ksm: let shared pages be swappable
[safe/jmp/linux-2.6] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/mmu_notifier.h>
33 #include <linux/swap.h>
34 #include <linux/ksm.h>
35
36 #include <asm/tlbflush.h>
37 #include "internal.h"
38
39 /*
40  * A few notes about the KSM scanning process,
41  * to make it easier to understand the data structures below:
42  *
43  * In order to reduce excessive scanning, KSM sorts the memory pages by their
44  * contents into a data structure that holds pointers to the pages' locations.
45  *
46  * Since the contents of the pages may change at any moment, KSM cannot just
47  * insert the pages into a normal sorted tree and expect it to find anything.
48  * Therefore KSM uses two data structures - the stable and the unstable tree.
49  *
50  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
51  * by their contents.  Because each such page is write-protected, searching on
52  * this tree is fully assured to be working (except when pages are unmapped),
53  * and therefore this tree is called the stable tree.
54  *
55  * In addition to the stable tree, KSM uses a second data structure called the
56  * unstable tree: this tree holds pointers to pages which have been found to
57  * be "unchanged for a period of time".  The unstable tree sorts these pages
58  * by their contents, but since they are not write-protected, KSM cannot rely
59  * upon the unstable tree to work correctly - the unstable tree is liable to
60  * be corrupted as its contents are modified, and so it is called unstable.
61  *
62  * KSM solves this problem by several techniques:
63  *
64  * 1) The unstable tree is flushed every time KSM completes scanning all
65  *    memory areas, and then the tree is rebuilt again from the beginning.
66  * 2) KSM will only insert into the unstable tree, pages whose hash value
67  *    has not changed since the previous scan of all memory areas.
68  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
69  *    colors of the nodes and not on their contents, assuring that even when
70  *    the tree gets "corrupted" it won't get out of balance, so scanning time
71  *    remains the same (also, searching and inserting nodes in an rbtree uses
72  *    the same algorithm, so we have no overhead when we flush and rebuild).
73  * 4) KSM never flushes the stable tree, which means that even if it were to
74  *    take 10 attempts to find a page in the unstable tree, once it is found,
75  *    it is secured in the stable tree.  (When we scan a new page, we first
76  *    compare it against the stable tree, and then against the unstable tree.)
77  */
78
79 /**
80  * struct mm_slot - ksm information per mm that is being scanned
81  * @link: link to the mm_slots hash list
82  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
83  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
84  * @mm: the mm that this information is valid for
85  */
86 struct mm_slot {
87         struct hlist_node link;
88         struct list_head mm_list;
89         struct rmap_item *rmap_list;
90         struct mm_struct *mm;
91 };
92
93 /**
94  * struct ksm_scan - cursor for scanning
95  * @mm_slot: the current mm_slot we are scanning
96  * @address: the next address inside that to be scanned
97  * @rmap_list: link to the next rmap to be scanned in the rmap_list
98  * @seqnr: count of completed full scans (needed when removing unstable node)
99  *
100  * There is only the one ksm_scan instance of this cursor structure.
101  */
102 struct ksm_scan {
103         struct mm_slot *mm_slot;
104         unsigned long address;
105         struct rmap_item **rmap_list;
106         unsigned long seqnr;
107 };
108
109 /**
110  * struct stable_node - node of the stable rbtree
111  * @page: pointer to struct page of the ksm page
112  * @node: rb node of this ksm page in the stable tree
113  * @hlist: hlist head of rmap_items using this ksm page
114  */
115 struct stable_node {
116         struct page *page;
117         struct rb_node node;
118         struct hlist_head hlist;
119 };
120
121 /**
122  * struct rmap_item - reverse mapping item for virtual addresses
123  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
124  * @filler: unused space we're making available in this patch
125  * @mm: the memory structure this rmap_item is pointing into
126  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
127  * @oldchecksum: previous checksum of the page at that virtual address
128  * @node: rb node of this rmap_item in the unstable tree
129  * @head: pointer to stable_node heading this list in the stable tree
130  * @hlist: link into hlist of rmap_items hanging off that stable_node
131  */
132 struct rmap_item {
133         struct rmap_item *rmap_list;
134         unsigned long filler;
135         struct mm_struct *mm;
136         unsigned long address;          /* + low bits used for flags below */
137         unsigned int oldchecksum;       /* when unstable */
138         union {
139                 struct rb_node node;    /* when node of unstable tree */
140                 struct {                /* when listed from stable tree */
141                         struct stable_node *head;
142                         struct hlist_node hlist;
143                 };
144         };
145 };
146
147 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
148 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
149 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
150
151 /* The stable and unstable tree heads */
152 static struct rb_root root_stable_tree = RB_ROOT;
153 static struct rb_root root_unstable_tree = RB_ROOT;
154
155 #define MM_SLOTS_HASH_HEADS 1024
156 static struct hlist_head *mm_slots_hash;
157
158 static struct mm_slot ksm_mm_head = {
159         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
160 };
161 static struct ksm_scan ksm_scan = {
162         .mm_slot = &ksm_mm_head,
163 };
164
165 static struct kmem_cache *rmap_item_cache;
166 static struct kmem_cache *stable_node_cache;
167 static struct kmem_cache *mm_slot_cache;
168
169 /* The number of nodes in the stable tree */
170 static unsigned long ksm_pages_shared;
171
172 /* The number of page slots additionally sharing those nodes */
173 static unsigned long ksm_pages_sharing;
174
175 /* The number of nodes in the unstable tree */
176 static unsigned long ksm_pages_unshared;
177
178 /* The number of rmap_items in use: to calculate pages_volatile */
179 static unsigned long ksm_rmap_items;
180
181 /* Limit on the number of unswappable pages used */
182 static unsigned long ksm_max_kernel_pages;
183
184 /* Number of pages ksmd should scan in one batch */
185 static unsigned int ksm_thread_pages_to_scan = 100;
186
187 /* Milliseconds ksmd should sleep between batches */
188 static unsigned int ksm_thread_sleep_millisecs = 20;
189
190 #define KSM_RUN_STOP    0
191 #define KSM_RUN_MERGE   1
192 #define KSM_RUN_UNMERGE 2
193 static unsigned int ksm_run = KSM_RUN_STOP;
194
195 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
196 static DEFINE_MUTEX(ksm_thread_mutex);
197 static DEFINE_SPINLOCK(ksm_mmlist_lock);
198
199 /*
200  * Temporary hack for page_referenced_ksm() and try_to_unmap_ksm(),
201  * later we rework things a little to get the right vma to them.
