hugetlb: override default huge page size
[safe/jmp/linux-2.6] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17 #include <linux/bootmem.h>
18 #include <linux/sysfs.h>
19
20 #include <asm/page.h>
21 #include <asm/pgtable.h>
22
23 #include <linux/hugetlb.h>
24 #include "internal.h"
25
26 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
27 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
28 unsigned long hugepages_treat_as_movable;
29
30 static int max_hstate;
31 unsigned int default_hstate_idx;
32 struct hstate hstates[HUGE_MAX_HSTATE];
33
34 /* for command line parsing */
35 static struct hstate * __initdata parsed_hstate;
36 static unsigned long __initdata default_hstate_max_huge_pages;
37 static unsigned long __initdata default_hstate_size;
38
39 #define for_each_hstate(h) \
40         for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
41
42 /*
43  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
44  */
45 static DEFINE_SPINLOCK(hugetlb_lock);
46
47 /*
48  * Region tracking -- allows tracking of reservations and instantiated pages
49  *                    across the pages in a mapping.
50  *
51  * The region data structures are protected by a combination of the mmap_sem
52  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
53  * must either hold the mmap_sem for write, or the mmap_sem for read and
54  * the hugetlb_instantiation mutex:
55  *
56  *      down_write(&mm->mmap_sem);
57  * or
58  *      down_read(&mm->mmap_sem);
59  *      mutex_lock(&hugetlb_instantiation_mutex);
60  */
61 struct file_region {
62         struct list_head link;
63         long from;
64         long to;
65 };
66
67 static long region_add(struct list_head *head, long f, long t)
68 {
69         struct file_region *rg, *nrg, *trg;
70
71         /* Locate the region we are either in or before. */
72         list_for_each_entry(rg, head, link)
73                 if (f <= rg->to)
74                         break;
75
76         /* Round our left edge to the current segment if it encloses us. */
77         if (f > rg->from)
78                 f = rg->from;
79
80         /* Check for and consume any regions we now overlap with. */
81         nrg = rg;
82         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
83                 if (&rg->link == head)
84                         break;
85                 if (rg->from > t)
86                         break;
87
88                 /* If this area reaches higher then extend our area to
89                  * include it completely.  If this is not the first area
90                  * which we intend to reuse, free it. */
91                 if (rg->to > t)
92                         t = rg->to;
93                 if (rg != nrg) {
94                         list_del(&rg->link);
95                         kfree(rg);
96                 }
97         }
98         nrg->from = f;
99         nrg->to = t;
100         return 0;
101 }
102
103 static long region_chg(struct list_head *head, long f, long t)
104 {
105         struct file_region *rg, *nrg;
106         long chg = 0;
107
108         /* Locate the region we are before or in. */
109         list_for_each_entry(rg, head, link)
110                 if (f <= rg->to)
111                         break;
112
113         /* If we are below the current region then a new region is required.
114          * Subtle, allocate a new region at the position but make it zero
115          * size such that we can guarantee to record the reservation. */
116         if (&rg->link == head || t < rg->from) {
117                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
118                 if (!nrg)
119                         return -ENOMEM;
120                 nrg->from = f;
121                 nrg->to   = f;
122                 INIT_LIST_HEAD(&nrg->link);
123                 list_add(&nrg->link, rg->link.prev);
124
125                 return t - f;
126         }
127
128         /* Round our left edge to the current segment if it encloses us. */
129         if (f > rg->from)
130                 f = rg->from;
131         chg = t - f;
132
133         /* Check for and consume any regions we now overlap with. */
134         list_for_each_entry(rg, rg->link.prev, link) {
135                 if (&rg->link == head)
136                         break;
137                 if (rg->from > t)
138                         return chg;
139
140                 /* We overlap with this area, if it extends futher than
141                  * us then we must extend ourselves.  Account for its
142                  * existing reservation. */
143                 if (rg->to > t) {
144                         chg += rg->to - t;
145                         t = rg->to;
146                 }
147                 chg -= rg->to - rg->from;
148         }
149         return chg;
150 }
151
152 static long region_truncate(struct list_head *head, long end)
153 {
154         struct file_region *rg, *trg;
155         long chg = 0;
156
157         /* Locate the region we are either in or before. */
158         list_for_each_entry(rg, head, link)
159                 if (end <= rg->to)
160                         break;
161         if (&rg->link == head)
162                 return 0;
163
164         /* If we are in the middle of a region then adjust it. */
165         if (end > rg->from) {
166                 chg = rg->to - end;
167                 rg->to = end;
168                 rg = list_entry(rg->link.next, typeof(*rg), link);
169         }
170
171         /* Drop any remaining regions. */
172         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
173                 if (&rg->link == head)
174                         break;
175                 chg += rg->to - rg->from;
176                 list_del(&rg->link);
177                 kfree(rg);
178         }
179         return chg;
180 }
181
182 static long region_count(struct list_head *head, long f, long t)
183 {
184         struct file_region *rg;
185         long chg = 0;
186
187         /* Locate each segment we overlap with, and count that overlap. */
188         list_for_each_entry(rg, head, link) {
189                 int seg_from;
190                 int seg_to;
191
192                 if (rg->to <= f)
193                         continue;
194                 if (rg->from >= t)
195                         break;
196
197                 seg_from = max(rg->from, f);
198                 seg_to = min(rg->to, t);
199
200                 chg += seg_to - seg_from;
201         }
202
203         return chg;
204 }
205
206 /*
207  * Convert the address within this vma to the page offset within
208  * the mapping, in pagecache page units; huge pages here.
209  */
210 static pgoff_t vma_hugecache_offset(struct hstate *h,
211                         struct vm_area_struct *vma, unsigned long address)
212 {
213         return ((address - vma->vm_start) >> huge_page_shift(h)) +
214                         (vma->vm_pgoff >> huge_page_order(h));
215 }
216
217 /*
218  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
219  * bits of the reservation map pointer, which are always clear due to
220  * alignment.
221  */
222 #define HPAGE_RESV_OWNER    (1UL << 0)
223 #define HPAGE_RESV_UNMAPPED (1UL << 1)
224 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
225
226 /*
227  * These helpers are used to track how many pages are reserved for
228  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
229  * is guaranteed to have their future faults succeed.
230  *
231  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
232  * the reserve counters are updated with the hugetlb_lock held. It is safe
233  * to reset the VMA at fork() time as it is not in use yet and there is no
234  * chance of the global counters getting corrupted as a result of the values.
235  *
236  * The private mapping reservation is represented in a subtly different
237  * manner to a shared mapping.  A shared mapping has a region map associated
238  * with the underlying file, this region map represents the backing file
239  * pages which have ever had a reservation assigned which this persists even
240  * after the page is instantiated.  A private mapping has a region map
241  * associated with the original mmap which is attached to all VMAs which
242  * reference it, this region map represents those offsets which have consumed
243  * reservation ie. where pages have been instantiated.
244  */
245 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
246 {
247         return (unsigned long)vma->vm_private_data;
248 }
249
250 static void set_vma_private_data(struct vm_area_struct *vma,
251                                                         unsigned long value)
252 {
253         vma->vm_private_data = (void *)value;
254 }
255
256 struct resv_map {
257         struct kref refs;
258         struct list_head regions;
259 };
260
261 struct resv_map *resv_map_alloc(void)
262 {
263         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
264         if (!resv_map)
265                 return NULL;
266
267         kref_init(&resv_map->refs);
268         INIT_LIST_HEAD(&resv_map->regions);
269
270         return resv_map;
271 }
272
273 void resv_map_release(struct kref *ref)
274 {
275         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
276
277         /* Clear out any active regions before we release the map. */
278         region_truncate(&resv_map->regions, 0);
279         kfree(resv_map);
280 }
281
282 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
283 {
284         VM_BUG_ON(!is_vm_hugetlb_page(vma));
285         if (!(vma->vm_flags & VM_SHARED))
286                 return (struct resv_map *)(get_vma_private_data(vma) &
287                                                         ~HPAGE_RESV_MASK);
288         return 0;
289 }
290
291 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
292 {
293         VM_BUG_ON(!is_vm_hugetlb_page(vma));
294         VM_BUG_ON(vma->vm_flags & VM_SHARED);
295
296         set_vma_private_data(vma, (get_vma_private_data(vma) &
297                                 HPAGE_RESV_MASK) | (unsigned long)map);
298 }
299
300 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
301 {
302         VM_BUG_ON(!is_vm_hugetlb_page(vma));
303         VM_BUG_ON(vma->vm_flags & VM_SHARED);
304
305         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
306 }
307
308 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
309 {
310         VM_BUG_ON(!is_vm_hugetlb_page(vma));
311
312         return (get_vma_private_data(vma) & flag) != 0;
313 }
314
315 /* Decrement the reserved pages in the hugepage pool by one */
316 static void decrement_hugepage_resv_vma(struct hstate *h,
317                         struct vm_area_struct *vma)
318 {
319         if (vma->vm_flags & VM_NORESERVE)
320                 return;
321
322         if (vma->vm_flags & VM_SHARED) {
323                 /* Shared mappings always use reserves */
324                 h->resv_huge_pages--;
325         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
326                 /*
327                  * Only the process that called mmap() has reserves for
328                  * private mappings.
