hugetlb: balance freeing of huge pages across nodes
[safe/jmp/linux-2.6] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/seq_file.h>
11 #include <linux/sysctl.h>
12 #include <linux/highmem.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/nodemask.h>
15 #include <linux/pagemap.h>
16 #include <linux/mempolicy.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21
22 #include <asm/page.h>
23 #include <asm/pgtable.h>
24 #include <asm/io.h>
25
26 #include <linux/hugetlb.h>
27 #include "internal.h"
28
29 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31 unsigned long hugepages_treat_as_movable;
32
33 static int max_hstate;
34 unsigned int default_hstate_idx;
35 struct hstate hstates[HUGE_MAX_HSTATE];
36
37 __initdata LIST_HEAD(huge_boot_pages);
38
39 /* for command line parsing */
40 static struct hstate * __initdata parsed_hstate;
41 static unsigned long __initdata default_hstate_max_huge_pages;
42 static unsigned long __initdata default_hstate_size;
43
44 #define for_each_hstate(h) \
45         for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
46
47 /*
48  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
49  */
50 static DEFINE_SPINLOCK(hugetlb_lock);
51
52 /*
53  * Region tracking -- allows tracking of reservations and instantiated pages
54  *                    across the pages in a mapping.
55  *
56  * The region data structures are protected by a combination of the mmap_sem
57  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
58  * must either hold the mmap_sem for write, or the mmap_sem for read and
59  * the hugetlb_instantiation mutex:
60  *
61  *      down_write(&mm->mmap_sem);
62  * or
63  *      down_read(&mm->mmap_sem);
64  *      mutex_lock(&hugetlb_instantiation_mutex);
65  */
66 struct file_region {
67         struct list_head link;
68         long from;
69         long to;
70 };
71
72 static long region_add(struct list_head *head, long f, long t)
73 {
74         struct file_region *rg, *nrg, *trg;
75
76         /* Locate the region we are either in or before. */
77         list_for_each_entry(rg, head, link)
78                 if (f <= rg->to)
79                         break;
80
81         /* Round our left edge to the current segment if it encloses us. */
82         if (f > rg->from)
83                 f = rg->from;
84
85         /* Check for and consume any regions we now overlap with. */
86         nrg = rg;
87         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
88                 if (&rg->link == head)
89                         break;
90                 if (rg->from > t)
91                         break;
92
93                 /* If this area reaches higher then extend our area to
94                  * include it completely.  If this is not the first area
95                  * which we intend to reuse, free it. */
96                 if (rg->to > t)
97                         t = rg->to;
98                 if (rg != nrg) {
99                         list_del(&rg->link);
100                         kfree(rg);
101                 }
102         }
103         nrg->from = f;
104         nrg->to = t;
105         return 0;
106 }
107
108 static long region_chg(struct list_head *head, long f, long t)
109 {
110         struct file_region *rg, *nrg;
111         long chg = 0;
112
113         /* Locate the region we are before or in. */
114         list_for_each_entry(rg, head, link)
115                 if (f <= rg->to)
116                         break;
117
118         /* If we are below the current region then a new region is required.
119          * Subtle, allocate a new region at the position but make it zero
120          * size such that we can guarantee to record the reservation. */
121         if (&rg->link == head || t < rg->from) {
122                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
123                 if (!nrg)
124                         return -ENOMEM;
125                 nrg->from = f;
126                 nrg->to   = f;
127                 INIT_LIST_HEAD(&nrg->link);
128                 list_add(&nrg->link, rg->link.prev);
129
130                 return t - f;
131         }
132
133         /* Round our left edge to the current segment if it encloses us. */
134         if (f > rg->from)
135                 f = rg->from;
136         chg = t - f;
137
138         /* Check for and consume any regions we now overlap with. */
139         list_for_each_entry(rg, rg->link.prev, link) {
140                 if (&rg->link == head)
141                         break;
142                 if (rg->from > t)
143                         return chg;
144
145                 /* We overlap with this area, if it extends futher than
146                  * us then we must extend ourselves.  Account for its
147                  * existing reservation. */
148                 if (rg->to > t) {
149                         chg += rg->to - t;
150                         t = rg->to;
151                 }
152                 chg -= rg->to - rg->from;
153         }
154         return chg;
155 }
156
157 static long region_truncate(struct list_head *head, long end)
158 {
159         struct file_region *rg, *trg;
160         long chg = 0;
161
162         /* Locate the region we are either in or before. */
163         list_for_each_entry(rg, head, link)
164                 if (end <= rg->to)
165                         break;
166         if (&rg->link == head)
167                 return 0;
168
169         /* If we are in the middle of a region then adjust it. */
170         if (end > rg->from) {
171                 chg = rg->to - end;
172                 rg->to = end;
173                 rg = list_entry(rg->link.next, typeof(*rg), link);
174         }
175
176         /* Drop any remaining regions. */
177         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
178                 if (&rg->link == head)
179                         break;
180                 chg += rg->to - rg->from;
181                 list_del(&rg->link);
182                 kfree(rg);
183         }
184         return chg;
185 }
186
187 static long region_count(struct list_head *head, long f, long t)
188 {
189         struct file_region *rg;
190         long chg = 0;
191
192         /* Locate each segment we overlap with, and count that overlap. */
193         list_for_each_entry(rg, head, link) {
194                 int seg_from;
195                 int seg_to;
196
197                 if (rg->to <= f)
198                         continue;
199                 if (rg->from >= t)
200                         break;
201
202                 seg_from = max(rg->from, f);
203                 seg_to = min(rg->to, t);
204
205                 chg += seg_to - seg_from;
206         }
207
208         return chg;
209 }
210
211 /*
212  * Convert the address within this vma to the page offset within
213  * the mapping, in pagecache page units; huge pages here.
214  */
215 static pgoff_t vma_hugecache_offset(struct hstate *h,
216                         struct vm_area_struct *vma, unsigned long address)
217 {
218         return ((address - vma->vm_start) >> huge_page_shift(h)) +
219                         (vma->vm_pgoff >> huge_page_order(h));
220 }
221
222 /*
223  * Return the size of the pages allocated when backing a VMA. In the majority
224  * cases this will be same size as used by the page table entries.
225  */
226 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
227 {
228         struct hstate *hstate;
229
230         if (!is_vm_hugetlb_page(vma))
231                 return PAGE_SIZE;
232
233         hstate = hstate_vma(vma);
234
235         return 1UL << (hstate->order + PAGE_SHIFT);
236 }
237 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
238
239 /*
240  * Return the page size being used by the MMU to back a VMA. In the majority
241  * of cases, the page size used by the kernel matches the MMU size. On
242  * architectures where it differs, an architecture-specific version of this
243  * function is required.
244  */
245 #ifndef vma_mmu_pagesize
246 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
247 {
248         return vma_kernel_pagesize(vma);
249 }
250 #endif
251
252 /*
253  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
254  * bits of the reservation map pointer, which are always clear due to
255  * alignment.
256  */
257 #define HPAGE_RESV_OWNER    (1UL << 0)
258 #define HPAGE_RESV_UNMAPPED (1UL << 1)
259 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
260
261 /*
262  * These helpers are used to track how many pages are reserved for
263  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
264  * is guaranteed to have their future faults succeed.
265  *
266  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
267  * the reserve counters are updated with the hugetlb_lock held. It is safe
268  * to reset the VMA at fork() time as it is not in use yet and there is no
269  * chance of the global counters getting corrupted as a result of the values.
270  *
271  * The private mapping reservation is represented in a subtly different
272  * manner to a shared mapping.  A shared mapping has a region map associated
273  * with the underlying file, this region map represents the backing file
274  * pages which have ever had a reservation assigned which this persists even
275  * after the page is instantiated.  A private mapping has a region map
276  * associated with the original mmap which is attached to all VMAs which
277  * reference it, this region map represents those offsets which have consumed
278  * reservation ie. where pages have been instantiated.
279  */
280 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
281 {
282         return (unsigned long)vma->vm_private_data;
283 }
284
285 static void set_vma_private_data(struct vm_area_struct *vma,
286                                                         unsigned long value)
287 {
288         vma->vm_private_data = (void *)value;
289 }
290
291 struct resv_map {
292         struct kref refs;
293         struct list_head regions;
294 };
295
296 static struct resv_map *resv_map_alloc(void)
297 {
298         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
299         if (!resv_map)
300                 return NULL;
301
302         kref_init(&resv_map->refs);
303         INIT_LIST_HEAD(&resv_map->regions);
304
305         return resv_map;
306 }
307
308 static void resv_map_release(struct kref *ref)
309 {
310         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
311
312         /* Clear out any active regions before we release the map. */
313         region_truncate(&resv_map->regions, 0);
314         kfree(resv_map);
315 }
316
317 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
318 {
319         VM_BUG_ON(!is_vm_hugetlb_page(vma));
320         if (!(vma->vm_flags & VM_MAYSHARE))
321                 return (struct resv_map *)(get_vma_private_data(vma) &
322                                                         ~HPAGE_RESV_MASK);
323         return NULL;
324 }
325
326 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
327 {
328         VM_BUG_ON(!is_vm_hugetlb_page(vma));
329         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
330
331         set_vma_private_data(vma, (get_vma_private_data(vma) &
332                                 HPAGE_RESV_MASK) | (unsigned long)map);
333 }
334
335 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
336 {
337         VM_BUG_ON(!is_vm_hugetlb_page(vma));
338         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
339
340         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
341 }
342
343 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
344 {
345         VM_BUG_ON(!is_vm_hugetlb_page(vma));
346
347         return (get_vma_private_data(vma) & flag) != 0;
348 }
349
350 /* Decrement the reserved pages in the hugepage pool by one */
351 static void decrement_hugepage_resv_vma(struct hstate *h,
352                         struct vm_area_struct *vma)
353 {
354         if (vma->vm_flags & VM_NORESERVE)
355                 return;
356
357         if (vma->vm_flags & VM_MAYSHARE) {
358                 /* Shared mappings always use reserves */
359                 h->resv_huge_pages--;
360         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
361                 /*
362                  * Only the process that called mmap() has reserves for
363                  * private mappings.