202  */
203 static DEFINE_SPINLOCK(ksm_fallback_vma_lock);
204 static struct vm_area_struct ksm_fallback_vma;
205
206 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
207                 sizeof(struct __struct), __alignof__(struct __struct),\
208                 (__flags), NULL)
209
210 static int __init ksm_slab_init(void)
211 {
212         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
213         if (!rmap_item_cache)
214                 goto out;
215
216         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
217         if (!stable_node_cache)
218                 goto out_free1;
219
220         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
221         if (!mm_slot_cache)
222                 goto out_free2;
223
224         return 0;
225
226 out_free2:
227         kmem_cache_destroy(stable_node_cache);
228 out_free1:
229         kmem_cache_destroy(rmap_item_cache);
230 out:
231         return -ENOMEM;
232 }
233
234 static void __init ksm_slab_free(void)
235 {
236         kmem_cache_destroy(mm_slot_cache);
237         kmem_cache_destroy(stable_node_cache);
238         kmem_cache_destroy(rmap_item_cache);
239         mm_slot_cache = NULL;
240 }
241
242 static inline struct rmap_item *alloc_rmap_item(void)
243 {
244         struct rmap_item *rmap_item;
245
246         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
247         if (rmap_item)
248                 ksm_rmap_items++;
249         return rmap_item;
250 }
251
252 static inline void free_rmap_item(struct rmap_item *rmap_item)
253 {
254         ksm_rmap_items--;
255         rmap_item->mm = NULL;   /* debug safety */
256         kmem_cache_free(rmap_item_cache, rmap_item);
257 }
258
259 static inline struct stable_node *alloc_stable_node(void)
260 {
261         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
262 }
263
264 static inline void free_stable_node(struct stable_node *stable_node)
265 {
266         kmem_cache_free(stable_node_cache, stable_node);
267 }
268
269 static inline struct mm_slot *alloc_mm_slot(void)
270 {
271         if (!mm_slot_cache)     /* initialization failed */
272                 return NULL;
273         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
274 }
275
276 static inline void free_mm_slot(struct mm_slot *mm_slot)
277 {
278         kmem_cache_free(mm_slot_cache, mm_slot);
279 }
280
281 static int __init mm_slots_hash_init(void)
282 {
283         mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
284                                 GFP_KERNEL);
285         if (!mm_slots_hash)
286                 return -ENOMEM;
287         return 0;
288 }
289
290 static void __init mm_slots_hash_free(void)
291 {
292         kfree(mm_slots_hash);
293 }
294
295 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
296 {
297         struct mm_slot *mm_slot;
298         struct hlist_head *bucket;
299         struct hlist_node *node;
300
301         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
302                                 % MM_SLOTS_HASH_HEADS];
303         hlist_for_each_entry(mm_slot, node, bucket, link) {
304                 if (mm == mm_slot->mm)
305                         return mm_slot;
306         }
307         return NULL;
308 }
309
310 static void insert_to_mm_slots_hash(struct mm_struct *mm,
311                                     struct mm_slot *mm_slot)
312 {
313         struct hlist_head *bucket;
314
315         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
316                                 % MM_SLOTS_HASH_HEADS];
317         mm_slot->mm = mm;
318         hlist_add_head(&mm_slot->link, bucket);
319 }
320
321 static inline int in_stable_tree(struct rmap_item *rmap_item)
322 {
323         return rmap_item->address & STABLE_FLAG;
324 }
325
326 /*
327  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
328  * page tables after it has passed through ksm_exit() - which, if necessary,
329  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
330  * a special flag: they can just back out as soon as mm_users goes to zero.
331  * ksm_test_exit() is used throughout to make this test for exit: in some
332  * places for correctness, in some places just to avoid unnecessary work.
333  */
334 static inline bool ksm_test_exit(struct mm_struct *mm)
335 {
336         return atomic_read(&mm->mm_users) == 0;
337 }
338
339 /*
340  * We use break_ksm to break COW on a ksm page: it's a stripped down
341  *
342  *      if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
343  *              put_page(page);
344  *
345  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
346  * in case the application has unmapped and remapped mm,addr meanwhile.
347  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
348  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
349  */
350 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
351 {
352         struct page *page;
353         int ret = 0;
354
355         do {
356                 cond_resched();
357                 page = follow_page(vma, addr, FOLL_GET);
358                 if (!page)
359                         break;
360                 if (PageKsm(page))
361                         ret = handle_mm_fault(vma->vm_mm, vma, addr,
362                                                         FAULT_FLAG_WRITE);
363                 else
364                         ret = VM_FAULT_WRITE;
365                 put_page(page);
366         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
367         /*
368          * We must loop because handle_mm_fault() may back out if there's
369          * any difficulty e.g. if pte accessed bit gets updated concurrently.
370          *
371          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
372          * COW has been broken, even if the vma does not permit VM_WRITE;
373          * but note that a concurrent fault might break PageKsm for us.
374          *
375          * VM_FAULT_SIGBUS could occur if we race with truncation of the
376          * backing file, which also invalidates anonymous pages: that's
377          * okay, that truncation will have unmapped the PageKsm for us.
378          *
379          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
380          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
381          * current task has TIF_MEMDIE set, and will be OOM killed on return
382          * to user; and ksmd, having no mm, would never be chosen for that.
383          *
384          * But if the mm is in a limited mem_cgroup, then the fault may fail
385          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
386          * even ksmd can fail in this way - though it's usually breaking ksm
387          * just to undo a merge it made a moment before, so unlikely to oom.
388          *
389          * That's a pity: we might therefore have more kernel pages allocated
390          * than we're counting as nodes in the stable tree; but ksm_do_scan
391          * will retry to break_cow on each pass, so should recover the page
392          * in due course.  The important thing is to not let VM_MERGEABLE
393          * be cleared while any such pages might remain in the area.
394          */
395         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
396 }
397
398 static void break_cow(struct rmap_item *rmap_item)
399 {
400         struct mm_struct *mm = rmap_item->mm;
401         unsigned long addr = rmap_item->address;
402         struct vm_area_struct *vma;
403
404         down_read(&mm->mmap_sem);
405         if (ksm_test_exit(mm))
406                 goto out;
407         vma = find_vma(mm, addr);
408         if (!vma || vma->vm_start > addr)
409                 goto out;
410         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
411                 goto out;
412         break_ksm(vma, addr);
413 out:
414         up_read(&mm->mmap_sem);
415 }
416
417 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
418 {
419         struct mm_struct *mm = rmap_item->mm;
420         unsigned long addr = rmap_item->address;
421         struct vm_area_struct *vma;
422         struct page *page;
423
424         down_read(&mm->mmap_sem);
425         if (ksm_test_exit(mm))
426                 goto out;
427         vma = find_vma(mm, addr);
428         if (!vma || vma->vm_start > addr)
429                 goto out;
430         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
431                 goto out;
432
433         page = follow_page(vma, addr, FOLL_GET);
434         if (!page)
435                 goto out;
436         if (PageAnon(page)) {
437                 flush_anon_page(vma, page, addr);
438                 flush_dcache_page(page);
439         } else {
440                 put_page(page);
441 out:            page = NULL;
442         }
443         up_read(&mm->mmap_sem);
444         return page;
445 }
446
447 /*
448  * Removing rmap_item from stable or unstable tree.
449  * This function will clean the information from the stable/unstable tree.
450  */
451 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
452 {
453         if (rmap_item->address & STABLE_FLAG) {
454                 struct stable_node *stable_node;
455                 struct page *page;
456
457                 stable_node = rmap_item->head;
458                 page = stable_node->page;
459                 lock_page(page);
460
461                 hlist_del(&rmap_item->hlist);
462                 if (stable_node->hlist.first) {
463                         unlock_page(page);
464                         ksm_pages_sharing--;
465                 } else {
466                         set_page_stable_node(page, NULL);
467                         unlock_page(page);
468                         put_page(page);
469
470                         rb_erase(&stable_node->node, &root_stable_tree);
471                         free_stable_node(stable_node);
472                         ksm_pages_shared--;
473                 }
474
475                 rmap_item->address &= PAGE_MASK;
476
477         } else if (rmap_item->address & UNSTABLE_FLAG) {
478                 unsigned char age;
479                 /*
480                  * Usually ksmd can and must skip the rb_erase, because
481                  * root_unstable_tree was already reset to RB_ROOT.