329                  */
330                 h->resv_huge_pages--;
331         }
332 }
333
334 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
335 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
336 {
337         VM_BUG_ON(!is_vm_hugetlb_page(vma));
338         if (!(vma->vm_flags & VM_SHARED))
339                 vma->vm_private_data = (void *)0;
340 }
341
342 /* Returns true if the VMA has associated reserve pages */
343 static int vma_has_private_reserves(struct vm_area_struct *vma)
344 {
345         if (vma->vm_flags & VM_SHARED)
346                 return 0;
347         if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER))
348                 return 0;
349         return 1;
350 }
351
352 static void clear_huge_page(struct page *page,
353                         unsigned long addr, unsigned long sz)
354 {
355         int i;
356
357         might_sleep();
358         for (i = 0; i < sz/PAGE_SIZE; i++) {
359                 cond_resched();
360                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
361         }
362 }
363
364 static void copy_huge_page(struct page *dst, struct page *src,
365                            unsigned long addr, struct vm_area_struct *vma)
366 {
367         int i;
368         struct hstate *h = hstate_vma(vma);
369
370         might_sleep();
371         for (i = 0; i < pages_per_huge_page(h); i++) {
372                 cond_resched();
373                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
374         }
375 }
376
377 static void enqueue_huge_page(struct hstate *h, struct page *page)
378 {
379         int nid = page_to_nid(page);
380         list_add(&page->lru, &h->hugepage_freelists[nid]);
381         h->free_huge_pages++;
382         h->free_huge_pages_node[nid]++;
383 }
384
385 static struct page *dequeue_huge_page(struct hstate *h)
386 {
387         int nid;
388         struct page *page = NULL;
389
390         for (nid = 0; nid < MAX_NUMNODES; ++nid) {
391                 if (!list_empty(&h->hugepage_freelists[nid])) {
392                         page = list_entry(h->hugepage_freelists[nid].next,
393                                           struct page, lru);
394                         list_del(&page->lru);
395                         h->free_huge_pages--;
396                         h->free_huge_pages_node[nid]--;
397                         break;
398                 }
399         }
400         return page;
401 }
402
403 static struct page *dequeue_huge_page_vma(struct hstate *h,
404                                 struct vm_area_struct *vma,
405                                 unsigned long address, int avoid_reserve)
406 {
407         int nid;
408         struct page *page = NULL;
409         struct mempolicy *mpol;
410         nodemask_t *nodemask;
411         struct zonelist *zonelist = huge_zonelist(vma, address,
412                                         htlb_alloc_mask, &mpol, &nodemask);
413         struct zone *zone;
414         struct zoneref *z;
415
416         /*
417          * A child process with MAP_PRIVATE mappings created by their parent
418          * have no page reserves. This check ensures that reservations are
419          * not "stolen". The child may still get SIGKILLed
420          */
421         if (!vma_has_private_reserves(vma) &&
422                         h->free_huge_pages - h->resv_huge_pages == 0)
423                 return NULL;
424
425         /* If reserves cannot be used, ensure enough pages are in the pool */
426         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
427                 return NULL;
428
429         for_each_zone_zonelist_nodemask(zone, z, zonelist,
430                                                 MAX_NR_ZONES - 1, nodemask) {
431                 nid = zone_to_nid(zone);
432                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
433                     !list_empty(&h->hugepage_freelists[nid])) {
434                         page = list_entry(h->hugepage_freelists[nid].next,
435                                           struct page, lru);
436                         list_del(&page->lru);
437                         h->free_huge_pages--;
438                         h->free_huge_pages_node[nid]--;
439
440                         if (!avoid_reserve)
441                                 decrement_hugepage_resv_vma(h, vma);
442
443                         break;
444                 }
445         }
446         mpol_cond_put(mpol);
447         return page;
448 }
449
450 static void update_and_free_page(struct hstate *h, struct page *page)
451 {
452         int i;
453
454         h->nr_huge_pages--;
455         h->nr_huge_pages_node[page_to_nid(page)]--;
456         for (i = 0; i < pages_per_huge_page(h); i++) {
457                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
458                                 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
459                                 1 << PG_private | 1<< PG_writeback);
460         }
461         set_compound_page_dtor(page, NULL);
462         set_page_refcounted(page);
463         arch_release_hugepage(page);
464         __free_pages(page, huge_page_order(h));
465 }
466
467 struct hstate *size_to_hstate(unsigned long size)
468 {
469         struct hstate *h;
470
471         for_each_hstate(h) {
472                 if (huge_page_size(h) == size)
473                         return h;
474         }
475         return NULL;
476 }
477
478 static void free_huge_page(struct page *page)
479 {
480         /*
481          * Can't pass hstate in here because it is called from the
482          * compound page destructor.
483          */
484         struct hstate *h = page_hstate(page);
485         int nid = page_to_nid(page);
486         struct address_space *mapping;
487
488         mapping = (struct address_space *) page_private(page);
489         set_page_private(page, 0);
490         BUG_ON(page_count(page));
491         INIT_LIST_HEAD(&page->lru);
492
493         spin_lock(&hugetlb_lock);
494         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
495                 update_and_free_page(h, page);
496                 h->surplus_huge_pages--;
497                 h->surplus_huge_pages_node[nid]--;
498         } else {
499                 enqueue_huge_page(h, page);
500         }
501         spin_unlock(&hugetlb_lock);
502         if (mapping)
503                 hugetlb_put_quota(mapping, 1);
504 }
505
506 /*
507  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
508  * balanced by operating on them in a round-robin fashion.
509  * Returns 1 if an adjustment was made.
510  */
511 static int adjust_pool_surplus(struct hstate *h, int delta)
512 {
513         static int prev_nid;
514         int nid = prev_nid;
515         int ret = 0;
516
517         VM_BUG_ON(delta != -1 && delta != 1);
518         do {
519                 nid = next_node(nid, node_online_map);
520                 if (nid == MAX_NUMNODES)
521                         nid = first_node(node_online_map);
522
523                 /* To shrink on this node, there must be a surplus page */
524                 if (delta < 0 && !h->surplus_huge_pages_node[nid])
525                         continue;
526                 /* Surplus cannot exceed the total number of pages */
527                 if (delta > 0 && h->surplus_huge_pages_node[nid] >=
528                                                 h->nr_huge_pages_node[nid])
529                         continue;
530
531                 h->surplus_huge_pages += delta;
532                 h->surplus_huge_pages_node[nid] += delta;
533                 ret = 1;
534                 break;
535         } while (nid != prev_nid);
536
537         prev_nid = nid;
538         return ret;
539 }
540
541 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
542 {
543         set_compound_page_dtor(page, free_huge_page);
544         spin_lock(&hugetlb_lock);
545         h->nr_huge_pages++;
546         h->nr_huge_pages_node[nid]++;
547         spin_unlock(&hugetlb_lock);
548         put_page(page); /* free it into the hugepage allocator */
549 }
550
551 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
552 {
553         struct page *page;
554
555         if (h->order >= MAX_ORDER)
556                 return NULL;
557
558         page = alloc_pages_node(nid,
559                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
560                                                 __GFP_REPEAT|__GFP_NOWARN,
561                 huge_page_order(h));
562         if (page) {
563                 if (arch_prepare_hugepage(page)) {
564                         __free_pages(page, HUGETLB_PAGE_ORDER);
565                         return NULL;
566                 }
567                 prep_new_huge_page(h, page, nid);
568         }
569
570         return page;
571 }
572
573 /*
574  * Use a helper variable to find the next node and then
575  * copy it back to hugetlb_next_nid afterwards:
576  * otherwise there's a window in which a racer might
577  * pass invalid nid MAX_NUMNODES to alloc_pages_node.
578  * But we don't need to use a spin_lock here: it really
579  * doesn't matter if occasionally a racer chooses the
580  * same nid as we do.  Move nid forward in the mask even
581  * if we just successfully allocated a hugepage so that
582  * the next caller gets hugepages on the next node.