364                  */
365                 h->resv_huge_pages--;
366         }
367 }
368
369 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
370 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
371 {
372         VM_BUG_ON(!is_vm_hugetlb_page(vma));
373         if (!(vma->vm_flags & VM_MAYSHARE))
374                 vma->vm_private_data = (void *)0;
375 }
376
377 /* Returns true if the VMA has associated reserve pages */
378 static int vma_has_reserves(struct vm_area_struct *vma)
379 {
380         if (vma->vm_flags & VM_MAYSHARE)
381                 return 1;
382         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
383                 return 1;
384         return 0;
385 }
386
387 static void clear_gigantic_page(struct page *page,
388                         unsigned long addr, unsigned long sz)
389 {
390         int i;
391         struct page *p = page;
392
393         might_sleep();
394         for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
395                 cond_resched();
396                 clear_user_highpage(p, addr + i * PAGE_SIZE);
397         }
398 }
399 static void clear_huge_page(struct page *page,
400                         unsigned long addr, unsigned long sz)
401 {
402         int i;
403
404         if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
405                 clear_gigantic_page(page, addr, sz);
406                 return;
407         }
408
409         might_sleep();
410         for (i = 0; i < sz/PAGE_SIZE; i++) {
411                 cond_resched();
412                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
413         }
414 }
415
416 static void copy_gigantic_page(struct page *dst, struct page *src,
417                            unsigned long addr, struct vm_area_struct *vma)
418 {
419         int i;
420         struct hstate *h = hstate_vma(vma);
421         struct page *dst_base = dst;
422         struct page *src_base = src;
423         might_sleep();
424         for (i = 0; i < pages_per_huge_page(h); ) {
425                 cond_resched();
426                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
427
428                 i++;
429                 dst = mem_map_next(dst, dst_base, i);
430                 src = mem_map_next(src, src_base, i);
431         }
432 }
433 static void copy_huge_page(struct page *dst, struct page *src,
434                            unsigned long addr, struct vm_area_struct *vma)
435 {
436         int i;
437         struct hstate *h = hstate_vma(vma);
438
439         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
440                 copy_gigantic_page(dst, src, addr, vma);
441                 return;
442         }
443
444         might_sleep();
445         for (i = 0; i < pages_per_huge_page(h); i++) {
446                 cond_resched();
447                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
448         }
449 }
450
451 static void enqueue_huge_page(struct hstate *h, struct page *page)
452 {
453         int nid = page_to_nid(page);
454         list_add(&page->lru, &h->hugepage_freelists[nid]);
455         h->free_huge_pages++;
456         h->free_huge_pages_node[nid]++;
457 }
458
459 static struct page *dequeue_huge_page_vma(struct hstate *h,
460                                 struct vm_area_struct *vma,
461                                 unsigned long address, int avoid_reserve)
462 {
463         int nid;
464         struct page *page = NULL;
465         struct mempolicy *mpol;
466         nodemask_t *nodemask;
467         struct zonelist *zonelist = huge_zonelist(vma, address,
468                                         htlb_alloc_mask, &mpol, &nodemask);
469         struct zone *zone;
470         struct zoneref *z;
471
472         /*
473          * A child process with MAP_PRIVATE mappings created by their parent
474          * have no page reserves. This check ensures that reservations are
475          * not "stolen". The child may still get SIGKILLed
476          */
477         if (!vma_has_reserves(vma) &&
478                         h->free_huge_pages - h->resv_huge_pages == 0)
479                 return NULL;
480
481         /* If reserves cannot be used, ensure enough pages are in the pool */
482         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
483                 return NULL;
484
485         for_each_zone_zonelist_nodemask(zone, z, zonelist,
486                                                 MAX_NR_ZONES - 1, nodemask) {
487                 nid = zone_to_nid(zone);
488                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
489                     !list_empty(&h->hugepage_freelists[nid])) {
490                         page = list_entry(h->hugepage_freelists[nid].next,
491                                           struct page, lru);
492                         list_del(&page->lru);
493                         h->free_huge_pages--;
494                         h->free_huge_pages_node[nid]--;
495
496                         if (!avoid_reserve)
497                                 decrement_hugepage_resv_vma(h, vma);
498
499                         break;
500                 }
501         }
502         mpol_cond_put(mpol);
503         return page;
504 }
505
506 static void update_and_free_page(struct hstate *h, struct page *page)
507 {
508         int i;
509
510         VM_BUG_ON(h->order >= MAX_ORDER);
511
512         h->nr_huge_pages--;
513         h->nr_huge_pages_node[page_to_nid(page)]--;
514         for (i = 0; i < pages_per_huge_page(h); i++) {
515                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
516                                 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
517                                 1 << PG_private | 1<< PG_writeback);
518         }
519         set_compound_page_dtor(page, NULL);
520         set_page_refcounted(page);
521         arch_release_hugepage(page);
522         __free_pages(page, huge_page_order(h));
523 }
524
525 struct hstate *size_to_hstate(unsigned long size)
526 {
527         struct hstate *h;
528
529         for_each_hstate(h) {
530                 if (huge_page_size(h) == size)
531                         return h;
532         }
533         return NULL;
534 }
535
536 static void free_huge_page(struct page *page)
537 {
538         /*
539          * Can't pass hstate in here because it is called from the
540          * compound page destructor.
541          */
542         struct hstate *h = page_hstate(page);
543         int nid = page_to_nid(page);
544         struct address_space *mapping;
545
546         mapping = (struct address_space *) page_private(page);
547         set_page_private(page, 0);
548         BUG_ON(page_count(page));
549         INIT_LIST_HEAD(&page->lru);
550
551         spin_lock(&hugetlb_lock);
552         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
553                 update_and_free_page(h, page);
554                 h->surplus_huge_pages--;
555                 h->surplus_huge_pages_node[nid]--;
556         } else {
557                 enqueue_huge_page(h, page);
558         }
559         spin_unlock(&hugetlb_lock);
560         if (mapping)
561                 hugetlb_put_quota(mapping, 1);
562 }
563
564 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
565 {
566         set_compound_page_dtor(page, free_huge_page);
567         spin_lock(&hugetlb_lock);
568         h->nr_huge_pages++;
569         h->nr_huge_pages_node[nid]++;
570         spin_unlock(&hugetlb_lock);
571         put_page(page); /* free it into the hugepage allocator */
572 }
573
574 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
575 {
576         int i;
577         int nr_pages = 1 << order;
578         struct page *p = page + 1;
579
580         /* we rely on prep_new_huge_page to set the destructor */
581         set_compound_order(page, order);
582         __SetPageHead(page);
583         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
584                 __SetPageTail(p);
585                 p->first_page = page;
586         }
587 }
588
589 int PageHuge(struct page *page)
590 {
591         compound_page_dtor *dtor;
592
593         if (!PageCompound(page))
594                 return 0;
595
596         page = compound_head(page);
597         dtor = get_compound_page_dtor(page);
598
599         return dtor == free_huge_page;
600 }
601
602 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
603 {
604         struct page *page;
605
606         if (h->order >= MAX_ORDER)
607                 return NULL;
608
609         page = alloc_pages_exact_node(nid,
610                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
611                                                 __GFP_REPEAT|__GFP_NOWARN,
612                 huge_page_order(h));
613         if (page) {
614                 if (arch_prepare_hugepage(page)) {
615                         __free_pages(page, huge_page_order(h));
616                         return NULL;
617                 }
618                 prep_new_huge_page(h, page, nid);
619         }
620
621         return page;
622 }
623
624 /*
625  * Use a helper variable to find the next node and then
626  * copy it back to next_nid_to_alloc afterwards:
627  * otherwise there's a window in which a racer might
628  * pass invalid nid MAX_NUMNODES to alloc_pages_exact_node.
629  * But we don't need to use a spin_lock here: it really
630  * doesn't matter if occasionally a racer chooses the
631  * same nid as we do.  Move nid forward in the mask even
632  * if we just successfully allocated a hugepage so that
633  * the next caller gets hugepages on the next node.
634  */
635 static int hstate_next_node_to_alloc(struct hstate *h)
636 {
637         int next_nid;
638         next_nid = next_node(h->next_nid_to_alloc, node_online_map);
639         if (next_nid == MAX_NUMNODES)
640                 next_nid = first_node(node_online_map);
641         h->next_nid_to_alloc = next_nid;
642         return next_nid;
643 }
644
645 static int alloc_fresh_huge_page(struct hstate *h)
646 {
647         struct page *page;
648         int start_nid;
649         int next_nid;
650         int ret = 0;
651
652         start_nid = h->next_nid_to_alloc;
653         next_nid = start_nid;
654
655         do {
656                 page = alloc_fresh_huge_page_node(h, next_nid);
657                 if (page)
658                         ret = 1;
659                 next_nid = hstate_next_node_to_alloc(h);
660         } while (!page && next_nid != start_nid);
661
662         if (ret)
663                 count_vm_event(HTLB_BUDDY_PGALLOC);
664         else
665                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
666
667         return ret;
668 }
669
670 /*
671  * helper for free_pool_huge_page() - find next node
672  * from which to free a huge page
673  */
674 static int hstate_next_node_to_free(struct hstate *h)
675 {
676         int next_nid;
677         next_nid = next_node(h->next_nid_to_free, node_online_map);
678         if (next_nid == MAX_NUMNODES)
679                 next_nid = first_node(node_online_map);
680         h->next_nid_to_free = next_nid;
681         return next_nid;
682 }
683
684 /*
685  * Free huge page from pool from next node to free.