482                  * But be careful when an mm is exiting: do the rb_erase
483                  * if this rmap_item was inserted by this scan, rather
484                  * than left over from before.
485                  */
486                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
487                 BUG_ON(age > 1);
488                 if (!age)
489                         rb_erase(&rmap_item->node, &root_unstable_tree);
490
491                 ksm_pages_unshared--;
492                 rmap_item->address &= PAGE_MASK;
493         }
494
495         cond_resched();         /* we're called from many long loops */
496 }
497
498 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
499                                        struct rmap_item **rmap_list)
500 {
501         while (*rmap_list) {
502                 struct rmap_item *rmap_item = *rmap_list;
503                 *rmap_list = rmap_item->rmap_list;
504                 remove_rmap_item_from_tree(rmap_item);
505                 free_rmap_item(rmap_item);
506         }
507 }
508
509 /*
510  * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
511  * than check every pte of a given vma, the locking doesn't quite work for
512  * that - an rmap_item is assigned to the stable tree after inserting ksm
513  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
514  * rmap_items from parent to child at fork time (so as not to waste time
515  * if exit comes before the next scan reaches it).
516  *
517  * Similarly, although we'd like to remove rmap_items (so updating counts
518  * and freeing memory) when unmerging an area, it's easier to leave that
519  * to the next pass of ksmd - consider, for example, how ksmd might be
520  * in cmp_and_merge_page on one of the rmap_items we would be removing.
521  */
522 static int unmerge_ksm_pages(struct vm_area_struct *vma,
523                              unsigned long start, unsigned long end)
524 {
525         unsigned long addr;
526         int err = 0;
527
528         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
529                 if (ksm_test_exit(vma->vm_mm))
530                         break;
531                 if (signal_pending(current))
532                         err = -ERESTARTSYS;
533                 else
534                         err = break_ksm(vma, addr);
535         }
536         return err;
537 }
538
539 #ifdef CONFIG_SYSFS
540 /*
541  * Only called through the sysfs control interface:
542  */
543 static int unmerge_and_remove_all_rmap_items(void)
544 {
545         struct mm_slot *mm_slot;
546         struct mm_struct *mm;
547         struct vm_area_struct *vma;
548         int err = 0;
549
550         spin_lock(&ksm_mmlist_lock);
551         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
552                                                 struct mm_slot, mm_list);
553         spin_unlock(&ksm_mmlist_lock);
554
555         for (mm_slot = ksm_scan.mm_slot;
556                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
557                 mm = mm_slot->mm;
558                 down_read(&mm->mmap_sem);
559                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
560                         if (ksm_test_exit(mm))
561                                 break;
562                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
563                                 continue;
564                         err = unmerge_ksm_pages(vma,
565                                                 vma->vm_start, vma->vm_end);
566                         if (err)
567                                 goto error;
568                 }
569
570                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
571
572                 spin_lock(&ksm_mmlist_lock);
573                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
574                                                 struct mm_slot, mm_list);
575                 if (ksm_test_exit(mm)) {
576                         hlist_del(&mm_slot->link);
577                         list_del(&mm_slot->mm_list);
578                         spin_unlock(&ksm_mmlist_lock);
579
580                         free_mm_slot(mm_slot);
581                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
582                         up_read(&mm->mmap_sem);
583                         mmdrop(mm);
584                 } else {
585                         spin_unlock(&ksm_mmlist_lock);
586                         up_read(&mm->mmap_sem);
587                 }
588         }
589
590         ksm_scan.seqnr = 0;
591         return 0;
592
593 error:
594         up_read(&mm->mmap_sem);
595         spin_lock(&ksm_mmlist_lock);
596         ksm_scan.mm_slot = &ksm_mm_head;
597         spin_unlock(&ksm_mmlist_lock);
598         return err;
599 }
600 #endif /* CONFIG_SYSFS */
601
602 static u32 calc_checksum(struct page *page)
603 {
604         u32 checksum;
605         void *addr = kmap_atomic(page, KM_USER0);
606         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
607         kunmap_atomic(addr, KM_USER0);
608         return checksum;
609 }
610
611 static int memcmp_pages(struct page *page1, struct page *page2)
612 {
613         char *addr1, *addr2;
614         int ret;
615
616         addr1 = kmap_atomic(page1, KM_USER0);
617         addr2 = kmap_atomic(page2, KM_USER1);
618         ret = memcmp(addr1, addr2, PAGE_SIZE);
619         kunmap_atomic(addr2, KM_USER1);
620         kunmap_atomic(addr1, KM_USER0);
621         return ret;
622 }
623
624 static inline int pages_identical(struct page *page1, struct page *page2)
625 {
626         return !memcmp_pages(page1, page2);
627 }
628
629 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
630                               pte_t *orig_pte)
631 {
632         struct mm_struct *mm = vma->vm_mm;
633         unsigned long addr;
634         pte_t *ptep;
635         spinlock_t *ptl;
636         int swapped;
637         int err = -EFAULT;
638
639         addr = page_address_in_vma(page, vma);
640         if (addr == -EFAULT)
641                 goto out;
642
643         ptep = page_check_address(page, mm, addr, &ptl, 0);
644         if (!ptep)
645                 goto out;
646
647         if (pte_write(*ptep)) {
648                 pte_t entry;
649
650                 swapped = PageSwapCache(page);
651                 flush_cache_page(vma, addr, page_to_pfn(page));
652                 /*
653                  * Ok this is tricky, when get_user_pages_fast() run it doesnt
654                  * take any lock, therefore the check that we are going to make
655                  * with the pagecount against the mapcount is racey and
656                  * O_DIRECT can happen right after the check.
657                  * So we clear the pte and flush the tlb before the check
658                  * this assure us that no O_DIRECT can happen after the check
659                  * or in the middle of the check.
660                  */
661                 entry = ptep_clear_flush(vma, addr, ptep);
662                 /*
663                  * Check that no O_DIRECT or similar I/O is in progress on the
664                  * page
665                  */
666                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
667                         set_pte_at_notify(mm, addr, ptep, entry);
668                         goto out_unlock;
669                 }
670                 entry = pte_wrprotect(entry);
671                 set_pte_at_notify(mm, addr, ptep, entry);
672         }
673         *orig_pte = *ptep;
674         err = 0;
675
676 out_unlock:
677         pte_unmap_unlock(ptep, ptl);
678 out:
679         return err;
680 }
681
682 /**
683  * replace_page - replace page in vma by new ksm page
684  * @vma:      vma that holds the pte pointing to page
685  * @page:     the page we are replacing by kpage
686  * @kpage:    the ksm page we replace page by
687  * @orig_pte: the original value of the pte
688  *
689  * Returns 0 on success, -EFAULT on failure.