583  */
584 static int hstate_next_node(struct hstate *h)
585 {
586         int next_nid;
587         next_nid = next_node(h->hugetlb_next_nid, node_online_map);
588         if (next_nid == MAX_NUMNODES)
589                 next_nid = first_node(node_online_map);
590         h->hugetlb_next_nid = next_nid;
591         return next_nid;
592 }
593
594 static int alloc_fresh_huge_page(struct hstate *h)
595 {
596         struct page *page;
597         int start_nid;
598         int next_nid;
599         int ret = 0;
600
601         start_nid = h->hugetlb_next_nid;
602
603         do {
604                 page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
605                 if (page)
606                         ret = 1;
607                 next_nid = hstate_next_node(h);
608         } while (!page && h->hugetlb_next_nid != start_nid);
609
610         if (ret)
611                 count_vm_event(HTLB_BUDDY_PGALLOC);
612         else
613                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
614
615         return ret;
616 }
617
618 static struct page *alloc_buddy_huge_page(struct hstate *h,
619                         struct vm_area_struct *vma, unsigned long address)
620 {
621         struct page *page;
622         unsigned int nid;
623
624         if (h->order >= MAX_ORDER)
625                 return NULL;
626
627         /*
628          * Assume we will successfully allocate the surplus page to
629          * prevent racing processes from causing the surplus to exceed
630          * overcommit
631          *
632          * This however introduces a different race, where a process B
633          * tries to grow the static hugepage pool while alloc_pages() is
634          * called by process A. B will only examine the per-node
635          * counters in determining if surplus huge pages can be
636          * converted to normal huge pages in adjust_pool_surplus(). A
637          * won't be able to increment the per-node counter, until the
638          * lock is dropped by B, but B doesn't drop hugetlb_lock until
639          * no more huge pages can be converted from surplus to normal
640          * state (and doesn't try to convert again). Thus, we have a
641          * case where a surplus huge page exists, the pool is grown, and
642          * the surplus huge page still exists after, even though it
643          * should just have been converted to a normal huge page. This
644          * does not leak memory, though, as the hugepage will be freed
645          * once it is out of use. It also does not allow the counters to
646          * go out of whack in adjust_pool_surplus() as we don't modify
647          * the node values until we've gotten the hugepage and only the
648          * per-node value is checked there.
649          */
650         spin_lock(&hugetlb_lock);
651         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
652                 spin_unlock(&hugetlb_lock);
653                 return NULL;
654         } else {
655                 h->nr_huge_pages++;
656                 h->surplus_huge_pages++;
657         }
658         spin_unlock(&hugetlb_lock);
659
660         page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
661                                         __GFP_REPEAT|__GFP_NOWARN,
662                                         huge_page_order(h));
663
664         spin_lock(&hugetlb_lock);
665         if (page) {
666                 /*
667                  * This page is now managed by the hugetlb allocator and has
668                  * no users -- drop the buddy allocator's reference.
669                  */
670                 put_page_testzero(page);
671                 VM_BUG_ON(page_count(page));
672                 nid = page_to_nid(page);
673                 set_compound_page_dtor(page, free_huge_page);
674                 /*
675                  * We incremented the global counters already
676                  */
677                 h->nr_huge_pages_node[nid]++;
678                 h->surplus_huge_pages_node[nid]++;
679                 __count_vm_event(HTLB_BUDDY_PGALLOC);
680         } else {
681                 h->nr_huge_pages--;
682                 h->surplus_huge_pages--;
683                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
684         }
685         spin_unlock(&hugetlb_lock);
686
687         return page;
688 }
689
690 /*
691  * Increase the hugetlb pool such that it can accomodate a reservation
692  * of size 'delta'.
693  */
694 static int gather_surplus_pages(struct hstate *h, int delta)
695 {
696         struct list_head surplus_list;
697         struct page *page, *tmp;
698         int ret, i;
699         int needed, allocated;
700
701         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
702         if (needed <= 0) {
703                 h->resv_huge_pages += delta;
704                 return 0;
705         }
706
707         allocated = 0;
708         INIT_LIST_HEAD(&surplus_list);
709
710         ret = -ENOMEM;
711 retry:
712         spin_unlock(&hugetlb_lock);
713         for (i = 0; i < needed; i++) {
714                 page = alloc_buddy_huge_page(h, NULL, 0);
715                 if (!page) {
716                         /*
717                          * We were not able to allocate enough pages to
718                          * satisfy the entire reservation so we free what
719                          * we've allocated so far.
720                          */
721                         spin_lock(&hugetlb_lock);
722                         needed = 0;
723                         goto free;
724                 }
725
726                 list_add(&page->lru, &surplus_list);
727         }
728         allocated += needed;
729
730         /*
731          * After retaking hugetlb_lock, we need to recalculate 'needed'
732          * because either resv_huge_pages or free_huge_pages may have changed.
733          */
734         spin_lock(&hugetlb_lock);
735         needed = (h->resv_huge_pages + delta) -
736                         (h->free_huge_pages + allocated);
737         if (needed > 0)
738                 goto retry;
739
740         /*
741          * The surplus_list now contains _at_least_ the number of extra pages
742          * needed to accomodate the reservation.  Add the appropriate number
743          * of pages to the hugetlb pool and free the extras back to the buddy
744          * allocator.  Commit the entire reservation here to prevent another
745          * process from stealing the pages as they are added to the pool but
746          * before they are reserved.
747          */
748         needed += allocated;
749         h->resv_huge_pages += delta;
750         ret = 0;
751 free:
752         /* Free the needed pages to the hugetlb pool */
753         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
754                 if ((--needed) < 0)
755                         break;
756                 list_del(&page->lru);
757                 enqueue_huge_page(h, page);
758         }
759
760         /* Free unnecessary surplus pages to the buddy allocator */
761         if (!list_empty(&surplus_list)) {
762                 spin_unlock(&hugetlb_lock);
763                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
764                         list_del(&page->lru);
765                         /*
766                          * The page has a reference count of zero already, so
767                          * call free_huge_page directly instead of using
768                          * put_page.  This must be done with hugetlb_lock
769                          * unlocked which is safe because free_huge_page takes
770                          * hugetlb_lock before deciding how to free the page.
771                          */
772                         free_huge_page(page);
773                 }
774                 spin_lock(&hugetlb_lock);
775         }
776
777         return ret;
778 }
779
780 /*
781  * When releasing a hugetlb pool reservation, any surplus pages that were
782  * allocated to satisfy the reservation must be explicitly freed if they were
783  * never used.
784  */
785 static void return_unused_surplus_pages(struct hstate *h,
786                                         unsigned long unused_resv_pages)
787 {
788         static int nid = -1;
789         struct page *page;
790         unsigned long nr_pages;
791
792         /*
793          * We want to release as many surplus pages as possible, spread
794          * evenly across all nodes. Iterate across all nodes until we
795          * can no longer free unreserved surplus pages. This occurs when
796          * the nodes with surplus pages have no free pages.
797          */
798         unsigned long remaining_iterations = num_online_nodes();
799
800         /* Uncommit the reservation */
801         h->resv_huge_pages -= unused_resv_pages;
802
803         /* Cannot return gigantic pages currently */
804         if (h->order >= MAX_ORDER)
805                 return;
806
807         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
808
809         while (remaining_iterations-- && nr_pages) {
810                 nid = next_node(nid, node_online_map);
811                 if (nid == MAX_NUMNODES)
812                         nid = first_node(node_online_map);
813
814                 if (!h->surplus_huge_pages_node[nid])
815                         continue;
816
817                 if (!list_empty(&h->hugepage_freelists[nid])) {
818                         page = list_entry(h->hugepage_freelists[nid].next,
819                                           struct page, lru);
820                         list_del(&page->lru);
821                         update_and_free_page(h, page);
822                         h->free_huge_pages--;
823                         h->free_huge_pages_node[nid]--;
824                         h->surplus_huge_pages--;
825                         h->surplus_huge_pages_node[nid]--;
826                         nr_pages--;
827                         remaining_iterations = num_online_nodes();
828                 }
829         }
830 }
831
832 /*
833  * Determine if the huge page at addr within the vma has an associated
834  * reservation.  Where it does not we will need to logically increase
835  * reservation and actually increase quota before an allocation can occur.
836  * Where any new reservation would be required the reservation change is
837  * prepared, but not committed.  Once the page has been quota'd allocated
838  * an instantiated the change should be committed via vma_commit_reservation.
839  * No action is required on failure.
