cgroups: make cftype.unregister_event() void-returning
[safe/jmp/linux-2.6] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include "internal.h"
51
52 #include <asm/uaccess.h>
53
54 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
55 #define MEM_CGROUP_RECLAIM_RETRIES      5
56 struct mem_cgroup *root_mem_cgroup __read_mostly;
57
58 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
59 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
60 int do_swap_account __read_mostly;
61 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
62 #else
63 #define do_swap_account         (0)
64 #endif
65
66 /*
67  * Per memcg event counter is incremented at every pagein/pageout. This counter
68  * is used for trigger some periodic events. This is straightforward and better
69  * than using jiffies etc. to handle periodic memcg event.
70  *
71  * These values will be used as !((event) & ((1 <<(thresh)) - 1))
72  */
73 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
74 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
75
76 /*
77  * Statistics for memory cgroup.
78  */
79 enum mem_cgroup_stat_index {
80         /*
81          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
82          */
83         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
84         MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
85         MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
86         MEM_CGROUP_STAT_PGPGIN_COUNT,   /* # of pages paged in */
87         MEM_CGROUP_STAT_PGPGOUT_COUNT,  /* # of pages paged out */
88         MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89         MEM_CGROUP_EVENTS,      /* incremented at every  pagein/pageout */
90
91         MEM_CGROUP_STAT_NSTATS,
92 };
93
94 struct mem_cgroup_stat_cpu {
95         s64 count[MEM_CGROUP_STAT_NSTATS];
96 };
97
98 /*
99  * per-zone information in memory controller.
100  */
101 struct mem_cgroup_per_zone {
102         /*
103          * spin_lock to protect the per cgroup LRU
104          */
105         struct list_head        lists[NR_LRU_LISTS];
106         unsigned long           count[NR_LRU_LISTS];
107
108         struct zone_reclaim_stat reclaim_stat;
109         struct rb_node          tree_node;      /* RB tree node */
110         unsigned long long      usage_in_excess;/* Set to the value by which */
111                                                 /* the soft limit is exceeded*/
112         bool                    on_tree;
113         struct mem_cgroup       *mem;           /* Back pointer, we cannot */
114                                                 /* use container_of        */
115 };
116 /* Macro for accessing counter */
117 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
118
119 struct mem_cgroup_per_node {
120         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
121 };
122
123 struct mem_cgroup_lru_info {
124         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
125 };
126
127 /*
128  * Cgroups above their limits are maintained in a RB-Tree, independent of
129  * their hierarchy representation
130  */
131
132 struct mem_cgroup_tree_per_zone {
133         struct rb_root rb_root;
134         spinlock_t lock;
135 };
136
137 struct mem_cgroup_tree_per_node {
138         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
139 };
140
141 struct mem_cgroup_tree {
142         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
143 };
144
145 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
146
147 struct mem_cgroup_threshold {
148         struct eventfd_ctx *eventfd;
149         u64 threshold;
150 };
151
152 /* For threshold */
153 struct mem_cgroup_threshold_ary {
154         /* An array index points to threshold just below usage. */
155         int current_threshold;
156         /* Size of entries[] */
157         unsigned int size;
158         /* Array of thresholds */
159         struct mem_cgroup_threshold entries[0];
160 };
161 /* for OOM */
162 struct mem_cgroup_eventfd_list {
163         struct list_head list;
164         struct eventfd_ctx *eventfd;
165 };
166
167 static void mem_cgroup_threshold(struct mem_cgroup *mem);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
169
170 /*
171  * The memory controller data structure. The memory controller controls both
172  * page cache and RSS per cgroup. We would eventually like to provide
173  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
174  * to help the administrator determine what knobs to tune.
175  *
176  * TODO: Add a water mark for the memory controller. Reclaim will begin when
177  * we hit the water mark. May be even add a low water mark, such that
178  * no reclaim occurs from a cgroup at it's low water mark, this is
179  * a feature that will be implemented much later in the future.
180  */
181 struct mem_cgroup {
182         struct cgroup_subsys_state css;
183         /*
184          * the counter to account for memory usage
185          */
186         struct res_counter res;
187         /*
188          * the counter to account for mem+swap usage.
189          */
190         struct res_counter memsw;
191         /*
192          * Per cgroup active and inactive list, similar to the
193          * per zone LRU lists.
194          */
195         struct mem_cgroup_lru_info info;
196
197         /*
198           protect against reclaim related member.
199         */
200         spinlock_t reclaim_param_lock;
201
202         int     prev_priority;  /* for recording reclaim priority */
203
204         /*
205          * While reclaiming in a hierarchy, we cache the last child we
206          * reclaimed from.
207          */
208         int last_scanned_child;
209         /*
210          * Should the accounting and control be hierarchical, per subtree?
211          */
212         bool use_hierarchy;
213         atomic_t        oom_lock;
214         atomic_t        refcnt;
215
216         unsigned int    swappiness;
217         /* OOM-Killer disable */
218         int             oom_kill_disable;
219
220         /* set when res.limit == memsw.limit */
221         bool            memsw_is_minimum;
222
223         /* protect arrays of thresholds */
224         struct mutex thresholds_lock;
225
226         /* thresholds for memory usage. RCU-protected */
227         struct mem_cgroup_threshold_ary *thresholds;
228
229         /*
230          * Preallocated buffer to be used in mem_cgroup_unregister_event()
231          * to make it "never fail".
232          * It must be able to store at least thresholds->size - 1 entries.
233          */
234         struct mem_cgroup_threshold_ary *__thresholds;
235
236         /* thresholds for mem+swap usage. RCU-protected */
237         struct mem_cgroup_threshold_ary *memsw_thresholds;
238
239         /* the same as __thresholds, but for memsw_thresholds */
240         struct mem_cgroup_threshold_ary *__memsw_thresholds;
241
242         /* For oom notifier event fd */
243         struct list_head oom_notify;
244
245         /*
246          * Should we move charges of a task when a task is moved into this
247          * mem_cgroup ? And what type of charges should we move ?
248          */
249         unsigned long   move_charge_at_immigrate;
250         /*
251          * percpu counter.
252          */
253         struct mem_cgroup_stat_cpu *stat;
254 };
255
256 /* Stuffs for move charges at task migration. */
257 /*
258  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
259  * left-shifted bitmap of these types.
260  */
261 enum move_type {
262         MOVE_CHARGE_TYPE_ANON,  /* private anonymous page and swap of it */
263         MOVE_CHARGE_TYPE_FILE,  /* file page(including tmpfs) and swap of it */
264         NR_MOVE_TYPE,
265 };
266
267 /* "mc" and its members are protected by cgroup_mutex */
268 static struct move_charge_struct {
269         struct mem_cgroup *from;
270         struct mem_cgroup *to;
271         unsigned long precharge;
272         unsigned long moved_charge;
273         unsigned long moved_swap;
274         struct task_struct *moving_task;        /* a task moving charges */
275         wait_queue_head_t waitq;                /* a waitq for other context */
276 } mc = {
277         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
278 };
279
280 static bool move_anon(void)
281 {
282         return test_bit(MOVE_CHARGE_TYPE_ANON,
283                                         &mc.to->move_charge_at_immigrate);
284 }
285
286 static bool move_file(void)
287 {
288         return test_bit(MOVE_CHARGE_TYPE_FILE,
289                                         &mc.to->move_charge_at_immigrate);
290 }
291
292 /*
293  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
294  * limit reclaim to prevent infinite loops, if they ever occur.
295  */
296 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            (100)
297 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
298
299 enum charge_type {
300         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
301         MEM_CGROUP_CHARGE_TYPE_MAPPED,
302         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
303         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
304         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
305         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
306         NR_CHARGE_TYPE,
307 };
308
309 /* only for here (for easy reading.) */
310 #define PCGF_CACHE      (1UL << PCG_CACHE)
311 #define PCGF_USED       (1UL << PCG_USED)
312 #define PCGF_LOCK       (1UL << PCG_LOCK)
313 /* Not used, but added here for completeness */
314 #define PCGF_ACCT       (1UL << PCG_ACCT)
315
316 /* for encoding cft->private value on file */
317 #define _MEM                    (0)
318 #define _MEMSWAP                (1)
319 #define _OOM_TYPE               (2)
320 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
321 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
322 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
323 /* Used for OOM nofiier */
324 #define OOM_CONTROL             (0)
325
326 /*
327  * Reclaim flags for mem_cgroup_hierarchical_reclaim
328  */
329 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
330 #define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
331 #define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
332 #define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
333 #define MEM_CGROUP_RECLAIM_SOFT_BIT     0x2
334 #define MEM_CGROUP_RECLAIM_SOFT         (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
335
336 static void mem_cgroup_get(struct mem_cgroup *mem);
337 static void mem_cgroup_put(struct mem_cgroup *mem);
338 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
339 static void drain_all_stock_async(void);
340
341 static struct mem_cgroup_per_zone *
342 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
343 {
344         return &mem->info.nodeinfo[nid]->zoneinfo[zid];
345 }
346
347 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
348 {
349         return &mem->css;
350 }
351
352 static struct mem_cgroup_per_zone *
353 page_cgroup_zoneinfo(struct page_cgroup *pc)
354 {
355         struct mem_cgroup *mem = pc->mem_cgroup;
356         int nid = page_cgroup_nid(pc);
357         int zid = page_cgroup_zid(pc);
358
359         if (!mem)
360                 return NULL;
361
362         return mem_cgroup_zoneinfo(mem, nid, zid);
363 }
364
365 static struct mem_cgroup_tree_per_zone *
366 soft_limit_tree_node_zone(int nid, int zid)
367 {
368         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
369 }
370
371 static struct mem_cgroup_tree_per_zone *
372 soft_limit_tree_from_page(struct page *page)
373 {
374         int nid = page_to_nid(page);
375         int zid = page_zonenum(page);
376
377         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
378 }
379
380 static void
381 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
382                                 struct mem_cgroup_per_zone *mz,
383                                 struct mem_cgroup_tree_per_zone *mctz,
384                                 unsigned long long new_usage_in_excess)
385 {
386         struct rb_node **p = &mctz->rb_root.rb_node;
387         struct rb_node *parent = NULL;
388         struct mem_cgroup_per_zone *mz_node;
389
390         if (mz->on_tree)
391                 return;
392
393         mz->usage_in_excess = new_usage_in_excess;
394         if (!mz->usage_in_excess)
395                 return;
396         while (*p) {
397                 parent = *p;
398                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
399                                         tree_node);
400                 if (mz->usage_in_excess < mz_node->usage_in_excess)
401                         p = &(*p)->rb_left;
402                 /*
403                  * We can't avoid mem cgroups that are over their soft
404                  * limit by the same amount
405                  */
406                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
407                         p = &(*p)->rb_right;
408         }
409         rb_link_node(&mz->tree_node, parent, p);
410         rb_insert_color(&mz->tree_node, &mctz->rb_root);
411         mz->on_tree = true;
412 }
413
414 static void
415 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
416                                 struct mem_cgroup_per_zone *mz,
417                                 struct mem_cgroup_tree_per_zone *mctz)
418 {
419         if (!mz->on_tree)
420                 return;
421         rb_erase(&mz->tree_node, &mctz->rb_root);
422         mz->on_tree = false;
423 }
424
425 static void
426 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
427                                 struct mem_cgroup_per_zone *mz,
428                                 struct mem_cgroup_tree_per_zone *mctz)
429 {
430         spin_lock(&mctz->lock);
431         __mem_cgroup_remove_exceeded(mem, mz, mctz);
432         spin_unlock(&mctz->lock);
433 }
434
435
436 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
437 {
438         unsigned long long excess;
439         struct mem_cgroup_per_zone *mz;
440         struct mem_cgroup_tree_per_zone *mctz;
441         int nid = page_to_nid(page);
442         int zid = page_zonenum(page);
443         mctz = soft_limit_tree_from_page(page);
444
445         /*
446          * Necessary to update all ancestors when hierarchy is used.
447          * because their event counter is not touched.
448          */
449         for (; mem; mem = parent_mem_cgroup(mem)) {
450                 mz = mem_cgroup_zoneinfo(mem, nid, zid);
451                 excess = res_counter_soft_limit_excess(&mem->res);
452                 /*
453                  * We have to update the tree if mz is on RB-tree or
454                  * mem is over its softlimit.
455                  */
456                 if (excess || mz->on_tree) {
457                         spin_lock(&mctz->lock);
458                         /* if on-tree, remove it */
459                         if (mz->on_tree)
460                                 __mem_cgroup_remove_exceeded(mem, mz, mctz);
461                         /*
462                          * Insert again. mz->usage_in_excess will be updated.
463                          * If excess is 0, no tree ops.
464                          */
465                         __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
466                         spin_unlock(&mctz->lock);
467                 }
468         }
469 }
470
471 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
472 {
473         int node, zone;
474         struct mem_cgroup_per_zone *mz;
475         struct mem_cgroup_tree_per_zone *mctz;
476
477         for_each_node_state(node, N_POSSIBLE) {
478                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
479                         mz = mem_cgroup_zoneinfo(mem, node, zone);
480                         mctz = soft_limit_tree_node_zone(node, zone);
481                         mem_cgroup_remove_exceeded(mem, mz, mctz);
482                 }
483         }
484 }
485
486 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
487 {
488         return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
489 }
490
491 static struct mem_cgroup_per_zone *
492 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
493 {
494         struct rb_node *rightmost = NULL;
495         struct mem_cgroup_per_zone *mz;
496
497 retry:
498         mz = NULL;
499         rightmost = rb_last(&mctz->rb_root);
500         if (!rightmost)
501                 goto done;              /* Nothing to reclaim from */
502
503         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
504         /*
505          * Remove the node now but someone else can add it back,
506          * we will to add it back at the end of reclaim to its correct
507          * position in the tree.
508          */
509         __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
510         if (!res_counter_soft_limit_excess(&mz->mem->res) ||
511                 !css_tryget(&mz->mem->css))
512                 goto retry;
513 done:
514         return mz;
515 }
516
517 static struct mem_cgroup_per_zone *
518 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
519 {
520         struct mem_cgroup_per_zone *mz;
521
522         spin_lock(&mctz->lock);
523         mz = __mem_cgroup_largest_soft_limit_node(mctz);
524         spin_unlock(&mctz->lock);
525         return mz;
526 }
527
528 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
529                 enum mem_cgroup_stat_index idx)
530 {
531         int cpu;
532         s64 val = 0;
533
534         for_each_possible_cpu(cpu)
535                 val += per_cpu(mem->stat->count[idx], cpu);
536         return val;
537 }
538
539 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
540 {
541         s64 ret;
542
543         ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
544         ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
545         return ret;
546 }
547
548 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
549                                          bool charge)
550 {
551         int val = (charge) ? 1 : -1;
552         this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
553 }
554
555 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
556                                          struct page_cgroup *pc,
557                                          bool charge)
558 {
559         int val = (charge) ? 1 : -1;
560
561         preempt_disable();
562
563         if (PageCgroupCache(pc))
564                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
565         else
566                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
567
568         if (charge)
569                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
570         else
571                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
572         __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
573
574         preempt_enable();
575 }
576
577 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
578                                         enum lru_list idx)
579 {
580         int nid, zid;
581         struct mem_cgroup_per_zone *mz;
582         u64 total = 0;
583
584         for_each_online_node(nid)
585                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
586                         mz = mem_cgroup_zoneinfo(mem, nid, zid);
587                         total += MEM_CGROUP_ZSTAT(mz, idx);
588                 }
589         return total;
590 }
591
592 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
593 {
594         s64 val;
595
596         val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
597
598         return !(val & ((1 << event_mask_shift) - 1));
599 }
600
601 /*
602  * Check events in order.
603  *
604  */
605 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
606 {
607         /* threshold event is triggered in finer grain than soft limit */
608         if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
609                 mem_cgroup_threshold(mem);
610                 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
611                         mem_cgroup_update_tree(mem, page);
612         }
613 }
614
615 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
616 {
617         return container_of(cgroup_subsys_state(cont,
618                                 mem_cgroup_subsys_id), struct mem_cgroup,
619                                 css);
620 }
621
622 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
623 {
624         /*
625          * mm_update_next_owner() may clear mm->owner to NULL
626          * if it races with swapoff, page migration, etc.
627          * So this can be called with p == NULL.
628          */
629         if (unlikely(!p))
630                 return NULL;
631
632         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
633                                 struct mem_cgroup, css);
634 }
635
636 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
637 {
638         struct mem_cgroup *mem = NULL;
639
640         if (!mm)
641                 return NULL;
642         /*
643          * Because we have no locks, mm->owner's may be being moved to other
644          * cgroup. We use css_tryget() here even if this looks
645          * pessimistic (rather than adding locks here).
646          */
647         rcu_read_lock();
648         do {
649                 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
650                 if (unlikely(!mem))
651                         break;
652         } while (!css_tryget(&mem->css));
653         rcu_read_unlock();
654         return mem;
655 }
656
657 /*
658  * Call callback function against all cgroup under hierarchy tree.
659  */
660 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
661                           int (*func)(struct mem_cgroup *, void *))
662 {
663         int found, ret, nextid;
664         struct cgroup_subsys_state *css;
665         struct mem_cgroup *mem;
666
667         if (!root->use_hierarchy)
668                 return (*func)(root, data);
669
670         nextid = 1;
671         do {
672                 ret = 0;
673                 mem = NULL;
674
675                 rcu_read_lock();
676                 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
677                                    &found);
678                 if (css && css_tryget(css))
679                         mem = container_of(css, struct mem_cgroup, css);
680                 rcu_read_unlock();
681
682                 if (mem) {
683                         ret = (*func)(mem, data);
684                         css_put(&mem->css);
685                 }
686                 nextid = found + 1;
687         } while (!ret && css);
688
689         return ret;
690 }
691
692 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
693 {
694         return (mem == root_mem_cgroup);
695 }
696
697 /*
698  * Following LRU functions are allowed to be used without PCG_LOCK.