690  */
691 static int replace_page(struct vm_area_struct *vma, struct page *page,
692                         struct page *kpage, pte_t orig_pte)
693 {
694         struct mm_struct *mm = vma->vm_mm;
695         pgd_t *pgd;
696         pud_t *pud;
697         pmd_t *pmd;
698         pte_t *ptep;
699         spinlock_t *ptl;
700         unsigned long addr;
701         int err = -EFAULT;
702
703         addr = page_address_in_vma(page, vma);
704         if (addr == -EFAULT)
705                 goto out;
706
707         pgd = pgd_offset(mm, addr);
708         if (!pgd_present(*pgd))
709                 goto out;
710
711         pud = pud_offset(pgd, addr);
712         if (!pud_present(*pud))
713                 goto out;
714
715         pmd = pmd_offset(pud, addr);
716         if (!pmd_present(*pmd))
717                 goto out;
718
719         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
720         if (!pte_same(*ptep, orig_pte)) {
721                 pte_unmap_unlock(ptep, ptl);
722                 goto out;
723         }
724
725         get_page(kpage);
726         page_add_anon_rmap(kpage, vma, addr);
727
728         flush_cache_page(vma, addr, pte_pfn(*ptep));
729         ptep_clear_flush(vma, addr, ptep);
730         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
731
732         page_remove_rmap(page);
733         put_page(page);
734
735         pte_unmap_unlock(ptep, ptl);
736         err = 0;
737 out:
738         return err;
739 }
740
741 /*
742  * try_to_merge_one_page - take two pages and merge them into one
743  * @vma: the vma that holds the pte pointing to page
744  * @page: the PageAnon page that we want to replace with kpage
745  * @kpage: the PageKsm page that we want to map instead of page
746  *
747  * This function returns 0 if the pages were merged, -EFAULT otherwise.
748  */
749 static int try_to_merge_one_page(struct vm_area_struct *vma,
750                                  struct page *page, struct page *kpage)
751 {
752         pte_t orig_pte = __pte(0);
753         int err = -EFAULT;
754
755         if (!(vma->vm_flags & VM_MERGEABLE))
756                 goto out;
757         if (!PageAnon(page))
758                 goto out;
759
760         /*
761          * We need the page lock to read a stable PageSwapCache in
762          * write_protect_page().  We use trylock_page() instead of
763          * lock_page() because we don't want to wait here - we
764          * prefer to continue scanning and merging different pages,
765          * then come back to this page when it is unlocked.
766          */
767         if (!trylock_page(page))
768                 goto out;
769         /*
770          * If this anonymous page is mapped only here, its pte may need
771          * to be write-protected.  If it's mapped elsewhere, all of its
772          * ptes are necessarily already write-protected.  But in either
773          * case, we need to lock and check page_count is not raised.
774          */
775         if (write_protect_page(vma, page, &orig_pte) == 0 &&
776             pages_identical(page, kpage))
777                 err = replace_page(vma, page, kpage, orig_pte);
778
779         if ((vma->vm_flags & VM_LOCKED) && !err) {
780                 munlock_vma_page(page);
781                 if (!PageMlocked(kpage)) {
782                         unlock_page(page);
783                         lru_add_drain();
784                         lock_page(kpage);
785                         mlock_vma_page(kpage);
786                         page = kpage;           /* for final unlock */
787                 }
788         }
789
790         unlock_page(page);
791 out:
792         return err;
793 }
794
795 /*
796  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
797  * but no new kernel page is allocated: kpage must already be a ksm page.
798  *
799  * This function returns 0 if the pages were merged, -EFAULT otherwise.
800  */
801 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
802                                       struct page *page, struct page *kpage)
803 {
804         struct mm_struct *mm = rmap_item->mm;
805         struct vm_area_struct *vma;
806         int err = -EFAULT;
807
808         if (page == kpage)                      /* ksm page forked */
809                 return 0;
810
811         down_read(&mm->mmap_sem);
812         if (ksm_test_exit(mm))
813                 goto out;
814         vma = find_vma(mm, rmap_item->address);
815         if (!vma || vma->vm_start > rmap_item->address)
816                 goto out;
817
818         err = try_to_merge_one_page(vma, page, kpage);
819 out:
820         up_read(&mm->mmap_sem);
821         return err;
822 }
823
824 /*
825  * try_to_merge_two_pages - take two identical pages and prepare them
826  * to be merged into one page.
827  *
828  * This function returns the kpage if we successfully merged two identical
829  * pages into one ksm page, NULL otherwise.
830  *
831  * Note that this function allocates a new kernel page: if one of the pages
832  * is already a ksm page, try_to_merge_with_ksm_page should be used.
833  */
834 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
835                                            struct page *page,
836                                            struct rmap_item *tree_rmap_item,
837                                            struct page *tree_page)
838 {
839         struct mm_struct *mm = rmap_item->mm;
840         struct vm_area_struct *vma;
841         struct page *kpage;
842         int err = -EFAULT;
843
844         /*
845          * The number of nodes in the stable tree
846          * is the number of kernel pages that we hold.
847          */
848         if (ksm_max_kernel_pages &&
849             ksm_max_kernel_pages <= ksm_pages_shared)
850                 return NULL;
851
852         kpage = alloc_page(GFP_HIGHUSER);
853         if (!kpage)
854                 return NULL;
855
856         down_read(&mm->mmap_sem);
857         if (ksm_test_exit(mm))
858                 goto up;
859         vma = find_vma(mm, rmap_item->address);
860         if (!vma || vma->vm_start > rmap_item->address)
861                 goto up;
862
863         copy_user_highpage(kpage, page, rmap_item->address, vma);
864
865         SetPageDirty(kpage);
866         __SetPageUptodate(kpage);
867         SetPageSwapBacked(kpage);
868         set_page_stable_node(kpage, NULL);      /* mark it PageKsm */
869         lru_cache_add_lru(kpage, LRU_ACTIVE_ANON);
870
871         err = try_to_merge_one_page(vma, page, kpage);
872 up:
873         up_read(&mm->mmap_sem);
874
875         if (!err) {
876                 err = try_to_merge_with_ksm_page(tree_rmap_item,
877                                                         tree_page, kpage);
878                 /*
879                  * If that fails, we have a ksm page with only one pte
880                  * pointing to it: so break it.
881                  */
882                 if (err)
883                         break_cow(rmap_item);
884         }
885         if (err) {
886                 put_page(kpage);
887                 kpage = NULL;
888         }
889         return kpage;
890 }
891
892 /*
893  * stable_tree_search - search for page inside the stable tree
894  *
895  * This function checks if there is a page inside the stable tree
896  * with identical content to the page that we are scanning right now.
897  *
898  * This function returns the stable tree node of identical content if found,
899  * NULL otherwise.
900  */
901 static struct stable_node *stable_tree_search(struct page *page)
902 {
903         struct rb_node *node = root_stable_tree.rb_node;
904         struct stable_node *stable_node;
905
906         stable_node = page_stable_node(page);
907         if (stable_node) {                      /* ksm page forked */
908                 get_page(page);
909                 return stable_node;
910         }
911
912         while (node) {
913                 int ret;
914
915                 cond_resched();
916                 stable_node = rb_entry(node, struct stable_node, node);
917
918                 ret = memcmp_pages(page, stable_node->page);
919
920                 if (ret < 0)
921                         node = node->rb_left;
922                 else if (ret > 0)
923                         node = node->rb_right;
924                 else {
925                         get_page(stable_node->page);
926                         return stable_node;
927                 }
928         }
929
930         return NULL;
931 }
932
933 /*
934  * stable_tree_insert - insert rmap_item pointing to new ksm page
935  * into the stable tree.
936  *
937  * This function returns the stable tree node just allocated on success,
938  * NULL otherwise.