840  */
841 static int vma_needs_reservation(struct hstate *h,
842                         struct vm_area_struct *vma, unsigned long addr)
843 {
844         struct address_space *mapping = vma->vm_file->f_mapping;
845         struct inode *inode = mapping->host;
846
847         if (vma->vm_flags & VM_SHARED) {
848                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
849                 return region_chg(&inode->i_mapping->private_list,
850                                                         idx, idx + 1);
851
852         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
853                 return 1;
854
855         } else  {
856                 int err;
857                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
858                 struct resv_map *reservations = vma_resv_map(vma);
859
860                 err = region_chg(&reservations->regions, idx, idx + 1);
861                 if (err < 0)
862                         return err;
863                 return 0;
864         }
865 }
866 static void vma_commit_reservation(struct hstate *h,
867                         struct vm_area_struct *vma, unsigned long addr)
868 {
869         struct address_space *mapping = vma->vm_file->f_mapping;
870         struct inode *inode = mapping->host;
871
872         if (vma->vm_flags & VM_SHARED) {
873                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
874                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
875
876         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
877                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
878                 struct resv_map *reservations = vma_resv_map(vma);
879
880                 /* Mark this page used in the map. */
881                 region_add(&reservations->regions, idx, idx + 1);
882         }
883 }
884
885 static struct page *alloc_huge_page(struct vm_area_struct *vma,
886                                     unsigned long addr, int avoid_reserve)
887 {
888         struct hstate *h = hstate_vma(vma);
889         struct page *page;
890         struct address_space *mapping = vma->vm_file->f_mapping;
891         struct inode *inode = mapping->host;
892         unsigned int chg;
893
894         /*
895          * Processes that did not create the mapping will have no reserves and
896          * will not have accounted against quota. Check that the quota can be
897          * made before satisfying the allocation
898          * MAP_NORESERVE mappings may also need pages and quota allocated
899          * if no reserve mapping overlaps.
900          */
901         chg = vma_needs_reservation(h, vma, addr);
902         if (chg < 0)
903                 return ERR_PTR(chg);
904         if (chg)
905                 if (hugetlb_get_quota(inode->i_mapping, chg))
906                         return ERR_PTR(-ENOSPC);
907
908         spin_lock(&hugetlb_lock);
909         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
910         spin_unlock(&hugetlb_lock);
911
912         if (!page) {
913                 page = alloc_buddy_huge_page(h, vma, addr);
914                 if (!page) {
915                         hugetlb_put_quota(inode->i_mapping, chg);
916                         return ERR_PTR(-VM_FAULT_OOM);
917                 }
918         }
919
920         set_page_refcounted(page);
921         set_page_private(page, (unsigned long) mapping);
922
923         vma_commit_reservation(h, vma, addr);
924
925         return page;
926 }
927
928 static __initdata LIST_HEAD(huge_boot_pages);
929
930 struct huge_bootmem_page {
931         struct list_head list;
932         struct hstate *hstate;
933 };
934
935 static int __init alloc_bootmem_huge_page(struct hstate *h)
936 {
937         struct huge_bootmem_page *m;
938         int nr_nodes = nodes_weight(node_online_map);
939
940         while (nr_nodes) {
941                 void *addr;
942
943                 addr = __alloc_bootmem_node_nopanic(
944                                 NODE_DATA(h->hugetlb_next_nid),
945                                 huge_page_size(h), huge_page_size(h), 0);
946
947                 if (addr) {
948                         /*
949                          * Use the beginning of the huge page to store the
950                          * huge_bootmem_page struct (until gather_bootmem
951                          * puts them into the mem_map).
952                          */
953                         m = addr;
954                         if (m)
955                                 goto found;
956                 }
957                 hstate_next_node(h);
958                 nr_nodes--;
959         }
960         return 0;
961
962 found:
963         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
964         /* Put them into a private list first because mem_map is not up yet */
965         list_add(&m->list, &huge_boot_pages);
966         m->hstate = h;
967         return 1;
968 }
969
970 /* Put bootmem huge pages into the standard lists after mem_map is up */
971 static void __init gather_bootmem_prealloc(void)
972 {
973         struct huge_bootmem_page *m;
974
975         list_for_each_entry(m, &huge_boot_pages, list) {
976                 struct page *page = virt_to_page(m);
977                 struct hstate *h = m->hstate;
978                 __ClearPageReserved(page);
979                 WARN_ON(page_count(page) != 1);
980                 prep_compound_page(page, h->order);
981                 prep_new_huge_page(h, page, page_to_nid(page));
982         }
983 }
984
985 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
986 {
987         unsigned long i;
988
989         for (i = 0; i < h->max_huge_pages; ++i) {
990                 if (h->order >= MAX_ORDER) {
991                         if (!alloc_bootmem_huge_page(h))
992                                 break;
993                 } else if (!alloc_fresh_huge_page(h))
994                         break;
995         }
996         h->max_huge_pages = i;
997 }
998
999 static void __init hugetlb_init_hstates(void)
1000 {
1001         struct hstate *h;
1002
1003         for_each_hstate(h) {
1004                 /* oversize hugepages were init'ed in early boot */
1005                 if (h->order < MAX_ORDER)
1006                         hugetlb_hstate_alloc_pages(h);
1007         }
1008 }
1009
1010 static char * __init memfmt(char *buf, unsigned long n)
1011 {
1012         if (n >= (1UL << 30))
1013                 sprintf(buf, "%lu GB", n >> 30);
1014         else if (n >= (1UL << 20))
1015                 sprintf(buf, "%lu MB", n >> 20);
1016         else
1017                 sprintf(buf, "%lu KB", n >> 10);
1018         return buf;
1019 }
1020
1021 static void __init report_hugepages(void)
1022 {
1023         struct hstate *h;
1024
1025         for_each_hstate(h) {
1026                 char buf[32];
1027                 printk(KERN_INFO "HugeTLB registered %s page size, "
1028                                  "pre-allocated %ld pages\n",
1029                         memfmt(buf, huge_page_size(h)),
1030                         h->free_huge_pages);
1031         }
1032 }
1033
1034 #ifdef CONFIG_SYSCTL
1035 #ifdef CONFIG_HIGHMEM
1036 static void try_to_free_low(struct hstate *h, unsigned long count)
1037 {
1038         int i;
1039
1040         if (h->order >= MAX_ORDER)
1041                 return;
1042
1043         for (i = 0; i < MAX_NUMNODES; ++i) {
1044                 struct page *page, *next;
1045                 struct list_head *freel = &h->hugepage_freelists[i];
1046                 list_for_each_entry_safe(page, next, freel, lru) {
1047                         if (count >= h->nr_huge_pages)
1048                                 return;
1049                         if (PageHighMem(page))
1050                                 continue;
1051                         list_del(&page->lru);
1052                         update_and_free_page(h, page);
1053                         h->free_huge_pages--;
1054                         h->free_huge_pages_node[page_to_nid(page)]--;
1055                 }
1056         }
1057 }
1058 #else
1059 static inline void try_to_free_low(struct hstate *h, unsigned long count)
1060 {
1061 }
1062 #endif
1063
1064 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1065 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1066 {
1067         unsigned long min_count, ret;
1068
1069         if (h->order >= MAX_ORDER)
1070                 return h->max_huge_pages;
1071
1072         /*
1073          * Increase the pool size
1074          * First take pages out of surplus state.  Then make up the
1075          * remaining difference by allocating fresh huge pages.
1076          *
1077          * We might race with alloc_buddy_huge_page() here and be unable
1078          * to convert a surplus huge page to a normal huge page. That is
1079          * not critical, though, it just means the overall size of the
1080          * pool might be one hugepage larger than it needs to be, but
1081          * within all the constraints specified by the sysctls.
1082          */
1083         spin_lock(&hugetlb_lock);
1084         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1085                 if (!adjust_pool_surplus(h, -1))
1086                         break;
1087         }
1088
1089         while (count > persistent_huge_pages(h)) {
1090                 /*
1091                  * If this allocation races such that we no longer need the
1092                  * page, free_huge_page will handle it by freeing the page
1093                  * and reducing the surplus.
1094                  */
1095                 spin_unlock(&hugetlb_lock);
1096                 ret = alloc_fresh_huge_page(h);
1097                 spin_lock(&hugetlb_lock);
1098                 if (!ret)
1099                         goto out;
1100
1101         }
1102
1103         /*
1104          * Decrease the pool size
1105          * First return free pages to the buddy allocator (being careful
1106          * to keep enough around to satisfy reservations).  Then place
1107          * pages into surplus state as needed so the pool will shrink
1108          * to the desired size as pages become free.
1109          *
1110          * By placing pages into the surplus state independent of the
1111          * overcommit value, we are allowing the surplus pool size to
1112          * exceed overcommit. There are few sane options here. Since
1113          * alloc_buddy_huge_page() is checking the global counter,
1114          * though, we'll note that we're not allowed to exceed surplus
1115          * and won't grow the pool anywhere else. Not until one of the
1116          * sysctls are changed, or the surplus pages go out of use.