699  * Operations are called by routine of global LRU independently from memcg.
700  * What we have to take care of here is validness of pc->mem_cgroup.
701  *
702  * Changes to pc->mem_cgroup happens when
703  * 1. charge
704  * 2. moving account
705  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
706  * It is added to LRU before charge.
707  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
708  * When moving account, the page is not on LRU. It's isolated.
709  */
710
711 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
712 {
713         struct page_cgroup *pc;
714         struct mem_cgroup_per_zone *mz;
715
716         if (mem_cgroup_disabled())
717                 return;
718         pc = lookup_page_cgroup(page);
719         /* can happen while we handle swapcache. */
720         if (!TestClearPageCgroupAcctLRU(pc))
721                 return;
722         VM_BUG_ON(!pc->mem_cgroup);
723         /*
724          * We don't check PCG_USED bit. It's cleared when the "page" is finally
725          * removed from global LRU.
726          */
727         mz = page_cgroup_zoneinfo(pc);
728         MEM_CGROUP_ZSTAT(mz, lru) -= 1;
729         if (mem_cgroup_is_root(pc->mem_cgroup))
730                 return;
731         VM_BUG_ON(list_empty(&pc->lru));
732         list_del_init(&pc->lru);
733         return;
734 }
735
736 void mem_cgroup_del_lru(struct page *page)
737 {
738         mem_cgroup_del_lru_list(page, page_lru(page));
739 }
740
741 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
742 {
743         struct mem_cgroup_per_zone *mz;
744         struct page_cgroup *pc;
745
746         if (mem_cgroup_disabled())
747                 return;
748
749         pc = lookup_page_cgroup(page);
750         /*
751          * Used bit is set without atomic ops but after smp_wmb().
752          * For making pc->mem_cgroup visible, insert smp_rmb() here.
753          */
754         smp_rmb();
755         /* unused or root page is not rotated. */
756         if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
757                 return;
758         mz = page_cgroup_zoneinfo(pc);
759         list_move(&pc->lru, &mz->lists[lru]);
760 }
761
762 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
763 {
764         struct page_cgroup *pc;
765         struct mem_cgroup_per_zone *mz;
766
767         if (mem_cgroup_disabled())
768                 return;
769         pc = lookup_page_cgroup(page);
770         VM_BUG_ON(PageCgroupAcctLRU(pc));
771         /*
772          * Used bit is set without atomic ops but after smp_wmb().
773          * For making pc->mem_cgroup visible, insert smp_rmb() here.
774          */
775         smp_rmb();
776         if (!PageCgroupUsed(pc))
777                 return;
778
779         mz = page_cgroup_zoneinfo(pc);
780         MEM_CGROUP_ZSTAT(mz, lru) += 1;
781         SetPageCgroupAcctLRU(pc);
782         if (mem_cgroup_is_root(pc->mem_cgroup))
783                 return;
784         list_add(&pc->lru, &mz->lists[lru]);
785 }
786
787 /*
788  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
789  * lru because the page may.be reused after it's fully uncharged (because of
790  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
791  * it again. This function is only used to charge SwapCache. It's done under
792  * lock_page and expected that zone->lru_lock is never held.
793  */
794 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
795 {
796         unsigned long flags;
797         struct zone *zone = page_zone(page);
798         struct page_cgroup *pc = lookup_page_cgroup(page);
799
800         spin_lock_irqsave(&zone->lru_lock, flags);
801         /*
802          * Forget old LRU when this page_cgroup is *not* used. This Used bit
803          * is guarded by lock_page() because the page is SwapCache.
804          */
805         if (!PageCgroupUsed(pc))
806                 mem_cgroup_del_lru_list(page, page_lru(page));
807         spin_unlock_irqrestore(&zone->lru_lock, flags);
808 }
809
810 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
811 {
812         unsigned long flags;
813         struct zone *zone = page_zone(page);
814         struct page_cgroup *pc = lookup_page_cgroup(page);
815
816         spin_lock_irqsave(&zone->lru_lock, flags);
817         /* link when the page is linked to LRU but page_cgroup isn't */
818         if (PageLRU(page) && !PageCgroupAcctLRU(pc))
819                 mem_cgroup_add_lru_list(page, page_lru(page));
820         spin_unlock_irqrestore(&zone->lru_lock, flags);
821 }
822
823
824 void mem_cgroup_move_lists(struct page *page,
825                            enum lru_list from, enum lru_list to)
826 {
827         if (mem_cgroup_disabled())
828                 return;
829         mem_cgroup_del_lru_list(page, from);
830         mem_cgroup_add_lru_list(page, to);
831 }
832
833 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
834 {
835         int ret;
836         struct mem_cgroup *curr = NULL;
837
838         task_lock(task);
839         rcu_read_lock();
840         curr = try_get_mem_cgroup_from_mm(task->mm);
841         rcu_read_unlock();
842         task_unlock(task);
843         if (!curr)
844                 return 0;
845         /*
846          * We should check use_hierarchy of "mem" not "curr". Because checking
847          * use_hierarchy of "curr" here make this function true if hierarchy is
848          * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
849          * hierarchy(even if use_hierarchy is disabled in "mem").
850          */
851         if (mem->use_hierarchy)
852                 ret = css_is_ancestor(&curr->css, &mem->css);
853         else
854                 ret = (curr == mem);
855         css_put(&curr->css);
856         return ret;
857 }
858
859 /*
860  * prev_priority control...this will be used in memory reclaim path.
861  */
862 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
863 {
864         int prev_priority;
865
866         spin_lock(&mem->reclaim_param_lock);
867         prev_priority = mem->prev_priority;
868         spin_unlock(&mem->reclaim_param_lock);
869
870         return prev_priority;
871 }
872
873 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
874 {
875         spin_lock(&mem->reclaim_param_lock);
876         if (priority < mem->prev_priority)
877                 mem->prev_priority = priority;
878         spin_unlock(&mem->reclaim_param_lock);
879 }
880
881 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
882 {
883         spin_lock(&mem->reclaim_param_lock);
884         mem->prev_priority = priority;
885         spin_unlock(&mem->reclaim_param_lock);
886 }
887
888 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
889 {
890         unsigned long active;
891         unsigned long inactive;
892         unsigned long gb;
893         unsigned long inactive_ratio;
894
895         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
896         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
897
898         gb = (inactive + active) >> (30 - PAGE_SHIFT);
899         if (gb)
900                 inactive_ratio = int_sqrt(10 * gb);
901         else
902                 inactive_ratio = 1;
903
904         if (present_pages) {
905                 present_pages[0] = inactive;
906                 present_pages[1] = active;
907         }
908
909         return inactive_ratio;
910 }
911
912 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
913 {
914         unsigned long active;
915         unsigned long inactive;
916         unsigned long present_pages[2];
917         unsigned long inactive_ratio;
918
919         inactive_ratio = calc_inactive_ratio(memcg, present_pages);
920
921         inactive = present_pages[0];
922         active = present_pages[1];
923
924         if (inactive * inactive_ratio < active)
925                 return 1;
926
927         return 0;
928 }
929
930 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
931 {
932         unsigned long active;
933         unsigned long inactive;
934
935         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
936         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
937
938         return (active > inactive);
939 }
940
941 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
942                                        struct zone *zone,
943                                        enum lru_list lru)
944 {
945         int nid = zone->zone_pgdat->node_id;
946         int zid = zone_idx(zone);
947         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
948
949         return MEM_CGROUP_ZSTAT(mz, lru);
950 }
951
952 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
953                                                       struct zone *zone)
954 {
955         int nid = zone->zone_pgdat->node_id;
956         int zid = zone_idx(zone);
957         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
958
959         return &mz->reclaim_stat;
960 }
961
962 struct zone_reclaim_stat *
963 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
964 {
965         struct page_cgroup *pc;
966         struct mem_cgroup_per_zone *mz;
967
968         if (mem_cgroup_disabled())
969                 return NULL;
970
971         pc = lookup_page_cgroup(page);
972         /*
973          * Used bit is set without atomic ops but after smp_wmb().
974          * For making pc->mem_cgroup visible, insert smp_rmb() here.
975          */
976         smp_rmb();
977         if (!PageCgroupUsed(pc))
978                 return NULL;
979
980         mz = page_cgroup_zoneinfo(pc);
981         if (!mz)
982                 return NULL;
983
984         return &mz->reclaim_stat;
985 }
986
987 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
988                                         struct list_head *dst,
989                                         unsigned long *scanned, int order,
990                                         int mode, struct zone *z,
991                                         struct mem_cgroup *mem_cont,
992                                         int active, int file)
993 {
994         unsigned long nr_taken = 0;
995         struct page *page;
996         unsigned long scan;
997         LIST_HEAD(pc_list);
998         struct list_head *src;
999         struct page_cgroup *pc, *tmp;
1000         int nid = z->zone_pgdat->node_id;
1001         int zid = zone_idx(z);
1002         struct mem_cgroup_per_zone *mz;
1003         int lru = LRU_FILE * file + active;
1004         int ret;
1005
1006         BUG_ON(!mem_cont);
1007         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1008         src = &mz->lists[lru];
1009
1010         scan = 0;
1011         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1012                 if (scan >= nr_to_scan)
1013                         break;
1014
1015                 page = pc->page;
1016                 if (unlikely(!PageCgroupUsed(pc)))
1017                         continue;
1018                 if (unlikely(!PageLRU(page)))
1019                         continue;
1020
1021                 scan++;
1022                 ret = __isolate_lru_page(page, mode, file);
1023                 switch (ret) {
1024                 case 0:
1025                         list_move(&page->lru, dst);
1026                         mem_cgroup_del_lru(page);
1027                         nr_taken++;
1028                         break;
1029                 case -EBUSY:
1030                         /* we don't affect global LRU but rotate in our LRU */
1031                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1032                         break;
1033                 default:
1034                         break;
1035                 }
1036         }
1037
1038         *scanned = scan;
1039         return nr_taken;
1040 }
1041
1042 #define mem_cgroup_from_res_counter(counter, member)    \
1043         container_of(counter, struct mem_cgroup, member)
1044
1045 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1046 {
1047         if (do_swap_account) {
1048                 if (res_counter_check_under_limit(&mem->res) &&
1049                         res_counter_check_under_limit(&mem->memsw))
1050                         return true;
1051         } else
1052                 if (res_counter_check_under_limit(&mem->res))
1053                         return true;
1054         return false;
1055 }
1056
1057 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1058 {
1059         struct cgroup *cgrp = memcg->css.cgroup;
1060         unsigned int swappiness;
1061
1062         /* root ? */
1063         if (cgrp->parent == NULL)
1064                 return vm_swappiness;
1065
1066         spin_lock(&memcg->reclaim_param_lock);
1067         swappiness = memcg->swappiness;
1068         spin_unlock(&memcg->reclaim_param_lock);
1069
1070         return swappiness;
1071 }
1072
1073 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
1074 {
1075         int *val = data;
1076         (*val)++;
1077         return 0;
1078 }
1079
1080 /**
1081  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1082  * @memcg: The memory cgroup that went over limit
1083  * @p: Task that is going to be killed
1084  *
1085  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1086  * enabled
1087  */
1088 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1089 {
1090         struct cgroup *task_cgrp;
1091         struct cgroup *mem_cgrp;
1092         /*
1093          * Need a buffer in BSS, can't rely on allocations. The code relies
1094          * on the assumption that OOM is serialized for memory controller.
1095          * If this assumption is broken, revisit this code.
1096          */
1097         static char memcg_name[PATH_MAX];
1098         int ret;
1099
1100         if (!memcg || !p)
1101                 return;
1102
1103
1104         rcu_read_lock();
1105
1106         mem_cgrp = memcg->css.cgroup;
1107         task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1108
1109         ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1110         if (ret < 0) {
1111                 /*
1112                  * Unfortunately, we are unable to convert to a useful name
1113                  * But we'll still print out the usage information
1114                  */
1115                 rcu_read_unlock();
1116                 goto done;
1117         }
1118         rcu_read_unlock();
1119
1120         printk(KERN_INFO "Task in %s killed", memcg_name);
1121
1122         rcu_read_lock();
1123         ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1124         if (ret < 0) {
1125                 rcu_read_unlock();
1126                 goto done;
1127         }
1128         rcu_read_unlock();
1129
1130         /*
1131          * Continues from above, so we don't need an KERN_ level
1132          */
1133         printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1134 done:
1135
1136         printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1137                 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1138                 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1139                 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1140         printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1141                 "failcnt %llu\n",
1142                 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1143                 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1144                 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1145 }
1146
1147 /*
1148  * This function returns the number of memcg under hierarchy tree. Returns
1149  * 1(self count) if no children.
1150  */
1151 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1152 {
1153         int num = 0;
1154         mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1155         return num;
1156 }
1157
1158 /*
1159  * Visit the first child (need not be the first child as per the ordering
1160  * of the cgroup list, since we track last_scanned_child) of @mem and use
1161  * that to reclaim free pages from.
1162  */
1163 static struct mem_cgroup *
1164 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1165 {
1166         struct mem_cgroup *ret = NULL;
1167         struct cgroup_subsys_state *css;
1168         int nextid, found;
1169
1170         if (!root_mem->use_hierarchy) {
1171                 css_get(&root_mem->css);
1172                 ret = root_mem;
1173         }
1174
1175         while (!ret) {
1176                 rcu_read_lock();
1177                 nextid = root_mem->last_scanned_child + 1;
1178                 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1179                                    &found);
1180                 if (css && css_tryget(css))
1181                         ret = container_of(css, struct mem_cgroup, css);
1182
1183                 rcu_read_unlock();
1184                 /* Updates scanning parameter */
1185                 spin_lock(&root_mem->reclaim_param_lock);
1186                 if (!css) {
1187                         /* this means start scan from ID:1 */
1188                         root_mem->last_scanned_child = 0;
1189                 } else
1190                         root_mem->last_scanned_child = found;
1191                 spin_unlock(&root_mem->reclaim_param_lock);
1192         }
1193
1194         return ret;
1195 }
1196
1197 /*
1198  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1199  * we reclaimed from, so that we don't end up penalizing one child extensively
1200  * based on its position in the children list.
1201  *
1202  * root_mem is the original ancestor that we've been reclaim from.
1203  *
1204  * We give up and return to the caller when we visit root_mem twice.
1205  * (other groups can be removed while we're walking....)
1206  *
1207  * If shrink==true, for avoiding to free too much, this returns immedieately.
1208  */
1209 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1210                                                 struct zone *zone,
1211                                                 gfp_t gfp_mask,
1212                                                 unsigned long reclaim_options)
1213 {
1214         struct mem_cgroup *victim;
1215         int ret, total = 0;
1216         int loop = 0;
1217         bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1218         bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1219         bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1220         unsigned long excess = mem_cgroup_get_excess(root_mem);
1221
1222         /* If memsw_is_minimum==1, swap-out is of-no-use. */
1223         if (root_mem->memsw_is_minimum)
1224                 noswap = true;
1225
1226         while (1) {
1227                 victim = mem_cgroup_select_victim(root_mem);
1228                 if (victim == root_mem) {
1229                         loop++;
1230                         if (loop >= 1)
1231                                 drain_all_stock_async();
1232                         if (loop >= 2) {
1233                                 /*
1234                                  * If we have not been able to reclaim
1235                                  * anything, it might because there are
1236                                  * no reclaimable pages under this hierarchy
1237                                  */
1238                                 if (!check_soft || !total) {
1239                                         css_put(&victim->css);
1240                                         break;
1241                                 }
1242                                 /*
1243                                  * We want to do more targetted reclaim.
1244                                  * excess >> 2 is not to excessive so as to
1245                                  * reclaim too much, nor too less that we keep
1246                                  * coming back to reclaim from this cgroup
1247                                  */
1248                                 if (total >= (excess >> 2) ||
1249                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1250                                         css_put(&victim->css);
1251                                         break;
1252                                 }
1253                         }
1254                 }
1255                 if (!mem_cgroup_local_usage(victim)) {
1256                         /* this cgroup's local usage == 0 */
1257                         css_put(&victim->css);
1258                         continue;
1259                 }
1260                 /* we use swappiness of local cgroup */
1261                 if (check_soft)
1262                         ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1263                                 noswap, get_swappiness(victim), zone,
1264                                 zone->zone_pgdat->node_id);
1265                 else
1266                         ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1267                                                 noswap, get_swappiness(victim));
1268                 css_put(&victim->css);
1269                 /*
1270                  * At shrinking usage, we can't check we should stop here or
1271                  * reclaim more. It's depends on callers. last_scanned_child
1272                  * will work enough for keeping fairness under tree.
1273                  */
1274                 if (shrink)
1275                         return ret;
1276                 total += ret;
1277                 if (check_soft) {
1278                         if (res_counter_check_under_soft_limit(&root_mem->res))
1279                                 return total;
1280                 } else if (mem_cgroup_check_under_limit(root_mem))
1281                         return 1 + total;
1282         }
1283         return total;
1284 }
1285
1286 static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
1287 {
1288         int *val = (int *)data;
1289         int x;
1290         /*
1291          * Logically, we can stop scanning immediately when we find
1292          * a memcg is already locked. But condidering unlock ops and
1293          * creation/removal of memcg, scan-all is simple operation.
1294          */
1295         x = atomic_inc_return(&mem->oom_lock);
1296         *val = max(x, *val);
1297         return 0;
1298 }
1299 /*
1300  * Check OOM-Killer is already running under our hierarchy.
