = mem_cgroup_lookup(id);
2144                 if (memcg) {
2145                         /*
2146                          * This recorded memcg can be obsolete one. So, avoid
2147                          * calling css_tryget
2148                          */
2149                         if (!mem_cgroup_is_root(memcg))
2150                                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2151                         mem_cgroup_swap_statistics(memcg, false);
2152                         mem_cgroup_put(memcg);
2153                 }
2154                 rcu_read_unlock();
2155         }
2156         /*
2157          * At swapin, we may charge account against cgroup which has no tasks.
2158          * So, rmdir()->pre_destroy() can be called while we do this charge.
2159          * In that case, we need to call pre_destroy() again. check it here.
2160          */
2161         cgroup_release_and_wakeup_rmdir(&ptr->css);
2162 }
2163
2164 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2165 {
2166         __mem_cgroup_commit_charge_swapin(page, ptr,
2167                                         MEM_CGROUP_CHARGE_TYPE_MAPPED);
2168 }
2169
2170 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2171 {
2172         if (mem_cgroup_disabled())
2173                 return;
2174         if (!mem)
2175                 return;
2176         mem_cgroup_cancel_charge(mem);
2177 }
2178
2179 static void
2180 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
2181 {
2182         struct memcg_batch_info *batch = NULL;
2183         bool uncharge_memsw = true;
2184         /* If swapout, usage of swap doesn't decrease */
2185         if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2186                 uncharge_memsw = false;
2187
2188         batch = &current->memcg_batch;
2189         /*
2190          * In usual, we do css_get() when we remember memcg pointer.
2191          * But in this case, we keep res->usage until end of a series of
2192          * uncharges. Then, it's ok to ignore memcg's refcnt.
2193          */
2194         if (!batch->memcg)
2195                 batch->memcg = mem;
2196         /*
2197          * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2198          * In those cases, all pages freed continously can be expected to be in
2199          * the same cgroup and we have chance to coalesce uncharges.
2200          * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2201          * because we want to do uncharge as soon as possible.
2202          */
2203
2204         if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2205                 goto direct_uncharge;
2206
2207         /*
2208          * In typical case, batch->memcg == mem. This means we can
2209          * merge a series of uncharges to an uncharge of res_counter.
2210          * If not, we uncharge res_counter ony by one.
2211          */
2212         if (batch->memcg != mem)
2213                 goto direct_uncharge;
2214         /* remember freed charge and uncharge it later */
2215         batch->bytes += PAGE_SIZE;
2216         if (uncharge_memsw)
2217                 batch->memsw_bytes += PAGE_SIZE;
2218         return;
2219 direct_uncharge:
2220         res_counter_uncharge(&mem->res, PAGE_SIZE);
2221         if (uncharge_memsw)
2222                 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2223         if (unlikely(batch->memcg != mem))
2224                 memcg_oom_recover(mem);
2225         return;
2226 }
2227
2228 /*
2229  * uncharge if !page_mapped(page)
2230  */
2231 static struct mem_cgroup *
2232 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2233 {
2234         struct page_cgroup *pc;
2235         struct mem_cgroup *mem = NULL;
2236         struct mem_cgroup_per_zone *mz;
2237
2238         if (mem_cgroup_disabled())
2239                 return NULL;
2240
2241         if (PageSwapCache(page))
2242                 return NULL;
2243
2244         /*
2245          * Check if our page_cgroup is valid
2246          */
2247         pc = lookup_page_cgroup(page);
2248         if (unlikely(!pc || !PageCgroupUsed(pc)))
2249                 return NULL;
2250
2251         lock_page_cgroup(pc);
2252
2253         mem = pc->mem_cgroup;
2254
2255         if (!PageCgroupUsed(pc))
2256                 goto unlock_out;
2257
2258         switch (ctype) {
2259         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2260         case MEM_CGROUP_CHARGE_TYPE_DROP:
2261                 if (page_mapped(page))
2262                         goto unlock_out;
2263                 break;
2264         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2265                 if (!PageAnon(page)) {  /* Shared memory */
2266                         if (page->mapping && !page_is_file_cache(page))
2267                                 goto unlock_out;
2268                 } else if (page_mapped(page)) /* Anon */
2269                                 goto unlock_out;
2270                 break;
2271         default:
2272                 break;
2273         }
2274
2275         if (!mem_cgroup_is_root(mem))
2276                 __do_uncharge(mem, ctype);
2277         if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2278                 mem_cgroup_swap_statistics(mem, true);
2279         mem_cgroup_charge_statistics(mem, pc, false);
2280
2281         ClearPageCgroupUsed(pc);
2282         /*
2283          * pc->mem_cgroup is not cleared here. It will be accessed when it's
2284          * freed from LRU. This is safe because uncharged page is expected not
2285          * to be reused (freed soon). Exception is SwapCache, it's handled by
2286          * special functions.
2287          */
2288
2289         mz = page_cgroup_zoneinfo(pc);
2290         unlock_page_cgroup(pc);
2291
2292         memcg_check_events(mem, page);
2293         /* at swapout, this memcg will be accessed to record to swap */
2294         if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2295                 css_put(&mem->css);
2296
2297         return mem;
2298
2299 unlock_out:
2300         unlock_page_cgroup(pc);
2301         return NULL;
2302 }
2303
2304 void mem_cgroup_uncharge_page(struct page *page)
2305 {
2306         /* early check. */
2307         if (page_mapped(page))
2308                 return;
2309         if (page->mapping && !PageAnon(page))
2310                 return;
2311         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2312 }
2313
2314 void mem_cgroup_uncharge_cache_page(struct page *page)
2315 {
2316         VM_BUG_ON(page_mapped(page));
2317         VM_BUG_ON(page->mapping);
2318         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2319 }
2320
2321 /*
2322  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2323  * In that cases, pages are freed continuously and we can expect pages
2324  * are in the same memcg. All these calls itself limits the number of
2325  * pages freed at once, then uncharge_start/end() is called properly.
2326  * This may be called prural(2) times in a context,
2327  */
2328
2329 void mem_cgroup_uncharge_start(void)
2330 {
2331         current->memcg_batch.do_batch++;
2332         /* We can do nest. */
2333         if (current->memcg_batch.do_batch == 1) {
2334                 current->memcg_batch.memcg = NULL;
2335                 current->memcg_batch.bytes = 0;
2336                 current->memcg_batch.memsw_bytes = 0;
2337         }
2338 }
2339
2340 void mem_cgroup_uncharge_end(void)
2341 {
2342         struct memcg_batch_info *batch = &current->memcg_batch;
2343
2344         if (!batch->do_batch)
2345                 return;
2346
2347         batch->do_batch--;
2348         if (batch->do_batch) /* If stacked, do nothing. */
2349                 return;
2350
2351         if (!batch->memcg)
2352                 return;
2353         /*
2354          * This "batch->memcg" is valid without any css_get/put etc...
2355          * bacause we hide charges behind us.
2356          */
2357         if (batch->bytes)
2358                 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2359         if (batch->memsw_bytes)
2360                 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2361         memcg_oom_recover(batch->memcg);
2362         /* forget this pointer (for sanity check) */
2363         batch->memcg = NULL;
2364 }
2365
2366 #ifdef CONFIG_SWAP
2367 /*
2368  * called after __delete_from_swap_cache() and drop "page" account.
2369  * memcg information is recorded to swap_cgroup of "ent"
2370  */
2371 void
2372 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2373 {
2374         struct mem_cgroup *memcg;
2375         int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2376
2377         if (!swapout) /* this was a swap cache but the swap is unused ! */
2378                 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2379
2380         memcg = __mem_cgroup_uncharge_common(page, ctype);
2381
2382         /* record memcg information */
2383         if (do_swap_account && swapout && memcg) {
2384                 swap_cgroup_record(ent, css_id(&memcg->css));
2385                 mem_cgroup_get(memcg);
2386         }
2387         if (swapout && memcg)
2388                 css_put(&memcg->css);
2389 }
2390 #endif
2391
2392 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2393 /*
2394  * called from swap_entry_free(). remove record in swap_cgroup and
2395  * uncharge "memsw" account.
2396  */
2397 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2398 {
2399         struct mem_cgroup *memcg;
2400         unsigned short id;
2401
2402         if (!do_swap_account)
2403                 return;
2404
2405         id = swap_cgroup_record(ent, 0);
2406         rcu_read_lock();
2407         memcg = mem_cgroup_lookup(id);
2408         if (memcg) {
2409                 /*
2410                  * We uncharge this because swap is freed.
2411                  * This memcg can be obsolete one. We avoid calling css_tryget
2412                  */
2413                 if (!mem_cgroup_is_root(memcg))
2414                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2415                 mem_cgroup_swap_statistics(memcg, false);
2416                 mem_cgroup_put(memcg);
2417         }
2418         rcu_read_unlock();
2419 }
2420
2421 /**
2422  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2423  * @entry: swap entry to be moved
2424  * @from:  mem_cgroup which the entry is moved from
2425  * @to:  mem_cgroup which the entry is moved to
2426  * @need_fixup: whether we should fixup res_counters and refcounts.
2427  *
2428  * It succeeds only when the swap_cgroup's record for this entry is the same
2429  * as the mem_cgroup's id of @from.
2430  *
2431  * Returns 0 on success, -EINVAL on failure.
2432  *
2433  * The caller must have charged to @to, IOW, called res_counter_charge() about
2434  * both res and memsw, and called css_get().