1117          */
1118         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1119         min_count = max(count, min_count);
1120         try_to_free_low(h, min_count);
1121         while (min_count < persistent_huge_pages(h)) {
1122                 struct page *page = dequeue_huge_page(h);
1123                 if (!page)
1124                         break;
1125                 update_and_free_page(h, page);
1126         }
1127         while (count < persistent_huge_pages(h)) {
1128                 if (!adjust_pool_surplus(h, 1))
1129                         break;
1130         }
1131 out:
1132         ret = persistent_huge_pages(h);
1133         spin_unlock(&hugetlb_lock);
1134         return ret;
1135 }
1136
1137 #define HSTATE_ATTR_RO(_name) \
1138         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1139
1140 #define HSTATE_ATTR(_name) \
1141         static struct kobj_attribute _name##_attr = \
1142                 __ATTR(_name, 0644, _name##_show, _name##_store)
1143
1144 static struct kobject *hugepages_kobj;
1145 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1146
1147 static struct hstate *kobj_to_hstate(struct kobject *kobj)
1148 {
1149         int i;
1150         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1151                 if (hstate_kobjs[i] == kobj)
1152                         return &hstates[i];
1153         BUG();
1154         return NULL;
1155 }
1156
1157 static ssize_t nr_hugepages_show(struct kobject *kobj,
1158                                         struct kobj_attribute *attr, char *buf)
1159 {
1160         struct hstate *h = kobj_to_hstate(kobj);
1161         return sprintf(buf, "%lu\n", h->nr_huge_pages);
1162 }
1163 static ssize_t nr_hugepages_store(struct kobject *kobj,
1164                 struct kobj_attribute *attr, const char *buf, size_t count)
1165 {
1166         int err;
1167         unsigned long input;
1168         struct hstate *h = kobj_to_hstate(kobj);
1169
1170         err = strict_strtoul(buf, 10, &input);
1171         if (err)
1172                 return 0;
1173
1174         h->max_huge_pages = set_max_huge_pages(h, input);
1175
1176         return count;
1177 }
1178 HSTATE_ATTR(nr_hugepages);
1179
1180 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1181                                         struct kobj_attribute *attr, char *buf)
1182 {
1183         struct hstate *h = kobj_to_hstate(kobj);
1184         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1185 }
1186 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1187                 struct kobj_attribute *attr, const char *buf, size_t count)
1188 {
1189         int err;
1190         unsigned long input;
1191         struct hstate *h = kobj_to_hstate(kobj);
1192
1193         err = strict_strtoul(buf, 10, &input);
1194         if (err)
1195                 return 0;
1196
1197         spin_lock(&hugetlb_lock);
1198         h->nr_overcommit_huge_pages = input;
1199         spin_unlock(&hugetlb_lock);
1200
1201         return count;
1202 }
1203 HSTATE_ATTR(nr_overcommit_hugepages);
1204
1205 static ssize_t free_hugepages_show(struct kobject *kobj,
1206                                         struct kobj_attribute *attr, char *buf)
1207 {
1208         struct hstate *h = kobj_to_hstate(kobj);
1209         return sprintf(buf, "%lu\n", h->free_huge_pages);
1210 }
1211 HSTATE_ATTR_RO(free_hugepages);
1212
1213 static ssize_t resv_hugepages_show(struct kobject *kobj,
1214                                         struct kobj_attribute *attr, char *buf)
1215 {
1216         struct hstate *h = kobj_to_hstate(kobj);
1217         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1218 }
1219 HSTATE_ATTR_RO(resv_hugepages);
1220
1221 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1222                                         struct kobj_attribute *attr, char *buf)
1223 {
1224         struct hstate *h = kobj_to_hstate(kobj);
1225         return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1226 }
1227 HSTATE_ATTR_RO(surplus_hugepages);
1228
1229 static struct attribute *hstate_attrs[] = {
1230         &nr_hugepages_attr.attr,
1231         &nr_overcommit_hugepages_attr.attr,
1232         &free_hugepages_attr.attr,
1233         &resv_hugepages_attr.attr,
1234         &surplus_hugepages_attr.attr,
1235         NULL,
1236 };
1237
1238 static struct attribute_group hstate_attr_group = {
1239         .attrs = hstate_attrs,
1240 };
1241
1242 static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1243 {
1244         int retval;
1245
1246         hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1247                                                         hugepages_kobj);
1248         if (!hstate_kobjs[h - hstates])
1249                 return -ENOMEM;
1250
1251         retval = sysfs_create_group(hstate_kobjs[h - hstates],
1252                                                         &hstate_attr_group);
1253         if (retval)
1254                 kobject_put(hstate_kobjs[h - hstates]);
1255
1256         return retval;
1257 }
1258
1259 static void __init hugetlb_sysfs_init(void)
1260 {
1261         struct hstate *h;
1262         int err;
1263
1264         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1265         if (!hugepages_kobj)
1266                 return;
1267
1268         for_each_hstate(h) {
1269                 err = hugetlb_sysfs_add_hstate(h);
1270                 if (err)
1271                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1272                                                                 h->name);
1273         }
1274 }
1275
1276 static void __exit hugetlb_exit(void)
1277 {
1278         struct hstate *h;
1279
1280         for_each_hstate(h) {
1281                 kobject_put(hstate_kobjs[h - hstates]);
1282         }
1283
1284         kobject_put(hugepages_kobj);
1285 }
1286 module_exit(hugetlb_exit);
1287
1288 static int __init hugetlb_init(void)
1289 {
1290         BUILD_BUG_ON(HPAGE_SHIFT == 0);
1291
1292         if (!size_to_hstate(default_hstate_size)) {
1293                 default_hstate_size = HPAGE_SIZE;
1294                 if (!size_to_hstate(default_hstate_size))
1295                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1296         }
1297         default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1298         if (default_hstate_max_huge_pages)
1299                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1300
1301         hugetlb_init_hstates();
1302
1303         gather_bootmem_prealloc();
1304
1305         report_hugepages();
1306
1307         hugetlb_sysfs_init();
1308
1309         return 0;
1310 }
1311 module_init(hugetlb_init);
1312
1313 /* Should be called on processing a hugepagesz=... option */
1314 void __init hugetlb_add_hstate(unsigned order)
1315 {
1316         struct hstate *h;
1317         unsigned long i;
1318
1319         if (size_to_hstate(PAGE_SIZE << order)) {
1320                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1321                 return;
1322         }
1323         BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1324         BUG_ON(order == 0);
1325         h = &hstates[max_hstate++];
1326         h->order = order;
1327         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1328         h->nr_huge_pages = 0;
1329         h->free_huge_pages = 0;
1330         for (i = 0; i < MAX_NUMNODES; ++i)
1331                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1332         h->hugetlb_next_nid = first_node(node_online_map);
1333         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1334                                         huge_page_size(h)/1024);
1335
1336         parsed_hstate = h;
1337 }
1338
1339 static int __init hugetlb_nrpages_setup(char *s)
1340 {
1341         unsigned long *mhp;
1342         static unsigned long *last_mhp;
1343
1344         /*
1345          * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1346          * so this hugepages= parameter goes to the "default hstate".
1347          */
1348         if (!max_hstate)
1349                 mhp = &default_hstate_max_huge_pages;
1350         else
1351                 mhp = &parsed_hstate->max_huge_pages;
1352
1353         if (mhp == last_mhp) {
1354                 printk(KERN_WARNING "hugepages= specified twice without "
1355                         "interleaving hugepagesz=, ignoring\n");
1356                 return 1;
1357         }
1358
1359         if (sscanf(s, "%lu", mhp) <= 0)
1360                 *mhp = 0;
1361
1362         /*
1363          * Global state is always initialized later in hugetlb_init.
1364          * But we need to allocate >= MAX_ORDER hstates here early to still
1365          * use the bootmem allocator.