1301  * If someone is running, return false.
1302  */
1303 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1304 {
1305         int lock_count = 0;
1306
1307         mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);
1308
1309         if (lock_count == 1)
1310                 return true;
1311         return false;
1312 }
1313
1314 static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
1315 {
1316         /*
1317          * When a new child is created while the hierarchy is under oom,
1318          * mem_cgroup_oom_lock() may not be called. We have to use
1319          * atomic_add_unless() here.
1320          */
1321         atomic_add_unless(&mem->oom_lock, -1, 0);
1322         return 0;
1323 }
1324
1325 static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1326 {
1327         mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_unlock_cb);
1328 }
1329
1330 static DEFINE_MUTEX(memcg_oom_mutex);
1331 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1332
1333 struct oom_wait_info {
1334         struct mem_cgroup *mem;
1335         wait_queue_t    wait;
1336 };
1337
1338 static int memcg_oom_wake_function(wait_queue_t *wait,
1339         unsigned mode, int sync, void *arg)
1340 {
1341         struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1342         struct oom_wait_info *oom_wait_info;
1343
1344         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1345
1346         if (oom_wait_info->mem == wake_mem)
1347                 goto wakeup;
1348         /* if no hierarchy, no match */
1349         if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1350                 return 0;
1351         /*
1352          * Both of oom_wait_info->mem and wake_mem are stable under us.
1353          * Then we can use css_is_ancestor without taking care of RCU.
1354          */
1355         if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1356             !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1357                 return 0;
1358
1359 wakeup:
1360         return autoremove_wake_function(wait, mode, sync, arg);
1361 }
1362
1363 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1364 {
1365         /* for filtering, pass "mem" as argument. */
1366         __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1367 }
1368
1369 static void memcg_oom_recover(struct mem_cgroup *mem)
1370 {
1371         if (mem->oom_kill_disable && atomic_read(&mem->oom_lock))
1372                 memcg_wakeup_oom(mem);
1373 }
1374
1375 /*
1376  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1377  */
1378 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1379 {
1380         struct oom_wait_info owait;
1381         bool locked, need_to_kill;
1382
1383         owait.mem = mem;
1384         owait.wait.flags = 0;
1385         owait.wait.func = memcg_oom_wake_function;
1386         owait.wait.private = current;
1387         INIT_LIST_HEAD(&owait.wait.task_list);
1388         need_to_kill = true;
1389         /* At first, try to OOM lock hierarchy under mem.*/
1390         mutex_lock(&memcg_oom_mutex);
1391         locked = mem_cgroup_oom_lock(mem);
1392         /*
1393          * Even if signal_pending(), we can't quit charge() loop without
1394          * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1395          * under OOM is always welcomed, use TASK_KILLABLE here.
1396          */
1397         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1398         if (!locked || mem->oom_kill_disable)
1399                 need_to_kill = false;
1400         if (locked)
1401                 mem_cgroup_oom_notify(mem);
1402         mutex_unlock(&memcg_oom_mutex);
1403
1404         if (need_to_kill) {
1405                 finish_wait(&memcg_oom_waitq, &owait.wait);
1406                 mem_cgroup_out_of_memory(mem, mask);
1407         } else {
1408                 schedule();
1409                 finish_wait(&memcg_oom_waitq, &owait.wait);
1410         }
1411         mutex_lock(&memcg_oom_mutex);
1412         mem_cgroup_oom_unlock(mem);
1413         memcg_wakeup_oom(mem);
1414         mutex_unlock(&memcg_oom_mutex);
1415
1416         if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1417                 return false;
1418         /* Give chance to dying process */
1419         schedule_timeout(1);
1420         return true;
1421 }
1422
1423 /*
1424  * Currently used to update mapped file statistics, but the routine can be
1425  * generalized to update other statistics as well.
1426  */
1427 void mem_cgroup_update_file_mapped(struct page *page, int val)
1428 {
1429         struct mem_cgroup *mem;
1430         struct page_cgroup *pc;
1431
1432         pc = lookup_page_cgroup(page);
1433         if (unlikely(!pc))
1434                 return;
1435
1436         lock_page_cgroup(pc);
1437         mem = pc->mem_cgroup;
1438         if (!mem || !PageCgroupUsed(pc))
1439                 goto done;
1440
1441         /*
1442          * Preemption is already disabled. We can use __this_cpu_xxx
1443          */
1444         if (val > 0) {
1445                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1446                 SetPageCgroupFileMapped(pc);
1447         } else {
1448                 __this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1449                 ClearPageCgroupFileMapped(pc);
1450         }
1451
1452 done:
1453         unlock_page_cgroup(pc);
1454 }
1455
1456 /*
1457  * size of first charge trial. "32" comes from vmscan.c's magic value.
1458  * TODO: maybe necessary to use big numbers in big irons.
1459  */
1460 #define CHARGE_SIZE     (32 * PAGE_SIZE)
1461 struct memcg_stock_pcp {
1462         struct mem_cgroup *cached; /* this never be root cgroup */
1463         int charge;
1464         struct work_struct work;
1465 };
1466 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1467 static atomic_t memcg_drain_count;
1468
1469 /*
1470  * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1471  * from local stock and true is returned. If the stock is 0 or charges from a
1472  * cgroup which is not current target, returns false. This stock will be
1473  * refilled.
1474  */
1475 static bool consume_stock(struct mem_cgroup *mem)
1476 {
1477         struct memcg_stock_pcp *stock;
1478         bool ret = true;
1479
1480         stock = &get_cpu_var(memcg_stock);
1481         if (mem == stock->cached && stock->charge)
1482                 stock->charge -= PAGE_SIZE;
1483         else /* need to call res_counter_charge */
1484                 ret = false;
1485         put_cpu_var(memcg_stock);
1486         return ret;
1487 }
1488
1489 /*
1490  * Returns stocks cached in percpu to res_counter and reset cached information.
1491  */
1492 static void drain_stock(struct memcg_stock_pcp *stock)
1493 {
1494         struct mem_cgroup *old = stock->cached;
1495
1496         if (stock->charge) {
1497                 res_counter_uncharge(&old->res, stock->charge);
1498                 if (do_swap_account)
1499                         res_counter_uncharge(&old->memsw, stock->charge);
1500         }
1501         stock->cached = NULL;
1502         stock->charge = 0;
1503 }
1504
1505 /*
1506  * This must be called under preempt disabled or must be called by
1507  * a thread which is pinned to local cpu.
1508  */
1509 static void drain_local_stock(struct work_struct *dummy)
1510 {
1511         struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1512         drain_stock(stock);
1513 }
1514
1515 /*
1516  * Cache charges(val) which is from res_counter, to local per_cpu area.
1517  * This will be consumed by consume_stock() function, later.
1518  */
1519 static void refill_stock(struct mem_cgroup *mem, int val)
1520 {
1521         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1522
1523         if (stock->cached != mem) { /* reset if necessary */
1524                 drain_stock(stock);
1525                 stock->cached = mem;
1526         }
1527         stock->charge += val;
1528         put_cpu_var(memcg_stock);
1529 }
1530
1531 /*
1532  * Tries to drain stocked charges in other cpus. This function is asynchronous
1533  * and just put a work per cpu for draining localy on each cpu. Caller can
1534  * expects some charges will be back to res_counter later but cannot wait for
1535  * it.
1536  */
1537 static void drain_all_stock_async(void)
1538 {
1539         int cpu;
1540         /* This function is for scheduling "drain" in asynchronous way.
1541          * The result of "drain" is not directly handled by callers. Then,
1542          * if someone is calling drain, we don't have to call drain more.
1543          * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1544          * there is a race. We just do loose check here.
1545          */
1546         if (atomic_read(&memcg_drain_count))
1547                 return;
1548         /* Notify other cpus that system-wide "drain" is running */
1549         atomic_inc(&memcg_drain_count);
1550         get_online_cpus();
1551         for_each_online_cpu(cpu) {
1552                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1553                 schedule_work_on(cpu, &stock->work);
1554         }
1555         put_online_cpus();
1556         atomic_dec(&memcg_drain_count);
1557         /* We don't wait for flush_work */
1558 }
1559
1560 /* This is a synchronous drain interface. */
1561 static void drain_all_stock_sync(void)
1562 {
1563         /* called when force_empty is called */
1564         atomic_inc(&memcg_drain_count);
1565         schedule_on_each_cpu(drain_local_stock);
1566         atomic_dec(&memcg_drain_count);
1567 }
1568
1569 static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
1570                                         unsigned long action,
1571                                         void *hcpu)
1572 {
1573         int cpu = (unsigned long)hcpu;
1574         struct memcg_stock_pcp *stock;
1575
1576         if (action != CPU_DEAD)
1577                 return NOTIFY_OK;
1578         stock = &per_cpu(memcg_stock, cpu);
1579         drain_stock(stock);
1580         return NOTIFY_OK;
1581 }
1582
1583 /*
1584  * Unlike exported interface, "oom" parameter is added. if oom==true,
1585  * oom-killer can be invoked.
1586  */
1587 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1588                         gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1589 {
1590         struct mem_cgroup *mem, *mem_over_limit;
1591         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1592         struct res_counter *fail_res;
1593         int csize = CHARGE_SIZE;
1594
1595         /*
1596          * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1597          * in system level. So, allow to go ahead dying process in addition to
1598          * MEMDIE process.
1599          */
1600         if (unlikely(test_thread_flag(TIF_MEMDIE)
1601                      || fatal_signal_pending(current)))
1602                 goto bypass;
1603
1604         /*
1605          * We always charge the cgroup the mm_struct belongs to.
1606          * The mm_struct's mem_cgroup changes on task migration if the
1607          * thread group leader migrates. It's possible that mm is not
1608          * set, if so charge the init_mm (happens for pagecache usage).
1609          */
1610         mem = *memcg;
1611         if (likely(!mem)) {
1612                 mem = try_get_mem_cgroup_from_mm(mm);
1613                 *memcg = mem;
1614         } else {
1615                 css_get(&mem->css);
1616         }
1617         if (unlikely(!mem))
1618                 return 0;
1619
1620         VM_BUG_ON(css_is_removed(&mem->css));
1621         if (mem_cgroup_is_root(mem))
1622                 goto done;
1623
1624         while (1) {
1625                 int ret = 0;
1626                 unsigned long flags = 0;
1627
1628                 if (consume_stock(mem))
1629                         goto done;
1630
1631                 ret = res_counter_charge(&mem->res, csize, &fail_res);
1632                 if (likely(!ret)) {
1633                         if (!do_swap_account)
1634                                 break;
1635                         ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1636                         if (likely(!ret))
1637                                 break;
1638                         /* mem+swap counter fails */
1639                         res_counter_uncharge(&mem->res, csize);
1640                         flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1641                         mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1642                                                                         memsw);
1643                 } else
1644                         /* mem counter fails */
1645                         mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1646                                                                         res);
1647
1648                 /* reduce request size and retry */
1649                 if (csize > PAGE_SIZE) {
1650                         csize = PAGE_SIZE;
1651                         continue;
1652                 }
1653                 if (!(gfp_mask & __GFP_WAIT))
1654                         goto nomem;
1655
1656                 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1657                                                 gfp_mask, flags);
1658                 if (ret)
1659                         continue;
1660
1661                 /*
1662                  * try_to_free_mem_cgroup_pages() might not give us a full
1663                  * picture of reclaim. Some pages are reclaimed and might be
1664                  * moved to swap cache or just unmapped from the cgroup.
1665                  * Check the limit again to see if the reclaim reduced the
1666                  * current usage of the cgroup before giving up
1667                  *
1668                  */
1669                 if (mem_cgroup_check_under_limit(mem_over_limit))
1670                         continue;
1671
1672                 /* try to avoid oom while someone is moving charge */
1673                 if (mc.moving_task && current != mc.moving_task) {
1674                         struct mem_cgroup *from, *to;
1675                         bool do_continue = false;
1676                         /*
1677                          * There is a small race that "from" or "to" can be
1678                          * freed by rmdir, so we use css_tryget().
1679                          */
1680                         from = mc.from;
1681                         to = mc.to;
1682                         if (from && css_tryget(&from->css)) {
1683                                 if (mem_over_limit->use_hierarchy)
1684                                         do_continue = css_is_ancestor(
1685                                                         &from->css,
1686                                                         &mem_over_limit->css);
1687                                 else
1688                                         do_continue = (from == mem_over_limit);
1689                                 css_put(&from->css);
1690                         }
1691                         if (!do_continue && to && css_tryget(&to->css)) {
1692                                 if (mem_over_limit->use_hierarchy)
1693                                         do_continue = css_is_ancestor(
1694                                                         &to->css,
1695                                                         &mem_over_limit->css);
1696                                 else
1697                                         do_continue = (to == mem_over_limit);
1698                                 css_put(&to->css);
1699                         }
1700                         if (do_continue) {
1701                                 DEFINE_WAIT(wait);
1702                                 prepare_to_wait(&mc.waitq, &wait,
1703                                                         TASK_INTERRUPTIBLE);
1704                                 /* moving charge context might have finished. */
1705                                 if (mc.moving_task)
1706                                         schedule();
1707                                 finish_wait(&mc.waitq, &wait);
1708                                 continue;
1709                         }
1710                 }
1711
1712                 if (!nr_retries--) {
1713                         if (!oom)
1714                                 goto nomem;
1715                         if (mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) {
1716                                 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1717                                 continue;
1718                         }
1719                         /* When we reach here, current task is dying .*/
1720                         css_put(&mem->css);
1721                         goto bypass;
1722                 }
1723         }
1724         if (csize > PAGE_SIZE)
1725                 refill_stock(mem, csize - PAGE_SIZE);
1726 done:
1727         return 0;
1728 nomem:
1729         css_put(&mem->css);
1730         return -ENOMEM;
1731 bypass:
1732         *memcg = NULL;
1733         return 0;
1734 }
1735
1736 /*
1737  * Somemtimes we have to undo a charge we got by try_charge().
1738  * This function is for that and do uncharge, put css's refcnt.
1739  * gotten by try_charge().
1740  */
1741 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
1742                                                         unsigned long count)
1743 {
1744         if (!mem_cgroup_is_root(mem)) {
1745                 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1746                 if (do_swap_account)
1747                         res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
1748                 VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
1749                 WARN_ON_ONCE(count > INT_MAX);
1750                 __css_put(&mem->css, (int)count);
1751         }
1752         /* we don't need css_put for root */
1753 }
1754
1755 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
1756 {
1757         __mem_cgroup_cancel_charge(mem, 1);
1758 }
1759
1760 /*
1761  * A helper function to get mem_cgroup from ID. must be called under
1762  * rcu_read_lock(). The caller must check css_is_removed() or some if
1763  * it's concern. (dropping refcnt from swap can be called against removed
1764  * memcg.)
1765  */
1766 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1767 {
1768         struct cgroup_subsys_state *css;
1769
1770         /* ID 0 is unused ID */
1771         if (!id)
1772                 return NULL;
1773         css = css_lookup(&mem_cgroup_subsys, id);
1774         if (!css)
1775                 return NULL;
1776         return container_of(css, struct mem_cgroup, css);
1777 }
1778
1779 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1780 {
1781         struct mem_cgroup *mem = NULL;
1782         struct page_cgroup *pc;
1783         unsigned short id;
1784         swp_entry_t ent;
1785
1786         VM_BUG_ON(!PageLocked(page));
1787
1788         pc = lookup_page_cgroup(page);
1789         lock_page_cgroup(pc);
1790         if (PageCgroupUsed(pc)) {
1791                 mem = pc->mem_cgroup;
1792                 if (mem && !css_tryget(&mem->css))
1793                         mem = NULL;
1794         } else if (PageSwapCache(page)) {
1795                 ent.val = page_private(page);
1796                 id = lookup_swap_cgroup(ent);
1797                 rcu_read_lock();
1798                 mem = mem_cgroup_lookup(id);
1799                 if (mem && !css_tryget(&mem->css))
1800                         mem = NULL;
1801                 rcu_read_unlock();
1802         }
1803         unlock_page_cgroup(pc);
1804         return mem;
1805 }
1806
1807 /*
1808  * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1809  * USED state. If already USED, uncharge and return.
1810  */
1811
1812 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1813                                      struct page_cgroup *pc,
1814                                      enum charge_type ctype)
1815 {
1816         /* try_charge() can return NULL to *memcg, taking care of it. */
1817         if (!mem)
1818                 return;
1819
1820         lock_page_cgroup(pc);
1821         if (unlikely(PageCgroupUsed(pc))) {
1822                 unlock_page_cgroup(pc);
1823                 mem_cgroup_cancel_charge(mem);
1824                 return;
1825         }
1826
1827         pc->mem_cgroup = mem;
1828         /*
1829          * We access a page_cgroup asynchronously without lock_page_cgroup().
1830          * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1831          * is accessed after testing USED bit. To make pc->mem_cgroup visible
1832          * before USED bit, we need memory barrier here.
1833          * See mem_cgroup_add_lru_list(), etc.
1834          */
1835         smp_wmb();
1836         switch (ctype) {
1837         case MEM_CGROUP_CHARGE_TYPE_CACHE:
1838         case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1839                 SetPageCgroupCache(pc);
1840                 SetPageCgroupUsed(pc);
1841                 break;
1842         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1843                 ClearPageCgroupCache(pc);
1844                 SetPageCgroupUsed(pc);
1845                 break;
1846         default:
1847                 break;
1848         }
1849
1850         mem_cgroup_charge_statistics(mem, pc, true);
1851
1852         unlock_page_cgroup(pc);
1853         /*
1854          * "charge_statistics" updated event counter. Then, check it.