2435  */
2436 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2437                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2438 {
2439         unsigned short old_id, new_id;
2440
2441         old_id = css_id(&from->css);
2442         new_id = css_id(&to->css);
2443
2444         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2445                 mem_cgroup_swap_statistics(from, false);
2446                 mem_cgroup_swap_statistics(to, true);
2447                 /*
2448                  * This function is only called from task migration context now.
2449                  * It postpones res_counter and refcount handling till the end
2450                  * of task migration(mem_cgroup_clear_mc()) for performance
2451                  * improvement. But we cannot postpone mem_cgroup_get(to)
2452                  * because if the process that has been moved to @to does
2453                  * swap-in, the refcount of @to might be decreased to 0.
2454                  */
2455                 mem_cgroup_get(to);
2456                 if (need_fixup) {
2457                         if (!mem_cgroup_is_root(from))
2458                                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2459                         mem_cgroup_put(from);
2460                         /*
2461                          * we charged both to->res and to->memsw, so we should
2462                          * uncharge to->res.
2463                          */
2464                         if (!mem_cgroup_is_root(to))
2465                                 res_counter_uncharge(&to->res, PAGE_SIZE);
2466                         css_put(&to->css);
2467                 }
2468                 return 0;
2469         }
2470         return -EINVAL;
2471 }
2472 #else
2473 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2474                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2475 {
2476         return -EINVAL;
2477 }
2478 #endif
2479
2480 /*
2481  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2482  * page belongs to.
2483  */
2484 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
2485 {
2486         struct page_cgroup *pc;
2487         struct mem_cgroup *mem = NULL;
2488         int ret = 0;
2489
2490         if (mem_cgroup_disabled())
2491                 return 0;
2492
2493         pc = lookup_page_cgroup(page);
2494         lock_page_cgroup(pc);
2495         if (PageCgroupUsed(pc)) {
2496                 mem = pc->mem_cgroup;
2497                 css_get(&mem->css);
2498         }
2499         unlock_page_cgroup(pc);
2500
2501         *ptr = mem;
2502         if (mem) {
2503                 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
2504                 css_put(&mem->css);
2505         }
2506         return ret;
2507 }
2508
2509 /* remove redundant charge if migration failed*/
2510 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2511                 struct page *oldpage, struct page *newpage)
2512 {
2513         struct page *target, *unused;
2514         struct page_cgroup *pc;
2515         enum charge_type ctype;
2516
2517         if (!mem)
2518                 return;
2519         cgroup_exclude_rmdir(&mem->css);
2520         /* at migration success, oldpage->mapping is NULL. */
2521         if (oldpage->mapping) {
2522                 target = oldpage;
2523                 unused = NULL;
2524         } else {
2525                 target = newpage;
2526                 unused = oldpage;
2527         }
2528
2529         if (PageAnon(target))
2530                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2531         else if (page_is_file_cache(target))
2532                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2533         else
2534                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2535
2536         /* unused page is not on radix-tree now. */
2537         if (unused)
2538                 __mem_cgroup_uncharge_common(unused, ctype);
2539
2540         pc = lookup_page_cgroup(target);
2541         /*
2542          * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
2543          * So, double-counting is effectively avoided.
2544          */
2545         __mem_cgroup_commit_charge(mem, pc, ctype);
2546
2547         /*
2548          * Both of oldpage and newpage are still under lock_page().
2549          * Then, we don't have to care about race in radix-tree.
2550          * But we have to be careful that this page is unmapped or not.
2551          *
2552          * There is a case for !page_mapped(). At the start of
2553          * migration, oldpage was mapped. But now, it's zapped.
2554          * But we know *target* page is not freed/reused under us.
2555          * mem_cgroup_uncharge_page() does all necessary checks.
2556          */
2557         if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2558                 mem_cgroup_uncharge_page(target);
2559         /*
2560          * At migration, we may charge account against cgroup which has no tasks
2561          * So, rmdir()->pre_destroy() can be called while we do this charge.
2562          * In that case, we need to call pre_destroy() again. check it here.
2563          */
2564         cgroup_release_and_wakeup_rmdir(&mem->css);
2565 }
2566
2567 /*
2568  * A call to try to shrink memory usage on charge failure at shmem's swapin.
2569  * Calling hierarchical_reclaim is not enough because we should update
2570  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2571  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2572  * not from the memcg which this page would be charged to.
2573  * try_charge_swapin does all of these works properly.
2574  */
2575 int mem_cgroup_shmem_charge_fallback(struct page *page,
2576                             struct mm_struct *mm,
2577                             gfp_t gfp_mask)
2578 {
2579         struct mem_cgroup *mem = NULL;
2580         int ret;
2581
2582         if (mem_cgroup_disabled())
2583                 return 0;
2584
2585         ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2586         if (!ret)
2587                 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2588
2589         return ret;
2590 }
2591
2592 static DEFINE_MUTEX(set_limit_mutex);
2593
2594 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2595                                 unsigned long long val)
2596 {
2597         int retry_count;
2598         u64 memswlimit, memlimit;
2599         int ret = 0;
2600         int children = mem_cgroup_count_children(memcg);
2601         u64 curusage, oldusage;
2602         int enlarge;
2603
2604         /*
2605          * For keeping hierarchical_reclaim simple, how long we should retry
2606          * is depends on callers. We set our retry-count to be function
2607          * of # of children which we should visit in this loop.
2608          */
2609         retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2610
2611         oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2612
2613         enlarge = 0;
2614         while (retry_count) {
2615                 if (signal_pending(current)) {
2616                         ret = -EINTR;
2617                         break;
2618                 }
2619                 /*
2620                  * Rather than hide all in some function, I do this in
2621                  * open coded manner. You see what this really does.
2622                  * We have to guarantee mem->res.limit < mem->memsw.limit.
2623                  */
2624                 mutex_lock(&set_limit_mutex);
2625                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2626                 if (memswlimit < val) {
2627                         ret = -EINVAL;
2628                         mutex_unlock(&set_limit_mutex);
2629                         break;
2630                 }
2631
2632                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2633                 if (memlimit < val)
2634                         enlarge = 1;
2635
2636                 ret = res_counter_set_limit(&memcg->res, val);
2637                 if (!ret) {
2638                         if (memswlimit == val)
2639                                 memcg->memsw_is_minimum = true;
2640                         else
2641                                 memcg->memsw_is_minimum = false;
2642                 }
2643                 mutex_unlock(&set_limit_mutex);
2644
2645                 if (!ret)
2646                         break;
2647
2648                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2649                                                 MEM_CGROUP_RECLAIM_SHRINK);
2650                 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2651                 /* Usage is reduced ? */
2652                 if (curusage >= oldusage)
2653                         retry_count--;
2654                 else
2655                         oldusage = curusage;
2656         }
2657         if (!ret && enlarge)
2658                 memcg_oom_recover(memcg);
2659
2660         return ret;
2661 }
2662
2663 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2664                                         unsigned long long val)
2665 {
2666         int retry_count;
2667         u64 memlimit, memswlimit, oldusage, curusage;
2668         int children = mem_cgroup_count_children(memcg);
2669         int ret = -EBUSY;
2670         int enlarge = 0;
2671
2672         /* see mem_cgroup_resize_res_limit */
2673         retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2674         oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2675         while (retry_count) {
2676                 if (signal_pending(current)) {
2677                         ret = -EINTR;
2678                         break;
2679                 }
2680                 /*
2681                  * Rather than hide all in some function, I do this in
2682                  * open coded manner. You see what this really does.
2683                  * We have to guarantee mem->res.limit < mem->memsw.limit.
2684                  */
2685                 mutex_lock(&set_limit_mutex);
2686                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2687                 if (memlimit > val) {
2688                         ret = -EINVAL;
2689                         mutex_unlock(&set_limit_mutex);
2690                         break;
2691                 }
2692                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2693                 if (memswlimit < val)
2694                         enlarge = 1;
2695                 ret = res_counter_set_limit(&memcg->memsw, val);
2696                 if (!ret) {
2697                         if (memlimit == val)
2698                                 memcg->memsw_is_minimum = true;
2699                         else
2700                                 memcg->memsw_is_minimum = false;
2701                 }
2702                 mutex_unlock(&set_limit_mutex);
2703
2704                 if (!ret)
2705                         break;
2706
2707                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2708                                                 MEM_CGROUP_RECLAIM_NOSWAP |
2709                                                 MEM_CGROUP_RECLAIM_SHRINK);
2710                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2711                 /* Usage is reduced ? */
2712                 if (curusage >= oldusage)
2713                         retry_count--;
2714                 else
2715                         oldusage = curusage;
2716         }
2717         if (!ret && enlarge)
2718                 memcg_oom_recover(memcg);
2719         return ret;
2720 }
2721
2722 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2723                                                 gfp_t gfp_mask, int nid,
2724                                                 int zid)
2725 {
2726         unsigned long nr_reclaimed = 0;
2727         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2728         unsigned long reclaimed;
2729         int loop = 0;
2730         struct mem_cgroup_tree_per_zone *mctz;
2731         unsigned long long excess;
2732
2733         if (order > 0)
2734                 return 0;
2735
2736         mctz = soft_limit_tree_node_zone(nid, zid);
2737         /*
2738          * This loop can run a while, specially if mem_cgroup's continuously
2739          * keep exceeding their soft limit and putting the system under
2740          * pressure
2741          */
2742         do {
2743                 if (next_mz)
2744                         mz = next_mz;
2745                 else
2746                         mz = mem_cgroup_largest_soft_limit_node(mctz);
2747                 if (!mz)
2748                         break;
2749
2750                 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2751                                                 gfp_mask,
2752                                                 MEM_CGROUP_RECLAIM_SOFT);
2753                 nr_reclaimed += reclaimed;
2754                 spin_lock(&mctz->lock);
2755
2756                 /*
2757                  * If we failed to reclaim anything from this memory cgroup
2758                  * it is time to move on to the next cgroup
2759                  */
2760                 next_mz = NULL;
2761                 if (!reclaimed) {
2762                         do {
2763                                 /*
2764                                  * Loop until we find yet another one.