939  */
940 static struct stable_node *stable_tree_insert(struct page *kpage)
941 {
942         struct rb_node **new = &root_stable_tree.rb_node;
943         struct rb_node *parent = NULL;
944         struct stable_node *stable_node;
945
946         while (*new) {
947                 int ret;
948
949                 cond_resched();
950                 stable_node = rb_entry(*new, struct stable_node, node);
951
952                 ret = memcmp_pages(kpage, stable_node->page);
953
954                 parent = *new;
955                 if (ret < 0)
956                         new = &parent->rb_left;
957                 else if (ret > 0)
958                         new = &parent->rb_right;
959                 else {
960                         /*
961                          * It is not a bug that stable_tree_search() didn't
962                          * find this node: because at that time our page was
963                          * not yet write-protected, so may have changed since.
964                          */
965                         return NULL;
966                 }
967         }
968
969         stable_node = alloc_stable_node();
970         if (!stable_node)
971                 return NULL;
972
973         rb_link_node(&stable_node->node, parent, new);
974         rb_insert_color(&stable_node->node, &root_stable_tree);
975
976         INIT_HLIST_HEAD(&stable_node->hlist);
977
978         get_page(kpage);
979         stable_node->page = kpage;
980         set_page_stable_node(kpage, stable_node);
981
982         return stable_node;
983 }
984
985 /*
986  * unstable_tree_search_insert - search for identical page,
987  * else insert rmap_item into the unstable tree.
988  *
989  * This function searches for a page in the unstable tree identical to the
990  * page currently being scanned; and if no identical page is found in the
991  * tree, we insert rmap_item as a new object into the unstable tree.
992  *
993  * This function returns pointer to rmap_item found to be identical
994  * to the currently scanned page, NULL otherwise.
995  *
996  * This function does both searching and inserting, because they share
997  * the same walking algorithm in an rbtree.
998  */
999 static
1000 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1001                                               struct page *page,
1002                                               struct page **tree_pagep)
1003
1004 {
1005         struct rb_node **new = &root_unstable_tree.rb_node;
1006         struct rb_node *parent = NULL;
1007
1008         while (*new) {
1009                 struct rmap_item *tree_rmap_item;
1010                 struct page *tree_page;
1011                 int ret;
1012
1013                 cond_resched();
1014                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1015                 tree_page = get_mergeable_page(tree_rmap_item);
1016                 if (!tree_page)
1017                         return NULL;
1018
1019                 /*
1020                  * Don't substitute a ksm page for a forked page.
1021                  */
1022                 if (page == tree_page) {
1023                         put_page(tree_page);
1024                         return NULL;
1025                 }
1026
1027                 ret = memcmp_pages(page, tree_page);
1028
1029                 parent = *new;
1030                 if (ret < 0) {
1031                         put_page(tree_page);
1032                         new = &parent->rb_left;
1033                 } else if (ret > 0) {
1034                         put_page(tree_page);
1035                         new = &parent->rb_right;
1036                 } else {
1037                         *tree_pagep = tree_page;
1038                         return tree_rmap_item;
1039                 }
1040         }
1041
1042         rmap_item->address |= UNSTABLE_FLAG;
1043         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1044         rb_link_node(&rmap_item->node, parent, new);
1045         rb_insert_color(&rmap_item->node, &root_unstable_tree);
1046
1047         ksm_pages_unshared++;
1048         return NULL;
1049 }
1050
1051 /*
1052  * stable_tree_append - add another rmap_item to the linked list of
1053  * rmap_items hanging off a given node of the stable tree, all sharing
1054  * the same ksm page.
1055  */
1056 static void stable_tree_append(struct rmap_item *rmap_item,
1057                                struct stable_node *stable_node)
1058 {
1059         rmap_item->head = stable_node;
1060         rmap_item->address |= STABLE_FLAG;
1061         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1062
1063         if (rmap_item->hlist.next)
1064                 ksm_pages_sharing++;
1065         else
1066                 ksm_pages_shared++;
1067 }
1068
1069 /*
1070  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1071  * if not, compare checksum to previous and if it's the same, see if page can
1072  * be inserted into the unstable tree, or merged with a page already there and
1073  * both transferred to the stable tree.
1074  *
1075  * @page: the page that we are searching identical page to.
1076  * @rmap_item: the reverse mapping into the virtual address of this page
1077  */
1078 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1079 {
1080         struct rmap_item *tree_rmap_item;
1081         struct page *tree_page = NULL;
1082         struct stable_node *stable_node;
1083         struct page *kpage;
1084         unsigned int checksum;
1085         int err;
1086
1087         remove_rmap_item_from_tree(rmap_item);
1088
1089         /* We first start with searching the page inside the stable tree */
1090         stable_node = stable_tree_search(page);
1091         if (stable_node) {
1092                 kpage = stable_node->page;
1093                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1094                 if (!err) {
1095                         /*
1096                          * The page was successfully merged:
1097                          * add its rmap_item to the stable tree.
1098                          */
1099                         lock_page(kpage);
1100                         stable_tree_append(rmap_item, stable_node);
1101                         unlock_page(kpage);
1102                 }
1103                 put_page(kpage);
1104                 return;
1105         }
1106
1107         /*
1108          * A ksm page might have got here by fork, but its other
1109          * references have already been removed from the stable tree.
1110          * Or it might be left over from a break_ksm which failed
1111          * when the mem_cgroup had reached its limit: try again now.
1112          */
1113         if (PageKsm(page))
1114                 break_cow(rmap_item);
1115
1116         /*
1117          * In case the hash value of the page was changed from the last time we
1118          * have calculated it, this page to be changed frequely, therefore we
1119          * don't want to insert it to the unstable tree, and we don't want to
1120          * waste our time to search if there is something identical to it there.
1121          */
1122         checksum = calc_checksum(page);
1123         if (rmap_item->oldchecksum != checksum) {
1124                 rmap_item->oldchecksum = checksum;
1125                 return;
1126         }
1127
1128         tree_rmap_item =
1129                 unstable_tree_search_insert(rmap_item, page, &tree_page);
1130         if (tree_rmap_item) {
1131                 kpage = try_to_merge_two_pages(rmap_item, page,
1132                                                 tree_rmap_item, tree_page);
1133                 put_page(tree_page);
1134                 /*
1135                  * As soon as we merge this page, we want to remove the
1136                  * rmap_item of the page we have merged with from the unstable
1137                  * tree, and insert it instead as new node in the stable tree.
1138                  */
1139                 if (kpage) {
1140                         remove_rmap_item_from_tree(tree_rmap_item);
1141
1142                         lock_page(kpage);
1143                         stable_node = stable_tree_insert(kpage);
1144                         if (stable_node) {
1145                                 stable_tree_append(tree_rmap_item, stable_node);
1146                                 stable_tree_append(rmap_item, stable_node);
1147                         }
1148                         unlock_page(kpage);
1149                         put_page(kpage);
1150
1151                         /*
1152                          * If we fail to insert the page into the stable tree,
1153                          * we will have 2 virtual addresses that are pointing
1154                          * to a ksm page left outside the stable tree,
1155                          * in which case we need to break_cow on both.