1855          * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1856          * if they exceeds softlimit.
1857          */
1858         memcg_check_events(mem, pc->page);
1859 }
1860
1861 /**
1862  * __mem_cgroup_move_account - move account of the page
1863  * @pc: page_cgroup of the page.
1864  * @from: mem_cgroup which the page is moved from.
1865  * @to: mem_cgroup which the page is moved to. @from != @to.
1866  * @uncharge: whether we should call uncharge and css_put against @from.
1867  *
1868  * The caller must confirm following.
1869  * - page is not on LRU (isolate_page() is useful.)
1870  * - the pc is locked, used, and ->mem_cgroup points to @from.
1871  *
1872  * This function doesn't do "charge" nor css_get to new cgroup. It should be
1873  * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
1874  * true, this function does "uncharge" from old cgroup, but it doesn't if
1875  * @uncharge is false, so a caller should do "uncharge".
1876  */
1877
1878 static void __mem_cgroup_move_account(struct page_cgroup *pc,
1879         struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1880 {
1881         VM_BUG_ON(from == to);
1882         VM_BUG_ON(PageLRU(pc->page));
1883         VM_BUG_ON(!PageCgroupLocked(pc));
1884         VM_BUG_ON(!PageCgroupUsed(pc));
1885         VM_BUG_ON(pc->mem_cgroup != from);
1886
1887         if (PageCgroupFileMapped(pc)) {
1888                 /* Update mapped_file data for mem_cgroup */
1889                 preempt_disable();
1890                 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1891                 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1892                 preempt_enable();
1893         }
1894         mem_cgroup_charge_statistics(from, pc, false);
1895         if (uncharge)
1896                 /* This is not "cancel", but cancel_charge does all we need. */
1897                 mem_cgroup_cancel_charge(from);
1898
1899         /* caller should have done css_get */
1900         pc->mem_cgroup = to;
1901         mem_cgroup_charge_statistics(to, pc, true);
1902         /*
1903          * We charges against "to" which may not have any tasks. Then, "to"
1904          * can be under rmdir(). But in current implementation, caller of
1905          * this function is just force_empty() and move charge, so it's
1906          * garanteed that "to" is never removed. So, we don't check rmdir
1907          * status here.
1908          */
1909 }
1910
1911 /*
1912  * check whether the @pc is valid for moving account and call
1913  * __mem_cgroup_move_account()
1914  */
1915 static int mem_cgroup_move_account(struct page_cgroup *pc,
1916                 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1917 {
1918         int ret = -EINVAL;
1919         lock_page_cgroup(pc);
1920         if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1921                 __mem_cgroup_move_account(pc, from, to, uncharge);
1922                 ret = 0;
1923         }
1924         unlock_page_cgroup(pc);
1925         /*
1926          * check events
1927          */
1928         memcg_check_events(to, pc->page);
1929         memcg_check_events(from, pc->page);
1930         return ret;
1931 }
1932
1933 /*
1934  * move charges to its parent.
1935  */
1936
1937 static int mem_cgroup_move_parent(struct page_cgroup *pc,
1938                                   struct mem_cgroup *child,
1939                                   gfp_t gfp_mask)
1940 {
1941         struct page *page = pc->page;
1942         struct cgroup *cg = child->css.cgroup;
1943         struct cgroup *pcg = cg->parent;
1944         struct mem_cgroup *parent;
1945         int ret;
1946
1947         /* Is ROOT ? */
1948         if (!pcg)
1949                 return -EINVAL;
1950
1951         ret = -EBUSY;
1952         if (!get_page_unless_zero(page))
1953                 goto out;
1954         if (isolate_lru_page(page))
1955                 goto put;
1956
1957         parent = mem_cgroup_from_cont(pcg);
1958         ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1959         if (ret || !parent)
1960                 goto put_back;
1961
1962         ret = mem_cgroup_move_account(pc, child, parent, true);
1963         if (ret)
1964                 mem_cgroup_cancel_charge(parent);
1965 put_back:
1966         putback_lru_page(page);
1967 put:
1968         put_page(page);
1969 out:
1970         return ret;
1971 }
1972
1973 /*
1974  * Charge the memory controller for page usage.
1975  * Return
1976  * 0 if the charge was successful
1977  * < 0 if the cgroup is over its limit
1978  */
1979 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1980                                 gfp_t gfp_mask, enum charge_type ctype,
1981                                 struct mem_cgroup *memcg)
1982 {
1983         struct mem_cgroup *mem;
1984         struct page_cgroup *pc;
1985         int ret;
1986
1987         pc = lookup_page_cgroup(page);
1988         /* can happen at boot */
1989         if (unlikely(!pc))
1990                 return 0;
1991         prefetchw(pc);
1992
1993         mem = memcg;
1994         ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1995         if (ret || !mem)
1996                 return ret;
1997
1998         __mem_cgroup_commit_charge(mem, pc, ctype);
1999         return 0;
2000 }
2001
2002 int mem_cgroup_newpage_charge(struct page *page,
2003                               struct mm_struct *mm, gfp_t gfp_mask)
2004 {
2005         if (mem_cgroup_disabled())
2006                 return 0;
2007         if (PageCompound(page))
2008                 return 0;
2009         /*
2010          * If already mapped, we don't have to account.
2011          * If page cache, page->mapping has address_space.
2012          * But page->mapping may have out-of-use anon_vma pointer,
2013          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2014          * is NULL.
2015          */
2016         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2017                 return 0;
2018         if (unlikely(!mm))
2019                 mm = &init_mm;
2020         return mem_cgroup_charge_common(page, mm, gfp_mask,
2021                                 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
2022 }
2023
2024 static void
2025 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2026                                         enum charge_type ctype);
2027
2028 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2029                                 gfp_t gfp_mask)
2030 {
2031         struct mem_cgroup *mem = NULL;
2032         int ret;
2033
2034         if (mem_cgroup_disabled())
2035                 return 0;
2036         if (PageCompound(page))
2037                 return 0;
2038         /*
2039          * Corner case handling. This is called from add_to_page_cache()
2040          * in usual. But some FS (shmem) precharges this page before calling it
2041          * and call add_to_page_cache() with GFP_NOWAIT.
2042          *
2043          * For GFP_NOWAIT case, the page may be pre-charged before calling
2044          * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2045          * charge twice. (It works but has to pay a bit larger cost.)
2046          * And when the page is SwapCache, it should take swap information
2047          * into account. This is under lock_page() now.
2048          */
2049         if (!(gfp_mask & __GFP_WAIT)) {
2050                 struct page_cgroup *pc;
2051
2052
2053                 pc = lookup_page_cgroup(page);
2054                 if (!pc)
2055                         return 0;
2056                 lock_page_cgroup(pc);
2057                 if (PageCgroupUsed(pc)) {
2058                         unlock_page_cgroup(pc);
2059                         return 0;
2060                 }
2061                 unlock_page_cgroup(pc);
2062         }
2063
2064         if (unlikely(!mm && !mem))
2065                 mm = &init_mm;
2066
2067         if (page_is_file_cache(page))
2068                 return mem_cgroup_charge_common(page, mm, gfp_mask,
2069                                 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
2070
2071         /* shmem */
2072         if (PageSwapCache(page)) {
2073                 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2074                 if (!ret)
2075                         __mem_cgroup_commit_charge_swapin(page, mem,
2076                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2077         } else
2078                 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2079                                         MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
2080
2081         return ret;
2082 }
2083
2084 /*
2085  * While swap-in, try_charge -> commit or cancel, the page is locked.
2086  * And when try_charge() successfully returns, one refcnt to memcg without
2087  * struct page_cgroup is acquired. This refcnt will be consumed by
2088  * "commit()" or removed by "cancel()"
2089  */
2090 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2091                                  struct page *page,
2092                                  gfp_t mask, struct mem_cgroup **ptr)
2093 {
2094         struct mem_cgroup *mem;
2095         int ret;
2096
2097         if (mem_cgroup_disabled())
2098                 return 0;
2099
2100         if (!do_swap_account)
2101                 goto charge_cur_mm;
2102         /*
2103          * A racing thread's fault, or swapoff, may have already updated
2104          * the pte, and even removed page from swap cache: in those cases
2105          * do_swap_page()'s pte_same() test will fail; but there's also a
2106          * KSM case which does need to charge the page.
2107          */
2108         if (!PageSwapCache(page))
2109                 goto charge_cur_mm;
2110         mem = try_get_mem_cgroup_from_page(page);
2111         if (!mem)
2112                 goto charge_cur_mm;
2113         *ptr = mem;
2114         ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2115         /* drop extra refcnt from tryget */
2116         css_put(&mem->css);
2117         return ret;
2118 charge_cur_mm:
2119         if (unlikely(!mm))
2120                 mm = &init_mm;
2121         return __mem_cgroup_try_charge(mm, mask, ptr, true);
2122 }
2123
2124 static void
2125 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2126                                         enum charge_type ctype)
2127 {
2128         struct page_cgroup *pc;
2129
2130         if (mem_cgroup_disabled())
2131                 return;
2132         if (!ptr)
2133                 return;
2134         cgroup_exclude_rmdir(&ptr->css);
2135         pc = lookup_page_cgroup(page);
2136         mem_cgroup_lru_del_before_commit_swapcache(page);
2137         __mem_cgroup_commit_charge(ptr, pc, ctype);
2138         mem_cgroup_lru_add_after_commit_swapcache(page);
2139         /*
2140          * Now swap is on-memory. This means this page may be
2141          * counted both as mem and swap....double count.
2142          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2143          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2144          * may call delete_from_swap_cache() before reach here.
2145          */
2146         if (do_swap_account && PageSwapCache(page)) {
2147                 swp_entry_t ent = {.val = page_private(page)};
2148                 unsigned short id;
2149                 struct mem_cgroup *memcg;
2150
2151                 id = swap_cgroup_record(ent, 0);
2152                 rcu_read_lock();
2153                 memcg = mem_cgroup_lookup(id);
2154                 if (memcg) {
2155                         /*
2156                          * This recorded memcg can be obsolete one. So, avoid
2157                          * calling css_tryget
2158                          */
2159                         if (!mem_cgroup_is_root(memcg))
2160                                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2161                         mem_cgroup_swap_statistics(memcg, false);
2162                         mem_cgroup_put(memcg);
2163                 }
2164                 rcu_read_unlock();
2165         }
2166         /*
2167          * At swapin, we may charge account against cgroup which has no tasks.
2168          * So, rmdir()->pre_destroy() can be called while we do this charge.
2169          * In that case, we need to call pre_destroy() again. check it here.
2170          */
2171         cgroup_release_and_wakeup_rmdir(&ptr->css);
2172 }
2173
2174 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2175 {
2176         __mem_cgroup_commit_charge_swapin(page, ptr,
2177                                         MEM_CGROUP_CHARGE_TYPE_MAPPED);
2178 }
2179
2180 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2181 {
2182         if (mem_cgroup_disabled())
2183                 return;
2184         if (!mem)
2185                 return;
2186         mem_cgroup_cancel_charge(mem);
2187 }
2188
2189 static void
2190 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
2191 {
2192         struct memcg_batch_info *batch = NULL;
2193         bool uncharge_memsw = true;
2194         /* If swapout, usage of swap doesn't decrease */
2195         if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2196                 uncharge_memsw = false;
2197
2198         batch = &current->memcg_batch;
2199         /*
2200          * In usual, we do css_get() when we remember memcg pointer.
2201          * But in this case, we keep res->usage until end of a series of
2202          * uncharges. Then, it's ok to ignore memcg's refcnt.
2203          */
2204         if (!batch->memcg)
2205                 batch->memcg = mem;
2206         /*
2207          * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2208          * In those cases, all pages freed continously can be expected to be in
2209          * the same cgroup and we have chance to coalesce uncharges.
2210          * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2211          * because we want to do uncharge as soon as possible.
2212          */
2213
2214         if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2215                 goto direct_uncharge;
2216
2217         /*
2218          * In typical case, batch->memcg == mem. This means we can
2219          * merge a series of uncharges to an uncharge of res_counter.
2220          * If not, we uncharge res_counter ony by one.
2221          */
2222         if (batch->memcg != mem)
2223                 goto direct_uncharge;
2224         /* remember freed charge and uncharge it later */
2225         batch->bytes += PAGE_SIZE;
2226         if (uncharge_memsw)
2227                 batch->memsw_bytes += PAGE_SIZE;
2228         return;
2229 direct_uncharge:
2230         res_counter_uncharge(&mem->res, PAGE_SIZE);
2231         if (uncharge_memsw)
2232                 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2233         if (unlikely(batch->memcg != mem))
2234                 memcg_oom_recover(mem);
2235         return;
2236 }
2237
2238 /*
2239  * uncharge if !page_mapped(page)
2240  */
2241 static struct mem_cgroup *
2242 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2243 {
2244         struct page_cgroup *pc;
2245         struct mem_cgroup *mem = NULL;
2246         struct mem_cgroup_per_zone *mz;
2247
2248         if (mem_cgroup_disabled())
2249                 return NULL;
2250
2251         if (PageSwapCache(page))
2252                 return NULL;
2253
2254         /*
2255          * Check if our page_cgroup is valid
2256          */
2257         pc = lookup_page_cgroup(page);
2258         if (unlikely(!pc || !PageCgroupUsed(pc)))
2259                 return NULL;
2260
2261         lock_page_cgroup(pc);
2262
2263         mem = pc->mem_cgroup;
2264
2265         if (!PageCgroupUsed(pc))
2266                 goto unlock_out;
2267
2268         switch (ctype) {
2269         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2270         case MEM_CGROUP_CHARGE_TYPE_DROP:
2271                 /* See mem_cgroup_prepare_migration() */
2272                 if (page_mapped(page) || PageCgroupMigration(pc))
2273                         goto unlock_out;
2274                 break;
2275         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2276                 if (!PageAnon(page)) {  /* Shared memory */
2277                         if (page->mapping && !page_is_file_cache(page))
2278                                 goto unlock_out;
2279                 } else if (page_mapped(page)) /* Anon */
2280                                 goto unlock_out;
2281                 break;
2282         default:
2283                 break;
2284         }
2285
2286         if (!mem_cgroup_is_root(mem))
2287                 __do_uncharge(mem, ctype);
2288         if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2289                 mem_cgroup_swap_statistics(mem, true);
2290         mem_cgroup_charge_statistics(mem, pc, false);
2291
2292         ClearPageCgroupUsed(pc);
2293         /*
2294          * pc->mem_cgroup is not cleared here. It will be accessed when it's
2295          * freed from LRU. This is safe because uncharged page is expected not
2296          * to be reused (freed soon). Exception is SwapCache, it's handled by
2297          * special functions.
2298          */
2299
2300         mz = page_cgroup_zoneinfo(pc);
2301         unlock_page_cgroup(pc);
2302
2303         memcg_check_events(mem, page);
2304         /* at swapout, this memcg will be accessed to record to swap */
2305         if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2306                 css_put(&mem->css);
2307
2308         return mem;
2309
2310 unlock_out:
2311         unlock_page_cgroup(pc);
2312         return NULL;
2313 }
2314
2315 void mem_cgroup_uncharge_page(struct page *page)
2316 {
2317         /* early check. */
2318         if (page_mapped(page))
2319                 return;
2320         if (page->mapping && !PageAnon(page))
2321                 return;
2322         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2323 }
2324
2325 void mem_cgroup_uncharge_cache_page(struct page *page)
2326 {
2327         VM_BUG_ON(page_mapped(page));
2328         VM_BUG_ON(page->mapping);
2329         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2330 }
2331
2332 /*
2333  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2334  * In that cases, pages are freed continuously and we can expect pages
2335  * are in the same memcg. All these calls itself limits the number of
2336  * pages freed at once, then uncharge_start/end() is called properly.
2337  * This may be called prural(2) times in a context,
2338  */
2339
2340 void mem_cgroup_uncharge_start(void)
2341 {
2342         current->memcg_batch.do_batch++;
2343         /* We can do nest. */
2344         if (current->memcg_batch.do_batch == 1) {
2345                 current->memcg_batch.memcg = NULL;
2346                 current->memcg_batch.bytes = 0;
2347                 current->memcg_batch.memsw_bytes = 0;
2348         }
2349 }
2350
2351 void mem_cgroup_uncharge_end(void)
2352 {
2353         struct memcg_batch_info *batch = &current->memcg_batch;
2354
2355         if (!batch->do_batch)
2356                 return;
2357
2358         batch->do_batch--;
2359         if (batch->do_batch) /* If stacked, do nothing. */
2360                 return;
2361
2362         if (!batch->memcg)
2363                 return;
2364         /*
2365          * This "batch->memcg" is valid without any css_get/put etc...
2366          * bacause we hide charges behind us.
2367          */
2368         if (batch->bytes)
2369                 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2370         if (batch->memsw_bytes)
2371                 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2372         memcg_oom_recover(batch->memcg);
2373         /* forget this pointer (for sanity check) */
2374         batch->memcg = NULL;
2375 }
2376
2377 #ifdef CONFIG_SWAP
2378 /*
2379  * called after __delete_from_swap_cache() and drop "page" account.
2380  * memcg information is recorded to swap_cgroup of "ent"
2381  */
2382 void
2383 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2384 {
2385         struct mem_cgroup *memcg;
2386         int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2387
2388         if (!swapout) /* this was a swap cache but the swap is unused ! */
2389                 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2390
2391         memcg = __mem_cgroup_uncharge_common(page, ctype);
2392
2393         /* record memcg information */
2394         if (do_swap_account && swapout && memcg) {
2395                 swap_cgroup_record(ent, css_id(&memcg->css));
2396                 mem_cgroup_get(memcg);
2397         }
2398         if (swapout && memcg)
2399                 css_put(&memcg->css);
2400 }
2401 #endif
2402
2403 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2404 /*
2405  * called from swap_entry_free(). remove record in swap_cgroup and
2406  * uncharge "memsw" account.