1366          */
1367         if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1368                 hugetlb_hstate_alloc_pages(parsed_hstate);
1369
1370         last_mhp = mhp;
1371
1372         return 1;
1373 }
1374 __setup("hugepages=", hugetlb_nrpages_setup);
1375
1376 static int __init hugetlb_default_setup(char *s)
1377 {
1378         default_hstate_size = memparse(s, &s);
1379         return 1;
1380 }
1381 __setup("default_hugepagesz=", hugetlb_default_setup);
1382
1383 static unsigned int cpuset_mems_nr(unsigned int *array)
1384 {
1385         int node;
1386         unsigned int nr = 0;
1387
1388         for_each_node_mask(node, cpuset_current_mems_allowed)
1389                 nr += array[node];
1390
1391         return nr;
1392 }
1393
1394 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1395                            struct file *file, void __user *buffer,
1396                            size_t *length, loff_t *ppos)
1397 {
1398         struct hstate *h = &default_hstate;
1399         unsigned long tmp;
1400
1401         if (!write)
1402                 tmp = h->max_huge_pages;
1403
1404         table->data = &tmp;
1405         table->maxlen = sizeof(unsigned long);
1406         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1407
1408         if (write)
1409                 h->max_huge_pages = set_max_huge_pages(h, tmp);
1410
1411         return 0;
1412 }
1413
1414 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1415                         struct file *file, void __user *buffer,
1416                         size_t *length, loff_t *ppos)
1417 {
1418         proc_dointvec(table, write, file, buffer, length, ppos);
1419         if (hugepages_treat_as_movable)
1420                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1421         else
1422                 htlb_alloc_mask = GFP_HIGHUSER;
1423         return 0;
1424 }
1425
1426 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1427                         struct file *file, void __user *buffer,
1428                         size_t *length, loff_t *ppos)
1429 {
1430         struct hstate *h = &default_hstate;
1431         unsigned long tmp;
1432
1433         if (!write)
1434                 tmp = h->nr_overcommit_huge_pages;
1435
1436         table->data = &tmp;
1437         table->maxlen = sizeof(unsigned long);
1438         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1439
1440         if (write) {
1441                 spin_lock(&hugetlb_lock);
1442                 h->nr_overcommit_huge_pages = tmp;
1443                 spin_unlock(&hugetlb_lock);
1444         }
1445
1446         return 0;
1447 }
1448
1449 #endif /* CONFIG_SYSCTL */
1450
1451 int hugetlb_report_meminfo(char *buf)
1452 {
1453         struct hstate *h = &default_hstate;
1454         return sprintf(buf,
1455                         "HugePages_Total: %5lu\n"
1456                         "HugePages_Free:  %5lu\n"
1457                         "HugePages_Rsvd:  %5lu\n"
1458                         "HugePages_Surp:  %5lu\n"
1459                         "Hugepagesize:    %5lu kB\n",
1460                         h->nr_huge_pages,
1461                         h->free_huge_pages,
1462                         h->resv_huge_pages,
1463                         h->surplus_huge_pages,
1464                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1465 }
1466
1467 int hugetlb_report_node_meminfo(int nid, char *buf)
1468 {
1469         struct hstate *h = &default_hstate;
1470         return sprintf(buf,
1471                 "Node %d HugePages_Total: %5u\n"
1472                 "Node %d HugePages_Free:  %5u\n"
1473                 "Node %d HugePages_Surp:  %5u\n",
1474                 nid, h->nr_huge_pages_node[nid],
1475                 nid, h->free_huge_pages_node[nid],
1476                 nid, h->surplus_huge_pages_node[nid]);
1477 }
1478
1479 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1480 unsigned long hugetlb_total_pages(void)
1481 {
1482         struct hstate *h = &default_hstate;
1483         return h->nr_huge_pages * pages_per_huge_page(h);
1484 }
1485
1486 static int hugetlb_acct_memory(struct hstate *h, long delta)
1487 {
1488         int ret = -ENOMEM;
1489
1490         spin_lock(&hugetlb_lock);
1491         /*
1492          * When cpuset is configured, it breaks the strict hugetlb page
1493          * reservation as the accounting is done on a global variable. Such
1494          * reservation is completely rubbish in the presence of cpuset because
1495          * the reservation is not checked against page availability for the
1496          * current cpuset. Application can still potentially OOM'ed by kernel
1497          * with lack of free htlb page in cpuset that the task is in.
1498          * Attempt to enforce strict accounting with cpuset is almost
1499          * impossible (or too ugly) because cpuset is too fluid that
1500          * task or memory node can be dynamically moved between cpusets.
1501          *
1502          * The change of semantics for shared hugetlb mapping with cpuset is
1503          * undesirable. However, in order to preserve some of the semantics,
1504          * we fall back to check against current free page availability as
1505          * a best attempt and hopefully to minimize the impact of changing
1506          * semantics that cpuset has.
1507          */
1508         if (delta > 0) {
1509                 if (gather_surplus_pages(h, delta) < 0)
1510                         goto out;
1511
1512                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1513                         return_unused_surplus_pages(h, delta);
1514                         goto out;
1515                 }
1516         }
1517
1518         ret = 0;
1519         if (delta < 0)
1520                 return_unused_surplus_pages(h, (unsigned long) -delta);
1521
1522 out:
1523         spin_unlock(&hugetlb_lock);
1524         return ret;
1525 }
1526
1527 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1528 {
1529         struct resv_map *reservations = vma_resv_map(vma);
1530
1531         /*
1532          * This new VMA should share its siblings reservation map if present.
1533          * The VMA will only ever have a valid reservation map pointer where
1534          * it is being copied for another still existing VMA.  As that VMA
1535          * has a reference to the reservation map it cannot dissappear until
1536          * after this open call completes.  It is therefore safe to take a
1537          * new reference here without additional locking.
1538          */
1539         if (reservations)
1540                 kref_get(&reservations->refs);
1541 }
1542
1543 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1544 {
1545         struct hstate *h = hstate_vma(vma);
1546         struct resv_map *reservations = vma_resv_map(vma);
1547         unsigned long reserve;
1548         unsigned long start;
1549         unsigned long end;
1550
1551         if (reservations) {
1552                 start = vma_hugecache_offset(h, vma, vma->vm_start);
1553                 end = vma_hugecache_offset(h, vma, vma->vm_end);
1554
1555                 reserve = (end - start) -
1556                         region_count(&reservations->regions, start, end);
1557
1558                 kref_put(&reservations->refs, resv_map_release);
1559
1560                 if (reserve)
1561                         hugetlb_acct_memory(h, -reserve);
1562         }
1563 }
1564
1565 /*
1566  * We cannot handle pagefaults against hugetlb pages at all.  They cause
1567  * handle_mm_fault() to try to instantiate regular-sized pages in the
1568  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
1569  * this far.
1570  */
1571 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1572 {
1573         BUG();
1574         return 0;
1575 }
1576
1577 struct vm_operations_struct hugetlb_vm_ops = {
1578         .fault = hugetlb_vm_op_fault,
1579         .open = hugetlb_vm_op_open,
1580         .close = hugetlb_vm_op_close,
1581 };
1582
1583 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1584                                 int writable)
1585 {
1586         pte_t entry;
1587
1588         if (writable) {
1589                 entry =
1590                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1591         } else {
1592                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1593         }
1594         entry = pte_mkyoung(entry);
1595         entry = pte_mkhuge(entry);
1596
1597         return entry;
1598 }
1599
1600 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1601                                    unsigned long address, pte_t *ptep)
1602 {
1603         pte_t entry;
1604
1605         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1606         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1607                 update_mmu_cache(vma, address, entry);
1608         }
1609 }
1610
1611
1612 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1613                             struct vm_area_struct *vma)
1614 {
1615         pte_t *src_pte, *dst_pte, entry;
1616         struct page *ptepage;
1617         unsigned long addr;
1618         int cow;
1619         struct hstate *h = hstate_vma(vma);
1620         unsigned long sz = huge_page_size(h);
1621
1622         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1623
1624         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1625                 src_pte = huge_pte_offset(src, addr);
1626                 if (!src_pte)
1627                         continue;
1628                 dst_pte = huge_pte_alloc(dst, addr, sz);
1629                 if (!dst_pte)
1630                         goto nomem;
1631
1632                 /* If the pagetables are shared don't copy or take references */
1633                 if (dst_pte == src_pte)
1634                         continue;
1635
1636                 spin_lock(&dst->page_table_lock);
1637                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1638                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1639                         if (cow)
1640                                 huge_ptep_set_wrprotect(src, addr, src_pte);
1641                         entry = huge_ptep_get(src_pte);
1642                         ptepage = pte_page(entry);
1643                         get_page(ptepage);
1644                         set_huge_pte_at(dst, addr, dst_pte, entry);
1645                 }
1646                 spin_unlock(&src->page_table_lock);
1647                 spin_unlock(&dst->page_table_lock);
1648         }
1649         return 0;
1650
1651 nomem:
1652         return -ENOMEM;
1653 }
1654
1655 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1656                             unsigned long end, struct page *ref_page)
1657 {
1658         struct mm_struct *mm = vma->vm_mm;
1659         unsigned long address;
1660         pte_t *ptep;
1661         pte_t pte;
1662         struct page *page;
1663         struct page *tmp;
1664         struct hstate *h = hstate_vma(vma);
1665         unsigned long sz = huge_page_size(h);
1666
1667         /*
1668          * A page gathering list, protected by per file i_mmap_lock. The
1669          * lock is used to avoid list corruption from multiple unmapping
1670          * of the same page since we are using page->lru.