686  * Attempt to keep persistent huge pages more or less
687  * balanced over allowed nodes.
688  * Called with hugetlb_lock locked.
689  */
690 static int free_pool_huge_page(struct hstate *h)
691 {
692         int start_nid;
693         int next_nid;
694         int ret = 0;
695
696         start_nid = h->next_nid_to_free;
697         next_nid = start_nid;
698
699         do {
700                 if (!list_empty(&h->hugepage_freelists[next_nid])) {
701                         struct page *page =
702                                 list_entry(h->hugepage_freelists[next_nid].next,
703                                           struct page, lru);
704                         list_del(&page->lru);
705                         h->free_huge_pages--;
706                         h->free_huge_pages_node[next_nid]--;
707                         update_and_free_page(h, page);
708                         ret = 1;
709                 }
710                 next_nid = hstate_next_node_to_free(h);
711         } while (!ret && next_nid != start_nid);
712
713         return ret;
714 }
715
716 static struct page *alloc_buddy_huge_page(struct hstate *h,
717                         struct vm_area_struct *vma, unsigned long address)
718 {
719         struct page *page;
720         unsigned int nid;
721
722         if (h->order >= MAX_ORDER)
723                 return NULL;
724
725         /*
726          * Assume we will successfully allocate the surplus page to
727          * prevent racing processes from causing the surplus to exceed
728          * overcommit
729          *
730          * This however introduces a different race, where a process B
731          * tries to grow the static hugepage pool while alloc_pages() is
732          * called by process A. B will only examine the per-node
733          * counters in determining if surplus huge pages can be
734          * converted to normal huge pages in adjust_pool_surplus(). A
735          * won't be able to increment the per-node counter, until the
736          * lock is dropped by B, but B doesn't drop hugetlb_lock until
737          * no more huge pages can be converted from surplus to normal
738          * state (and doesn't try to convert again). Thus, we have a
739          * case where a surplus huge page exists, the pool is grown, and
740          * the surplus huge page still exists after, even though it
741          * should just have been converted to a normal huge page. This
742          * does not leak memory, though, as the hugepage will be freed
743          * once it is out of use. It also does not allow the counters to
744          * go out of whack in adjust_pool_surplus() as we don't modify
745          * the node values until we've gotten the hugepage and only the
746          * per-node value is checked there.
747          */
748         spin_lock(&hugetlb_lock);
749         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
750                 spin_unlock(&hugetlb_lock);
751                 return NULL;
752         } else {
753                 h->nr_huge_pages++;
754                 h->surplus_huge_pages++;
755         }
756         spin_unlock(&hugetlb_lock);
757
758         page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
759                                         __GFP_REPEAT|__GFP_NOWARN,
760                                         huge_page_order(h));
761
762         if (page && arch_prepare_hugepage(page)) {
763                 __free_pages(page, huge_page_order(h));
764                 return NULL;
765         }
766
767         spin_lock(&hugetlb_lock);
768         if (page) {
769                 /*
770                  * This page is now managed by the hugetlb allocator and has
771                  * no users -- drop the buddy allocator's reference.
772                  */
773                 put_page_testzero(page);
774                 VM_BUG_ON(page_count(page));
775                 nid = page_to_nid(page);
776                 set_compound_page_dtor(page, free_huge_page);
777                 /*
778                  * We incremented the global counters already
779                  */
780                 h->nr_huge_pages_node[nid]++;
781                 h->surplus_huge_pages_node[nid]++;
782                 __count_vm_event(HTLB_BUDDY_PGALLOC);
783         } else {
784                 h->nr_huge_pages--;
785                 h->surplus_huge_pages--;
786                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
787         }
788         spin_unlock(&hugetlb_lock);
789
790         return page;
791 }
792
793 /*
794  * Increase the hugetlb pool such that it can accomodate a reservation
795  * of size 'delta'.
796  */
797 static int gather_surplus_pages(struct hstate *h, int delta)
798 {
799         struct list_head surplus_list;
800         struct page *page, *tmp;
801         int ret, i;
802         int needed, allocated;
803
804         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
805         if (needed <= 0) {
806                 h->resv_huge_pages += delta;
807                 return 0;
808         }
809
810         allocated = 0;
811         INIT_LIST_HEAD(&surplus_list);
812
813         ret = -ENOMEM;
814 retry:
815         spin_unlock(&hugetlb_lock);
816         for (i = 0; i < needed; i++) {
817                 page = alloc_buddy_huge_page(h, NULL, 0);
818                 if (!page) {
819                         /*
820                          * We were not able to allocate enough pages to
821                          * satisfy the entire reservation so we free what
822                          * we've allocated so far.
823                          */
824                         spin_lock(&hugetlb_lock);
825                         needed = 0;
826                         goto free;
827                 }
828
829                 list_add(&page->lru, &surplus_list);
830         }
831         allocated += needed;
832
833         /*
834          * After retaking hugetlb_lock, we need to recalculate 'needed'
835          * because either resv_huge_pages or free_huge_pages may have changed.
836          */
837         spin_lock(&hugetlb_lock);
838         needed = (h->resv_huge_pages + delta) -
839                         (h->free_huge_pages + allocated);
840         if (needed > 0)
841                 goto retry;
842
843         /*
844          * The surplus_list now contains _at_least_ the number of extra pages
845          * needed to accomodate the reservation.  Add the appropriate number
846          * of pages to the hugetlb pool and free the extras back to the buddy
847          * allocator.  Commit the entire reservation here to prevent another
848          * process from stealing the pages as they are added to the pool but
849          * before they are reserved.
850          */
851         needed += allocated;
852         h->resv_huge_pages += delta;
853         ret = 0;
854 free:
855         /* Free the needed pages to the hugetlb pool */
856         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
857                 if ((--needed) < 0)
858                         break;
859                 list_del(&page->lru);
860                 enqueue_huge_page(h, page);
861         }
862
863         /* Free unnecessary surplus pages to the buddy allocator */
864         if (!list_empty(&surplus_list)) {
865                 spin_unlock(&hugetlb_lock);
866                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
867                         list_del(&page->lru);
868                         /*
869                          * The page has a reference count of zero already, so
870                          * call free_huge_page directly instead of using
871                          * put_page.  This must be done with hugetlb_lock
872                          * unlocked which is safe because free_huge_page takes
873                          * hugetlb_lock before deciding how to free the page.
874                          */
875                         free_huge_page(page);
876                 }
877                 spin_lock(&hugetlb_lock);
878         }
879
880         return ret;
881 }
882
883 /*
884  * When releasing a hugetlb pool reservation, any surplus pages that were
885  * allocated to satisfy the reservation must be explicitly freed if they were
886  * never used.
887  */
888 static void return_unused_surplus_pages(struct hstate *h,
889                                         unsigned long unused_resv_pages)
890 {
891         static int nid = -1;
892         struct page *page;
893         unsigned long nr_pages;
894
895         /*
896          * We want to release as many surplus pages as possible, spread
897          * evenly across all nodes. Iterate across all nodes until we
898          * can no longer free unreserved surplus pages. This occurs when
899          * the nodes with surplus pages have no free pages.
900          */
901         unsigned long remaining_iterations = nr_online_nodes;
902
903         /* Uncommit the reservation */
904         h->resv_huge_pages -= unused_resv_pages;
905
906         /* Cannot return gigantic pages currently */
907         if (h->order >= MAX_ORDER)
908                 return;
909
910         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
911
912         while (remaining_iterations-- && nr_pages) {
913                 nid = next_node(nid, node_online_map);
914                 if (nid == MAX_NUMNODES)
915                         nid = first_node(node_online_map);
916
917                 if (!h->surplus_huge_pages_node[nid])
918                         continue;
919
920                 if (!list_empty(&h->hugepage_freelists[nid])) {
921                         page = list_entry(h->hugepage_freelists[nid].next,
922                                           struct page, lru);
923                         list_del(&page->lru);
924                         update_and_free_page(h, page);
925                         h->free_huge_pages--;
926                         h->free_huge_pages_node[nid]--;
927                         h->surplus_huge_pages--;
928                         h->surplus_huge_pages_node[nid]--;
929                         nr_pages--;
930                         remaining_iterations = nr_online_nodes;
931                 }
932         }
933 }
934
935 /*
936  * Determine if the huge page at addr within the vma has an associated
937  * reservation.  Where it does not we will need to logically increase
938  * reservation and actually increase quota before an allocation can occur.
939  * Where any new reservation would be required the reservation change is
940  * prepared, but not committed.  Once the page has been quota'd allocated
941  * an instantiated the change should be committed via vma_commit_reservation.
942  * No action is required on failure.