2407  */
2408 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2409 {
2410         struct mem_cgroup *memcg;
2411         unsigned short id;
2412
2413         if (!do_swap_account)
2414                 return;
2415
2416         id = swap_cgroup_record(ent, 0);
2417         rcu_read_lock();
2418         memcg = mem_cgroup_lookup(id);
2419         if (memcg) {
2420                 /*
2421                  * We uncharge this because swap is freed.
2422                  * This memcg can be obsolete one. We avoid calling css_tryget
2423                  */
2424                 if (!mem_cgroup_is_root(memcg))
2425                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2426                 mem_cgroup_swap_statistics(memcg, false);
2427                 mem_cgroup_put(memcg);
2428         }
2429         rcu_read_unlock();
2430 }
2431
2432 /**
2433  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2434  * @entry: swap entry to be moved
2435  * @from:  mem_cgroup which the entry is moved from
2436  * @to:  mem_cgroup which the entry is moved to
2437  * @need_fixup: whether we should fixup res_counters and refcounts.
2438  *
2439  * It succeeds only when the swap_cgroup's record for this entry is the same
2440  * as the mem_cgroup's id of @from.
2441  *
2442  * Returns 0 on success, -EINVAL on failure.
2443  *
2444  * The caller must have charged to @to, IOW, called res_counter_charge() about
2445  * both res and memsw, and called css_get().
2446  */
2447 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2448                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2449 {
2450         unsigned short old_id, new_id;
2451
2452         old_id = css_id(&from->css);
2453         new_id = css_id(&to->css);
2454
2455         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2456                 mem_cgroup_swap_statistics(from, false);
2457                 mem_cgroup_swap_statistics(to, true);
2458                 /*
2459                  * This function is only called from task migration context now.
2460                  * It postpones res_counter and refcount handling till the end
2461                  * of task migration(mem_cgroup_clear_mc()) for performance
2462                  * improvement. But we cannot postpone mem_cgroup_get(to)
2463                  * because if the process that has been moved to @to does
2464                  * swap-in, the refcount of @to might be decreased to 0.
2465                  */
2466                 mem_cgroup_get(to);
2467                 if (need_fixup) {
2468                         if (!mem_cgroup_is_root(from))
2469                                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2470                         mem_cgroup_put(from);
2471                         /*
2472                          * we charged both to->res and to->memsw, so we should
2473                          * uncharge to->res.
2474                          */
2475                         if (!mem_cgroup_is_root(to))
2476                                 res_counter_uncharge(&to->res, PAGE_SIZE);
2477                         css_put(&to->css);
2478                 }
2479                 return 0;
2480         }
2481         return -EINVAL;
2482 }
2483 #else
2484 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2485                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2486 {
2487         return -EINVAL;
2488 }
2489 #endif
2490
2491 /*
2492  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2493  * page belongs to.
2494  */
2495 int mem_cgroup_prepare_migration(struct page *page,
2496         struct page *newpage, struct mem_cgroup **ptr)
2497 {
2498         struct page_cgroup *pc;
2499         struct mem_cgroup *mem = NULL;
2500         enum charge_type ctype;
2501         int ret = 0;
2502
2503         if (mem_cgroup_disabled())
2504                 return 0;
2505
2506         pc = lookup_page_cgroup(page);
2507         lock_page_cgroup(pc);
2508         if (PageCgroupUsed(pc)) {
2509                 mem = pc->mem_cgroup;
2510                 css_get(&mem->css);
2511                 /*
2512                  * At migrating an anonymous page, its mapcount goes down
2513                  * to 0 and uncharge() will be called. But, even if it's fully
2514                  * unmapped, migration may fail and this page has to be
2515                  * charged again. We set MIGRATION flag here and delay uncharge
2516                  * until end_migration() is called
2517                  *
2518                  * Corner Case Thinking
2519                  * A)
2520                  * When the old page was mapped as Anon and it's unmap-and-freed
2521                  * while migration was ongoing.
2522                  * If unmap finds the old page, uncharge() of it will be delayed
2523                  * until end_migration(). If unmap finds a new page, it's
2524                  * uncharged when it make mapcount to be 1->0. If unmap code
2525                  * finds swap_migration_entry, the new page will not be mapped
2526                  * and end_migration() will find it(mapcount==0).
2527                  *
2528                  * B)
2529                  * When the old page was mapped but migraion fails, the kernel
2530                  * remaps it. A charge for it is kept by MIGRATION flag even
2531                  * if mapcount goes down to 0. We can do remap successfully
2532                  * without charging it again.
2533                  *
2534                  * C)
2535                  * The "old" page is under lock_page() until the end of
2536                  * migration, so, the old page itself will not be swapped-out.
2537                  * If the new page is swapped out before end_migraton, our
2538                  * hook to usual swap-out path will catch the event.
2539                  */
2540                 if (PageAnon(page))
2541                         SetPageCgroupMigration(pc);
2542         }
2543         unlock_page_cgroup(pc);
2544         /*
2545          * If the page is not charged at this point,
2546          * we return here.
2547          */
2548         if (!mem)
2549                 return 0;
2550
2551         *ptr = mem;
2552         ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
2553         css_put(&mem->css);/* drop extra refcnt */
2554         if (ret || *ptr == NULL) {
2555                 if (PageAnon(page)) {
2556                         lock_page_cgroup(pc);
2557                         ClearPageCgroupMigration(pc);
2558                         unlock_page_cgroup(pc);
2559                         /*
2560                          * The old page may be fully unmapped while we kept it.
2561                          */
2562                         mem_cgroup_uncharge_page(page);
2563                 }
2564                 return -ENOMEM;
2565         }
2566         /*
2567          * We charge new page before it's used/mapped. So, even if unlock_page()
2568          * is called before end_migration, we can catch all events on this new
2569          * page. In the case new page is migrated but not remapped, new page's
2570          * mapcount will be finally 0 and we call uncharge in end_migration().
2571          */
2572         pc = lookup_page_cgroup(newpage);
2573         if (PageAnon(page))
2574                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2575         else if (page_is_file_cache(page))
2576                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2577         else
2578                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2579         __mem_cgroup_commit_charge(mem, pc, ctype);
2580         return ret;
2581 }
2582
2583 /* remove redundant charge if migration failed*/
2584 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2585         struct page *oldpage, struct page *newpage)
2586 {
2587         struct page *used, *unused;
2588         struct page_cgroup *pc;
2589
2590         if (!mem)
2591                 return;
2592         /* blocks rmdir() */
2593         cgroup_exclude_rmdir(&mem->css);
2594         /* at migration success, oldpage->mapping is NULL. */
2595         if (oldpage->mapping) {
2596                 used = oldpage;
2597                 unused = newpage;
2598         } else {
2599                 used = newpage;
2600                 unused = oldpage;
2601         }
2602         /*
2603          * We disallowed uncharge of pages under migration because mapcount
2604          * of the page goes down to zero, temporarly.
2605          * Clear the flag and check the page should be charged.
2606          */
2607         pc = lookup_page_cgroup(oldpage);
2608         lock_page_cgroup(pc);
2609         ClearPageCgroupMigration(pc);
2610         unlock_page_cgroup(pc);
2611
2612         if (unused != oldpage)
2613                 pc = lookup_page_cgroup(unused);
2614         __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2615
2616         pc = lookup_page_cgroup(used);
2617         /*
2618          * If a page is a file cache, radix-tree replacement is very atomic
2619          * and we can skip this check. When it was an Anon page, its mapcount
2620          * goes down to 0. But because we added MIGRATION flage, it's not
2621          * uncharged yet. There are several case but page->mapcount check
2622          * and USED bit check in mem_cgroup_uncharge_page() will do enough
2623          * check. (see prepare_charge() also)
2624          */
2625         if (PageAnon(used))
2626                 mem_cgroup_uncharge_page(used);
2627         /*
2628          * At migration, we may charge account against cgroup which has no
2629          * tasks.
2630          * So, rmdir()->pre_destroy() can be called while we do this charge.
2631          * In that case, we need to call pre_destroy() again. check it here.
2632          */
2633         cgroup_release_and_wakeup_rmdir(&mem->css);
2634 }
2635
2636 /*
2637  * A call to try to shrink memory usage on charge failure at shmem's swapin.
2638  * Calling hierarchical_reclaim is not enough because we should update
2639  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2640  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2641  * not from the memcg which this page would be charged to.
2642  * try_charge_swapin does all of these works properly.
2643  */
2644 int mem_cgroup_shmem_charge_fallback(struct page *page,
2645                             struct mm_struct *mm,
2646                             gfp_t gfp_mask)
2647 {
2648         struct mem_cgroup *mem = NULL;
2649         int ret;
2650
2651         if (mem_cgroup_disabled())
2652                 return 0;
2653
2654         ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2655         if (!ret)
2656                 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2657
2658         return ret;
2659 }
2660
2661 static DEFINE_MUTEX(set_limit_mutex);
2662
2663 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2664                                 unsigned long long val)
2665 {
2666         int retry_count;
2667         u64 memswlimit, memlimit;
2668         int ret = 0;
2669         int children = mem_cgroup_count_children(memcg);
2670         u64 curusage, oldusage;
2671         int enlarge;
2672
2673         /*
2674          * For keeping hierarchical_reclaim simple, how long we should retry
2675          * is depends on callers. We set our retry-count to be function
2676          * of # of children which we should visit in this loop.
2677          */
2678         retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2679
2680         oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2681
2682         enlarge = 0;
2683         while (retry_count) {
2684                 if (signal_pending(current)) {
2685                         ret = -EINTR;
2686                         break;
2687                 }
2688                 /*
2689                  * Rather than hide all in some function, I do this in
2690                  * open coded manner. You see what this really does.
2691                  * We have to guarantee mem->res.limit < mem->memsw.limit.
2692                  */
2693                 mutex_lock(&set_limit_mutex);
2694                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2695                 if (memswlimit < val) {
2696                         ret = -EINVAL;
2697                         mutex_unlock(&set_limit_mutex);
2698                         break;
2699                 }
2700
2701                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2702                 if (memlimit < val)
2703                         enlarge = 1;
2704
2705                 ret = res_counter_set_limit(&memcg->res, val);
2706                 if (!ret) {
2707                         if (memswlimit == val)
2708                                 memcg->memsw_is_minimum = true;
2709                         else
2710                                 memcg->memsw_is_minimum = false;
2711                 }
2712                 mutex_unlock(&set_limit_mutex);
2713
2714                 if (!ret)
2715                         break;
2716
2717                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2718                                                 MEM_CGROUP_RECLAIM_SHRINK);
2719                 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2720                 /* Usage is reduced ? */
2721                 if (curusage >= oldusage)
2722                         retry_count--;
2723                 else
2724                         oldusage = curusage;
2725         }
2726         if (!ret && enlarge)
2727                 memcg_oom_recover(memcg);
2728
2729         return ret;
2730 }
2731
2732 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2733                                         unsigned long long val)
2734 {
2735         int retry_count;
2736         u64 memlimit, memswlimit, oldusage, curusage;
2737         int children = mem_cgroup_count_children(memcg);
2738         int ret = -EBUSY;
2739         int enlarge = 0;
2740
2741         /* see mem_cgroup_resize_res_limit */
2742         retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2743         oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2744         while (retry_count) {
2745                 if (signal_pending(current)) {
2746                         ret = -EINTR;
2747                         break;
2748                 }
2749                 /*
2750                  * Rather than hide all in some function, I do this in
2751                  * open coded manner. You see what this really does.
2752                  * We have to guarantee mem->res.limit < mem->memsw.limit.
2753                  */
2754                 mutex_lock(&set_limit_mutex);
2755                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2756                 if (memlimit > val) {
2757                         ret = -EINVAL;
2758                         mutex_unlock(&set_limit_mutex);
2759                         break;
2760                 }
2761                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2762                 if (memswlimit < val)
2763                         enlarge = 1;
2764                 ret = res_counter_set_limit(&memcg->memsw, val);
2765                 if (!ret) {
2766                         if (memlimit == val)
2767                                 memcg->memsw_is_minimum = true;
2768                         else
2769                                 memcg->memsw_is_minimum = false;
2770                 }
2771                 mutex_unlock(&set_limit_mutex);
2772
2773                 if (!ret)
2774                         break;
2775
2776                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2777                                                 MEM_CGROUP_RECLAIM_NOSWAP |
2778                                                 MEM_CGROUP_RECLAIM_SHRINK);
2779                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2780                 /* Usage is reduced ? */
2781                 if (curusage >= oldusage)
2782                         retry_count--;
2783                 else
2784                         oldusage = curusage;
2785         }
2786         if (!ret && enlarge)
2787                 memcg_oom_recover(memcg);
2788         return ret;
2789 }
2790
2791 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2792                                                 gfp_t gfp_mask, int nid,
2793                                                 int zid)
2794 {
2795         unsigned long nr_reclaimed = 0;
2796         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2797         unsigned long reclaimed;
2798         int loop = 0;
2799         struct mem_cgroup_tree_per_zone *mctz;
2800         unsigned long long excess;
2801
2802         if (order > 0)
2803                 return 0;
2804
2805         mctz = soft_limit_tree_node_zone(nid, zid);
2806         /*
2807          * This loop can run a while, specially if mem_cgroup's continuously
2808          * keep exceeding their soft limit and putting the system under
2809          * pressure
2810          */
2811         do {
2812                 if (next_mz)
2813                         mz = next_mz;
2814                 else
2815                         mz = mem_cgroup_largest_soft_limit_node(mctz);
2816                 if (!mz)
2817                         break;
2818
2819                 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2820                                                 gfp_mask,
2821                                                 MEM_CGROUP_RECLAIM_SOFT);
2822                 nr_reclaimed += reclaimed;
2823                 spin_lock(&mctz->lock);
2824
2825                 /*
2826                  * If we failed to reclaim anything from this memory cgroup
2827                  * it is time to move on to the next cgroup
2828                  */
2829                 next_mz = NULL;
2830                 if (!reclaimed) {
2831                         do {
2832                                 /*
2833                                  * Loop until we find yet another one.
2834                                  *
2835                                  * By the time we get the soft_limit lock
2836                                  * again, someone might have aded the
2837                                  * group back on the RB tree. Iterate to
2838                                  * make sure we get a different mem.
2839                                  * mem_cgroup_largest_soft_limit_node returns
2840                                  * NULL if no other cgroup is present on
2841                                  * the tree
2842                                  */
2843                                 next_mz =
2844                                 __mem_cgroup_largest_soft_limit_node(mctz);
2845                                 if (next_mz == mz) {
2846                                         css_put(&next_mz->mem->css);
2847                                         next_mz = NULL;
2848                                 } else /* next_mz == NULL or other memcg */
2849                                         break;
2850                         } while (1);
2851                 }
2852                 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2853                 excess = res_counter_soft_limit_excess(&mz->mem->res);
2854                 /*
2855                  * One school of thought says that we should not add
2856                  * back the node to the tree if reclaim returns 0.
2857                  * But our reclaim could return 0, simply because due
2858                  * to priority we are exposing a smaller subset of
2859                  * memory to reclaim from. Consider this as a longer
2860                  * term TODO.
2861                  */
2862                 /* If excess == 0, no tree ops */
2863                 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2864                 spin_unlock(&mctz->lock);
2865                 css_put(&mz->mem->css);
2866                 loop++;
2867                 /*
2868                  * Could not reclaim anything and there are no more
2869                  * mem cgroups to try or we seem to be looping without
2870                  * reclaiming anything.
2871                  */
2872                 if (!nr_reclaimed &&
2873                         (next_mz == NULL ||
2874                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2875                         break;
2876         } while (!nr_reclaimed);
2877         if (next_mz)
2878                 css_put(&next_mz->mem->css);
2879         return nr_reclaimed;
2880 }
2881
2882 /*
2883  * This routine traverse page_cgroup in given list and drop them all.
2884  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2885  */
2886 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
2887                                 int node, int zid, enum lru_list lru)
2888 {
2889         struct zone *zone;
2890         struct mem_cgroup_per_zone *mz;
2891         struct page_cgroup *pc, *busy;
2892         unsigned long flags, loop;
2893         struct list_head *list;
2894         int ret = 0;
2895
2896         zone = &NODE_DATA(node)->node_zones[zid];
2897         mz = mem_cgroup_zoneinfo(mem, node, zid);
2898         list = &mz->lists[lru];
2899
2900         loop = MEM_CGROUP_ZSTAT(mz, lru);
2901         /* give some margin against EBUSY etc...*/
2902         loop += 256;
2903         busy = NULL;
2904         while (loop--) {
2905                 ret = 0;
2906                 spin_lock_irqsave(&zone->lru_lock, flags);
2907                 if (list_empty(list)) {
2908                         spin_unlock_irqrestore(&zone->lru_lock, flags);
2909                         break;
2910                 }
2911                 pc = list_entry(list->prev, struct page_cgroup, lru);
2912                 if (busy == pc) {
2913                         list_move(&pc->lru, list);
2914                         busy = NULL;
2915                         spin_unlock_irqrestore(&zone->lru_lock, flags);
2916                         continue;
2917                 }
2918                 spin_unlock_irqrestore(&zone->lru_lock, flags);
2919
2920                 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2921                 if (ret == -ENOMEM)
2922                         break;
2923
2924                 if (ret == -EBUSY || ret == -EINVAL) {
2925                         /* found lock contention or "pc" is obsolete. */
2926                         busy = pc;
2927                         cond_resched();
2928                 } else
2929                         busy = NULL;
2930         }
2931
2932         if (!ret && !list_empty(list))
2933                 return -EBUSY;
2934         return ret;
2935 }
2936
2937 /*
2938  * make mem_cgroup's charge to be 0 if there is no task.