2765                                  *
2766                                  * By the time we get the soft_limit lock
2767                                  * again, someone might have aded the
2768                                  * group back on the RB tree. Iterate to
2769                                  * make sure we get a different mem.
2770                                  * mem_cgroup_largest_soft_limit_node returns
2771                                  * NULL if no other cgroup is present on
2772                                  * the tree
2773                                  */
2774                                 next_mz =
2775                                 __mem_cgroup_largest_soft_limit_node(mctz);
2776                                 if (next_mz == mz) {
2777                                         css_put(&next_mz->mem->css);
2778                                         next_mz = NULL;
2779                                 } else /* next_mz == NULL or other memcg */
2780                                         break;
2781                         } while (1);
2782                 }
2783                 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2784                 excess = res_counter_soft_limit_excess(&mz->mem->res);
2785                 /*
2786                  * One school of thought says that we should not add
2787                  * back the node to the tree if reclaim returns 0.
2788                  * But our reclaim could return 0, simply because due
2789                  * to priority we are exposing a smaller subset of
2790                  * memory to reclaim from. Consider this as a longer
2791                  * term TODO.
2792                  */
2793                 /* If excess == 0, no tree ops */
2794                 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2795                 spin_unlock(&mctz->lock);
2796                 css_put(&mz->mem->css);
2797                 loop++;
2798                 /*
2799                  * Could not reclaim anything and there are no more
2800                  * mem cgroups to try or we seem to be looping without
2801                  * reclaiming anything.
2802                  */
2803                 if (!nr_reclaimed &&
2804                         (next_mz == NULL ||
2805                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2806                         break;
2807         } while (!nr_reclaimed);
2808         if (next_mz)
2809                 css_put(&next_mz->mem->css);
2810         return nr_reclaimed;
2811 }
2812
2813 /*
2814  * This routine traverse page_cgroup in given list and drop them all.
2815  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2816  */
2817 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
2818                                 int node, int zid, enum lru_list lru)
2819 {
2820         struct zone *zone;
2821         struct mem_cgroup_per_zone *mz;
2822         struct page_cgroup *pc, *busy;
2823         unsigned long flags, loop;
2824         struct list_head *list;
2825         int ret = 0;
2826
2827         zone = &NODE_DATA(node)->node_zones[zid];
2828         mz = mem_cgroup_zoneinfo(mem, node, zid);
2829         list = &mz->lists[lru];
2830
2831         loop = MEM_CGROUP_ZSTAT(mz, lru);
2832         /* give some margin against EBUSY etc...*/
2833         loop += 256;
2834         busy = NULL;
2835         while (loop--) {
2836                 ret = 0;
2837                 spin_lock_irqsave(&zone->lru_lock, flags);
2838                 if (list_empty(list)) {
2839                         spin_unlock_irqrestore(&zone->lru_lock, flags);
2840                         break;
2841                 }
2842                 pc = list_entry(list->prev, struct page_cgroup, lru);
2843                 if (busy == pc) {
2844                         list_move(&pc->lru, list);
2845                         busy = NULL;
2846                         spin_unlock_irqrestore(&zone->lru_lock, flags);
2847                         continue;
2848                 }
2849                 spin_unlock_irqrestore(&zone->lru_lock, flags);
2850
2851                 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2852                 if (ret == -ENOMEM)
2853                         break;
2854
2855                 if (ret == -EBUSY || ret == -EINVAL) {
2856                         /* found lock contention or "pc" is obsolete. */
2857                         busy = pc;
2858                         cond_resched();
2859                 } else
2860                         busy = NULL;
2861         }
2862
2863         if (!ret && !list_empty(list))
2864                 return -EBUSY;
2865         return ret;
2866 }
2867
2868 /*
2869  * make mem_cgroup's charge to be 0 if there is no task.
2870  * This enables deleting this mem_cgroup.
2871  */
2872 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2873 {
2874         int ret;
2875         int node, zid, shrink;
2876         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2877         struct cgroup *cgrp = mem->css.cgroup;
2878
2879         css_get(&mem->css);
2880
2881         shrink = 0;
2882         /* should free all ? */
2883         if (free_all)
2884                 goto try_to_free;
2885 move_account:
2886         do {
2887                 ret = -EBUSY;
2888                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2889                         goto out;
2890                 ret = -EINTR;
2891                 if (signal_pending(current))
2892                         goto out;
2893                 /* This is for making all *used* pages to be on LRU. */
2894                 lru_add_drain_all();
2895                 drain_all_stock_sync();
2896                 ret = 0;
2897                 for_each_node_state(node, N_HIGH_MEMORY) {
2898                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2899                                 enum lru_list l;
2900                                 for_each_lru(l) {
2901                                         ret = mem_cgroup_force_empty_list(mem,
2902                                                         node, zid, l);
2903                                         if (ret)
2904                                                 break;
2905                                 }
2906                         }
2907                         if (ret)
2908                                 break;
2909                 }
2910                 memcg_oom_recover(mem);
2911                 /* it seems parent cgroup doesn't have enough mem */
2912                 if (ret == -ENOMEM)
2913                         goto try_to_free;
2914                 cond_resched();
2915         /* "ret" should also be checked to ensure all lists are empty. */
2916         } while (mem->res.usage > 0 || ret);
2917 out:
2918         css_put(&mem->css);
2919         return ret;
2920
2921 try_to_free:
2922         /* returns EBUSY if there is a task or if we come here twice. */
2923         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2924                 ret = -EBUSY;
2925                 goto out;
2926         }
2927         /* we call try-to-free pages for make this cgroup empty */
2928         lru_add_drain_all();
2929         /* try to free all pages in this cgroup */
2930         shrink = 1;
2931         while (nr_retries && mem->res.usage > 0) {
2932                 int progress;
2933
2934                 if (signal_pending(current)) {
2935                         ret = -EINTR;
2936                         goto out;
2937                 }
2938                 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2939                                                 false, get_swappiness(mem));
2940                 if (!progress) {
2941                         nr_retries--;
2942                         /* maybe some writeback is necessary */
2943                         congestion_wait(BLK_RW_ASYNC, HZ/10);
2944                 }
2945
2946         }
2947         lru_add_drain();
2948         /* try move_account...there may be some *locked* pages. */
2949         goto move_account;
2950 }
2951
2952 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2953 {
2954         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2955 }
2956
2957
2958 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2959 {
2960         return mem_cgroup_from_cont(cont)->use_hierarchy;
2961 }
2962
2963 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2964                                         u64 val)
2965 {
2966         int retval = 0;
2967         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2968         struct cgroup *parent = cont->parent;
2969         struct mem_cgroup *parent_mem = NULL;
2970
2971         if (parent)
2972                 parent_mem = mem_cgroup_from_cont(parent);
2973
2974         cgroup_lock();
2975         /*
2976          * If parent's use_hierarchy is set, we can't make any modifications
2977          * in the child subtrees. If it is unset, then the change can
2978          * occur, provided the current cgroup has no children.
2979          *
2980          * For the root cgroup, parent_mem is NULL, we allow value to be
2981          * set if there are no children.
2982          */
2983         if ((!parent_mem || !parent_mem->use_hierarchy) &&
2984                                 (val == 1 || val == 0)) {
2985                 if (list_empty(&cont->children))
2986                         mem->use_hierarchy = val;
2987                 else
2988                         retval = -EBUSY;
2989         } else
2990                 retval = -EINVAL;
2991         cgroup_unlock();
2992
2993         return retval;
2994 }
2995
2996 struct mem_cgroup_idx_data {
2997         s64 val;
2998         enum mem_cgroup_stat_index idx;
2999 };
3000
3001 static int
3002 mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
3003 {
3004         struct mem_cgroup_idx_data *d = data;
3005         d->val += mem_cgroup_read_stat(mem, d->idx);
3006         return 0;
3007 }
3008
3009 static void
3010 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3011                                 enum mem_cgroup_stat_index idx, s64 *val)
3012 {
3013         struct mem_cgroup_idx_data d;
3014         d.idx = idx;
3015         d.val = 0;
3016         mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
3017         *val = d.val;
3018 }
3019
3020 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3021 {
3022         u64 idx_val, val;
3023
3024         if (!mem_cgroup_is_root(mem)) {
3025                 if (!swap)
3026                         return res_counter_read_u64(&mem->res, RES_USAGE);
3027                 else
3028                         return res_counter_read_u64(&mem->memsw, RES_USAGE);
3029         }
3030
3031         mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
3032         val = idx_val;
3033         mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
3034         val += idx_val;
3035
3036         if (swap) {
3037                 mem_cgroup_get_recursive_idx_stat(mem,
3038                                 MEM_CGROUP_STAT_SWAPOUT, &idx_val);
3039                 val += idx_val;
3040         }
3041
3042         return val << PAGE_SHIFT;
3043 }
3044
3045 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3046 {
3047         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3048         u64 val;
3049         int type, name;
3050
3051         type = MEMFILE_TYPE(cft->private);
3052         name = MEMFILE_ATTR(cft->private);
3053         switch (type) {
3054         case _MEM:
3055                 if (name == RES_USAGE)
3056                         val = mem_cgroup_usage(mem, false);
3057                 else
3058                         val = res_counter_read_u64(&mem->res, name);
3059                 break;
3060         case _MEMSWAP:
3061                 if (name == RES_USAGE)
3062                         val = mem_cgroup_usage(mem, true);
3063                 else
3064                         val = res_counter_read_u64(&mem->memsw, name);
3065                 break;
3066         default:
3067                 BUG();
3068                 break;
3069         }
3070         return val;
3071 }
3072 /*
3073  * The user of this function is...