943  */
944 static long vma_needs_reservation(struct hstate *h,
945                         struct vm_area_struct *vma, unsigned long addr)
946 {
947         struct address_space *mapping = vma->vm_file->f_mapping;
948         struct inode *inode = mapping->host;
949
950         if (vma->vm_flags & VM_MAYSHARE) {
951                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
952                 return region_chg(&inode->i_mapping->private_list,
953                                                         idx, idx + 1);
954
955         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
956                 return 1;
957
958         } else  {
959                 long err;
960                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
961                 struct resv_map *reservations = vma_resv_map(vma);
962
963                 err = region_chg(&reservations->regions, idx, idx + 1);
964                 if (err < 0)
965                         return err;
966                 return 0;
967         }
968 }
969 static void vma_commit_reservation(struct hstate *h,
970                         struct vm_area_struct *vma, unsigned long addr)
971 {
972         struct address_space *mapping = vma->vm_file->f_mapping;
973         struct inode *inode = mapping->host;
974
975         if (vma->vm_flags & VM_MAYSHARE) {
976                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
977                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
978
979         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
980                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
981                 struct resv_map *reservations = vma_resv_map(vma);
982
983                 /* Mark this page used in the map. */
984                 region_add(&reservations->regions, idx, idx + 1);
985         }
986 }
987
988 static struct page *alloc_huge_page(struct vm_area_struct *vma,
989                                     unsigned long addr, int avoid_reserve)
990 {
991         struct hstate *h = hstate_vma(vma);
992         struct page *page;
993         struct address_space *mapping = vma->vm_file->f_mapping;
994         struct inode *inode = mapping->host;
995         long chg;
996
997         /*
998          * Processes that did not create the mapping will have no reserves and
999          * will not have accounted against quota. Check that the quota can be
1000          * made before satisfying the allocation
1001          * MAP_NORESERVE mappings may also need pages and quota allocated
1002          * if no reserve mapping overlaps.
1003          */
1004         chg = vma_needs_reservation(h, vma, addr);
1005         if (chg < 0)
1006                 return ERR_PTR(chg);
1007         if (chg)
1008                 if (hugetlb_get_quota(inode->i_mapping, chg))
1009                         return ERR_PTR(-ENOSPC);
1010
1011         spin_lock(&hugetlb_lock);
1012         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1013         spin_unlock(&hugetlb_lock);
1014
1015         if (!page) {
1016                 page = alloc_buddy_huge_page(h, vma, addr);
1017                 if (!page) {
1018                         hugetlb_put_quota(inode->i_mapping, chg);
1019                         return ERR_PTR(-VM_FAULT_OOM);
1020                 }
1021         }
1022
1023         set_page_refcounted(page);
1024         set_page_private(page, (unsigned long) mapping);
1025
1026         vma_commit_reservation(h, vma, addr);
1027
1028         return page;
1029 }
1030
1031 int __weak alloc_bootmem_huge_page(struct hstate *h)
1032 {
1033         struct huge_bootmem_page *m;
1034         int nr_nodes = nodes_weight(node_online_map);
1035
1036         while (nr_nodes) {
1037                 void *addr;
1038
1039                 addr = __alloc_bootmem_node_nopanic(
1040                                 NODE_DATA(h->next_nid_to_alloc),
1041                                 huge_page_size(h), huge_page_size(h), 0);
1042
1043                 if (addr) {
1044                         /*
1045                          * Use the beginning of the huge page to store the
1046                          * huge_bootmem_page struct (until gather_bootmem
1047                          * puts them into the mem_map).
1048                          */
1049                         m = addr;
1050                         goto found;
1051                 }
1052                 hstate_next_node_to_alloc(h);
1053                 nr_nodes--;
1054         }
1055         return 0;
1056
1057 found:
1058         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1059         /* Put them into a private list first because mem_map is not up yet */
1060         list_add(&m->list, &huge_boot_pages);
1061         m->hstate = h;
1062         return 1;
1063 }
1064
1065 static void prep_compound_huge_page(struct page *page, int order)
1066 {
1067         if (unlikely(order > (MAX_ORDER - 1)))
1068                 prep_compound_gigantic_page(page, order);
1069         else
1070                 prep_compound_page(page, order);
1071 }
1072
1073 /* Put bootmem huge pages into the standard lists after mem_map is up */
1074 static void __init gather_bootmem_prealloc(void)
1075 {
1076         struct huge_bootmem_page *m;
1077
1078         list_for_each_entry(m, &huge_boot_pages, list) {
1079                 struct page *page = virt_to_page(m);
1080                 struct hstate *h = m->hstate;
1081                 __ClearPageReserved(page);
1082                 WARN_ON(page_count(page) != 1);
1083                 prep_compound_huge_page(page, h->order);
1084                 prep_new_huge_page(h, page, page_to_nid(page));
1085         }
1086 }
1087
1088 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1089 {
1090         unsigned long i;
1091
1092         for (i = 0; i < h->max_huge_pages; ++i) {
1093                 if (h->order >= MAX_ORDER) {
1094                         if (!alloc_bootmem_huge_page(h))
1095                                 break;
1096                 } else if (!alloc_fresh_huge_page(h))
1097                         break;
1098         }
1099         h->max_huge_pages = i;
1100 }
1101
1102 static void __init hugetlb_init_hstates(void)
1103 {
1104         struct hstate *h;
1105
1106         for_each_hstate(h) {
1107                 /* oversize hugepages were init'ed in early boot */
1108                 if (h->order < MAX_ORDER)
1109                         hugetlb_hstate_alloc_pages(h);
1110         }
1111 }
1112
1113 static char * __init memfmt(char *buf, unsigned long n)
1114 {
1115         if (n >= (1UL << 30))
1116                 sprintf(buf, "%lu GB", n >> 30);
1117         else if (n >= (1UL << 20))
1118                 sprintf(buf, "%lu MB", n >> 20);
1119         else
1120                 sprintf(buf, "%lu KB", n >> 10);
1121         return buf;
1122 }
1123
1124 static void __init report_hugepages(void)
1125 {
1126         struct hstate *h;
1127
1128         for_each_hstate(h) {
1129                 char buf[32];
1130                 printk(KERN_INFO "HugeTLB registered %s page size, "
1131                                  "pre-allocated %ld pages\n",
1132                         memfmt(buf, huge_page_size(h)),
1133                         h->free_huge_pages);
1134         }
1135 }
1136
1137 #ifdef CONFIG_HIGHMEM
1138 static void try_to_free_low(struct hstate *h, unsigned long count)
1139 {
1140         int i;
1141
1142         if (h->order >= MAX_ORDER)
1143                 return;
1144
1145         for (i = 0; i < MAX_NUMNODES; ++i) {
1146                 struct page *page, *next;
1147                 struct list_head *freel = &h->hugepage_freelists[i];
1148                 list_for_each_entry_safe(page, next, freel, lru) {
1149                         if (count >= h->nr_huge_pages)
1150                                 return;
1151                         if (PageHighMem(page))
1152                                 continue;
1153                         list_del(&page->lru);
1154                         update_and_free_page(h, page);
1155                         h->free_huge_pages--;
1156                         h->free_huge_pages_node[page_to_nid(page)]--;
1157                 }
1158         }
1159 }
1160 #else
1161 static inline void try_to_free_low(struct hstate *h, unsigned long count)
1162 {
1163 }
1164 #endif
1165
1166 /*
1167  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1168  * balanced by operating on them in a round-robin fashion.
1169  * Returns 1 if an adjustment was made.
1170  */
1171 static int adjust_pool_surplus(struct hstate *h, int delta)
1172 {
1173         int start_nid, next_nid;
1174         int ret = 0;
1175
1176         VM_BUG_ON(delta != -1 && delta != 1);
1177
1178         if (delta < 0)
1179                 start_nid = h->next_nid_to_alloc;
1180         else
1181                 start_nid = h->next_nid_to_free;
1182         next_nid = start_nid;
1183
1184         do {
1185                 int nid = next_nid;
1186                 if (delta < 0)  {
1187                         next_nid = hstate_next_node_to_alloc(h);
1188                         /*
1189                          * To shrink on this node, there must be a surplus page
1190                          */
1191                         if (!h->surplus_huge_pages_node[nid])
1192                                 continue;
1193                 }
1194                 if (delta > 0) {
1195                         next_nid = hstate_next_node_to_free(h);
1196                         /*
1197                          * Surplus cannot exceed the total number of pages
1198                          */
1199                         if (h->surplus_huge_pages_node[nid] >=
1200                                                 h->nr_huge_pages_node[nid])
1201                                 continue;
1202                 }
1203
1204                 h->surplus_huge_pages += delta;
1205                 h->surplus_huge_pages_node[nid] += delta;
1206                 ret = 1;
1207                 break;
1208         } while (next_nid != start_nid);
1209
1210         return ret;
1211 }
1212
1213 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1214 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1215 {
1216         unsigned long min_count, ret;
1217
1218         if (h->order >= MAX_ORDER)
1219                 return h->max_huge_pages;
1220
1221         /*
1222          * Increase the pool size
1223          * First take pages out of surplus state.  Then make up the
1224          * remaining difference by allocating fresh huge pages.
1225          *
1226          * We might race with alloc_buddy_huge_page() here and be unable
1227          * to convert a surplus huge page to a normal huge page. That is
1228          * not critical, though, it just means the overall size of the
1229          * pool might be one hugepage larger than it needs to be, but
1230          * within all the constraints specified by the sysctls.
1231          */
1232         spin_lock(&hugetlb_lock);
1233         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1234                 if (!adjust_pool_surplus(h, -1))
1235                         break;
1236         }
1237
1238         while (count > persistent_huge_pages(h)) {
1239                 /*
1240                  * If this allocation races such that we no longer need the
1241                  * page, free_huge_page will handle it by freeing the page
1242                  * and reducing the surplus.