2939  * This enables deleting this mem_cgroup.
2940  */
2941 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2942 {
2943         int ret;
2944         int node, zid, shrink;
2945         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2946         struct cgroup *cgrp = mem->css.cgroup;
2947
2948         css_get(&mem->css);
2949
2950         shrink = 0;
2951         /* should free all ? */
2952         if (free_all)
2953                 goto try_to_free;
2954 move_account:
2955         do {
2956                 ret = -EBUSY;
2957                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2958                         goto out;
2959                 ret = -EINTR;
2960                 if (signal_pending(current))
2961                         goto out;
2962                 /* This is for making all *used* pages to be on LRU. */
2963                 lru_add_drain_all();
2964                 drain_all_stock_sync();
2965                 ret = 0;
2966                 for_each_node_state(node, N_HIGH_MEMORY) {
2967                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2968                                 enum lru_list l;
2969                                 for_each_lru(l) {
2970                                         ret = mem_cgroup_force_empty_list(mem,
2971                                                         node, zid, l);
2972                                         if (ret)
2973                                                 break;
2974                                 }
2975                         }
2976                         if (ret)
2977                                 break;
2978                 }
2979                 memcg_oom_recover(mem);
2980                 /* it seems parent cgroup doesn't have enough mem */
2981                 if (ret == -ENOMEM)
2982                         goto try_to_free;
2983                 cond_resched();
2984         /* "ret" should also be checked to ensure all lists are empty. */
2985         } while (mem->res.usage > 0 || ret);
2986 out:
2987         css_put(&mem->css);
2988         return ret;
2989
2990 try_to_free:
2991         /* returns EBUSY if there is a task or if we come here twice. */
2992         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2993                 ret = -EBUSY;
2994                 goto out;
2995         }
2996         /* we call try-to-free pages for make this cgroup empty */
2997         lru_add_drain_all();
2998         /* try to free all pages in this cgroup */
2999         shrink = 1;
3000         while (nr_retries && mem->res.usage > 0) {
3001                 int progress;
3002
3003                 if (signal_pending(current)) {
3004                         ret = -EINTR;
3005                         goto out;
3006                 }
3007                 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3008                                                 false, get_swappiness(mem));
3009                 if (!progress) {
3010                         nr_retries--;
3011                         /* maybe some writeback is necessary */
3012                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3013                 }
3014
3015         }
3016         lru_add_drain();
3017         /* try move_account...there may be some *locked* pages. */
3018         goto move_account;
3019 }
3020
3021 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3022 {
3023         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3024 }
3025
3026
3027 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3028 {
3029         return mem_cgroup_from_cont(cont)->use_hierarchy;
3030 }
3031
3032 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3033                                         u64 val)
3034 {
3035         int retval = 0;
3036         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3037         struct cgroup *parent = cont->parent;
3038         struct mem_cgroup *parent_mem = NULL;
3039
3040         if (parent)
3041                 parent_mem = mem_cgroup_from_cont(parent);
3042
3043         cgroup_lock();
3044         /*
3045          * If parent's use_hierarchy is set, we can't make any modifications
3046          * in the child subtrees. If it is unset, then the change can
3047          * occur, provided the current cgroup has no children.
3048          *
3049          * For the root cgroup, parent_mem is NULL, we allow value to be
3050          * set if there are no children.
3051          */
3052         if ((!parent_mem || !parent_mem->use_hierarchy) &&
3053                                 (val == 1 || val == 0)) {
3054                 if (list_empty(&cont->children))
3055                         mem->use_hierarchy = val;
3056                 else
3057                         retval = -EBUSY;
3058         } else
3059                 retval = -EINVAL;
3060         cgroup_unlock();
3061
3062         return retval;
3063 }
3064
3065 struct mem_cgroup_idx_data {
3066         s64 val;
3067         enum mem_cgroup_stat_index idx;
3068 };
3069
3070 static int
3071 mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
3072 {
3073         struct mem_cgroup_idx_data *d = data;
3074         d->val += mem_cgroup_read_stat(mem, d->idx);
3075         return 0;
3076 }
3077
3078 static void
3079 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3080                                 enum mem_cgroup_stat_index idx, s64 *val)
3081 {
3082         struct mem_cgroup_idx_data d;
3083         d.idx = idx;
3084         d.val = 0;
3085         mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
3086         *val = d.val;
3087 }
3088
3089 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3090 {
3091         u64 idx_val, val;
3092
3093         if (!mem_cgroup_is_root(mem)) {
3094                 if (!swap)
3095                         return res_counter_read_u64(&mem->res, RES_USAGE);
3096                 else
3097                         return res_counter_read_u64(&mem->memsw, RES_USAGE);
3098         }
3099
3100         mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
3101         val = idx_val;
3102         mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
3103         val += idx_val;
3104
3105         if (swap) {
3106                 mem_cgroup_get_recursive_idx_stat(mem,
3107                                 MEM_CGROUP_STAT_SWAPOUT, &idx_val);
3108                 val += idx_val;
3109         }
3110
3111         return val << PAGE_SHIFT;
3112 }
3113
3114 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3115 {
3116         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3117         u64 val;
3118         int type, name;
3119
3120         type = MEMFILE_TYPE(cft->private);
3121         name = MEMFILE_ATTR(cft->private);
3122         switch (type) {
3123         case _MEM:
3124                 if (name == RES_USAGE)
3125                         val = mem_cgroup_usage(mem, false);
3126                 else
3127                         val = res_counter_read_u64(&mem->res, name);
3128                 break;
3129         case _MEMSWAP:
3130                 if (name == RES_USAGE)
3131                         val = mem_cgroup_usage(mem, true);
3132                 else
3133                         val = res_counter_read_u64(&mem->memsw, name);
3134                 break;
3135         default:
3136                 BUG();
3137                 break;
3138         }
3139         return val;
3140 }
3141 /*
3142  * The user of this function is...
3143  * RES_LIMIT.
3144  */
3145 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3146                             const char *buffer)
3147 {
3148         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3149         int type, name;
3150         unsigned long long val;
3151         int ret;
3152
3153         type = MEMFILE_TYPE(cft->private);
3154         name = MEMFILE_ATTR(cft->private);
3155         switch (name) {
3156         case RES_LIMIT:
3157                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3158                         ret = -EINVAL;
3159                         break;
3160                 }
3161                 /* This function does all necessary parse...reuse it */
3162                 ret = res_counter_memparse_write_strategy(buffer, &val);
3163                 if (ret)
3164                         break;
3165                 if (type == _MEM)
3166                         ret = mem_cgroup_resize_limit(memcg, val);
3167                 else
3168                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
3169                 break;
3170         case RES_SOFT_LIMIT:
3171                 ret = res_counter_memparse_write_strategy(buffer, &val);
3172                 if (ret)
3173                         break;
3174                 /*
3175                  * For memsw, soft limits are hard to implement in terms
3176                  * of semantics, for now, we support soft limits for
3177                  * control without swap
3178                  */
3179                 if (type == _MEM)
3180                         ret = res_counter_set_soft_limit(&memcg->res, val);
3181                 else
3182                         ret = -EINVAL;
3183                 break;
3184         default:
3185                 ret = -EINVAL; /* should be BUG() ? */
3186                 break;
3187         }
3188         return ret;
3189 }
3190
3191 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3192                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3193 {
3194         struct cgroup *cgroup;
3195         unsigned long long min_limit, min_memsw_limit, tmp;
3196
3197         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3198         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3199         cgroup = memcg->css.cgroup;
3200         if (!memcg->use_hierarchy)
3201                 goto out;
3202
3203         while (cgroup->parent) {
3204                 cgroup = cgroup->parent;
3205                 memcg = mem_cgroup_from_cont(cgroup);
3206                 if (!memcg->use_hierarchy)
3207                         break;
3208                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3209                 min_limit = min(min_limit, tmp);
3210                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3211                 min_memsw_limit = min(min_memsw_limit, tmp);
3212         }
3213 out:
3214         *mem_limit = min_limit;
3215         *memsw_limit = min_memsw_limit;
3216         return;
3217 }
3218
3219 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3220 {
3221         struct mem_cgroup *mem;
3222         int type, name;
3223
3224         mem = mem_cgroup_from_cont(cont);
3225         type = MEMFILE_TYPE(event);
3226         name = MEMFILE_ATTR(event);
3227         switch (name) {
3228         case RES_MAX_USAGE:
3229                 if (type == _MEM)
3230                         res_counter_reset_max(&mem->res);
3231                 else
3232                         res_counter_reset_max(&mem->memsw);
3233                 break;
3234         case RES_FAILCNT:
3235                 if (type == _MEM)
3236                         res_counter_reset_failcnt(&mem->res);
3237                 else
3238                         res_counter_reset_failcnt(&mem->memsw);
3239                 break;
3240         }
3241
3242         return 0;
3243 }
3244
3245 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3246                                         struct cftype *cft)
3247 {
3248         return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3249 }
3250
3251 #ifdef CONFIG_MMU
3252 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3253                                         struct cftype *cft, u64 val)
3254 {
3255         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3256
3257         if (val >= (1 << NR_MOVE_TYPE))
3258                 return -EINVAL;
3259         /*
3260          * We check this value several times in both in can_attach() and
3261          * attach(), so we need cgroup lock to prevent this value from being
3262          * inconsistent.
3263          */
3264         cgroup_lock();
3265         mem->move_charge_at_immigrate = val;
3266         cgroup_unlock();
3267
3268         return 0;
3269 }
3270 #else
3271 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3272                                         struct cftype *cft, u64 val)
3273 {
3274         return -ENOSYS;
3275 }
3276 #endif
3277
3278
3279 /* For read statistics */
3280 enum {
3281         MCS_CACHE,
3282         MCS_RSS,
3283         MCS_FILE_MAPPED,
3284         MCS_PGPGIN,
3285         MCS_PGPGOUT,
3286         MCS_SWAP,
3287         MCS_INACTIVE_ANON,
3288         MCS_ACTIVE_ANON,
3289         MCS_INACTIVE_FILE,
3290         MCS_ACTIVE_FILE,
3291         MCS_UNEVICTABLE,
3292         NR_MCS_STAT,
3293 };
3294
3295 struct mcs_total_stat {
3296         s64 stat[NR_MCS_STAT];
3297 };
3298
3299 struct {
3300         char *local_name;
3301         char *total_name;
3302 } memcg_stat_strings[NR_MCS_STAT] = {
3303         {"cache", "total_cache"},
3304         {"rss", "total_rss"},
3305         {"mapped_file", "total_mapped_file"},
3306         {"pgpgin", "total_pgpgin"},
3307         {"pgpgout", "total_pgpgout"},
3308         {"swap", "total_swap"},
3309         {"inactive_anon", "total_inactive_anon"},
3310         {"active_anon", "total_active_anon"},
3311         {"inactive_file", "total_inactive_file"},
3312         {"active_file", "total_active_file"},
3313         {"unevictable", "total_unevictable"}
3314 };
3315
3316
3317 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
3318 {
3319         struct mcs_total_stat *s = data;
3320         s64 val;
3321
3322         /* per cpu stat */
3323         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3324         s->stat[MCS_CACHE] += val * PAGE_SIZE;
3325         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3326         s->stat[MCS_RSS] += val * PAGE_SIZE;
3327         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3328         s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3329         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3330         s->stat[MCS_PGPGIN] += val;
3331         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3332         s->stat[MCS_PGPGOUT] += val;
3333         if (do_swap_account) {
3334                 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3335                 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3336         }
3337
3338         /* per zone stat */
3339         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3340         s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3341         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3342         s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3343         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3344         s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3345         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3346         s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3347         val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3348         s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3349         return 0;
3350 }
3351
3352 static void
3353 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3354 {
3355         mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
3356 }
3357
3358 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3359                                  struct cgroup_map_cb *cb)
3360 {
3361         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3362         struct mcs_total_stat mystat;
3363         int i;
3364
3365         memset(&mystat, 0, sizeof(mystat));
3366         mem_cgroup_get_local_stat(mem_cont, &mystat);
3367
3368         for (i = 0; i < NR_MCS_STAT; i++) {
3369                 if (i == MCS_SWAP && !do_swap_account)
3370                         continue;
3371                 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3372         }
3373
3374         /* Hierarchical information */
3375         {
3376                 unsigned long long limit, memsw_limit;
3377                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3378                 cb->fill(cb, "hierarchical_memory_limit", limit);
3379                 if (do_swap_account)
3380                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3381         }
3382
3383         memset(&mystat, 0, sizeof(mystat));
3384         mem_cgroup_get_total_stat(mem_cont, &mystat);
3385         for (i = 0; i < NR_MCS_STAT; i++) {
3386                 if (i == MCS_SWAP && !do_swap_account)
3387                         continue;
3388                 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3389         }
3390
3391 #ifdef CONFIG_DEBUG_VM
3392         cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3393
3394         {
3395                 int nid, zid;
3396                 struct mem_cgroup_per_zone *mz;
3397                 unsigned long recent_rotated[2] = {0, 0};
3398                 unsigned long recent_scanned[2] = {0, 0};
3399
3400                 for_each_online_node(nid)
3401                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3402                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3403
3404                                 recent_rotated[0] +=
3405                                         mz->reclaim_stat.recent_rotated[0];
3406                                 recent_rotated[1] +=
3407                                         mz->reclaim_stat.recent_rotated[1];
3408                                 recent_scanned[0] +=
3409                                         mz->reclaim_stat.recent_scanned[0];
3410                                 recent_scanned[1] +=
3411                                         mz->reclaim_stat.recent_scanned[1];
3412                         }
3413                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3414                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3415                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3416                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3417         }
3418 #endif
3419
3420         return 0;
3421 }
3422
3423 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3424 {
3425         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3426
3427         return get_swappiness(memcg);
3428 }
3429
3430 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3431                                        u64 val)
3432 {
3433         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3434         struct mem_cgroup *parent;
3435
3436         if (val > 100)
3437                 return -EINVAL;
3438
3439         if (cgrp->parent == NULL)
3440                 return -EINVAL;
3441
3442         parent = mem_cgroup_from_cont(cgrp->parent);
3443
3444         cgroup_lock();
3445
3446         /* If under hierarchy, only empty-root can set this value */
3447         if ((parent->use_hierarchy) ||
3448             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3449                 cgroup_unlock();
3450                 return -EINVAL;
3451         }
3452
3453         spin_lock(&memcg->reclaim_param_lock);
3454         memcg->swappiness = val;
3455         spin_unlock(&memcg->reclaim_param_lock);
3456
3457         cgroup_unlock();
3458
3459         return 0;
3460 }
3461
3462 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3463 {
3464         struct mem_cgroup_threshold_ary *t;
3465         u64 usage;
3466         int i;
3467
3468         rcu_read_lock();
3469         if (!swap)
3470                 t = rcu_dereference(memcg->thresholds);
3471         else
3472                 t = rcu_dereference(memcg->memsw_thresholds);
3473
3474         if (!t)
3475                 goto unlock;
3476
3477         usage = mem_cgroup_usage(memcg, swap);
3478
3479         /*
3480          * current_threshold points to threshold just below usage.
3481          * If it's not true, a threshold was crossed after last
3482          * call of __mem_cgroup_threshold().
3483          */
3484         i = t->current_threshold;
3485
3486         /*
3487          * Iterate backward over array of thresholds starting from
3488          * current_threshold and check if a threshold is crossed.
3489          * If none of thresholds below usage is crossed, we read
3490          * only one element of the array here.
3491          */
3492         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3493                 eventfd_signal(t->entries[i].eventfd, 1);
3494
3495         /* i = current_threshold + 1 */
3496         i++;
3497
3498         /*
3499          * Iterate forward over array of thresholds starting from
3500          * current_threshold+1 and check if a threshold is crossed.
3501          * If none of thresholds above usage is crossed, we read
3502          * only one element of the array here.