3074  * RES_LIMIT.
3075  */
3076 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3077                             const char *buffer)
3078 {
3079         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3080         int type, name;
3081         unsigned long long val;
3082         int ret;
3083
3084         type = MEMFILE_TYPE(cft->private);
3085         name = MEMFILE_ATTR(cft->private);
3086         switch (name) {
3087         case RES_LIMIT:
3088                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3089                         ret = -EINVAL;
3090                         break;
3091                 }
3092                 /* This function does all necessary parse...reuse it */
3093                 ret = res_counter_memparse_write_strategy(buffer, &val);
3094                 if (ret)
3095                         break;
3096                 if (type == _MEM)
3097                         ret = mem_cgroup_resize_limit(memcg, val);
3098                 else
3099                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
3100                 break;
3101         case RES_SOFT_LIMIT:
3102                 ret = res_counter_memparse_write_strategy(buffer, &val);
3103                 if (ret)
3104                         break;
3105                 /*
3106                  * For memsw, soft limits are hard to implement in terms
3107                  * of semantics, for now, we support soft limits for
3108                  * control without swap
3109                  */
3110                 if (type == _MEM)
3111                         ret = res_counter_set_soft_limit(&memcg->res, val);
3112                 else
3113                         ret = -EINVAL;
3114                 break;
3115         default:
3116                 ret = -EINVAL; /* should be BUG() ? */
3117                 break;
3118         }
3119         return ret;
3120 }
3121
3122 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3123                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3124 {
3125         struct cgroup *cgroup;
3126         unsigned long long min_limit, min_memsw_limit, tmp;
3127
3128         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3129         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3130         cgroup = memcg->css.cgroup;
3131         if (!memcg->use_hierarchy)
3132                 goto out;
3133
3134         while (cgroup->parent) {
3135                 cgroup = cgroup->parent;
3136                 memcg = mem_cgroup_from_cont(cgroup);
3137                 if (!memcg->use_hierarchy)
3138                         break;
3139                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3140                 min_limit = min(min_limit, tmp);
3141                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3142                 min_memsw_limit = min(min_memsw_limit, tmp);
3143         }
3144 out:
3145         *mem_limit = min_limit;
3146         *memsw_limit = min_memsw_limit;
3147         return;
3148 }
3149
3150 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3151 {
3152         struct mem_cgroup *mem;
3153         int type, name;
3154
3155         mem = mem_cgroup_from_cont(cont);
3156         type = MEMFILE_TYPE(event);
3157         name = MEMFILE_ATTR(event);
3158         switch (name) {
3159         case RES_MAX_USAGE:
3160                 if (type == _MEM)
3161                         res_counter_reset_max(&mem->res);
3162                 else
3163                         res_counter_reset_max(&mem->memsw);
3164                 break;
3165         case RES_FAILCNT:
3166                 if (type == _MEM)
3167                         res_counter_reset_failcnt(&mem->res);
3168                 else
3169                         res_counter_reset_failcnt(&mem->memsw);
3170                 break;
3171         }
3172
3173         return 0;
3174 }
3175
3176 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3177                                         struct cftype *cft)
3178 {
3179         return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3180 }
3181
3182 #ifdef CONFIG_MMU
3183 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3184                                         struct cftype *cft, u64 val)
3185 {
3186         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3187
3188         if (val >= (1 << NR_MOVE_TYPE))
3189                 return -EINVAL;
3190         /*
3191          * We check this value several times in both in can_attach() and
3192          * attach(), so we need cgroup lock to prevent this value from being
3193          * inconsistent.
3194          */
3195         cgroup_lock();
3196         mem->move_charge_at_immigrate = val;
3197         cgroup_unlock();
3198
3199         return 0;
3200 }
3201 #else
3202 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3203                                         struct cftype *cft, u64 val)
3204 {
3205         return -ENOSYS;
3206 }
3207 #endif
3208
3209
3210 /* For read statistics */
3211 enum {
3212         MCS_CACHE,
3213         MCS_RSS,
3214         MCS_FILE_MAPPED,
3215         MCS_PGPGIN,
3216         MCS_PGPGOUT,
3217         MCS_SWAP,
3218         MCS_INACTIVE_ANON,
3219         MCS_ACTIVE_ANON,
3220         MCS_INACTIVE_FILE,
3221         MCS_ACTIVE_FILE,
3222         MCS_UNEVICTABLE,
3223         NR_MCS_STAT,
3224 };
3225
3226 struct mcs_total_stat {
3227         s64 stat[NR_MCS_STAT];
3228 };
3229
3230 struct {
3231         char *local_name;
3232         char *total_name;
3233 } memcg_stat_strings[NR_MCS_STAT] = {
3234         {"cache", "total_cache"},
3235         {"rss", "total_rss"},
3236         {"mapped_file", "total_mapped_file"},
3237         {"pgpgin", "total_pgpgin"},
3238         {"pgpgout", "total_pgpgout"},
3239         {"swap", "total_swap"},
3240         {"inactive_anon", "total_inactive_anon"},
3241         {"active_anon", "total_active_anon"},
3242         {"inactive_file", "total_inactive_file"},
3243         {"active_file", "total_active_file"},
3244         {"unevictable", "total_unevictable"}
3245 };
3246
3247
3248 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
3249 {
3250         struct mcs_total_stat *s = data;
3251         s64 val;
3252
3253         /* per cpu stat */
3254         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3255         s->stat[MCS_CACHE] += val * PAGE_SIZE;
3256         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3257         s->stat[MCS_RSS] += val * PAGE_SIZE;
3258         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3259         s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3260         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3261         s->stat[MCS_PGPGIN] += val;
3262         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3263         s->stat[MCS_PGPGOUT] += val;
3264         if (do_swap_account) {
3265                 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3266                 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3267         }
3268
3269         /* per zone stat */
3270         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3271         s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3272         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3273         s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3274         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3275         s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3276         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3277         s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3278         val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3279         s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3280         return 0;
3281 }
3282
3283 static void
3284 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3285 {
3286         mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
3287 }
3288
3289 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3290                                  struct cgroup_map_cb *cb)
3291 {
3292         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3293         struct mcs_total_stat mystat;
3294         int i;
3295
3296         memset(&mystat, 0, sizeof(mystat));
3297         mem_cgroup_get_local_stat(mem_cont, &mystat);
3298
3299         for (i = 0; i < NR_MCS_STAT; i++) {
3300                 if (i == MCS_SWAP && !do_swap_account)
3301                         continue;
3302                 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3303         }
3304
3305         /* Hierarchical information */
3306         {
3307                 unsigned long long limit, memsw_limit;
3308                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3309                 cb->fill(cb, "hierarchical_memory_limit", limit);
3310                 if (do_swap_account)
3311                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3312         }
3313
3314         memset(&mystat, 0, sizeof(mystat));
3315         mem_cgroup_get_total_stat(mem_cont, &mystat);
3316         for (i = 0; i < NR_MCS_STAT; i++) {
3317                 if (i == MCS_SWAP && !do_swap_account)
3318                         continue;
3319                 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3320         }
3321
3322 #ifdef CONFIG_DEBUG_VM
3323         cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3324
3325         {
3326                 int nid, zid;
3327                 struct mem_cgroup_per_zone *mz;
3328                 unsigned long recent_rotated[2] = {0, 0};
3329                 unsigned long recent_scanned[2] = {0, 0};
3330
3331                 for_each_online_node(nid)
3332                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3333                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3334
3335                                 recent_rotated[0] +=
3336                                         mz->reclaim_stat.recent_rotated[0];
3337                                 recent_rotated[1] +=
3338                                         mz->reclaim_stat.recent_rotated[1];
3339                                 recent_scanned[0] +=
3340                                         mz->reclaim_stat.recent_scanned[0];
3341                                 recent_scanned[1] +=
3342                                         mz->reclaim_stat.recent_scanned[1];
3343                         }
3344                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3345                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3346                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3347                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3348         }
3349 #endif
3350
3351         return 0;
3352 }
3353
3354 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3355 {
3356         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3357
3358         return get_swappiness(memcg);
3359 }
3360
3361 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3362                                        u64 val)
3363 {
3364         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3365         struct mem_cgroup *parent;
3366
3367         if (val > 100)
3368                 return -EINVAL;
3369
3370         if (cgrp->parent == NULL)
3371                 return -EINVAL;
3372
3373         parent = mem_cgroup_from_cont(cgrp->parent);
3374
3375         cgroup_lock();
3376
3377         /* If under hierarchy, only empty-root can set this value */
3378         if ((parent->use_hierarchy) ||
3379             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3380                 cgroup_unlock();
3381                 return -EINVAL;
3382         }
3383
3384         spin_lock(&memcg->reclaim_param_lock);
3385         memcg->swappiness = val;
3386         spin_unlock(&memcg->reclaim_param_lock);
3387
3388         cgroup_unlock();
3389
3390         return 0;
3391 }
3392
3393 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3394 {
3395         struct mem_cgroup_threshold_ary *t;
3396         u64 usage;
3397         int i;
3398
3399         rcu_read_lock();
3400         if (!swap)
3401                 t = rcu_dereference(memcg->thresholds);
3402         else
3403                 t = rcu_dereference(memcg->memsw_thresholds);
3404
3405         if (!t)
3406                 goto unlock;
3407
3408         usage = mem_cgroup_usage(memcg, swap);
3409
3410         /*
3411          * current_threshold points to threshold just below usage.