1671          */
1672         LIST_HEAD(page_list);
1673
1674         WARN_ON(!is_vm_hugetlb_page(vma));
1675         BUG_ON(start & ~huge_page_mask(h));
1676         BUG_ON(end & ~huge_page_mask(h));
1677
1678         spin_lock(&mm->page_table_lock);
1679         for (address = start; address < end; address += sz) {
1680                 ptep = huge_pte_offset(mm, address);
1681                 if (!ptep)
1682                         continue;
1683
1684                 if (huge_pmd_unshare(mm, &address, ptep))
1685                         continue;
1686
1687                 /*
1688                  * If a reference page is supplied, it is because a specific
1689                  * page is being unmapped, not a range. Ensure the page we
1690                  * are about to unmap is the actual page of interest.
1691                  */
1692                 if (ref_page) {
1693                         pte = huge_ptep_get(ptep);
1694                         if (huge_pte_none(pte))
1695                                 continue;
1696                         page = pte_page(pte);
1697                         if (page != ref_page)
1698                                 continue;
1699
1700                         /*
1701                          * Mark the VMA as having unmapped its page so that
1702                          * future faults in this VMA will fail rather than
1703                          * looking like data was lost
1704                          */
1705                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1706                 }
1707
1708                 pte = huge_ptep_get_and_clear(mm, address, ptep);
1709                 if (huge_pte_none(pte))
1710                         continue;
1711
1712                 page = pte_page(pte);
1713                 if (pte_dirty(pte))
1714                         set_page_dirty(page);
1715                 list_add(&page->lru, &page_list);
1716         }
1717         spin_unlock(&mm->page_table_lock);
1718         flush_tlb_range(vma, start, end);
1719         list_for_each_entry_safe(page, tmp, &page_list, lru) {
1720                 list_del(&page->lru);
1721                 put_page(page);
1722         }
1723 }
1724
1725 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1726                           unsigned long end, struct page *ref_page)
1727 {
1728         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1729         __unmap_hugepage_range(vma, start, end, ref_page);
1730         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1731 }
1732
1733 /*
1734  * This is called when the original mapper is failing to COW a MAP_PRIVATE
1735  * mappping it owns the reserve page for. The intention is to unmap the page
1736  * from other VMAs and let the children be SIGKILLed if they are faulting the
1737  * same region.
1738  */
1739 int unmap_ref_private(struct mm_struct *mm,
1740                                         struct vm_area_struct *vma,
1741                                         struct page *page,
1742                                         unsigned long address)
1743 {
1744         struct vm_area_struct *iter_vma;
1745         struct address_space *mapping;
1746         struct prio_tree_iter iter;
1747         pgoff_t pgoff;
1748
1749         /*
1750          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1751          * from page cache lookup which is in HPAGE_SIZE units.
1752          */
1753         address = address & huge_page_mask(hstate_vma(vma));
1754         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1755                 + (vma->vm_pgoff >> PAGE_SHIFT);
1756         mapping = (struct address_space *)page_private(page);
1757
1758         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1759                 /* Do not unmap the current VMA */
1760                 if (iter_vma == vma)
1761                         continue;
1762
1763                 /*
1764                  * Unmap the page from other VMAs without their own reserves.
1765                  * They get marked to be SIGKILLed if they fault in these
1766                  * areas. This is because a future no-page fault on this VMA
1767                  * could insert a zeroed page instead of the data existing
1768                  * from the time of fork. This would look like data corruption
1769                  */
1770                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1771                         unmap_hugepage_range(iter_vma,
1772                                 address, address + HPAGE_SIZE,
1773                                 page);
1774         }
1775
1776         return 1;
1777 }
1778
1779 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1780                         unsigned long address, pte_t *ptep, pte_t pte,
1781                         struct page *pagecache_page)
1782 {
1783         struct hstate *h = hstate_vma(vma);
1784         struct page *old_page, *new_page;
1785         int avoidcopy;
1786         int outside_reserve = 0;
1787
1788         old_page = pte_page(pte);
1789
1790 retry_avoidcopy:
1791         /* If no-one else is actually using this page, avoid the copy
1792          * and just make the page writable */
1793         avoidcopy = (page_count(old_page) == 1);
1794         if (avoidcopy) {
1795                 set_huge_ptep_writable(vma, address, ptep);
1796                 return 0;
1797         }
1798
1799         /*
1800          * If the process that created a MAP_PRIVATE mapping is about to
1801          * perform a COW due to a shared page count, attempt to satisfy
1802          * the allocation without using the existing reserves. The pagecache
1803          * page is used to determine if the reserve at this address was
1804          * consumed or not. If reserves were used, a partial faulted mapping
1805          * at the time of fork() could consume its reserves on COW instead
1806          * of the full address range.
1807          */
1808         if (!(vma->vm_flags & VM_SHARED) &&
1809                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1810                         old_page != pagecache_page)
1811                 outside_reserve = 1;
1812
1813         page_cache_get(old_page);
1814         new_page = alloc_huge_page(vma, address, outside_reserve);
1815
1816         if (IS_ERR(new_page)) {
1817                 page_cache_release(old_page);
1818
1819                 /*
1820                  * If a process owning a MAP_PRIVATE mapping fails to COW,
1821                  * it is due to references held by a child and an insufficient
1822                  * huge page pool. To guarantee the original mappers
1823                  * reliability, unmap the page from child processes. The child
1824                  * may get SIGKILLed if it later faults.
1825                  */
1826                 if (outside_reserve) {
1827                         BUG_ON(huge_pte_none(pte));
1828                         if (unmap_ref_private(mm, vma, old_page, address)) {
1829                                 BUG_ON(page_count(old_page) != 1);
1830                                 BUG_ON(huge_pte_none(pte));
1831                                 goto retry_avoidcopy;
1832                         }
1833                         WARN_ON_ONCE(1);
1834                 }
1835
1836                 return -PTR_ERR(new_page);
1837         }
1838
1839         spin_unlock(&mm->page_table_lock);
1840         copy_huge_page(new_page, old_page, address, vma);
1841         __SetPageUptodate(new_page);
1842         spin_lock(&mm->page_table_lock);
1843
1844         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1845         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1846                 /* Break COW */
1847                 huge_ptep_clear_flush(vma, address, ptep);
1848                 set_huge_pte_at(mm, address, ptep,
1849                                 make_huge_pte(vma, new_page, 1));
1850                 /* Make the old page be freed below */
1851                 new_page = old_page;
1852         }
1853         page_cache_release(new_page);
1854         page_cache_release(old_page);
1855         return 0;
1856 }
1857
1858 /* Return the pagecache page at a given address within a VMA */
1859 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1860                         struct vm_area_struct *vma, unsigned long address)
1861 {
1862         struct address_space *mapping;
1863         pgoff_t idx;
1864
1865         mapping = vma->vm_file->f_mapping;
1866         idx = vma_hugecache_offset(h, vma, address);
1867
1868         return find_lock_page(mapping, idx);
1869 }
1870
1871 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1872                         unsigned long address, pte_t *ptep, int write_access)
1873 {
1874         struct hstate *h = hstate_vma(vma);
1875         int ret = VM_FAULT_SIGBUS;
1876         pgoff_t idx;
1877         unsigned long size;
1878         struct page *page;
1879         struct address_space *mapping;
1880         pte_t new_pte;
1881
1882         /*
1883          * Currently, we are forced to kill the process in the event the
1884          * original mapper has unmapped pages from the child due to a failed
1885          * COW. Warn that such a situation has occured as it may not be obvious
1886          */
1887         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1888                 printk(KERN_WARNING
1889                         "PID %d killed due to inadequate hugepage pool\n",
1890                         current->pid);
1891                 return ret;
1892         }
1893
1894         mapping = vma->vm_file->f_mapping;
1895         idx = vma_hugecache_offset(h, vma, address);
1896
1897         /*
1898          * Use page lock to guard against racing truncation
1899          * before we get page_table_lock.