1243                  */
1244                 spin_unlock(&hugetlb_lock);
1245                 ret = alloc_fresh_huge_page(h);
1246                 spin_lock(&hugetlb_lock);
1247                 if (!ret)
1248                         goto out;
1249
1250         }
1251
1252         /*
1253          * Decrease the pool size
1254          * First return free pages to the buddy allocator (being careful
1255          * to keep enough around to satisfy reservations).  Then place
1256          * pages into surplus state as needed so the pool will shrink
1257          * to the desired size as pages become free.
1258          *
1259          * By placing pages into the surplus state independent of the
1260          * overcommit value, we are allowing the surplus pool size to
1261          * exceed overcommit. There are few sane options here. Since
1262          * alloc_buddy_huge_page() is checking the global counter,
1263          * though, we'll note that we're not allowed to exceed surplus
1264          * and won't grow the pool anywhere else. Not until one of the
1265          * sysctls are changed, or the surplus pages go out of use.
1266          */
1267         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1268         min_count = max(count, min_count);
1269         try_to_free_low(h, min_count);
1270         while (min_count < persistent_huge_pages(h)) {
1271                 if (!free_pool_huge_page(h))
1272                         break;
1273         }
1274         while (count < persistent_huge_pages(h)) {
1275                 if (!adjust_pool_surplus(h, 1))
1276                         break;
1277         }
1278 out:
1279         ret = persistent_huge_pages(h);
1280         spin_unlock(&hugetlb_lock);
1281         return ret;
1282 }
1283
1284 #define HSTATE_ATTR_RO(_name) \
1285         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1286
1287 #define HSTATE_ATTR(_name) \
1288         static struct kobj_attribute _name##_attr = \
1289                 __ATTR(_name, 0644, _name##_show, _name##_store)
1290
1291 static struct kobject *hugepages_kobj;
1292 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1293
1294 static struct hstate *kobj_to_hstate(struct kobject *kobj)
1295 {
1296         int i;
1297         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1298                 if (hstate_kobjs[i] == kobj)
1299                         return &hstates[i];
1300         BUG();
1301         return NULL;
1302 }
1303
1304 static ssize_t nr_hugepages_show(struct kobject *kobj,
1305                                         struct kobj_attribute *attr, char *buf)
1306 {
1307         struct hstate *h = kobj_to_hstate(kobj);
1308         return sprintf(buf, "%lu\n", h->nr_huge_pages);
1309 }
1310 static ssize_t nr_hugepages_store(struct kobject *kobj,
1311                 struct kobj_attribute *attr, const char *buf, size_t count)
1312 {
1313         int err;
1314         unsigned long input;
1315         struct hstate *h = kobj_to_hstate(kobj);
1316
1317         err = strict_strtoul(buf, 10, &input);
1318         if (err)
1319                 return 0;
1320
1321         h->max_huge_pages = set_max_huge_pages(h, input);
1322
1323         return count;
1324 }
1325 HSTATE_ATTR(nr_hugepages);
1326
1327 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1328                                         struct kobj_attribute *attr, char *buf)
1329 {
1330         struct hstate *h = kobj_to_hstate(kobj);
1331         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1332 }
1333 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1334                 struct kobj_attribute *attr, const char *buf, size_t count)
1335 {
1336         int err;
1337         unsigned long input;
1338         struct hstate *h = kobj_to_hstate(kobj);
1339
1340         err = strict_strtoul(buf, 10, &input);
1341         if (err)
1342                 return 0;
1343
1344         spin_lock(&hugetlb_lock);
1345         h->nr_overcommit_huge_pages = input;
1346         spin_unlock(&hugetlb_lock);
1347
1348         return count;
1349 }
1350 HSTATE_ATTR(nr_overcommit_hugepages);
1351
1352 static ssize_t free_hugepages_show(struct kobject *kobj,
1353                                         struct kobj_attribute *attr, char *buf)
1354 {
1355         struct hstate *h = kobj_to_hstate(kobj);
1356         return sprintf(buf, "%lu\n", h->free_huge_pages);
1357 }
1358 HSTATE_ATTR_RO(free_hugepages);
1359
1360 static ssize_t resv_hugepages_show(struct kobject *kobj,
1361                                         struct kobj_attribute *attr, char *buf)
1362 {
1363         struct hstate *h = kobj_to_hstate(kobj);
1364         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1365 }
1366 HSTATE_ATTR_RO(resv_hugepages);
1367
1368 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1369                                         struct kobj_attribute *attr, char *buf)
1370 {
1371         struct hstate *h = kobj_to_hstate(kobj);
1372         return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1373 }
1374 HSTATE_ATTR_RO(surplus_hugepages);
1375
1376 static struct attribute *hstate_attrs[] = {
1377         &nr_hugepages_attr.attr,
1378         &nr_overcommit_hugepages_attr.attr,
1379         &free_hugepages_attr.attr,
1380         &resv_hugepages_attr.attr,
1381         &surplus_hugepages_attr.attr,
1382         NULL,
1383 };
1384
1385 static struct attribute_group hstate_attr_group = {
1386         .attrs = hstate_attrs,
1387 };
1388
1389 static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1390 {
1391         int retval;
1392
1393         hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1394                                                         hugepages_kobj);
1395         if (!hstate_kobjs[h - hstates])
1396                 return -ENOMEM;
1397
1398         retval = sysfs_create_group(hstate_kobjs[h - hstates],
1399                                                         &hstate_attr_group);
1400         if (retval)
1401                 kobject_put(hstate_kobjs[h - hstates]);
1402
1403         return retval;
1404 }
1405
1406 static void __init hugetlb_sysfs_init(void)
1407 {
1408         struct hstate *h;
1409         int err;
1410
1411         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1412         if (!hugepages_kobj)
1413                 return;
1414
1415         for_each_hstate(h) {
1416                 err = hugetlb_sysfs_add_hstate(h);
1417                 if (err)
1418                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1419                                                                 h->name);
1420         }
1421 }
1422
1423 static void __exit hugetlb_exit(void)
1424 {
1425         struct hstate *h;
1426
1427         for_each_hstate(h) {
1428                 kobject_put(hstate_kobjs[h - hstates]);
1429         }
1430
1431         kobject_put(hugepages_kobj);
1432 }
1433 module_exit(hugetlb_exit);
1434
1435 static int __init hugetlb_init(void)
1436 {
1437         /* Some platform decide whether they support huge pages at boot
1438          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1439          * there is no such support
1440          */
1441         if (HPAGE_SHIFT == 0)
1442                 return 0;
1443
1444         if (!size_to_hstate(default_hstate_size)) {
1445                 default_hstate_size = HPAGE_SIZE;
1446                 if (!size_to_hstate(default_hstate_size))
1447                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1448         }
1449         default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1450         if (default_hstate_max_huge_pages)
1451                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1452
1453         hugetlb_init_hstates();
1454
1455         gather_bootmem_prealloc();
1456
1457         report_hugepages();
1458
1459         hugetlb_sysfs_init();
1460
1461         return 0;
1462 }
1463 module_init(hugetlb_init);
1464
1465 /* Should be called on processing a hugepagesz=... option */
1466 void __init hugetlb_add_hstate(unsigned order)
1467 {
1468         struct hstate *h;
1469         unsigned long i;
1470
1471         if (size_to_hstate(PAGE_SIZE << order)) {
1472                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1473                 return;
1474         }
1475         BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1476         BUG_ON(order == 0);
1477         h = &hstates[max_hstate++];
1478         h->order = order;
1479         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1480         h->nr_huge_pages = 0;
1481         h->free_huge_pages = 0;
1482         for (i = 0; i < MAX_NUMNODES; ++i)
1483                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1484         h->next_nid_to_alloc = first_node(node_online_map);
1485         h->next_nid_to_free = first_node(node_online_map);
1486         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1487                                         huge_page_size(h)/1024);
1488
1489         parsed_hstate = h;
1490 }
1491
1492 static int __init hugetlb_nrpages_setup(char *s)
1493 {
1494         unsigned long *mhp;
1495         static unsigned long *last_mhp;
1496
1497         /*
1498          * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1499          * so this hugepages= parameter goes to the "default hstate".
1500          */
1501         if (!max_hstate)
1502                 mhp = &default_hstate_max_huge_pages;
1503         else
1504                 mhp = &parsed_hstate->max_huge_pages;
1505
1506         if (mhp == last_mhp) {
1507                 printk(KERN_WARNING "hugepages= specified twice without "
1508                         "interleaving hugepagesz=, ignoring\n");
1509                 return 1;
1510         }
1511
1512         if (sscanf(s, "%lu", mhp) <= 0)
1513                 *mhp = 0;
1514
1515         /*
1516          * Global state is always initialized later in hugetlb_init.
1517          * But we need to allocate >= MAX_ORDER hstates here early to still
1518          * use the bootmem allocator.