3412          * If it's not true, a threshold was crossed after last
3413          * call of __mem_cgroup_threshold().
3414          */
3415         i = atomic_read(&t->current_threshold);
3416
3417         /*
3418          * Iterate backward over array of thresholds starting from
3419          * current_threshold and check if a threshold is crossed.
3420          * If none of thresholds below usage is crossed, we read
3421          * only one element of the array here.
3422          */
3423         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3424                 eventfd_signal(t->entries[i].eventfd, 1);
3425
3426         /* i = current_threshold + 1 */
3427         i++;
3428
3429         /*
3430          * Iterate forward over array of thresholds starting from
3431          * current_threshold+1 and check if a threshold is crossed.
3432          * If none of thresholds above usage is crossed, we read
3433          * only one element of the array here.
3434          */
3435         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3436                 eventfd_signal(t->entries[i].eventfd, 1);
3437
3438         /* Update current_threshold */
3439         atomic_set(&t->current_threshold, i - 1);
3440 unlock:
3441         rcu_read_unlock();
3442 }
3443
3444 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3445 {
3446         __mem_cgroup_threshold(memcg, false);
3447         if (do_swap_account)
3448                 __mem_cgroup_threshold(memcg, true);
3449 }
3450
3451 static int compare_thresholds(const void *a, const void *b)
3452 {
3453         const struct mem_cgroup_threshold *_a = a;
3454         const struct mem_cgroup_threshold *_b = b;
3455
3456         return _a->threshold - _b->threshold;
3457 }
3458
3459 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
3460 {
3461         struct mem_cgroup_eventfd_list *ev;
3462
3463         list_for_each_entry(ev, &mem->oom_notify, list)
3464                 eventfd_signal(ev->eventfd, 1);
3465         return 0;
3466 }
3467
3468 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3469 {
3470         mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
3471 }
3472
3473 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3474         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3475 {
3476         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3477         struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
3478         int type = MEMFILE_TYPE(cft->private);
3479         u64 threshold, usage;
3480         int size;
3481         int i, ret;
3482
3483         ret = res_counter_memparse_write_strategy(args, &threshold);
3484         if (ret)
3485                 return ret;
3486
3487         mutex_lock(&memcg->thresholds_lock);
3488         if (type == _MEM)
3489                 thresholds = memcg->thresholds;
3490         else if (type == _MEMSWAP)
3491                 thresholds = memcg->memsw_thresholds;
3492         else
3493                 BUG();
3494
3495         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3496
3497         /* Check if a threshold crossed before adding a new one */
3498         if (thresholds)
3499                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3500
3501         if (thresholds)
3502                 size = thresholds->size + 1;
3503         else
3504                 size = 1;
3505
3506         /* Allocate memory for new array of thresholds */
3507         thresholds_new = kmalloc(sizeof(*thresholds_new) +
3508                         size * sizeof(struct mem_cgroup_threshold),
3509                         GFP_KERNEL);
3510         if (!thresholds_new) {
3511                 ret = -ENOMEM;
3512                 goto unlock;
3513         }
3514         thresholds_new->size = size;
3515
3516         /* Copy thresholds (if any) to new array */
3517         if (thresholds)
3518                 memcpy(thresholds_new->entries, thresholds->entries,
3519                                 thresholds->size *
3520                                 sizeof(struct mem_cgroup_threshold));
3521         /* Add new threshold */
3522         thresholds_new->entries[size - 1].eventfd = eventfd;
3523         thresholds_new->entries[size - 1].threshold = threshold;
3524
3525         /* Sort thresholds. Registering of new threshold isn't time-critical */
3526         sort(thresholds_new->entries, size,
3527                         sizeof(struct mem_cgroup_threshold),
3528                         compare_thresholds, NULL);
3529
3530         /* Find current threshold */
3531         atomic_set(&thresholds_new->current_threshold, -1);
3532         for (i = 0; i < size; i++) {
3533                 if (thresholds_new->entries[i].threshold < usage) {
3534                         /*
3535                          * thresholds_new->current_threshold will not be used
3536                          * until rcu_assign_pointer(), so it's safe to increment
3537                          * it here.
3538                          */
3539                         atomic_inc(&thresholds_new->current_threshold);
3540                 }
3541         }
3542
3543         if (type == _MEM)
3544                 rcu_assign_pointer(memcg->thresholds, thresholds_new);
3545         else
3546                 rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);
3547
3548         /* To be sure that nobody uses thresholds before freeing it */
3549         synchronize_rcu();
3550
3551         kfree(thresholds);
3552 unlock:
3553         mutex_unlock(&memcg->thresholds_lock);
3554
3555         return ret;
3556 }
3557
3558 static int mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3559         struct cftype *cft, struct eventfd_ctx *eventfd)
3560 {
3561         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3562         struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
3563         int type = MEMFILE_TYPE(cft->private);
3564         u64 usage;
3565         int size = 0;
3566         int i, j, ret;
3567
3568         mutex_lock(&memcg->thresholds_lock);
3569         if (type == _MEM)
3570                 thresholds = memcg->thresholds;
3571         else if (type == _MEMSWAP)
3572                 thresholds = memcg->memsw_thresholds;
3573         else
3574                 BUG();
3575
3576         /*
3577          * Something went wrong if we trying to unregister a threshold
3578          * if we don't have thresholds
3579          */
3580         BUG_ON(!thresholds);
3581
3582         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3583
3584         /* Check if a threshold crossed before removing */
3585         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3586
3587         /* Calculate new number of threshold */
3588         for (i = 0; i < thresholds->size; i++) {
3589                 if (thresholds->entries[i].eventfd != eventfd)
3590                         size++;
3591         }
3592
3593         /* Set thresholds array to NULL if we don't have thresholds */
3594         if (!size) {
3595                 thresholds_new = NULL;
3596                 goto assign;
3597         }
3598
3599         /* Allocate memory for new array of thresholds */
3600         thresholds_new = kmalloc(sizeof(*thresholds_new) +
3601                         size * sizeof(struct mem_cgroup_threshold),
3602                         GFP_KERNEL);
3603         if (!thresholds_new) {
3604                 ret = -ENOMEM;
3605                 goto unlock;
3606         }
3607         thresholds_new->size = size;
3608
3609         /* Copy thresholds and find current threshold */
3610         atomic_set(&thresholds_new->current_threshold, -1);
3611         for (i = 0, j = 0; i < thresholds->size; i++) {
3612                 if (thresholds->entries[i].eventfd == eventfd)
3613                         continue;
3614
3615                 thresholds_new->entries[j] = thresholds->entries[i];
3616                 if (thresholds_new->entries[j].threshold < usage) {
3617                         /*
3618                          * thresholds_new->current_threshold will not be used
3619                          * until rcu_assign_pointer(), so it's safe to increment
3620                          * it here.