1900          */
1901 retry:
1902         page = find_lock_page(mapping, idx);
1903         if (!page) {
1904                 size = i_size_read(mapping->host) >> huge_page_shift(h);
1905                 if (idx >= size)
1906                         goto out;
1907                 page = alloc_huge_page(vma, address, 0);
1908                 if (IS_ERR(page)) {
1909                         ret = -PTR_ERR(page);
1910                         goto out;
1911                 }
1912                 clear_huge_page(page, address, huge_page_size(h));
1913                 __SetPageUptodate(page);
1914
1915                 if (vma->vm_flags & VM_SHARED) {
1916                         int err;
1917                         struct inode *inode = mapping->host;
1918
1919                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
1920                         if (err) {
1921                                 put_page(page);
1922                                 if (err == -EEXIST)
1923                                         goto retry;
1924                                 goto out;
1925                         }
1926
1927                         spin_lock(&inode->i_lock);
1928                         inode->i_blocks += blocks_per_huge_page(h);
1929                         spin_unlock(&inode->i_lock);
1930                 } else
1931                         lock_page(page);
1932         }
1933
1934         spin_lock(&mm->page_table_lock);
1935         size = i_size_read(mapping->host) >> huge_page_shift(h);
1936         if (idx >= size)
1937                 goto backout;
1938
1939         ret = 0;
1940         if (!huge_pte_none(huge_ptep_get(ptep)))
1941                 goto backout;
1942
1943         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
1944                                 && (vma->vm_flags & VM_SHARED)));
1945         set_huge_pte_at(mm, address, ptep, new_pte);
1946
1947         if (write_access && !(vma->vm_flags & VM_SHARED)) {
1948                 /* Optimization, do the COW without a second fault */
1949                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1950         }
1951
1952         spin_unlock(&mm->page_table_lock);
1953         unlock_page(page);
1954 out:
1955         return ret;
1956
1957 backout:
1958         spin_unlock(&mm->page_table_lock);
1959         unlock_page(page);
1960         put_page(page);
1961         goto out;
1962 }
1963
1964 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1965                         unsigned long address, int write_access)
1966 {
1967         pte_t *ptep;
1968         pte_t entry;
1969         int ret;
1970         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1971         struct hstate *h = hstate_vma(vma);
1972
1973         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
1974         if (!ptep)
1975                 return VM_FAULT_OOM;
1976
1977         /*
1978          * Serialize hugepage allocation and instantiation, so that we don't
1979          * get spurious allocation failures if two CPUs race to instantiate
1980          * the same page in the page cache.
1981          */
1982         mutex_lock(&hugetlb_instantiation_mutex);
1983         entry = huge_ptep_get(ptep);
1984         if (huge_pte_none(entry)) {
1985                 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
1986                 mutex_unlock(&hugetlb_instantiation_mutex);
1987                 return ret;
1988         }
1989
1990         ret = 0;
1991
1992         spin_lock(&mm->page_table_lock);
1993         /* Check for a racing update before calling hugetlb_cow */
1994         if (likely(pte_same(entry, huge_ptep_get(ptep))))
1995                 if (write_access && !pte_write(entry)) {
1996                         struct page *page;
1997                         page = hugetlbfs_pagecache_page(h, vma, address);
1998                         ret = hugetlb_cow(mm, vma, address, ptep, entry, page);
1999                         if (page) {
2000                                 unlock_page(page);
2001                                 put_page(page);
2002                         }
2003                 }
2004         spin_unlock(&mm->page_table_lock);
2005         mutex_unlock(&hugetlb_instantiation_mutex);
2006
2007         return ret;
2008 }
2009
2010 /* Can be overriden by architectures */
2011 __attribute__((weak)) struct page *
2012 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2013                pud_t *pud, int write)
2014 {
2015         BUG();
2016         return NULL;
2017 }
2018
2019 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2020                         struct page **pages, struct vm_area_struct **vmas,
2021                         unsigned long *position, int *length, int i,
2022                         int write)
2023 {
2024         unsigned long pfn_offset;
2025         unsigned long vaddr = *position;
2026         int remainder = *length;
2027         struct hstate *h = hstate_vma(vma);
2028
2029         spin_lock(&mm->page_table_lock);
2030         while (vaddr < vma->vm_end && remainder) {
2031                 pte_t *pte;
2032                 struct page *page;
2033
2034                 /*
2035                  * Some archs (sparc64, sh*) have multiple pte_ts to
2036                  * each hugepage.  We have to make * sure we get the
2037                  * first, for the page indexing below to work.
2038                  */
2039                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2040
2041                 if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
2042                     (write && !pte_write(huge_ptep_get(pte)))) {
2043                         int ret;
2044
2045                         spin_unlock(&mm->page_table_lock);
2046                         ret = hugetlb_fault(mm, vma, vaddr, write);
2047                         spin_lock(&mm->page_table_lock);
2048                         if (!(ret & VM_FAULT_ERROR))
2049                                 continue;
2050
2051                         remainder = 0;
2052                         if (!i)
2053                                 i = -EFAULT;
2054                         break;
2055                 }
2056
2057                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2058                 page = pte_page(huge_ptep_get(pte));
2059 same_page:
2060                 if (pages) {
2061                         get_page(page);
2062                         pages[i] = page + pfn_offset;
2063                 }
2064
2065                 if (vmas)
2066                         vmas[i] = vma;
2067
2068                 vaddr += PAGE_SIZE;
2069                 ++pfn_offset;
2070                 --remainder;
2071                 ++i;
2072                 if (vaddr < vma->vm_end && remainder &&
2073                                 pfn_offset < pages_per_huge_page(h)) {
2074                         /*
2075                          * We use pfn_offset to avoid touching the pageframes
2076                          * of this compound page.
2077                          */
2078                         goto same_page;
2079                 }
2080         }
2081         spin_unlock(&mm->page_table_lock);
2082         *length = remainder;
2083         *position = vaddr;
2084
2085         return i;
2086 }
2087
2088 void hugetlb_change_protection(struct vm_area_struct *vma,
2089                 unsigned long address, unsigned long end, pgprot_t newprot)
2090 {
2091         struct mm_struct *mm = vma->vm_mm;
2092         unsigned long start = address;
2093         pte_t *ptep;
2094         pte_t pte;
2095         struct hstate *h = hstate_vma(vma);
2096
2097         BUG_ON(address >= end);
2098         flush_cache_range(vma, address, end);
2099
2100         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2101         spin_lock(&mm->page_table_lock);
2102         for (; address < end; address += huge_page_size(h)) {
2103                 ptep = huge_pte_offset(mm, address);
2104                 if (!ptep)
2105                         continue;
2106                 if (huge_pmd_unshare(mm, &address, ptep))
2107                         continue;
2108                 if (!huge_pte_none(huge_ptep_get(ptep))) {
2109                         pte = huge_ptep_get_and_clear(mm, address, ptep);
2110                         pte = pte_mkhuge(pte_modify(pte, newprot));
2111                         set_huge_pte_at(mm, address, ptep, pte);
2112                 }
2113         }
2114         spin_unlock(&mm->page_table_lock);
2115         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2116
2117         flush_tlb_range(vma, start, end);
2118 }
2119
2120 int hugetlb_reserve_pages(struct inode *inode,
2121                                         long from, long to,
2122                                         struct vm_area_struct *vma)
2123 {
2124         long ret, chg;
2125         struct hstate *h = hstate_inode(inode);
2126
2127         if (vma && vma->vm_flags & VM_NORESERVE)
2128                 return 0;
2129
2130         /*
2131          * Shared mappings base their reservation on the number of pages that
2132          * are already allocated on behalf of the file. Private mappings need
2133          * to reserve the full area even if read-only as mprotect() may be
2134          * called to make the mapping read-write. Assume !vma is a shm mapping
2135          */
2136         if (!vma || vma->vm_flags & VM_SHARED)
2137                 chg = region_chg(&inode->i_mapping->private_list, from, to);
2138         else {
2139                 struct resv_map *resv_map = resv_map_alloc();
2140                 if (!resv_map)
2141                         return -ENOMEM;
2142
2143                 chg = to - from;
2144
2145                 set_vma_resv_map(vma, resv_map);
2146                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2147         }
2148
2149         if (chg < 0)
2150                 return chg;
2151
2152         if (hugetlb_get_quota(inode->i_mapping, chg))
2153                 return -ENOSPC;
2154         ret = hugetlb_acct_memory(h, chg);
2155         if (ret < 0) {
2156                 hugetlb_put_quota(inode->i_mapping, chg);
2157                 return ret;
2158         }
2159         if (!vma || vma->vm_flags & VM_SHARED)
2160                 region_add(&inode->i_mapping->private_list, from, to);
2161         return 0;
2162 }
2163
2164 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2165 {
2166         struct hstate *h = hstate_inode(inode);
2167         long chg = region_truncate(&inode->i_mapping->private_list, offset);
2168
2169         spin_lock(&inode->i_lock);
2170         inode->i_blocks -= blocks_per_huge_page(h);
2171         spin_unlock(&inode->i_lock);
2172
2173         hugetlb_put_quota(inode->i_mapping, (chg - freed));
2174         hugetlb_acct_memory(h, -(chg - freed));
2175 }