1519          */
1520         if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1521                 hugetlb_hstate_alloc_pages(parsed_hstate);
1522
1523         last_mhp = mhp;
1524
1525         return 1;
1526 }
1527 __setup("hugepages=", hugetlb_nrpages_setup);
1528
1529 static int __init hugetlb_default_setup(char *s)
1530 {
1531         default_hstate_size = memparse(s, &s);
1532         return 1;
1533 }
1534 __setup("default_hugepagesz=", hugetlb_default_setup);
1535
1536 static unsigned int cpuset_mems_nr(unsigned int *array)
1537 {
1538         int node;
1539         unsigned int nr = 0;
1540
1541         for_each_node_mask(node, cpuset_current_mems_allowed)
1542                 nr += array[node];
1543
1544         return nr;
1545 }
1546
1547 #ifdef CONFIG_SYSCTL
1548 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1549                            struct file *file, void __user *buffer,
1550                            size_t *length, loff_t *ppos)
1551 {
1552         struct hstate *h = &default_hstate;
1553         unsigned long tmp;
1554
1555         if (!write)
1556                 tmp = h->max_huge_pages;
1557
1558         table->data = &tmp;
1559         table->maxlen = sizeof(unsigned long);
1560         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1561
1562         if (write)
1563                 h->max_huge_pages = set_max_huge_pages(h, tmp);
1564
1565         return 0;
1566 }
1567
1568 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1569                         struct file *file, void __user *buffer,
1570                         size_t *length, loff_t *ppos)
1571 {
1572         proc_dointvec(table, write, file, buffer, length, ppos);
1573         if (hugepages_treat_as_movable)
1574                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1575         else
1576                 htlb_alloc_mask = GFP_HIGHUSER;
1577         return 0;
1578 }
1579
1580 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1581                         struct file *file, void __user *buffer,
1582                         size_t *length, loff_t *ppos)
1583 {
1584         struct hstate *h = &default_hstate;
1585         unsigned long tmp;
1586
1587         if (!write)
1588                 tmp = h->nr_overcommit_huge_pages;
1589
1590         table->data = &tmp;
1591         table->maxlen = sizeof(unsigned long);
1592         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1593
1594         if (write) {
1595                 spin_lock(&hugetlb_lock);
1596                 h->nr_overcommit_huge_pages = tmp;
1597                 spin_unlock(&hugetlb_lock);
1598         }
1599
1600         return 0;
1601 }
1602
1603 #endif /* CONFIG_SYSCTL */
1604
1605 void hugetlb_report_meminfo(struct seq_file *m)
1606 {
1607         struct hstate *h = &default_hstate;
1608         seq_printf(m,
1609                         "HugePages_Total:   %5lu\n"
1610                         "HugePages_Free:    %5lu\n"
1611                         "HugePages_Rsvd:    %5lu\n"
1612                         "HugePages_Surp:    %5lu\n"
1613                         "Hugepagesize:   %8lu kB\n",
1614                         h->nr_huge_pages,
1615                         h->free_huge_pages,
1616                         h->resv_huge_pages,
1617                         h->surplus_huge_pages,
1618                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1619 }
1620
1621 int hugetlb_report_node_meminfo(int nid, char *buf)
1622 {
1623         struct hstate *h = &default_hstate;
1624         return sprintf(buf,
1625                 "Node %d HugePages_Total: %5u\n"
1626                 "Node %d HugePages_Free:  %5u\n"
1627                 "Node %d HugePages_Surp:  %5u\n",
1628                 nid, h->nr_huge_pages_node[nid],
1629                 nid, h->free_huge_pages_node[nid],
1630                 nid, h->surplus_huge_pages_node[nid]);
1631 }
1632
1633 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1634 unsigned long hugetlb_total_pages(void)
1635 {
1636         struct hstate *h = &default_hstate;
1637         return h->nr_huge_pages * pages_per_huge_page(h);
1638 }
1639
1640 static int hugetlb_acct_memory(struct hstate *h, long delta)
1641 {
1642         int ret = -ENOMEM;
1643
1644         spin_lock(&hugetlb_lock);
1645         /*
1646          * When cpuset is configured, it breaks the strict hugetlb page
1647          * reservation as the accounting is done on a global variable. Such
1648          * reservation is completely rubbish in the presence of cpuset because
1649          * the reservation is not checked against page availability for the
1650          * current cpuset. Application can still potentially OOM'ed by kernel
1651          * with lack of free htlb page in cpuset that the task is in.
1652          * Attempt to enforce strict accounting with cpuset is almost
1653          * impossible (or too ugly) because cpuset is too fluid that
1654          * task or memory node can be dynamically moved between cpusets.
1655          *
1656          * The change of semantics for shared hugetlb mapping with cpuset is
1657          * undesirable. However, in order to preserve some of the semantics,
1658          * we fall back to check against current free page availability as
1659          * a best attempt and hopefully to minimize the impact of changing
1660          * semantics that cpuset has.
1661          */
1662         if (delta > 0) {
1663                 if (gather_surplus_pages(h, delta) < 0)
1664                         goto out;
1665
1666                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1667                         return_unused_surplus_pages(h, delta);
1668                         goto out;
1669                 }
1670         }
1671
1672         ret = 0;
1673         if (delta < 0)
1674                 return_unused_surplus_pages(h, (unsigned long) -delta);
1675
1676 out:
1677         spin_unlock(&hugetlb_lock);
1678         return ret;
1679 }
1680
1681 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1682 {
1683         struct resv_map *reservations = vma_resv_map(vma);
1684
1685         /*
1686          * This new VMA should share its siblings reservation map if present.
1687          * The VMA will only ever have a valid reservation map pointer where
1688          * it is being copied for another still existing VMA.  As that VMA
1689          * has a reference to the reservation map it cannot dissappear until
1690          * after this open call completes.  It is therefore safe to take a
1691          * new reference here without additional locking.
1692          */
1693         if (reservations)
1694                 kref_get(&reservations->refs);
1695 }
1696
1697 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1698 {
1699         struct hstate *h = hstate_vma(vma);
1700         struct resv_map *reservations = vma_resv_map(vma);
1701         unsigned long reserve;
1702         unsigned long start;
1703         unsigned long end;
1704
1705         if (reservations) {
1706                 start = vma_hugecache_offset(h, vma, vma->vm_start);
1707                 end = vma_hugecache_offset(h, vma, vma->vm_end);
1708
1709                 reserve = (end - start) -
1710                         region_count(&reservations->regions, start, end);
1711
1712                 kref_put(&reservations->refs, resv_map_release);
1713
1714                 if (reserve) {
1715                         hugetlb_acct_memory(h, -reserve);
1716                         hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1717                 }
1718         }
1719 }
1720
1721 /*
1722  * We cannot handle pagefaults against hugetlb pages at all.  They cause
1723  * handle_mm_fault() to try to instantiate regular-sized pages in the
1724  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
1725  * this far.
1726  */
1727 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1728 {
1729         BUG();
1730         return 0;
1731 }
1732
1733 struct vm_operations_struct hugetlb_vm_ops = {
1734         .fault = hugetlb_vm_op_fault,
1735         .open = hugetlb_vm_op_open,
1736         .close = hugetlb_vm_op_close,
1737 };
1738
1739 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1740                                 int writable)
1741 {
1742         pte_t entry;
1743
1744         if (writable) {
1745                 entry =
1746                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1747         } else {
1748                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1749         }
1750         entry = pte_mkyoung(entry);
1751         entry = pte_mkhuge(entry);
1752
1753         return entry;
1754 }
1755
1756 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1757                                    unsigned long address, pte_t *ptep)
1758 {
1759         pte_t entry;
1760
1761         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1762         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1763                 update_mmu_cache(vma, address, entry);
1764         }
1765 }
1766
1767
1768 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1769                             struct vm_area_struct *vma)
1770 {
1771         pte_t *src_pte, *dst_pte, entry;
1772         struct page *ptepage;
1773         unsigned long addr;
1774         int cow;
1775         struct hstate *h = hstate_vma(vma);
1776         unsigned long sz = huge_page_size(h);
1777
1778         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1779
1780         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1781                 src_pte = huge_pte_offset(src, addr);
1782                 if (!src_pte)
1783                         continue;
1784                 dst_pte = huge_pte_alloc(dst, addr, sz);
1785                 if (!dst_pte)
1786                         goto nomem;
1787
1788                 /* If the pagetables are shared don't copy or take references */
1789                 if (dst_pte == src_pte)
1790                         continue;
1791
1792                 spin_lock(&dst->page_table_lock);
1793                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1794                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1795                         if (cow)
1796                                 huge_ptep_set_wrprotect(src, addr, src_pte);
1797                         entry = huge_ptep_get(src_pte);
1798                         ptepage = pte_page(entry);
1799                         get_page(ptepage);
1800                         set_huge_pte_at(dst, addr, dst_pte, entry);
1801                 }
1802                 spin_unlock(&src->page_table_lock);
1803                 spin_unlock(&dst->page_table_lock);
1804         }
1805         return 0;
1806
1807 nomem:
1808         return -ENOMEM;
1809 }
1810
1811 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1812                             unsigned long end, struct page *ref_page)
1813 {
1814         struct mm_struct *mm = vma->vm_mm;
1815         unsigned long address;
1816         pte_t *ptep;
1817         pte_t pte;
1818         struct page *page;
1819         struct page *tmp;
1820         struct hstate *h = hstate_vma(vma);
1821         unsigned long sz = huge_page_size(h);
1822
1823         /*
1824          * A page gathering list, protected by per file i_mmap_lock. The
1825          * lock is used to avoid list corruption from multiple unmapping
1826          * of the same page since we are using page->lru.
1827          */
1828         LIST_HEAD(page_list);
1829
1830         WARN_ON(!is_vm_hugetlb_page(vma));
1831         BUG_ON(start & ~huge_page_mask(h));
1832         BUG_ON(end & ~huge_page_mask(h));
1833
1834         mmu_notifier_invalidate_range_start(mm, start, end);
1835         spin_lock(&mm->page_table_lock);
1836         for (address = start; address < end; address += sz) {
1837                 ptep = huge_pte_offset(mm, address);
1838                 if (!ptep)
1839                         continue;
1840
1841                 if (huge_pmd_unshare(mm, &address, ptep))
1842                         continue;
1843
1844                 /*
1845                  * If a reference page is supplied, it is because a specific
1846                  * page is being unmapped, not a range. Ensure the page we
1847                  * are about to unmap is the actual page of interest.