3503          */
3504         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3505                 eventfd_signal(t->entries[i].eventfd, 1);
3506
3507         /* Update current_threshold */
3508         t->current_threshold = i - 1;
3509 unlock:
3510         rcu_read_unlock();
3511 }
3512
3513 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3514 {
3515         __mem_cgroup_threshold(memcg, false);
3516         if (do_swap_account)
3517                 __mem_cgroup_threshold(memcg, true);
3518 }
3519
3520 static int compare_thresholds(const void *a, const void *b)
3521 {
3522         const struct mem_cgroup_threshold *_a = a;
3523         const struct mem_cgroup_threshold *_b = b;
3524
3525         return _a->threshold - _b->threshold;
3526 }
3527
3528 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
3529 {
3530         struct mem_cgroup_eventfd_list *ev;
3531
3532         list_for_each_entry(ev, &mem->oom_notify, list)
3533                 eventfd_signal(ev->eventfd, 1);
3534         return 0;
3535 }
3536
3537 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3538 {
3539         mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
3540 }
3541
3542 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3543         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3544 {
3545         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3546         struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
3547         int type = MEMFILE_TYPE(cft->private);
3548         u64 threshold, usage;
3549         int size;
3550         int i, ret;
3551
3552         ret = res_counter_memparse_write_strategy(args, &threshold);
3553         if (ret)
3554                 return ret;
3555
3556         mutex_lock(&memcg->thresholds_lock);
3557         if (type == _MEM)
3558                 thresholds = memcg->thresholds;
3559         else if (type == _MEMSWAP)
3560                 thresholds = memcg->memsw_thresholds;
3561         else
3562                 BUG();
3563
3564         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3565
3566         /* Check if a threshold crossed before adding a new one */
3567         if (thresholds)
3568                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3569
3570         if (thresholds)
3571                 size = thresholds->size + 1;
3572         else
3573                 size = 1;
3574
3575         /* Allocate memory for new array of thresholds */
3576         thresholds_new = kmalloc(sizeof(*thresholds_new) +
3577                         size * sizeof(struct mem_cgroup_threshold),
3578                         GFP_KERNEL);
3579         if (!thresholds_new) {
3580                 ret = -ENOMEM;
3581                 goto unlock;
3582         }
3583         thresholds_new->size = size;
3584
3585         /* Copy thresholds (if any) to new array */
3586         if (thresholds)
3587                 memcpy(thresholds_new->entries, thresholds->entries,
3588                                 thresholds->size *
3589                                 sizeof(struct mem_cgroup_threshold));
3590         /* Add new threshold */
3591         thresholds_new->entries[size - 1].eventfd = eventfd;
3592         thresholds_new->entries[size - 1].threshold = threshold;
3593
3594         /* Sort thresholds. Registering of new threshold isn't time-critical */
3595         sort(thresholds_new->entries, size,
3596                         sizeof(struct mem_cgroup_threshold),
3597                         compare_thresholds, NULL);
3598
3599         /* Find current threshold */
3600         thresholds_new->current_threshold = -1;
3601         for (i = 0; i < size; i++) {
3602                 if (thresholds_new->entries[i].threshold < usage) {
3603                         /*
3604                          * thresholds_new->current_threshold will not be used
3605                          * until rcu_assign_pointer(), so it's safe to increment
3606                          * it here.
3607                          */
3608                         ++thresholds_new->current_threshold;
3609                 }
3610         }
3611
3612         if (type == _MEM)
3613                 rcu_assign_pointer(memcg->thresholds, thresholds_new);
3614         else
3615                 rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);
3616
3617         /* To be sure that nobody uses thresholds */
3618         synchronize_rcu();
3619
3620         /*
3621          * Free old preallocated buffer and use thresholds as new
3622          * preallocated buffer.
3623          */
3624         if (type == _MEM) {
3625                 kfree(memcg->__thresholds);
3626                 memcg->__thresholds = thresholds;
3627         } else {
3628                 kfree(memcg->__memsw_thresholds);
3629                 memcg->__memsw_thresholds = thresholds;
3630         }
3631 unlock:
3632         mutex_unlock(&memcg->thresholds_lock);
3633
3634         return ret;
3635 }
3636
3637 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3638         struct cftype *cft, struct eventfd_ctx *eventfd)
3639 {
3640         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3641         struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
3642         int type = MEMFILE_TYPE(cft->private);
3643         u64 usage;
3644         int size = 0;
3645         int i, j;
3646
3647         mutex_lock(&memcg->thresholds_lock);
3648         if (type == _MEM)
3649                 thresholds = memcg->thresholds;
3650         else if (type == _MEMSWAP)
3651                 thresholds = memcg->memsw_thresholds;
3652         else
3653                 BUG();
3654
3655         /*
3656          * Something went wrong if we trying to unregister a threshold
3657          * if we don't have thresholds
3658          */
3659         BUG_ON(!thresholds);
3660
3661         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3662
3663         /* Check if a threshold crossed before removing */
3664         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3665
3666         /* Calculate new number of threshold */
3667         for (i = 0; i < thresholds->size; i++) {
3668                 if (thresholds->entries[i].eventfd != eventfd)
3669                         size++;
3670         }
3671
3672         /* Use preallocated buffer for new array of thresholds */
3673         if (type == _MEM)
3674                 thresholds_new = memcg->__thresholds;
3675         else
3676                 thresholds_new = memcg->__memsw_thresholds;
3677
3678         /* Set thresholds array to NULL if we don't have thresholds */
3679         if (!size) {
3680                 kfree(thresholds_new);
3681                 thresholds_new = NULL;
3682                 goto swap_buffers;
3683         }
3684
3685         thresholds_new->size = size;
3686
3687         /* Copy thresholds and find current threshold */
3688         thresholds_new->current_threshold = -1;
3689         for (i = 0, j = 0; i < thresholds->size; i++) {
3690                 if (thresholds->entries[i].eventfd == eventfd)
3691                         continue;
3692
3693                 thresholds_new->entries[j] = thresholds->entries[i];
3694                 if (thresholds_new->entries[j].threshold < usage) {
3695                         /*
3696                          * thresholds_new->current_threshold will not be used
3697                          * until rcu_assign_pointer(), so it's safe to increment
3698                          * it here.
3699                          */
3700                         ++thresholds_new->current_threshold;
3701                 }
3702                 j++;
3703         }
3704
3705 swap_buffers:
3706         /* Swap thresholds array and preallocated buffer */
3707         if (type == _MEM) {
3708                 memcg->__thresholds = thresholds;
3709                 rcu_assign_pointer(memcg->thresholds, thresholds_new);
3710         } else {
3711                 memcg->__memsw_thresholds = thresholds;
3712                 rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);
3713         }
3714
3715         /* To be sure that nobody uses thresholds */
3716         synchronize_rcu();
3717
3718         mutex_unlock(&memcg->thresholds_lock);
3719 }
3720
3721 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
3722         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3723 {
3724         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3725         struct mem_cgroup_eventfd_list *event;
3726         int type = MEMFILE_TYPE(cft->private);
3727
3728         BUG_ON(type != _OOM_TYPE);
3729         event = kmalloc(sizeof(*event), GFP_KERNEL);
3730         if (!event)
3731                 return -ENOMEM;
3732
3733         mutex_lock(&memcg_oom_mutex);
3734
3735         event->eventfd = eventfd;
3736         list_add(&event->list, &memcg->oom_notify);
3737
3738         /* already in OOM ? */
3739         if (atomic_read(&memcg->oom_lock))
3740                 eventfd_signal(eventfd, 1);
3741         mutex_unlock(&memcg_oom_mutex);
3742
3743         return 0;
3744 }
3745
3746 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
3747         struct cftype *cft, struct eventfd_ctx *eventfd)
3748 {
3749         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3750         struct mem_cgroup_eventfd_list *ev, *tmp;
3751         int type = MEMFILE_TYPE(cft->private);
3752
3753         BUG_ON(type != _OOM_TYPE);
3754
3755         mutex_lock(&memcg_oom_mutex);
3756
3757         list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
3758                 if (ev->eventfd == eventfd) {
3759                         list_del(&ev->list);
3760                         kfree(ev);
3761                 }
3762         }
3763
3764         mutex_unlock(&memcg_oom_mutex);
3765 }
3766
3767 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
3768         struct cftype *cft,  struct cgroup_map_cb *cb)
3769 {
3770         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3771
3772         cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
3773
3774         if (atomic_read(&mem->oom_lock))
3775                 cb->fill(cb, "under_oom", 1);
3776         else
3777                 cb->fill(cb, "under_oom", 0);
3778         return 0;
3779 }
3780
3781 /*
3782  */
3783 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
3784         struct cftype *cft, u64 val)
3785 {
3786         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3787         struct mem_cgroup *parent;
3788
3789         /* cannot set to root cgroup and only 0 and 1 are allowed */
3790         if (!cgrp->parent || !((val == 0) || (val == 1)))
3791                 return -EINVAL;
3792
3793         parent = mem_cgroup_from_cont(cgrp->parent);
3794
3795         cgroup_lock();
3796         /* oom-kill-disable is a flag for subhierarchy. */
3797         if ((parent->use_hierarchy) ||
3798             (mem->use_hierarchy && !list_empty(&cgrp->children))) {
3799                 cgroup_unlock();
3800                 return -EINVAL;
3801         }
3802         mem->oom_kill_disable = val;
3803         cgroup_unlock();
3804         return 0;
3805 }
3806
3807 static struct cftype mem_cgroup_files[] = {
3808         {
3809                 .name = "usage_in_bytes",
3810                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3811                 .read_u64 = mem_cgroup_read,
3812                 .register_event = mem_cgroup_usage_register_event,
3813                 .unregister_event = mem_cgroup_usage_unregister_event,
3814         },
3815         {
3816                 .name = "max_usage_in_bytes",
3817                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3818                 .trigger = mem_cgroup_reset,
3819                 .read_u64 = mem_cgroup_read,
3820         },
3821         {
3822                 .name = "limit_in_bytes",
3823                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3824                 .write_string = mem_cgroup_write,
3825                 .read_u64 = mem_cgroup_read,
3826         },
3827         {
3828                 .name = "soft_limit_in_bytes",
3829                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3830                 .write_string = mem_cgroup_write,
3831                 .read_u64 = mem_cgroup_read,
3832         },
3833         {
3834                 .name = "failcnt",
3835                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3836                 .trigger = mem_cgroup_reset,
3837                 .read_u64 = mem_cgroup_read,
3838         },
3839         {
3840                 .name = "stat",
3841                 .read_map = mem_control_stat_show,
3842         },
3843         {
3844                 .name = "force_empty",
3845                 .trigger = mem_cgroup_force_empty_write,
3846         },
3847         {
3848                 .name = "use_hierarchy",
3849                 .write_u64 = mem_cgroup_hierarchy_write,
3850                 .read_u64 = mem_cgroup_hierarchy_read,
3851         },
3852         {
3853                 .name = "swappiness",
3854                 .read_u64 = mem_cgroup_swappiness_read,
3855                 .write_u64 = mem_cgroup_swappiness_write,
3856         },
3857         {
3858                 .name = "move_charge_at_immigrate",
3859                 .read_u64 = mem_cgroup_move_charge_read,
3860                 .write_u64 = mem_cgroup_move_charge_write,
3861         },
3862         {
3863                 .name = "oom_control",
3864                 .read_map = mem_cgroup_oom_control_read,
3865                 .write_u64 = mem_cgroup_oom_control_write,
3866                 .register_event = mem_cgroup_oom_register_event,
3867                 .unregister_event = mem_cgroup_oom_unregister_event,
3868                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3869         },
3870 };
3871
3872 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3873 static struct cftype memsw_cgroup_files[] = {
3874         {
3875                 .name = "memsw.usage_in_bytes",
3876                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3877                 .read_u64 = mem_cgroup_read,
3878                 .register_event = mem_cgroup_usage_register_event,
3879                 .unregister_event = mem_cgroup_usage_unregister_event,
3880         },
3881         {
3882                 .name = "memsw.max_usage_in_bytes",
3883                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3884                 .trigger = mem_cgroup_reset,
3885                 .read_u64 = mem_cgroup_read,
3886         },
3887         {
3888                 .name = "memsw.limit_in_bytes",
3889                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3890                 .write_string = mem_cgroup_write,
3891                 .read_u64 = mem_cgroup_read,
3892         },
3893         {
3894                 .name = "memsw.failcnt",
3895                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3896                 .trigger = mem_cgroup_reset,
3897                 .read_u64 = mem_cgroup_read,
3898         },
3899 };
3900
3901 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3902 {
3903         if (!do_swap_account)
3904                 return 0;
3905         return cgroup_add_files(cont, ss, memsw_cgroup_files,
3906                                 ARRAY_SIZE(memsw_cgroup_files));
3907 };
3908 #else
3909 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3910 {
3911         return 0;
3912 }
3913 #endif
3914
3915 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3916 {
3917         struct mem_cgroup_per_node *pn;
3918         struct mem_cgroup_per_zone *mz;
3919         enum lru_list l;
3920         int zone, tmp = node;
3921         /*
3922          * This routine is called against possible nodes.
3923          * But it's BUG to call kmalloc() against offline node.
3924          *
3925          * TODO: this routine can waste much memory for nodes which will
3926          *       never be onlined. It's better to use memory hotplug callback
3927          *       function.
3928          */
3929         if (!node_state(node, N_NORMAL_MEMORY))
3930                 tmp = -1;
3931         pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3932         if (!pn)
3933                 return 1;
3934
3935         mem->info.nodeinfo[node] = pn;
3936         memset(pn, 0, sizeof(*pn));
3937
3938         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3939                 mz = &pn->zoneinfo[zone];
3940                 for_each_lru(l)
3941                         INIT_LIST_HEAD(&mz->lists[l]);
3942                 mz->usage_in_excess = 0;
3943                 mz->on_tree = false;
3944                 mz->mem = mem;
3945         }
3946         return 0;
3947 }
3948
3949 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3950 {
3951         kfree(mem->info.nodeinfo[node]);
3952 }
3953
3954 static struct mem_cgroup *mem_cgroup_alloc(void)
3955 {
3956         struct mem_cgroup *mem;
3957         int size = sizeof(struct mem_cgroup);
3958
3959         /* Can be very big if MAX_NUMNODES is very big */
3960         if (size < PAGE_SIZE)
3961                 mem = kmalloc(size, GFP_KERNEL);
3962         else
3963                 mem = vmalloc(size);
3964
3965         if (!mem)
3966                 return NULL;
3967
3968         memset(mem, 0, size);
3969         mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
3970         if (!mem->stat) {
3971                 if (size < PAGE_SIZE)
3972                         kfree(mem);
3973                 else
3974                         vfree(mem);
3975                 mem = NULL;
3976         }
3977         return mem;
3978 }
3979
3980 /*
3981  * At destroying mem_cgroup, references from swap_cgroup can remain.
3982  * (scanning all at force_empty is too costly...)
3983  *
3984  * Instead of clearing all references at force_empty, we remember
3985  * the number of reference from swap_cgroup and free mem_cgroup when
3986  * it goes down to 0.
3987  *
3988  * Removal of cgroup itself succeeds regardless of refs from swap.
3989  */
3990
3991 static void __mem_cgroup_free(struct mem_cgroup *mem)
3992 {
3993         int node;
3994
3995         mem_cgroup_remove_from_trees(mem);
3996         free_css_id(&mem_cgroup_subsys, &mem->css);
3997
3998         for_each_node_state(node, N_POSSIBLE)
3999                 free_mem_cgroup_per_zone_info(mem, node);
4000
4001         free_percpu(mem->stat);
4002         if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4003                 kfree(mem);
4004         else
4005                 vfree(mem);
4006 }
4007
4008 static void mem_cgroup_get(struct mem_cgroup *mem)
4009 {
4010         atomic_inc(&mem->refcnt);
4011 }
4012
4013 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4014 {
4015         if (atomic_sub_and_test(count, &mem->refcnt)) {
4016                 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4017                 __mem_cgroup_free(mem);
4018                 if (parent)
4019                         mem_cgroup_put(parent);
4020         }
4021 }
4022
4023 static void mem_cgroup_put(struct mem_cgroup *mem)
4024 {
4025         __mem_cgroup_put(mem, 1);
4026 }
4027
4028 /*
4029  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4030  */
4031 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4032 {
4033         if (!mem->res.parent)
4034                 return NULL;
4035         return mem_cgroup_from_res_counter(mem->res.parent, res);
4036 }
4037
4038 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4039 static void __init enable_swap_cgroup(void)
4040 {
4041         if (!mem_cgroup_disabled() && really_do_swap_account)
4042                 do_swap_account = 1;
4043 }
4044 #else
4045 static void __init enable_swap_cgroup(void)
4046 {
4047 }
4048 #endif
4049
4050 static int mem_cgroup_soft_limit_tree_init(void)
4051 {
4052         struct mem_cgroup_tree_per_node *rtpn;
4053         struct mem_cgroup_tree_per_zone *rtpz;
4054         int tmp, node, zone;
4055
4056         for_each_node_state(node, N_POSSIBLE) {
4057                 tmp = node;
4058                 if (!node_state(node, N_NORMAL_MEMORY))
4059                         tmp = -1;
4060                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4061                 if (!rtpn)
4062                         return 1;
4063
4064                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4065
4066                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4067                         rtpz = &rtpn->rb_tree_per_zone[zone];
4068                         rtpz->rb_root = RB_ROOT;
4069                         spin_lock_init(&rtpz->lock);
4070                 }
4071         }
4072         return 0;
4073 }
4074
4075 static struct cgroup_subsys_state * __ref
4076 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4077 {
4078         struct mem_cgroup *mem, *parent;
4079         long error = -ENOMEM;
4080         int node;
4081
4082         mem = mem_cgroup_alloc();
4083         if (!mem)
4084                 return ERR_PTR(error);
4085
4086         for_each_node_state(node, N_POSSIBLE)
4087                 if (alloc_mem_cgroup_per_zone_info(mem, node))
4088                         goto free_out;
4089
4090         /* root ? */
4091         if (cont->parent == NULL) {
4092                 int cpu;
4093                 enable_swap_cgroup();
4094                 parent = NULL;
4095                 root_mem_cgroup = mem;
4096                 if (mem_cgroup_soft_limit_tree_init())
4097                         goto free_out;
4098                 for_each_possible_cpu(cpu) {
4099                         struct memcg_stock_pcp *stock =
4100                                                 &per_cpu(memcg_stock, cpu);
4101                         INIT_WORK(&stock->work, drain_local_stock);
4102                 }
4103                 hotcpu_notifier(memcg_stock_cpu_callback, 0);
4104         } else {
4105                 parent = mem_cgroup_from_cont(cont->parent);
4106                 mem->use_hierarchy = parent->use_hierarchy;
4107                 mem->oom_kill_disable = parent->oom_kill_disable;
4108         }
4109
4110         if (parent && parent->use_hierarchy) {
4111                 res_counter_init(&mem->res, &parent->res);
4112                 res_counter_init(&mem->memsw, &parent->memsw);
4113                 /*
4114                  * We increment refcnt of the parent to ensure that we can
4115                  * safely access it on res_counter_charge/uncharge.