3621                          */
3622                         atomic_inc(&thresholds_new->current_threshold);
3623                 }
3624                 j++;
3625         }
3626
3627 assign:
3628         if (type == _MEM)
3629                 rcu_assign_pointer(memcg->thresholds, thresholds_new);
3630         else
3631                 rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);
3632
3633         /* To be sure that nobody uses thresholds before freeing it */
3634         synchronize_rcu();
3635
3636         kfree(thresholds);
3637 unlock:
3638         mutex_unlock(&memcg->thresholds_lock);
3639
3640         return ret;
3641 }
3642
3643 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
3644         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3645 {
3646         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3647         struct mem_cgroup_eventfd_list *event;
3648         int type = MEMFILE_TYPE(cft->private);
3649
3650         BUG_ON(type != _OOM_TYPE);
3651         event = kmalloc(sizeof(*event), GFP_KERNEL);
3652         if (!event)
3653                 return -ENOMEM;
3654
3655         mutex_lock(&memcg_oom_mutex);
3656
3657         event->eventfd = eventfd;
3658         list_add(&event->list, &memcg->oom_notify);
3659
3660         /* already in OOM ? */
3661         if (atomic_read(&memcg->oom_lock))
3662                 eventfd_signal(eventfd, 1);
3663         mutex_unlock(&memcg_oom_mutex);
3664
3665         return 0;
3666 }
3667
3668 static int mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
3669         struct cftype *cft, struct eventfd_ctx *eventfd)
3670 {
3671         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3672         struct mem_cgroup_eventfd_list *ev, *tmp;
3673         int type = MEMFILE_TYPE(cft->private);
3674
3675         BUG_ON(type != _OOM_TYPE);
3676
3677         mutex_lock(&memcg_oom_mutex);
3678
3679         list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
3680                 if (ev->eventfd == eventfd) {
3681                         list_del(&ev->list);
3682                         kfree(ev);
3683                 }
3684         }
3685
3686         mutex_unlock(&memcg_oom_mutex);
3687
3688         return 0;
3689 }
3690
3691 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
3692         struct cftype *cft,  struct cgroup_map_cb *cb)
3693 {
3694         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3695
3696         cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
3697
3698         if (atomic_read(&mem->oom_lock))
3699                 cb->fill(cb, "under_oom", 1);
3700         else
3701                 cb->fill(cb, "under_oom", 0);
3702         return 0;
3703 }
3704
3705 /*
3706  */
3707 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
3708         struct cftype *cft, u64 val)
3709 {
3710         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3711         struct mem_cgroup *parent;
3712
3713         /* cannot set to root cgroup and only 0 and 1 are allowed */
3714         if (!cgrp->parent || !((val == 0) || (val == 1)))
3715                 return -EINVAL;
3716
3717         parent = mem_cgroup_from_cont(cgrp->parent);
3718
3719         cgroup_lock();
3720         /* oom-kill-disable is a flag for subhierarchy. */
3721         if ((parent->use_hierarchy) ||
3722             (mem->use_hierarchy && !list_empty(&cgrp->children))) {
3723                 cgroup_unlock();
3724                 return -EINVAL;
3725         }
3726         mem->oom_kill_disable = val;
3727         cgroup_unlock();
3728         return 0;
3729 }
3730
3731 static struct cftype mem_cgroup_files[] = {
3732         {
3733                 .name = "usage_in_bytes",
3734                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3735                 .read_u64 = mem_cgroup_read,
3736                 .register_event = mem_cgroup_usage_register_event,
3737                 .unregister_event = mem_cgroup_usage_unregister_event,
3738         },
3739         {
3740                 .name = "max_usage_in_bytes",
3741                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3742                 .trigger = mem_cgroup_reset,
3743                 .read_u64 = mem_cgroup_read,
3744         },
3745         {
3746                 .name = "limit_in_bytes",
3747                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3748                 .write_string = mem_cgroup_write,
3749                 .read_u64 = mem_cgroup_read,
3750         },
3751         {
3752                 .name = "soft_limit_in_bytes",
3753                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3754                 .write_string = mem_cgroup_write,
3755                 .read_u64 = mem_cgroup_read,
3756         },
3757         {
3758                 .name = "failcnt",
3759                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3760                 .trigger = mem_cgroup_reset,
3761                 .read_u64 = mem_cgroup_read,
3762         },
3763         {
3764                 .name = "stat",
3765                 .read_map = mem_control_stat_show,
3766         },
3767         {
3768                 .name = "force_empty",
3769                 .trigger = mem_cgroup_force_empty_write,
3770         },
3771         {
3772                 .name = "use_hierarchy",
3773                 .write_u64 = mem_cgroup_hierarchy_write,
3774                 .read_u64 = mem_cgroup_hierarchy_read,
3775         },
3776         {
3777                 .name = "swappiness",
3778                 .read_u64 = mem_cgroup_swappiness_read,
3779                 .write_u64 = mem_cgroup_swappiness_write,
3780         },
3781         {
3782                 .name = "move_charge_at_immigrate",
3783                 .read_u64 = mem_cgroup_move_charge_read,
3784                 .write_u64 = mem_cgroup_move_charge_write,
3785         },
3786         {
3787                 .name = "oom_control",
3788                 .read_map = mem_cgroup_oom_control_read,
3789                 .write_u64 = mem_cgroup_oom_control_write,
3790                 .register_event = mem_cgroup_oom_register_event,
3791                 .unregister_event = mem_cgroup_oom_unregister_event,
3792                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3793         },
3794 };
3795
3796 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3797 static struct cftype memsw_cgroup_files[] = {
3798         {
3799                 .name = "memsw.usage_in_bytes",
3800                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3801                 .read_u64 = mem_cgroup_read,
3802                 .register_event = mem_cgroup_usage_register_event,
3803                 .unregister_event = mem_cgroup_usage_unregister_event,
3804         },
3805         {
3806                 .name = "memsw.max_usage_in_bytes",
3807                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3808                 .trigger = mem_cgroup_reset,
3809                 .read_u64 = mem_cgroup_read,
3810         },
3811         {
3812                 .name = "memsw.limit_in_bytes",
3813                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3814                 .write_string = mem_cgroup_write,
3815                 .read_u64 = mem_cgroup_read,
3816         },
3817         {
3818                 .name = "memsw.failcnt",
3819                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3820                 .trigger = mem_cgroup_reset,
3821                 .read_u64 = mem_cgroup_read,
3822         },
3823 };
3824
3825 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3826 {
3827         if (!do_swap_account)
3828                 return 0;
3829         return cgroup_add_files(cont, ss, memsw_cgroup_files,
3830                                 ARRAY_SIZE(memsw_cgroup_files));
3831 };
3832 #else
3833 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3834 {
3835         return 0;
3836 }
3837 #endif
3838
3839 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3840 {
3841         struct mem_cgroup_per_node *pn;
3842         struct mem_cgroup_per_zone *mz;
3843         enum lru_list l;
3844         int zone, tmp = node;
3845         /*
3846          * This routine is called against possible nodes.
3847          * But it's BUG to call kmalloc() against offline node.
3848          *
3849          * TODO: this routine can waste much memory for nodes which will
3850          *       never be onlined. It's better to use memory hotplug callback
3851          *       function.
3852          */
3853         if (!node_state(node, N_NORMAL_MEMORY))
3854                 tmp = -1;
3855         pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3856         if (!pn)
3857                 return 1;
3858
3859         mem->info.nodeinfo[node] = pn;
3860         memset(pn, 0, sizeof(*pn));
3861
3862         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3863                 mz = &pn->zoneinfo[zone];
3864                 for_each_lru(l)
3865                         INIT_LIST_HEAD(&mz->lists[l]);
3866                 mz->usage_in_excess = 0;
3867                 mz->on_tree = false;
3868                 mz->mem = mem;
3869         }
3870         return 0;
3871 }
3872
3873 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3874 {
3875         kfree(mem->info.nodeinfo[node]);
3876 }
3877
3878 static struct mem_cgroup *mem_cgroup_alloc(void)
3879 {
3880         struct mem_cgroup *mem;
3881         int size = sizeof(struct mem_cgroup);
3882
3883         /* Can be very big if MAX_NUMNODES is very big */
3884         if (size < PAGE_SIZE)
3885                 mem = kmalloc(size, GFP_KERNEL);
3886         else
3887                 mem = vmalloc(size);
3888
3889         if (!mem)
3890                 return NULL;
3891
3892         memset(mem, 0, size);
3893         mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
3894         if (!mem->stat) {
3895                 if (size < PAGE_SIZE)
3896                         kfree(mem);
3897                 else
3898                         vfree(mem);
3899                 mem = NULL;
3900         }
3901         return mem;
3902 }
3903
3904 /*
3905  * At destroying mem_cgroup, references from swap_cgroup can remain.
3906  * (scanning all at force_empty is too costly...)
3907  *
3908  * Instead of clearing all references at force_empty, we remember
3909  * the number of reference from swap_cgroup and free mem_cgroup when
3910  * it goes down to 0.
3911  *
3912  * Removal of cgroup itself succeeds regardless of refs from swap.
3913  */
3914
3915 static void __mem_cgroup_free(struct mem_cgroup *mem)
3916 {
3917         int node;
3918
3919         mem_cgroup_remove_from_trees(mem);
3920         free_css_id(&mem_cgroup_subsys, &mem->css);
3921
3922         for_each_node_state(node, N_POSSIBLE)
3923                 free_mem_cgroup_per_zone_info(mem, node);
3924
3925         free_percpu(mem->stat);
3926         if (sizeof(struct mem_cgroup) < PAGE_SIZE)
3927                 kfree(mem);
3928         else
3929                 vfree(mem);
3930 }
3931
3932 static void mem_cgroup_get(struct mem_cgroup *mem)
3933 {
3934         atomic_inc(&mem->refcnt);
3935 }
3936
3937 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
3938 {
3939         if (atomic_sub_and_test(count, &mem->refcnt)) {
3940                 struct mem_cgroup *parent = parent_mem_cgroup(mem);
3941                 __mem_cgroup_free(mem);
3942                 if (parent)
3943                         mem_cgroup_put(parent);
3944         }
3945 }
3946
3947 static void mem_cgroup_put(struct mem_cgroup *mem)
3948 {
3949         __mem_cgroup_put(mem, 1);
3950 }
3951
3952 /*
3953  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
3954  */
3955 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
3956 {
3957         if (!mem->res.parent)
3958                 return NULL;
3959         return mem_cgroup_from_res_counter(mem->res.parent, res);
3960 }
3961
3962 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3963 static void __init enable_swap_cgroup(void)
3964 {
3965         if (!mem_cgroup_disabled() && really_do_swap_account)
3966                 do_swap_account = 1;
3967 }
3968 #else
3969 static void __init enable_swap_cgroup(void)
3970 {
3971 }
3972 #endif
3973
3974 static int mem_cgroup_soft_limit_tree_init(void)
3975 {
3976         struct mem_cgroup_tree_per_node *rtpn;
3977         struct mem_cgroup_tree_per_zone *rtpz;
3978         int tmp, node, zone;
3979
3980         for_each_node_state(node, N_POSSIBLE) {
3981                 tmp = node;
3982                 if (!node_state(node, N_NORMAL_MEMORY))
3983                         tmp = -1;
3984                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
3985                 if (!rtpn)
3986                         return 1;
3987
3988                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
3989
3990                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3991                         rtpz = &rtpn->rb_tree_per_zone[zone];
3992                         rtpz->rb_root = RB_ROOT;
3993                         spin_lock_init(&rtpz->lock);
3994                 }
3995         }
3996         return 0;
3997 }
3998
3999 static struct cgroup_subsys_state * __ref
4000 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4001 {
4002         struct mem_cgroup *mem, *parent;
4003         long error = -ENOMEM;
4004         int node;
4005
4006         mem = mem_cgroup_alloc();
4007         if (!mem)
4008                 return ERR_PTR(error);
4009
4010         for_each_node_state(node, N_POSSIBLE)
4011                 if (alloc_mem_cgroup_per_zone_info(mem, node))
4012                         goto free_out;
4013
4014         /* root ? */
4015         if (cont->parent == NULL) {
4016                 int cpu;
4017                 enable_swap_cgroup();
4018                 parent = NULL;
4019                 root_mem_cgroup = mem;
4020                 if (mem_cgroup_soft_limit_tree_init())
4021                         goto free_out;
4022                 for_each_possible_cpu(cpu) {
4023                         struct memcg_stock_pcp *stock =
4024                                                 &per_cpu(memcg_stock, cpu);
4025                         INIT_WORK(&stock->work, drain_local_stock);
4026                 }
4027                 hotcpu_notifier(memcg_stock_cpu_callback, 0);
4028         } else {
4029                 parent = mem_cgroup_from_cont(cont->parent);
4030                 mem->use_hierarchy = parent->use_hierarchy;
4031                 mem->oom_kill_disable = parent->oom_kill_disable;
4032         }
4033
4034         if (parent && parent->use_hierarchy) {
4035                 res_counter_init(&mem->res, &parent->res);
4036                 res_counter_init(&mem->memsw, &parent->memsw);
4037                 /*
4038                  * We increment refcnt of the parent to ensure that we can
4039                  * safely access it on res_counter_charge/uncharge.