1156                          */
1157                         if (!stable_node) {
1158                                 break_cow(tree_rmap_item);
1159                                 break_cow(rmap_item);
1160                         }
1161                 }
1162         }
1163 }
1164
1165 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1166                                             struct rmap_item **rmap_list,
1167                                             unsigned long addr)
1168 {
1169         struct rmap_item *rmap_item;
1170
1171         while (*rmap_list) {
1172                 rmap_item = *rmap_list;
1173                 if ((rmap_item->address & PAGE_MASK) == addr)
1174                         return rmap_item;
1175                 if (rmap_item->address > addr)
1176                         break;
1177                 *rmap_list = rmap_item->rmap_list;
1178                 remove_rmap_item_from_tree(rmap_item);
1179                 free_rmap_item(rmap_item);
1180         }
1181
1182         rmap_item = alloc_rmap_item();
1183         if (rmap_item) {
1184                 /* It has already been zeroed */
1185                 rmap_item->mm = mm_slot->mm;
1186                 rmap_item->address = addr;
1187                 rmap_item->rmap_list = *rmap_list;
1188                 *rmap_list = rmap_item;
1189         }
1190         return rmap_item;
1191 }
1192
1193 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1194 {
1195         struct mm_struct *mm;
1196         struct mm_slot *slot;
1197         struct vm_area_struct *vma;
1198         struct rmap_item *rmap_item;
1199
1200         if (list_empty(&ksm_mm_head.mm_list))
1201                 return NULL;
1202
1203         slot = ksm_scan.mm_slot;
1204         if (slot == &ksm_mm_head) {
1205                 root_unstable_tree = RB_ROOT;
1206
1207                 spin_lock(&ksm_mmlist_lock);
1208                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1209                 ksm_scan.mm_slot = slot;
1210                 spin_unlock(&ksm_mmlist_lock);
1211 next_mm:
1212                 ksm_scan.address = 0;
1213                 ksm_scan.rmap_list = &slot->rmap_list;
1214         }
1215
1216         mm = slot->mm;
1217         down_read(&mm->mmap_sem);
1218         if (ksm_test_exit(mm))
1219                 vma = NULL;
1220         else
1221                 vma = find_vma(mm, ksm_scan.address);
1222
1223         for (; vma; vma = vma->vm_next) {
1224                 if (!(vma->vm_flags & VM_MERGEABLE))
1225                         continue;
1226                 if (ksm_scan.address < vma->vm_start)
1227                         ksm_scan.address = vma->vm_start;
1228                 if (!vma->anon_vma)
1229                         ksm_scan.address = vma->vm_end;
1230
1231                 while (ksm_scan.address < vma->vm_end) {
1232                         if (ksm_test_exit(mm))
1233                                 break;
1234                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1235                         if (*page && PageAnon(*page)) {
1236                                 flush_anon_page(vma, *page, ksm_scan.address);
1237                                 flush_dcache_page(*page);
1238                                 rmap_item = get_next_rmap_item(slot,
1239                                         ksm_scan.rmap_list, ksm_scan.address);
1240                                 if (rmap_item) {
1241                                         ksm_scan.rmap_list =
1242                                                         &rmap_item->rmap_list;
1243                                         ksm_scan.address += PAGE_SIZE;
1244                                 } else
1245                                         put_page(*page);
1246                                 up_read(&mm->mmap_sem);
1247                                 return rmap_item;
1248                         }
1249                         if (*page)
1250                                 put_page(*page);
1251                         ksm_scan.address += PAGE_SIZE;
1252                         cond_resched();
1253                 }
1254         }
1255
1256         if (ksm_test_exit(mm)) {
1257                 ksm_scan.address = 0;
1258                 ksm_scan.rmap_list = &slot->rmap_list;
1259         }
1260         /*
1261          * Nuke all the rmap_items that are above this current rmap:
1262          * because there were no VM_MERGEABLE vmas with such addresses.
1263          */
1264         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1265
1266         spin_lock(&ksm_mmlist_lock);
1267         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1268                                                 struct mm_slot, mm_list);
1269         if (ksm_scan.address == 0) {
1270                 /*
1271                  * We've completed a full scan of all vmas, holding mmap_sem
1272                  * throughout, and found no VM_MERGEABLE: so do the same as
1273                  * __ksm_exit does to remove this mm from all our lists now.
1274                  * This applies either when cleaning up after __ksm_exit
1275                  * (but beware: we can reach here even before __ksm_exit),
1276                  * or when all VM_MERGEABLE areas have been unmapped (and
1277                  * mmap_sem then protects against race with MADV_MERGEABLE).
1278                  */
1279                 hlist_del(&slot->link);
1280                 list_del(&slot->mm_list);
1281                 spin_unlock(&ksm_mmlist_lock);
1282
1283                 free_mm_slot(slot);
1284                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1285                 up_read(&mm->mmap_sem);
1286                 mmdrop(mm);
1287         } else {
1288                 spin_unlock(&ksm_mmlist_lock);
1289                 up_read(&mm->mmap_sem);
1290         }
1291
1292         /* Repeat until we've completed scanning the whole list */
1293         slot = ksm_scan.mm_slot;
1294         if (slot != &ksm_mm_head)
1295                 goto next_mm;
1296
1297         ksm_scan.seqnr++;
1298         return NULL;
1299 }
1300
1301 /**
1302  * ksm_do_scan  - the ksm scanner main worker function.
1303  * @scan_npages - number of pages we want to scan before we return.
1304  */
1305 static void ksm_do_scan(unsigned int scan_npages)
1306 {
1307         struct rmap_item *rmap_item;
1308         struct page *page;
1309
1310         while (scan_npages--) {
1311                 cond_resched();
1312                 rmap_item = scan_get_next_rmap_item(&page);
1313                 if (!rmap_item)
1314                         return;
1315                 if (!PageKsm(page) || !in_stable_tree(rmap_item))
1316                         cmp_and_merge_page(page, rmap_item);
1317                 put_page(page);
1318         }
1319 }
1320
1321 static int ksmd_should_run(void)
1322 {
1323         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1324 }
1325
1326 static int ksm_scan_thread(void *nothing)
1327 {
1328         set_user_nice(current, 5);
1329
1330         while (!kthread_should_stop()) {
1331                 mutex_lock(&ksm_thread_mutex);
1332                 if (ksmd_should_run())
1333                         ksm_do_scan(ksm_thread_pages_to_scan);
1334                 mutex_unlock(&ksm_thread_mutex);
1335
1336                 if (ksmd_should_run()) {
1337                         schedule_timeout_interruptible(
1338                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1339                 } else {
1340                         wait_event_interruptible(ksm_thread_wait,
1341                                 ksmd_should_run() || kthread_should_stop());
1342                 }
1343         }
1344         return 0;
1345 }
1346
1347 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1348                 unsigned long end, int advice, unsigned long *vm_flags)
1349 {
1350         struct mm_struct *mm = vma->vm_mm;
1351         int err;
1352
1353         switch (advice) {
1354         case MADV_MERGEABLE:
1355                 /*
1356                  * Be somewhat over-protective for now!
1357                  */
1358                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1359                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1360                                  VM_RESERVED  | VM_HUGETLB | VM_INSERTPAGE |
1361                                  VM_NONLINEAR | VM_MIXEDMAP | VM_SAO))
1362                         return 0;               /* just ignore the advice */
1363
1364                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1365                         err = __ksm_enter(mm);
1366                         if (err)
1367                                 return err;
1368                 }
1369
1370                 *vm_flags |= VM_MERGEABLE;
1371                 break;
1372
1373         case MADV_UNMERGEABLE:
1374                 if (!(*vm_flags & VM_MERGEABLE))
1375                         return 0;               /* just ignore the advice */
1376
1377                 if (vma->anon_vma) {
1378                         err = unmerge_ksm_pages(vma, start, end);
1379                         if (err)
1380                                 return err;
1381                 }
1382
1383                 *vm_flags &= ~VM_MERGEABLE;
1384                 break;
1385         }
1386
1387         return 0;
1388 }
1389
1390 int __ksm_enter(struct mm_struct *mm)
1391 {
1392         struct mm_slot *mm_slot;
1393         int needs_wakeup;
1394
1395         mm_slot = alloc_mm_slot();
1396         if (!mm_slot)
1397                 return -ENOMEM;
1398
1399         /* Check ksm_run too?  Would need tighter locking */
1400         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1401
1402         spin_lock(&ksm_mmlist_lock);
1403         insert_to_mm_slots_hash(mm, mm_slot);
1404         /*
1405          * Insert just behind the scanning cursor, to let the area settle
1406          * down a little; when fork is followed by immediate exec, we don't
1407          * want ksmd to waste time setting up and tearing down an rmap_list.