1848                  */
1849                 if (ref_page) {
1850                         pte = huge_ptep_get(ptep);
1851                         if (huge_pte_none(pte))
1852                                 continue;
1853                         page = pte_page(pte);
1854                         if (page != ref_page)
1855                                 continue;
1856
1857                         /*
1858                          * Mark the VMA as having unmapped its page so that
1859                          * future faults in this VMA will fail rather than
1860                          * looking like data was lost
1861                          */
1862                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1863                 }
1864
1865                 pte = huge_ptep_get_and_clear(mm, address, ptep);
1866                 if (huge_pte_none(pte))
1867                         continue;
1868
1869                 page = pte_page(pte);
1870                 if (pte_dirty(pte))
1871                         set_page_dirty(page);
1872                 list_add(&page->lru, &page_list);
1873         }
1874         spin_unlock(&mm->page_table_lock);
1875         flush_tlb_range(vma, start, end);
1876         mmu_notifier_invalidate_range_end(mm, start, end);
1877         list_for_each_entry_safe(page, tmp, &page_list, lru) {
1878                 list_del(&page->lru);
1879                 put_page(page);
1880         }
1881 }
1882
1883 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1884                           unsigned long end, struct page *ref_page)
1885 {
1886         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1887         __unmap_hugepage_range(vma, start, end, ref_page);
1888         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1889 }
1890
1891 /*
1892  * This is called when the original mapper is failing to COW a MAP_PRIVATE
1893  * mappping it owns the reserve page for. The intention is to unmap the page
1894  * from other VMAs and let the children be SIGKILLed if they are faulting the
1895  * same region.
1896  */
1897 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1898                                 struct page *page, unsigned long address)
1899 {
1900         struct hstate *h = hstate_vma(vma);
1901         struct vm_area_struct *iter_vma;
1902         struct address_space *mapping;
1903         struct prio_tree_iter iter;
1904         pgoff_t pgoff;
1905
1906         /*
1907          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1908          * from page cache lookup which is in HPAGE_SIZE units.
1909          */
1910         address = address & huge_page_mask(h);
1911         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1912                 + (vma->vm_pgoff >> PAGE_SHIFT);
1913         mapping = (struct address_space *)page_private(page);
1914
1915         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1916                 /* Do not unmap the current VMA */
1917                 if (iter_vma == vma)
1918                         continue;
1919
1920                 /*
1921                  * Unmap the page from other VMAs without their own reserves.
1922                  * They get marked to be SIGKILLed if they fault in these
1923                  * areas. This is because a future no-page fault on this VMA
1924                  * could insert a zeroed page instead of the data existing
1925                  * from the time of fork. This would look like data corruption
1926                  */
1927                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1928                         unmap_hugepage_range(iter_vma,
1929                                 address, address + huge_page_size(h),
1930                                 page);
1931         }
1932
1933         return 1;
1934 }
1935
1936 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1937                         unsigned long address, pte_t *ptep, pte_t pte,
1938                         struct page *pagecache_page)
1939 {
1940         struct hstate *h = hstate_vma(vma);
1941         struct page *old_page, *new_page;
1942         int avoidcopy;
1943         int outside_reserve = 0;
1944
1945         old_page = pte_page(pte);
1946
1947 retry_avoidcopy:
1948         /* If no-one else is actually using this page, avoid the copy
1949          * and just make the page writable */
1950         avoidcopy = (page_count(old_page) == 1);
1951         if (avoidcopy) {
1952                 set_huge_ptep_writable(vma, address, ptep);
1953                 return 0;
1954         }
1955
1956         /*
1957          * If the process that created a MAP_PRIVATE mapping is about to
1958          * perform a COW due to a shared page count, attempt to satisfy
1959          * the allocation without using the existing reserves. The pagecache
1960          * page is used to determine if the reserve at this address was
1961          * consumed or not. If reserves were used, a partial faulted mapping
1962          * at the time of fork() could consume its reserves on COW instead
1963          * of the full address range.
1964          */
1965         if (!(vma->vm_flags & VM_MAYSHARE) &&
1966                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1967                         old_page != pagecache_page)
1968                 outside_reserve = 1;
1969
1970         page_cache_get(old_page);
1971         new_page = alloc_huge_page(vma, address, outside_reserve);
1972
1973         if (IS_ERR(new_page)) {
1974                 page_cache_release(old_page);
1975
1976                 /*
1977                  * If a process owning a MAP_PRIVATE mapping fails to COW,
1978                  * it is due to references held by a child and an insufficient
1979                  * huge page pool. To guarantee the original mappers
1980                  * reliability, unmap the page from child processes. The child
1981                  * may get SIGKILLed if it later faults.
1982                  */
1983                 if (outside_reserve) {
1984                         BUG_ON(huge_pte_none(pte));
1985                         if (unmap_ref_private(mm, vma, old_page, address)) {
1986                                 BUG_ON(page_count(old_page) != 1);
1987                                 BUG_ON(huge_pte_none(pte));
1988                                 goto retry_avoidcopy;
1989                         }
1990                         WARN_ON_ONCE(1);
1991                 }
1992
1993                 return -PTR_ERR(new_page);
1994         }
1995
1996         spin_unlock(&mm->page_table_lock);
1997         copy_huge_page(new_page, old_page, address, vma);
1998         __SetPageUptodate(new_page);
1999         spin_lock(&mm->page_table_lock);
2000
2001         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2002         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2003                 /* Break COW */
2004                 huge_ptep_clear_flush(vma, address, ptep);
2005                 set_huge_pte_at(mm, address, ptep,
2006                                 make_huge_pte(vma, new_page, 1));
2007                 /* Make the old page be freed below */
2008                 new_page = old_page;
2009         }
2010         page_cache_release(new_page);
2011         page_cache_release(old_page);
2012         return 0;
2013 }
2014
2015 /* Return the pagecache page at a given address within a VMA */
2016 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2017                         struct vm_area_struct *vma, unsigned long address)
2018 {
2019         struct address_space *mapping;
2020         pgoff_t idx;
2021
2022         mapping = vma->vm_file->f_mapping;
2023         idx = vma_hugecache_offset(h, vma, address);
2024
2025         return find_lock_page(mapping, idx);
2026 }
2027
2028 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2029                         unsigned long address, pte_t *ptep, unsigned int flags)
2030 {
2031         struct hstate *h = hstate_vma(vma);
2032         int ret = VM_FAULT_SIGBUS;
2033         pgoff_t idx;
2034         unsigned long size;
2035         struct page *page;
2036         struct address_space *mapping;
2037         pte_t new_pte;
2038
2039         /*
2040          * Currently, we are forced to kill the process in the event the
2041          * original mapper has unmapped pages from the child due to a failed
2042          * COW. Warn that such a situation has occured as it may not be obvious
2043          */
2044         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2045                 printk(KERN_WARNING
2046                         "PID %d killed due to inadequate hugepage pool\n",
2047                         current->pid);
2048                 return ret;
2049         }
2050
2051         mapping = vma->vm_file->f_mapping;
2052         idx = vma_hugecache_offset(h, vma, address);
2053
2054         /*
2055          * Use page lock to guard against racing truncation
2056          * before we get page_table_lock.
2057          */
2058 retry:
2059         page = find_lock_page(mapping, idx);
2060         if (!page) {
2061                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2062                 if (idx >= size)
2063                         goto out;
2064                 page = alloc_huge_page(vma, address, 0);
2065                 if (IS_ERR(page)) {
2066                         ret = -PTR_ERR(page);
2067                         goto out;
2068                 }
2069                 clear_huge_page(page, address, huge_page_size(h));
2070                 __SetPageUptodate(page);
2071
2072                 if (vma->vm_flags & VM_MAYSHARE) {
2073                         int err;
2074                         struct inode *inode = mapping->host;
2075
2076                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2077                         if (err) {
2078                                 put_page(page);
2079                                 if (err == -EEXIST)
2080                                         goto retry;
2081                                 goto out;
2082                         }
2083
2084                         spin_lock(&inode->i_lock);
2085                         inode->i_blocks += blocks_per_huge_page(h);
2086                         spin_unlock(&inode->i_lock);
2087                 } else
2088                         lock_page(page);
2089         }
2090
2091         /*
2092          * If we are going to COW a private mapping later, we examine the
2093          * pending reservations for this page now. This will ensure that
2094          * any allocations necessary to record that reservation occur outside
2095          * the spinlock.
2096          */
2097         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2098                 if (vma_needs_reservation(h, vma, address) < 0) {
2099                         ret = VM_FAULT_OOM;
2100                         goto backout_unlocked;
2101                 }
2102
2103         spin_lock(&mm->page_table_lock);
2104         size = i_size_read(mapping->host) >> huge_page_shift(h);
2105         if (idx >= size)
2106                 goto backout;
2107
2108         ret = 0;
2109         if (!huge_pte_none(huge_ptep_get(ptep)))
2110                 goto backout;
2111
2112         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2113                                 && (vma->vm_flags & VM_SHARED)));
2114         set_huge_pte_at(mm, address, ptep, new_pte);
2115
2116         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2117                 /* Optimization, do the COW without a second fault */
2118                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2119         }
2120
2121         spin_unlock(&mm->page_table_lock);
2122         unlock_page(page);
2123 out:
2124         return ret;
2125
2126 backout:
2127         spin_unlock(&mm->page_table_lock);
2128 backout_unlocked:
2129         unlock_page(page);
2130         put_page(page);
2131         goto out;
2132 }
2133
2134 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2135                         unsigned long address, unsigned int flags)
2136 {
2137         pte_t *ptep;
2138         pte_t entry;
2139         int ret;
2140         struct page *pagecache_page = NULL;
2141         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2142         struct hstate *h = hstate_vma(vma);
2143
2144         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2145         if (!ptep)
2146                 return VM_FAULT_OOM;
2147
2148         /*
2149          * Serialize hugepage allocation and instantiation, so that we don't
2150          * get spurious allocation failures if two CPUs race to instantiate
2151          * the same page in the page cache.