4040                  * This refcnt will be decremented when freeing this
4041                  * mem_cgroup(see mem_cgroup_put).
4042                  */
4043                 mem_cgroup_get(parent);
4044         } else {
4045                 res_counter_init(&mem->res, NULL);
4046                 res_counter_init(&mem->memsw, NULL);
4047         }
4048         mem->last_scanned_child = 0;
4049         spin_lock_init(&mem->reclaim_param_lock);
4050         INIT_LIST_HEAD(&mem->oom_notify);
4051
4052         if (parent)
4053                 mem->swappiness = get_swappiness(parent);
4054         atomic_set(&mem->refcnt, 1);
4055         mem->move_charge_at_immigrate = 0;
4056         mutex_init(&mem->thresholds_lock);
4057         return &mem->css;
4058 free_out:
4059         __mem_cgroup_free(mem);
4060         root_mem_cgroup = NULL;
4061         return ERR_PTR(error);
4062 }
4063
4064 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4065                                         struct cgroup *cont)
4066 {
4067         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4068
4069         return mem_cgroup_force_empty(mem, false);
4070 }
4071
4072 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4073                                 struct cgroup *cont)
4074 {
4075         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4076
4077         mem_cgroup_put(mem);
4078 }
4079
4080 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4081                                 struct cgroup *cont)
4082 {
4083         int ret;
4084
4085         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4086                                 ARRAY_SIZE(mem_cgroup_files));
4087
4088         if (!ret)
4089                 ret = register_memsw_files(cont, ss);
4090         return ret;
4091 }
4092
4093 #ifdef CONFIG_MMU
4094 /* Handlers for move charge at task migration. */
4095 #define PRECHARGE_COUNT_AT_ONCE 256
4096 static int mem_cgroup_do_precharge(unsigned long count)
4097 {
4098         int ret = 0;
4099         int batch_count = PRECHARGE_COUNT_AT_ONCE;
4100         struct mem_cgroup *mem = mc.to;
4101
4102         if (mem_cgroup_is_root(mem)) {
4103                 mc.precharge += count;
4104                 /* we don't need css_get for root */
4105                 return ret;
4106         }
4107         /* try to charge at once */
4108         if (count > 1) {
4109                 struct res_counter *dummy;
4110                 /*
4111                  * "mem" cannot be under rmdir() because we've already checked
4112                  * by cgroup_lock_live_cgroup() that it is not removed and we
4113                  * are still under the same cgroup_mutex. So we can postpone
4114                  * css_get().
4115                  */
4116                 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4117                         goto one_by_one;
4118                 if (do_swap_account && res_counter_charge(&mem->memsw,
4119                                                 PAGE_SIZE * count, &dummy)) {
4120                         res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4121                         goto one_by_one;
4122                 }
4123                 mc.precharge += count;
4124                 VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
4125                 WARN_ON_ONCE(count > INT_MAX);
4126                 __css_get(&mem->css, (int)count);
4127                 return ret;
4128         }
4129 one_by_one:
4130         /* fall back to one by one charge */
4131         while (count--) {
4132                 if (signal_pending(current)) {
4133                         ret = -EINTR;
4134                         break;
4135                 }
4136                 if (!batch_count--) {
4137                         batch_count = PRECHARGE_COUNT_AT_ONCE;
4138                         cond_resched();
4139                 }
4140                 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4141                 if (ret || !mem)
4142                         /* mem_cgroup_clear_mc() will do uncharge later */
4143                         return -ENOMEM;
4144                 mc.precharge++;
4145         }
4146         return ret;
4147 }
4148
4149 /**
4150  * is_target_pte_for_mc - check a pte whether it is valid for move charge
4151  * @vma: the vma the pte to be checked belongs
4152  * @addr: the address corresponding to the pte to be checked
4153  * @ptent: the pte to be checked
4154  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4155  *
4156  * Returns
4157  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4158  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4159  *     move charge. if @target is not NULL, the page is stored in target->page
4160  *     with extra refcnt got(Callers should handle it).
4161  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4162  *     target for charge migration. if @target is not NULL, the entry is stored
4163  *     in target->ent.
4164  *
4165  * Called with pte lock held.
4166  */
4167 union mc_target {
4168         struct page     *page;
4169         swp_entry_t     ent;
4170 };
4171
4172 enum mc_target_type {
4173         MC_TARGET_NONE, /* not used */
4174         MC_TARGET_PAGE,
4175         MC_TARGET_SWAP,
4176 };
4177
4178 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4179                                                 unsigned long addr, pte_t ptent)
4180 {
4181         struct page *page = vm_normal_page(vma, addr, ptent);
4182
4183         if (!page || !page_mapped(page))
4184                 return NULL;
4185         if (PageAnon(page)) {
4186                 /* we don't move shared anon */
4187                 if (!move_anon() || page_mapcount(page) > 2)
4188                         return NULL;
4189         } else if (!move_file())
4190                 /* we ignore mapcount for file pages */
4191                 return NULL;
4192         if (!get_page_unless_zero(page))
4193                 return NULL;
4194
4195         return page;
4196 }
4197
4198 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4199                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4200 {
4201         int usage_count;
4202         struct page *page = NULL;
4203         swp_entry_t ent = pte_to_swp_entry(ptent);
4204
4205         if (!move_anon() || non_swap_entry(ent))
4206                 return NULL;
4207         usage_count = mem_cgroup_count_swap_user(ent, &page);
4208         if (usage_count > 1) { /* we don't move shared anon */
4209                 if (page)
4210                         put_page(page);
4211                 return NULL;
4212         }
4213         if (do_swap_account)
4214                 entry->val = ent.val;
4215
4216         return page;
4217 }
4218
4219 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4220                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4221 {
4222         struct page *page = NULL;
4223         struct inode *inode;
4224         struct address_space *mapping;
4225         pgoff_t pgoff;
4226
4227         if (!vma->vm_file) /* anonymous vma */
4228                 return NULL;
4229         if (!move_file())
4230                 return NULL;
4231
4232         inode = vma->vm_file->f_path.dentry->d_inode;
4233         mapping = vma->vm_file->f_mapping;
4234         if (pte_none(ptent))
4235                 pgoff = linear_page_index(vma, addr);
4236         else /* pte_file(ptent) is true */
4237                 pgoff = pte_to_pgoff(ptent);
4238
4239         /* page is moved even if it's not RSS of this task(page-faulted). */
4240         if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4241                 page = find_get_page(mapping, pgoff);
4242         } else { /* shmem/tmpfs file. we should take account of swap too. */
4243                 swp_entry_t ent;
4244                 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4245                 if (do_swap_account)
4246                         entry->val = ent.val;
4247         }
4248
4249         return page;
4250 }
4251
4252 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4253                 unsigned long addr, pte_t ptent, union mc_target *target)
4254 {
4255         struct page *page = NULL;
4256         struct page_cgroup *pc;
4257         int ret = 0;
4258         swp_entry_t ent = { .val = 0 };
4259
4260         if (pte_present(ptent))
4261                 page = mc_handle_present_pte(vma, addr, ptent);
4262         else if (is_swap_pte(ptent))
4263                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4264         else if (pte_none(ptent) || pte_file(ptent))
4265                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4266
4267         if (!page && !ent.val)
4268                 return 0;
4269         if (page) {
4270                 pc = lookup_page_cgroup(page);
4271                 /*
4272                  * Do only loose check w/o page_cgroup lock.
4273                  * mem_cgroup_move_account() checks the pc is valid or not under
4274                  * the lock.