1408          */
1409         list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1410         spin_unlock(&ksm_mmlist_lock);
1411
1412         set_bit(MMF_VM_MERGEABLE, &mm->flags);
1413         atomic_inc(&mm->mm_count);
1414
1415         if (needs_wakeup)
1416                 wake_up_interruptible(&ksm_thread_wait);
1417
1418         return 0;
1419 }
1420
1421 void __ksm_exit(struct mm_struct *mm)
1422 {
1423         struct mm_slot *mm_slot;
1424         int easy_to_free = 0;
1425
1426         /*
1427          * This process is exiting: if it's straightforward (as is the
1428          * case when ksmd was never running), free mm_slot immediately.
1429          * But if it's at the cursor or has rmap_items linked to it, use
1430          * mmap_sem to synchronize with any break_cows before pagetables
1431          * are freed, and leave the mm_slot on the list for ksmd to free.
1432          * Beware: ksm may already have noticed it exiting and freed the slot.
1433          */
1434
1435         spin_lock(&ksm_mmlist_lock);
1436         mm_slot = get_mm_slot(mm);
1437         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1438                 if (!mm_slot->rmap_list) {
1439                         hlist_del(&mm_slot->link);
1440                         list_del(&mm_slot->mm_list);
1441                         easy_to_free = 1;
1442                 } else {
1443                         list_move(&mm_slot->mm_list,
1444                                   &ksm_scan.mm_slot->mm_list);
1445                 }
1446         }
1447         spin_unlock(&ksm_mmlist_lock);
1448
1449         if (easy_to_free) {
1450                 free_mm_slot(mm_slot);
1451                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1452                 mmdrop(mm);
1453         } else if (mm_slot) {
1454                 down_write(&mm->mmap_sem);
1455                 up_write(&mm->mmap_sem);
1456         }
1457 }
1458
1459 struct page *ksm_does_need_to_copy(struct page *page,
1460                         struct vm_area_struct *vma, unsigned long address)
1461 {
1462         struct page *new_page;
1463
1464         unlock_page(page);      /* any racers will COW it, not modify it */
1465
1466         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1467         if (new_page) {
1468                 copy_user_highpage(new_page, page, address, vma);
1469
1470                 SetPageDirty(new_page);
1471                 __SetPageUptodate(new_page);
1472                 SetPageSwapBacked(new_page);
1473                 __set_page_locked(new_page);
1474
1475                 if (page_evictable(new_page, vma))
1476                         lru_cache_add_lru(new_page, LRU_ACTIVE_ANON);
1477                 else
1478                         add_page_to_unevictable_list(new_page);
1479         }
1480
1481         page_cache_release(page);
1482         return new_page;
1483 }
1484
1485 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1486                         unsigned long *vm_flags)
1487 {
1488         struct stable_node *stable_node;
1489         struct rmap_item *rmap_item;
1490         struct hlist_node *hlist;
1491         unsigned int mapcount = page_mapcount(page);
1492         int referenced = 0;
1493         struct vm_area_struct *vma;
1494
1495         VM_BUG_ON(!PageKsm(page));
1496         VM_BUG_ON(!PageLocked(page));
1497
1498         stable_node = page_stable_node(page);
1499         if (!stable_node)
1500                 return 0;
1501
1502         /*
1503          * Temporary hack: really we need anon_vma in rmap_item, to
1504          * provide the correct vma, and to find recently forked instances.
1505          * Use zalloc to avoid weirdness if any other fields are involved.
1506          */
1507         vma = kmem_cache_zalloc(vm_area_cachep, GFP_ATOMIC);
1508         if (!vma) {
1509                 spin_lock(&ksm_fallback_vma_lock);
1510                 vma = &ksm_fallback_vma;
1511         }
1512
1513         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1514                 if (memcg && !mm_match_cgroup(rmap_item->mm, memcg))
1515                         continue;
1516
1517                 vma->vm_mm = rmap_item->mm;
1518                 vma->vm_start = rmap_item->address;
1519                 vma->vm_end = vma->vm_start + PAGE_SIZE;
1520
1521                 referenced += page_referenced_one(page, vma,
1522                                 rmap_item->address, &mapcount, vm_flags);
1523                 if (!mapcount)
1524                         goto out;
1525         }
1526 out:
1527         if (vma == &ksm_fallback_vma)
1528                 spin_unlock(&ksm_fallback_vma_lock);
1529         else
1530                 kmem_cache_free(vm_area_cachep, vma);
1531         return referenced;
1532 }
1533
1534 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1535 {
1536         struct stable_node *stable_node;
1537         struct hlist_node *hlist;
1538         struct rmap_item *rmap_item;
1539         int ret = SWAP_AGAIN;
1540         struct vm_area_struct *vma;
1541
1542         VM_BUG_ON(!PageKsm(page));
1543         VM_BUG_ON(!PageLocked(page));
1544
1545         stable_node = page_stable_node(page);
1546         if (!stable_node)
1547                 return SWAP_FAIL;
1548
1549         /*
1550          * Temporary hack: really we need anon_vma in rmap_item, to
1551          * provide the correct vma, and to find recently forked instances.
1552          * Use zalloc to avoid weirdness if any other fields are involved.
1553          */
1554         if (TTU_ACTION(flags) != TTU_UNMAP)
1555                 return SWAP_FAIL;
1556
1557         vma = kmem_cache_zalloc(vm_area_cachep, GFP_ATOMIC);
1558         if (!vma) {
1559                 spin_lock(&ksm_fallback_vma_lock);
1560                 vma = &ksm_fallback_vma;
1561         }
1562
1563         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1564                 vma->vm_mm = rmap_item->mm;
1565                 vma->vm_start = rmap_item->address;
1566                 vma->vm_end = vma->vm_start + PAGE_SIZE;
1567
1568                 ret = try_to_unmap_one(page, vma, rmap_item->address, flags);
1569                 if (ret != SWAP_AGAIN || !page_mapped(page))
1570                         goto out;
1571         }
1572 out:
1573         if (vma == &ksm_fallback_vma)
1574                 spin_unlock(&ksm_fallback_vma_lock);
1575         else
1576                 kmem_cache_free(vm_area_cachep, vma);
1577         return ret;
1578 }
1579
1580 #ifdef CONFIG_SYSFS
1581 /*
1582  * This all compiles without CONFIG_SYSFS, but is a waste of space.