2152          */
2153         mutex_lock(&hugetlb_instantiation_mutex);
2154         entry = huge_ptep_get(ptep);
2155         if (huge_pte_none(entry)) {
2156                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2157                 goto out_mutex;
2158         }
2159
2160         ret = 0;
2161
2162         /*
2163          * If we are going to COW the mapping later, we examine the pending
2164          * reservations for this page now. This will ensure that any
2165          * allocations necessary to record that reservation occur outside the
2166          * spinlock. For private mappings, we also lookup the pagecache
2167          * page now as it is used to determine if a reservation has been
2168          * consumed.
2169          */
2170         if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2171                 if (vma_needs_reservation(h, vma, address) < 0) {
2172                         ret = VM_FAULT_OOM;
2173                         goto out_mutex;
2174                 }
2175
2176                 if (!(vma->vm_flags & VM_MAYSHARE))
2177                         pagecache_page = hugetlbfs_pagecache_page(h,
2178                                                                 vma, address);
2179         }
2180
2181         spin_lock(&mm->page_table_lock);
2182         /* Check for a racing update before calling hugetlb_cow */
2183         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2184                 goto out_page_table_lock;
2185
2186
2187         if (flags & FAULT_FLAG_WRITE) {
2188                 if (!pte_write(entry)) {
2189                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2190                                                         pagecache_page);
2191                         goto out_page_table_lock;
2192                 }
2193                 entry = pte_mkdirty(entry);
2194         }
2195         entry = pte_mkyoung(entry);
2196         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2197                                                 flags & FAULT_FLAG_WRITE))
2198                 update_mmu_cache(vma, address, entry);
2199
2200 out_page_table_lock:
2201         spin_unlock(&mm->page_table_lock);
2202
2203         if (pagecache_page) {
2204                 unlock_page(pagecache_page);
2205                 put_page(pagecache_page);
2206         }
2207
2208 out_mutex:
2209         mutex_unlock(&hugetlb_instantiation_mutex);
2210
2211         return ret;
2212 }
2213
2214 /* Can be overriden by architectures */
2215 __attribute__((weak)) struct page *
2216 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2217                pud_t *pud, int write)
2218 {
2219         BUG();
2220         return NULL;
2221 }
2222
2223 static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
2224 {
2225         if (!ptep || write || shared)
2226                 return 0;
2227         else
2228                 return huge_pte_none(huge_ptep_get(ptep));
2229 }
2230
2231 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2232                         struct page **pages, struct vm_area_struct **vmas,
2233                         unsigned long *position, int *length, int i,
2234                         int write)
2235 {
2236         unsigned long pfn_offset;
2237         unsigned long vaddr = *position;
2238         int remainder = *length;
2239         struct hstate *h = hstate_vma(vma);
2240         int zeropage_ok = 0;
2241         int shared = vma->vm_flags & VM_SHARED;
2242
2243         spin_lock(&mm->page_table_lock);
2244         while (vaddr < vma->vm_end && remainder) {
2245                 pte_t *pte;
2246                 struct page *page;
2247
2248                 /*
2249                  * Some archs (sparc64, sh*) have multiple pte_ts to
2250                  * each hugepage.  We have to make * sure we get the
2251                  * first, for the page indexing below to work.
2252                  */
2253                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2254                 if (huge_zeropage_ok(pte, write, shared))
2255                         zeropage_ok = 1;
2256
2257                 if (!pte ||
2258                     (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
2259                     (write && !pte_write(huge_ptep_get(pte)))) {
2260                         int ret;
2261
2262                         spin_unlock(&mm->page_table_lock);
2263                         ret = hugetlb_fault(mm, vma, vaddr, write);
2264                         spin_lock(&mm->page_table_lock);
2265                         if (!(ret & VM_FAULT_ERROR))
2266                                 continue;
2267
2268                         remainder = 0;
2269                         if (!i)
2270                                 i = -EFAULT;
2271                         break;
2272                 }
2273
2274                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2275                 page = pte_page(huge_ptep_get(pte));
2276 same_page:
2277                 if (pages) {
2278                         if (zeropage_ok)
2279                                 pages[i] = ZERO_PAGE(0);
2280                         else
2281                                 pages[i] = mem_map_offset(page, pfn_offset);
2282                         get_page(pages[i]);
2283                 }
2284
2285                 if (vmas)
2286                         vmas[i] = vma;
2287
2288                 vaddr += PAGE_SIZE;
2289                 ++pfn_offset;
2290                 --remainder;
2291                 ++i;
2292                 if (vaddr < vma->vm_end && remainder &&
2293                                 pfn_offset < pages_per_huge_page(h)) {
2294                         /*
2295                          * We use pfn_offset to avoid touching the pageframes
2296                          * of this compound page.
2297                          */
2298                         goto same_page;
2299                 }
2300         }
2301         spin_unlock(&mm->page_table_lock);
2302         *length = remainder;
2303         *position = vaddr;
2304
2305         return i;
2306 }
2307
2308 void hugetlb_change_protection(struct vm_area_struct *vma,
2309                 unsigned long address, unsigned long end, pgprot_t newprot)
2310 {
2311         struct mm_struct *mm = vma->vm_mm;
2312         unsigned long start = address;
2313         pte_t *ptep;
2314         pte_t pte;
2315         struct hstate *h = hstate_vma(vma);
2316
2317         BUG_ON(address >= end);
2318         flush_cache_range(vma, address, end);
2319
2320         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2321         spin_lock(&mm->page_table_lock);
2322         for (; address < end; address += huge_page_size(h)) {
2323                 ptep = huge_pte_offset(mm, address);
2324                 if (!ptep)
2325                         continue;
2326                 if (huge_pmd_unshare(mm, &address, ptep))
2327                         continue;
2328                 if (!huge_pte_none(huge_ptep_get(ptep))) {
2329                         pte = huge_ptep_get_and_clear(mm, address, ptep);
2330                         pte = pte_mkhuge(pte_modify(pte, newprot));
2331                         set_huge_pte_at(mm, address, ptep, pte);
2332                 }
2333         }
2334         spin_unlock(&mm->page_table_lock);
2335         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2336
2337         flush_tlb_range(vma, start, end);
2338 }
2339
2340 int hugetlb_reserve_pages(struct inode *inode,
2341                                         long from, long to,
2342                                         struct vm_area_struct *vma,
2343                                         int acctflag)
2344 {
2345         long ret, chg;
2346         struct hstate *h = hstate_inode(inode);
2347
2348         /*
2349          * Only apply hugepage reservation if asked. At fault time, an
2350          * attempt will be made for VM_NORESERVE to allocate a page
2351          * and filesystem quota without using reserves
2352          */
2353         if (acctflag & VM_NORESERVE)
2354                 return 0;
2355
2356         /*
2357          * Shared mappings base their reservation on the number of pages that
2358          * are already allocated on behalf of the file. Private mappings need
2359          * to reserve the full area even if read-only as mprotect() may be
2360          * called to make the mapping read-write. Assume !vma is a shm mapping
2361          */
2362         if (!vma || vma->vm_flags & VM_MAYSHARE)
2363                 chg = region_chg(&inode->i_mapping->private_list, from, to);
2364         else {
2365                 struct resv_map *resv_map = resv_map_alloc();
2366                 if (!resv_map)
2367                         return -ENOMEM;
2368
2369                 chg = to - from;
2370
2371                 set_vma_resv_map(vma, resv_map);
2372                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2373         }
2374
2375         if (chg < 0)
2376                 return chg;
2377
2378         /* There must be enough filesystem quota for the mapping */
2379         if (hugetlb_get_quota(inode->i_mapping, chg))
2380                 return -ENOSPC;
2381
2382         /*
2383          * Check enough hugepages are available for the reservation.
2384          * Hand back the quota if there are not
2385          */
2386         ret = hugetlb_acct_memory(h, chg);
2387         if (ret < 0) {
2388                 hugetlb_put_quota(inode->i_mapping, chg);
2389                 return ret;
2390         }
2391
2392         /*
2393          * Account for the reservations made. Shared mappings record regions
2394          * that have reservations as they are shared by multiple VMAs.
2395          * When the last VMA disappears, the region map says how much
2396          * the reservation was and the page cache tells how much of
2397          * the reservation was consumed. Private mappings are per-VMA and
2398          * only the consumed reservations are tracked. When the VMA
2399          * disappears, the original reservation is the VMA size and the
2400          * consumed reservations are stored in the map. Hence, nothing
2401          * else has to be done for private mappings here
2402          */
2403         if (!vma || vma->vm_flags & VM_MAYSHARE)
2404                 region_add(&inode->i_mapping->private_list, from, to);
2405         return 0;
2406 }
2407
2408 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2409 {
2410         struct hstate *h = hstate_inode(inode);
2411         long chg = region_truncate(&inode->i_mapping->private_list, offset);
2412
2413         spin_lock(&inode->i_lock);
2414         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2415         spin_unlock(&inode->i_lock);
2416
2417         hugetlb_put_quota(inode->i_mapping, (chg - freed));
2418         hugetlb_acct_memory(h, -(chg - freed));
2419 }