4275                  */
4276                 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4277                         ret = MC_TARGET_PAGE;
4278                         if (target)
4279                                 target->page = page;
4280                 }
4281                 if (!ret || !target)
4282                         put_page(page);
4283         }
4284         /* There is a swap entry and a page doesn't exist or isn't charged */
4285         if (ent.val && !ret &&
4286                         css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4287                 ret = MC_TARGET_SWAP;
4288                 if (target)
4289                         target->ent = ent;
4290         }
4291         return ret;
4292 }
4293
4294 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4295                                         unsigned long addr, unsigned long end,
4296                                         struct mm_walk *walk)
4297 {
4298         struct vm_area_struct *vma = walk->private;
4299         pte_t *pte;
4300         spinlock_t *ptl;
4301
4302         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4303         for (; addr != end; pte++, addr += PAGE_SIZE)
4304                 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4305                         mc.precharge++; /* increment precharge temporarily */
4306         pte_unmap_unlock(pte - 1, ptl);
4307         cond_resched();
4308
4309         return 0;
4310 }
4311
4312 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4313 {
4314         unsigned long precharge;
4315         struct vm_area_struct *vma;
4316
4317         down_read(&mm->mmap_sem);
4318         for (vma = mm->mmap; vma; vma = vma->vm_next) {
4319                 struct mm_walk mem_cgroup_count_precharge_walk = {
4320                         .pmd_entry = mem_cgroup_count_precharge_pte_range,
4321                         .mm = mm,
4322                         .private = vma,
4323                 };
4324                 if (is_vm_hugetlb_page(vma))
4325                         continue;
4326                 walk_page_range(vma->vm_start, vma->vm_end,
4327                                         &mem_cgroup_count_precharge_walk);
4328         }
4329         up_read(&mm->mmap_sem);
4330
4331         precharge = mc.precharge;
4332         mc.precharge = 0;
4333
4334         return precharge;
4335 }
4336
4337 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4338 {
4339         return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4340 }
4341
4342 static void mem_cgroup_clear_mc(void)
4343 {
4344         /* we must uncharge all the leftover precharges from mc.to */
4345         if (mc.precharge) {
4346                 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4347                 mc.precharge = 0;
4348                 memcg_oom_recover(mc.to);
4349         }
4350         /*
4351          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4352          * we must uncharge here.
4353          */
4354         if (mc.moved_charge) {
4355                 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4356                 mc.moved_charge = 0;
4357                 memcg_oom_recover(mc.from);
4358         }
4359         /* we must fixup refcnts and charges */
4360         if (mc.moved_swap) {
4361                 WARN_ON_ONCE(mc.moved_swap > INT_MAX);
4362                 /* uncharge swap account from the old cgroup */
4363                 if (!mem_cgroup_is_root(mc.from))
4364                         res_counter_uncharge(&mc.from->memsw,
4365                                                 PAGE_SIZE * mc.moved_swap);
4366                 __mem_cgroup_put(mc.from, mc.moved_swap);
4367
4368                 if (!mem_cgroup_is_root(mc.to)) {
4369                         /*
4370                          * we charged both to->res and to->memsw, so we should
4371                          * uncharge to->res.
4372                          */
4373                         res_counter_uncharge(&mc.to->res,
4374                                                 PAGE_SIZE * mc.moved_swap);
4375                         VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
4376                         __css_put(&mc.to->css, mc.moved_swap);
4377                 }
4378                 /* we've already done mem_cgroup_get(mc.to) */
4379
4380                 mc.moved_swap = 0;
4381         }
4382         mc.from = NULL;
4383         mc.to = NULL;
4384         mc.moving_task = NULL;
4385         wake_up_all(&mc.waitq);
4386 }
4387
4388 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4389                                 struct cgroup *cgroup,
4390                                 struct task_struct *p,
4391                                 bool threadgroup)
4392 {
4393         int ret = 0;
4394         struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4395
4396         if (mem->move_charge_at_immigrate) {
4397                 struct mm_struct *mm;
4398                 struct mem_cgroup *from = mem_cgroup_from_task(p);
4399
4400                 VM_BUG_ON(from == mem);
4401
4402                 mm = get_task_mm(p);
4403                 if (!mm)
4404                         return 0;
4405                 /* We move charges only when we move a owner of the mm */
4406                 if (mm->owner == p) {
4407                         VM_BUG_ON(mc.from);
4408                         VM_BUG_ON(mc.to);
4409                         VM_BUG_ON(mc.precharge);
4410                         VM_BUG_ON(mc.moved_charge);
4411                         VM_BUG_ON(mc.moved_swap);
4412                         VM_BUG_ON(mc.moving_task);
4413                         mc.from = from;
4414                         mc.to = mem;
4415                         mc.precharge = 0;
4416                         mc.moved_charge = 0;
4417                         mc.moved_swap = 0;
4418                         mc.moving_task = current;
4419
4420                         ret = mem_cgroup_precharge_mc(mm);
4421                         if (ret)
4422                                 mem_cgroup_clear_mc();
4423                 }
4424                 mmput(mm);
4425         }
4426         return ret;
4427 }
4428
4429 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4430                                 struct cgroup *cgroup,
4431                                 struct task_struct *p,
4432                                 bool threadgroup)
4433 {
4434         mem_cgroup_clear_mc();
4435 }
4436
4437 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4438                                 unsigned long addr, unsigned long end,
4439                                 struct mm_walk *walk)
4440 {
4441         int ret = 0;
4442         struct vm_area_struct *vma = walk->private;
4443         pte_t *pte;
4444         spinlock_t *ptl;
4445
4446 retry:
4447         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4448         for (; addr != end; addr += PAGE_SIZE) {
4449                 pte_t ptent = *(pte++);
4450                 union mc_target target;
4451                 int type;
4452                 struct page *page;
4453                 struct page_cgroup *pc;
4454                 swp_entry_t ent;
4455
4456                 if (!mc.precharge)
4457                         break;
4458
4459                 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4460                 switch (type) {
4461                 case MC_TARGET_PAGE:
4462                         page = target.page;
4463                         if (isolate_lru_page(page))
4464                                 goto put;
4465                         pc = lookup_page_cgroup(page);
4466                         if (!mem_cgroup_move_account(pc,
4467                                                 mc.from, mc.to, false)) {
4468                                 mc.precharge--;
4469                                 /* we uncharge from mc.from later. */
4470                                 mc.moved_charge++;
4471                         }
4472                         putback_lru_page(page);
4473 put:                    /* is_target_pte_for_mc() gets the page */
4474                         put_page(page);
4475                         break;
4476                 case MC_TARGET_SWAP:
4477                         ent = target.ent;
4478                         if (!mem_cgroup_move_swap_account(ent,
4479                                                 mc.from, mc.to, false)) {
4480                                 mc.precharge--;
4481                                 /* we fixup refcnts and charges later. */
4482                                 mc.moved_swap++;
4483                         }
4484                         break;
4485                 default:
4486                         break;
4487                 }
4488         }
4489         pte_unmap_unlock(pte - 1, ptl);
4490         cond_resched();
4491
4492         if (addr != end) {
4493                 /*
4494                  * We have consumed all precharges we got in can_attach().
4495                  * We try charge one by one, but don't do any additional
4496                  * charges to mc.to if we have failed in charge once in attach()
4497                  * phase.
4498                  */
4499                 ret = mem_cgroup_do_precharge(1);
4500                 if (!ret)
4501                         goto retry;
4502         }
4503
4504         return ret;
4505 }
4506
4507 static void mem_cgroup_move_charge(struct mm_struct *mm)
4508 {
4509         struct vm_area_struct *vma;
4510
4511         lru_add_drain_all();
4512         down_read(&mm->mmap_sem);
4513         for (vma = mm->mmap; vma; vma = vma->vm_next) {
4514                 int ret;
4515                 struct mm_walk mem_cgroup_move_charge_walk = {
4516                         .pmd_entry = mem_cgroup_move_charge_pte_range,
4517                         .mm = mm,
4518                         .private = vma,
4519                 };
4520                 if (is_vm_hugetlb_page(vma))
4521                         continue;
4522                 ret = walk_page_range(vma->vm_start, vma->vm_end,
4523                                                 &mem_cgroup_move_charge_walk);
4524                 if (ret)
4525                         /*
4526                          * means we have consumed all precharges and failed in
4527                          * doing additional charge. Just abandon here.
4528                          */
4529                         break;
4530         }
4531         up_read(&mm->mmap_sem);
4532 }
4533
4534 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4535                                 struct cgroup *cont,
4536                                 struct cgroup *old_cont,
4537                                 struct task_struct *p,
4538                                 bool threadgroup)
4539 {
4540         struct mm_struct *mm;
4541
4542         if (!mc.to)
4543                 /* no need to move charge */
4544                 return;
4545
4546         mm = get_task_mm(p);
4547         if (mm) {
4548                 mem_cgroup_move_charge(mm);
4549                 mmput(mm);
4550         }
4551         mem_cgroup_clear_mc();
4552 }
4553 #else   /* !CONFIG_MMU */
4554 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4555                                 struct cgroup *cgroup,
4556                                 struct task_struct *p,
4557                                 bool threadgroup)
4558 {
4559         return 0;
4560 }
4561 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4562                                 struct cgroup *cgroup,
4563                                 struct task_struct *p,
4564                                 bool threadgroup)
4565 {
4566 }
4567 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4568                                 struct cgroup *cont,
4569                                 struct cgroup *old_cont,
4570                                 struct task_struct *p,
4571                                 bool threadgroup)
4572 {
4573 }
4574 #endif
4575
4576 struct cgroup_subsys mem_cgroup_subsys = {
4577         .name = "memory",
4578         .subsys_id = mem_cgroup_subsys_id,
4579         .create = mem_cgroup_create,
4580         .pre_destroy = mem_cgroup_pre_destroy,
4581         .destroy = mem_cgroup_destroy,
4582         .populate = mem_cgroup_populate,
4583         .can_attach = mem_cgroup_can_attach,
4584         .cancel_attach = mem_cgroup_cancel_attach,
4585         .attach = mem_cgroup_move_task,
4586         .early_init = 0,
4587         .use_id = 1,
4588 };
4589
4590 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4591
4592 static int __init disable_swap_account(char *s)
4593 {
4594         really_do_swap_account = 0;
4595         return 1;
4596 }
4597 __setup("noswapaccount", disable_swap_account);
4598 #endif