1583  */
1584
1585 #define KSM_ATTR_RO(_name) \
1586         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1587 #define KSM_ATTR(_name) \
1588         static struct kobj_attribute _name##_attr = \
1589                 __ATTR(_name, 0644, _name##_show, _name##_store)
1590
1591 static ssize_t sleep_millisecs_show(struct kobject *kobj,
1592                                     struct kobj_attribute *attr, char *buf)
1593 {
1594         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1595 }
1596
1597 static ssize_t sleep_millisecs_store(struct kobject *kobj,
1598                                      struct kobj_attribute *attr,
1599                                      const char *buf, size_t count)
1600 {
1601         unsigned long msecs;
1602         int err;
1603
1604         err = strict_strtoul(buf, 10, &msecs);
1605         if (err || msecs > UINT_MAX)
1606                 return -EINVAL;
1607
1608         ksm_thread_sleep_millisecs = msecs;
1609
1610         return count;
1611 }
1612 KSM_ATTR(sleep_millisecs);
1613
1614 static ssize_t pages_to_scan_show(struct kobject *kobj,
1615                                   struct kobj_attribute *attr, char *buf)
1616 {
1617         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1618 }
1619
1620 static ssize_t pages_to_scan_store(struct kobject *kobj,
1621                                    struct kobj_attribute *attr,
1622                                    const char *buf, size_t count)
1623 {
1624         int err;
1625         unsigned long nr_pages;
1626
1627         err = strict_strtoul(buf, 10, &nr_pages);
1628         if (err || nr_pages > UINT_MAX)
1629                 return -EINVAL;
1630
1631         ksm_thread_pages_to_scan = nr_pages;
1632
1633         return count;
1634 }
1635 KSM_ATTR(pages_to_scan);
1636
1637 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1638                         char *buf)
1639 {
1640         return sprintf(buf, "%u\n", ksm_run);
1641 }
1642
1643 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1644                          const char *buf, size_t count)
1645 {
1646         int err;
1647         unsigned long flags;
1648
1649         err = strict_strtoul(buf, 10, &flags);
1650         if (err || flags > UINT_MAX)
1651                 return -EINVAL;
1652         if (flags > KSM_RUN_UNMERGE)
1653                 return -EINVAL;
1654
1655         /*
1656          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1657          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1658          * breaking COW to free the unswappable pages_shared (but leaves
1659          * mm_slots on the list for when ksmd may be set running again).
1660          */
1661
1662         mutex_lock(&ksm_thread_mutex);
1663         if (ksm_run != flags) {
1664                 ksm_run = flags;
1665                 if (flags & KSM_RUN_UNMERGE) {
1666                         current->flags |= PF_OOM_ORIGIN;
1667                         err = unmerge_and_remove_all_rmap_items();
1668                         current->flags &= ~PF_OOM_ORIGIN;
1669                         if (err) {
1670                                 ksm_run = KSM_RUN_STOP;
1671                                 count = err;
1672                         }
1673                 }
1674         }
1675         mutex_unlock(&ksm_thread_mutex);
1676
1677         if (flags & KSM_RUN_MERGE)
1678                 wake_up_interruptible(&ksm_thread_wait);
1679
1680         return count;
1681 }
1682 KSM_ATTR(run);
1683
1684 static ssize_t max_kernel_pages_store(struct kobject *kobj,
1685                                       struct kobj_attribute *attr,
1686                                       const char *buf, size_t count)
1687 {
1688         int err;
1689         unsigned long nr_pages;
1690
1691         err = strict_strtoul(buf, 10, &nr_pages);
1692         if (err)
1693                 return -EINVAL;
1694
1695         ksm_max_kernel_pages = nr_pages;
1696
1697         return count;
1698 }
1699
1700 static ssize_t max_kernel_pages_show(struct kobject *kobj,
1701                                      struct kobj_attribute *attr, char *buf)
1702 {
1703         return sprintf(buf, "%lu\n", ksm_max_kernel_pages);
1704 }
1705 KSM_ATTR(max_kernel_pages);
1706
1707 static ssize_t pages_shared_show(struct kobject *kobj,
1708                                  struct kobj_attribute *attr, char *buf)
1709 {
1710         return sprintf(buf, "%lu\n", ksm_pages_shared);
1711 }
1712 KSM_ATTR_RO(pages_shared);
1713
1714 static ssize_t pages_sharing_show(struct kobject *kobj,
1715                                   struct kobj_attribute *attr, char *buf)
1716 {
1717         return sprintf(buf, "%lu\n", ksm_pages_sharing);
1718 }
1719 KSM_ATTR_RO(pages_sharing);
1720
1721 static ssize_t pages_unshared_show(struct kobject *kobj,
1722                                    struct kobj_attribute *attr, char *buf)
1723 {
1724         return sprintf(buf, "%lu\n", ksm_pages_unshared);
1725 }
1726 KSM_ATTR_RO(pages_unshared);
1727
1728 static ssize_t pages_volatile_show(struct kobject *kobj,
1729                                    struct kobj_attribute *attr, char *buf)
1730 {
1731         long ksm_pages_volatile;
1732
1733         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1734                                 - ksm_pages_sharing - ksm_pages_unshared;
1735         /*
1736          * It was not worth any locking to calculate that statistic,
1737          * but it might therefore sometimes be negative: conceal that.
1738          */
1739         if (ksm_pages_volatile < 0)
1740                 ksm_pages_volatile = 0;
1741         return sprintf(buf, "%ld\n", ksm_pages_volatile);
1742 }
1743 KSM_ATTR_RO(pages_volatile);
1744
1745 static ssize_t full_scans_show(struct kobject *kobj,
1746                                struct kobj_attribute *attr, char *buf)
1747 {
1748         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1749 }
1750 KSM_ATTR_RO(full_scans);
1751
1752 static struct attribute *ksm_attrs[] = {
1753         &sleep_millisecs_attr.attr,
1754         &pages_to_scan_attr.attr,
1755         &run_attr.attr,
1756         &max_kernel_pages_attr.attr,
1757         &pages_shared_attr.attr,
1758         &pages_sharing_attr.attr,
1759         &pages_unshared_attr.attr,
1760         &pages_volatile_attr.attr,
1761         &full_scans_attr.attr,
1762         NULL,
1763 };
1764
1765 static struct attribute_group ksm_attr_group = {
1766         .attrs = ksm_attrs,
1767         .name = "ksm",
1768 };
1769 #endif /* CONFIG_SYSFS */
1770
1771 static int __init ksm_init(void)
1772 {
1773         struct task_struct *ksm_thread;
1774         int err;
1775
1776         ksm_max_kernel_pages = totalram_pages / 4;
1777
1778         err = ksm_slab_init();
1779         if (err)
1780                 goto out;
1781
1782         err = mm_slots_hash_init();
1783         if (err)
1784                 goto out_free1;
1785
1786         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1787         if (IS_ERR(ksm_thread)) {
1788                 printk(KERN_ERR "ksm: creating kthread failed\n");
1789                 err = PTR_ERR(ksm_thread);
1790                 goto out_free2;
1791         }
1792
1793 #ifdef CONFIG_SYSFS
1794         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1795         if (err) {
1796                 printk(KERN_ERR "ksm: register sysfs failed\n");
1797                 kthread_stop(ksm_thread);
1798                 goto out_free2;
1799         }
1800 #else
1801         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
1802
1803 #endif /* CONFIG_SYSFS */
1804
1805         return 0;
1806
1807 out_free2:
1808         mm_slots_hash_free();
1809 out_free1:
1810         ksm_slab_free();
1811 out:
1812         return err;
1813 }
1814 module_init(ksm_init)