4116                  * This refcnt will be decremented when freeing this
4117                  * mem_cgroup(see mem_cgroup_put).
4118                  */
4119                 mem_cgroup_get(parent);
4120         } else {
4121                 res_counter_init(&mem->res, NULL);
4122                 res_counter_init(&mem->memsw, NULL);
4123         }
4124         mem->last_scanned_child = 0;
4125         spin_lock_init(&mem->reclaim_param_lock);
4126         INIT_LIST_HEAD(&mem->oom_notify);
4127
4128         if (parent)
4129                 mem->swappiness = get_swappiness(parent);
4130         atomic_set(&mem->refcnt, 1);
4131         mem->move_charge_at_immigrate = 0;
4132         mutex_init(&mem->thresholds_lock);
4133         return &mem->css;
4134 free_out:
4135         __mem_cgroup_free(mem);
4136         root_mem_cgroup = NULL;
4137         return ERR_PTR(error);
4138 }
4139
4140 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4141                                         struct cgroup *cont)
4142 {
4143         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4144
4145         return mem_cgroup_force_empty(mem, false);
4146 }
4147
4148 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4149                                 struct cgroup *cont)
4150 {
4151         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4152
4153         mem_cgroup_put(mem);
4154 }
4155
4156 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4157                                 struct cgroup *cont)
4158 {
4159         int ret;
4160
4161         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4162                                 ARRAY_SIZE(mem_cgroup_files));
4163
4164         if (!ret)
4165                 ret = register_memsw_files(cont, ss);
4166         return ret;
4167 }
4168
4169 #ifdef CONFIG_MMU
4170 /* Handlers for move charge at task migration. */
4171 #define PRECHARGE_COUNT_AT_ONCE 256
4172 static int mem_cgroup_do_precharge(unsigned long count)
4173 {
4174         int ret = 0;
4175         int batch_count = PRECHARGE_COUNT_AT_ONCE;
4176         struct mem_cgroup *mem = mc.to;
4177
4178         if (mem_cgroup_is_root(mem)) {
4179                 mc.precharge += count;
4180                 /* we don't need css_get for root */
4181                 return ret;
4182         }
4183         /* try to charge at once */
4184         if (count > 1) {
4185                 struct res_counter *dummy;
4186                 /*
4187                  * "mem" cannot be under rmdir() because we've already checked
4188                  * by cgroup_lock_live_cgroup() that it is not removed and we
4189                  * are still under the same cgroup_mutex. So we can postpone
4190                  * css_get().
4191                  */
4192                 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4193                         goto one_by_one;
4194                 if (do_swap_account && res_counter_charge(&mem->memsw,
4195                                                 PAGE_SIZE * count, &dummy)) {
4196                         res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4197                         goto one_by_one;
4198                 }
4199                 mc.precharge += count;
4200                 VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
4201                 WARN_ON_ONCE(count > INT_MAX);
4202                 __css_get(&mem->css, (int)count);
4203                 return ret;
4204         }
4205 one_by_one:
4206         /* fall back to one by one charge */
4207         while (count--) {
4208                 if (signal_pending(current)) {
4209                         ret = -EINTR;
4210                         break;
4211                 }
4212                 if (!batch_count--) {
4213                         batch_count = PRECHARGE_COUNT_AT_ONCE;
4214                         cond_resched();
4215                 }
4216                 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4217                 if (ret || !mem)
4218                         /* mem_cgroup_clear_mc() will do uncharge later */
4219                         return -ENOMEM;
4220                 mc.precharge++;
4221         }
4222         return ret;
4223 }
4224
4225 /**
4226  * is_target_pte_for_mc - check a pte whether it is valid for move charge
4227  * @vma: the vma the pte to be checked belongs
4228  * @addr: the address corresponding to the pte to be checked
4229  * @ptent: the pte to be checked
4230  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4231  *
4232  * Returns
4233  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4234  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4235  *     move charge. if @target is not NULL, the page is stored in target->page
4236  *     with extra refcnt got(Callers should handle it).
4237  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4238  *     target for charge migration. if @target is not NULL, the entry is stored
4239  *     in target->ent.
4240  *
4241  * Called with pte lock held.
4242  */
4243 union mc_target {
4244         struct page     *page;
4245         swp_entry_t     ent;
4246 };
4247
4248 enum mc_target_type {
4249         MC_TARGET_NONE, /* not used */
4250         MC_TARGET_PAGE,
4251         MC_TARGET_SWAP,
4252 };
4253
4254 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4255                                                 unsigned long addr, pte_t ptent)
4256 {
4257         struct page *page = vm_normal_page(vma, addr, ptent);
4258
4259         if (!page || !page_mapped(page))
4260                 return NULL;
4261         if (PageAnon(page)) {
4262                 /* we don't move shared anon */
4263                 if (!move_anon() || page_mapcount(page) > 2)
4264                         return NULL;
4265         } else if (!move_file())
4266                 /* we ignore mapcount for file pages */
4267                 return NULL;
4268         if (!get_page_unless_zero(page))
4269                 return NULL;
4270
4271         return page;
4272 }
4273
4274 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4275                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4276 {
4277         int usage_count;
4278         struct page *page = NULL;
4279         swp_entry_t ent = pte_to_swp_entry(ptent);
4280
4281         if (!move_anon() || non_swap_entry(ent))
4282                 return NULL;
4283         usage_count = mem_cgroup_count_swap_user(ent, &page);
4284         if (usage_count > 1) { /* we don't move shared anon */
4285                 if (page)
4286                         put_page(page);
4287                 return NULL;
4288         }
4289         if (do_swap_account)
4290                 entry->val = ent.val;
4291
4292         return page;
4293 }
4294
4295 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4296                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4297 {
4298         struct page *page = NULL;
4299         struct inode *inode;
4300         struct address_space *mapping;
4301         pgoff_t pgoff;
4302
4303         if (!vma->vm_file) /* anonymous vma */
4304                 return NULL;
4305         if (!move_file())
4306                 return NULL;
4307
4308         inode = vma->vm_file->f_path.dentry->d_inode;
4309         mapping = vma->vm_file->f_mapping;
4310         if (pte_none(ptent))
4311                 pgoff = linear_page_index(vma, addr);
4312         else /* pte_file(ptent) is true */
4313                 pgoff = pte_to_pgoff(ptent);
4314
4315         /* page is moved even if it's not RSS of this task(page-faulted). */
4316         if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4317                 page = find_get_page(mapping, pgoff);
4318         } else { /* shmem/tmpfs file. we should take account of swap too. */
4319                 swp_entry_t ent;
4320                 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4321                 if (do_swap_account)
4322                         entry->val = ent.val;
4323         }
4324
4325         return page;
4326 }
4327
4328 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4329                 unsigned long addr, pte_t ptent, union mc_target *target)
4330 {
4331         struct page *page = NULL;
4332         struct page_cgroup *pc;
4333         int ret = 0;
4334         swp_entry_t ent = { .val = 0 };
4335
4336         if (pte_present(ptent))
4337                 page = mc_handle_present_pte(vma, addr, ptent);
4338         else if (is_swap_pte(ptent))
4339                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4340         else if (pte_none(ptent) || pte_file(ptent))
4341                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4342
4343         if (!page && !ent.val)
4344                 return 0;
4345         if (page) {
4346                 pc = lookup_page_cgroup(page);
4347                 /*
4348                  * Do only loose check w/o page_cgroup lock.
4349                  * mem_cgroup_move_account() checks the pc is valid or not under
4350                  * the lock.
4351                  */
4352                 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4353                         ret = MC_TARGET_PAGE;
4354                         if (target)
4355                                 target->page = page;
4356                 }
4357                 if (!ret || !target)
4358                         put_page(page);
4359         }
4360         /* There is a swap entry and a page doesn't exist or isn't charged */
4361         if (ent.val && !ret &&
4362                         css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4363                 ret = MC_TARGET_SWAP;
4364                 if (target)
4365                         target->ent = ent;
4366         }
4367         return ret;
4368 }
4369
4370 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4371                                         unsigned long addr, unsigned long end,
4372                                         struct mm_walk *walk)
4373 {
4374         struct vm_area_struct *vma = walk->private;
4375         pte_t *pte;
4376         spinlock_t *ptl;
4377
4378         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4379         for (; addr != end; pte++, addr += PAGE_SIZE)
4380                 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4381                         mc.precharge++; /* increment precharge temporarily */
4382         pte_unmap_unlock(pte - 1, ptl);
4383         cond_resched();
4384
4385         return 0;
4386 }
4387
4388 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4389 {
4390         unsigned long precharge;
4391         struct vm_area_struct *vma;
4392
4393         down_read(&mm->mmap_sem);
4394         for (vma = mm->mmap; vma; vma = vma->vm_next) {
4395                 struct mm_walk mem_cgroup_count_precharge_walk = {
4396                         .pmd_entry = mem_cgroup_count_precharge_pte_range,
4397                         .mm = mm,
4398                         .private = vma,
4399                 };
4400                 if (is_vm_hugetlb_page(vma))
4401                         continue;
4402                 walk_page_range(vma->vm_start, vma->vm_end,
4403                                         &mem_cgroup_count_precharge_walk);
4404         }
4405         up_read(&mm->mmap_sem);
4406
4407         precharge = mc.precharge;
4408         mc.precharge = 0;
4409
4410         return precharge;
4411 }
4412
4413 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4414 {
4415         return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4416 }
4417
4418 static void mem_cgroup_clear_mc(void)
4419 {
4420         /* we must uncharge all the leftover precharges from mc.to */
4421         if (mc.precharge) {
4422                 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4423                 mc.precharge = 0;
4424                 memcg_oom_recover(mc.to);
4425         }
4426         /*
4427          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4428          * we must uncharge here.
4429          */
4430         if (mc.moved_charge) {
4431                 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4432                 mc.moved_charge = 0;
4433                 memcg_oom_recover(mc.from);
4434         }
4435         /* we must fixup refcnts and charges */
4436         if (mc.moved_swap) {
4437                 WARN_ON_ONCE(mc.moved_swap > INT_MAX);
4438                 /* uncharge swap account from the old cgroup */
4439                 if (!mem_cgroup_is_root(mc.from))
4440                         res_counter_uncharge(&mc.from->memsw,
4441                                                 PAGE_SIZE * mc.moved_swap);
4442                 __mem_cgroup_put(mc.from, mc.moved_swap);
4443
4444                 if (!mem_cgroup_is_root(mc.to)) {
4445                         /*
4446                          * we charged both to->res and to->memsw, so we should
4447                          * uncharge to->res.
4448                          */
4449                         res_counter_uncharge(&mc.to->res,
4450                                                 PAGE_SIZE * mc.moved_swap);
4451                         VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
4452                         __css_put(&mc.to->css, mc.moved_swap);
4453                 }
4454                 /* we've already done mem_cgroup_get(mc.to) */
4455
4456                 mc.moved_swap = 0;
4457         }
4458         mc.from = NULL;
4459         mc.to = NULL;
4460         mc.moving_task = NULL;
4461         wake_up_all(&mc.waitq);
4462 }
4463
4464 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4465                                 struct cgroup *cgroup,
4466                                 struct task_struct *p,
4467                                 bool threadgroup)
4468 {
4469         int ret = 0;
4470         struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4471
4472         if (mem->move_charge_at_immigrate) {
4473                 struct mm_struct *mm;
4474                 struct mem_cgroup *from = mem_cgroup_from_task(p);
4475
4476                 VM_BUG_ON(from == mem);
4477
4478                 mm = get_task_mm(p);
4479                 if (!mm)
4480                         return 0;
4481                 /* We move charges only when we move a owner of the mm */
4482                 if (mm->owner == p) {
4483                         VM_BUG_ON(mc.from);
4484                         VM_BUG_ON(mc.to);
4485                         VM_BUG_ON(mc.precharge);
4486                         VM_BUG_ON(mc.moved_charge);
4487                         VM_BUG_ON(mc.moved_swap);
4488                         VM_BUG_ON(mc.moving_task);
4489                         mc.from = from;
4490                         mc.to = mem;
4491                         mc.precharge = 0;
4492                         mc.moved_charge = 0;
4493                         mc.moved_swap = 0;
4494                         mc.moving_task = current;
4495
4496                         ret = mem_cgroup_precharge_mc(mm);
4497                         if (ret)
4498                                 mem_cgroup_clear_mc();
4499                 }
4500                 mmput(mm);
4501         }
4502         return ret;
4503 }
4504
4505 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4506                                 struct cgroup *cgroup,
4507                                 struct task_struct *p,
4508                                 bool threadgroup)
4509 {
4510         mem_cgroup_clear_mc();
4511 }
4512
4513 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4514                                 unsigned long addr, unsigned long end,
4515                                 struct mm_walk *walk)
4516 {
4517         int ret = 0;
4518         struct vm_area_struct *vma = walk->private;
4519         pte_t *pte;
4520         spinlock_t *ptl;
4521
4522 retry:
4523         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4524         for (; addr != end; addr += PAGE_SIZE) {
4525                 pte_t ptent = *(pte++);
4526                 union mc_target target;
4527                 int type;
4528                 struct page *page;
4529                 struct page_cgroup *pc;
4530                 swp_entry_t ent;
4531
4532                 if (!mc.precharge)
4533                         break;
4534
4535                 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4536                 switch (type) {
4537                 case MC_TARGET_PAGE:
4538                         page = target.page;
4539                         if (isolate_lru_page(page))
4540                                 goto put;
4541                         pc = lookup_page_cgroup(page);
4542                         if (!mem_cgroup_move_account(pc,
4543                                                 mc.from, mc.to, false)) {
4544                                 mc.precharge--;
4545                                 /* we uncharge from mc.from later. */
4546                                 mc.moved_charge++;
4547                         }
4548                         putback_lru_page(page);
4549 put:                    /* is_target_pte_for_mc() gets the page */
4550                         put_page(page);
4551                         break;
4552                 case MC_TARGET_SWAP:
4553                         ent = target.ent;
4554                         if (!mem_cgroup_move_swap_account(ent,
4555                                                 mc.from, mc.to, false)) {
4556                                 mc.precharge--;
4557                                 /* we fixup refcnts and charges later. */
4558                                 mc.moved_swap++;
4559                         }
4560                         break;
4561                 default:
4562                         break;
4563                 }
4564         }
4565         pte_unmap_unlock(pte - 1, ptl);
4566         cond_resched();
4567
4568         if (addr != end) {
4569                 /*
4570                  * We have consumed all precharges we got in can_attach().
4571                  * We try charge one by one, but don't do any additional
4572                  * charges to mc.to if we have failed in charge once in attach()
4573                  * phase.
4574                  */
4575                 ret = mem_cgroup_do_precharge(1);
4576                 if (!ret)
4577                         goto retry;
4578         }
4579
4580         return ret;
4581 }
4582
4583 static void mem_cgroup_move_charge(struct mm_struct *mm)
4584 {
4585         struct vm_area_struct *vma;
4586
4587         lru_add_drain_all();
4588         down_read(&mm->mmap_sem);
4589         for (vma = mm->mmap; vma; vma = vma->vm_next) {
4590                 int ret;
4591                 struct mm_walk mem_cgroup_move_charge_walk = {
4592                         .pmd_entry = mem_cgroup_move_charge_pte_range,
4593                         .mm = mm,
4594                         .private = vma,
4595                 };
4596                 if (is_vm_hugetlb_page(vma))
4597                         continue;
4598                 ret = walk_page_range(vma->vm_start, vma->vm_end,
4599                                                 &mem_cgroup_move_charge_walk);
4600                 if (ret)
4601                         /*
4602                          * means we have consumed all precharges and failed in
4603                          * doing additional charge. Just abandon here.
4604                          */
4605                         break;
4606         }
4607         up_read(&mm->mmap_sem);
4608 }
4609
4610 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4611                                 struct cgroup *cont,
4612                                 struct cgroup *old_cont,
4613                                 struct task_struct *p,
4614                                 bool threadgroup)
4615 {
4616         struct mm_struct *mm;
4617
4618         if (!mc.to)
4619                 /* no need to move charge */
4620                 return;
4621
4622         mm = get_task_mm(p);
4623         if (mm) {
4624                 mem_cgroup_move_charge(mm);
4625                 mmput(mm);
4626         }
4627         mem_cgroup_clear_mc();
4628 }
4629 #else   /* !CONFIG_MMU */
4630 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4631                                 struct cgroup *cgroup,
4632                                 struct task_struct *p,
4633                                 bool threadgroup)
4634 {
4635         return 0;
4636 }
4637 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4638                                 struct cgroup *cgroup,
4639                                 struct task_struct *p,
4640                                 bool threadgroup)
4641 {
4642 }
4643 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4644                                 struct cgroup *cont,
4645                                 struct cgroup *old_cont,
4646                                 struct task_struct *p,
4647                                 bool threadgroup)
4648 {
4649 }
4650 #endif
4651
4652 struct cgroup_subsys mem_cgroup_subsys = {
4653         .name = "memory",
4654         .subsys_id = mem_cgroup_subsys_id,
4655         .create = mem_cgroup_create,
4656         .pre_destroy = mem_cgroup_pre_destroy,
4657         .destroy = mem_cgroup_destroy,
4658         .populate = mem_cgroup_populate,
4659         .can_attach = mem_cgroup_can_attach,
4660         .cancel_attach = mem_cgroup_cancel_attach,
4661         .attach = mem_cgroup_move_task,
4662         .early_init = 0,
4663         .use_id = 1,
4664 };
4665
4666 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4667
4668 static int __init disable_swap_account(char *s)
4669 {
4670         really_do_swap_account = 0;
4671         return 1;
4672 }
4673 __setup("noswapaccount", disable_swap_account);
4674 #endif