hugetlbfs: handle pages higher order than MAX_ORDER
[safe/jmp/linux-2.6] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/seq_file.h>
11 #include <linux/sysctl.h>
12 #include <linux/highmem.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/nodemask.h>
15 #include <linux/pagemap.h>
16 #include <linux/mempolicy.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21
22 #include <asm/page.h>
23 #include <asm/pgtable.h>
24 #include <asm/io.h>
25
26 #include <linux/hugetlb.h>
27 #include "internal.h"
28
29 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31 unsigned long hugepages_treat_as_movable;
32
33 static int max_hstate;
34 unsigned int default_hstate_idx;
35 struct hstate hstates[HUGE_MAX_HSTATE];
36
37 __initdata LIST_HEAD(huge_boot_pages);
38
39 /* for command line parsing */
40 static struct hstate * __initdata parsed_hstate;
41 static unsigned long __initdata default_hstate_max_huge_pages;
42 static unsigned long __initdata default_hstate_size;
43
44 #define for_each_hstate(h) \
45         for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
46
47 /*
48  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
49  */
50 static DEFINE_SPINLOCK(hugetlb_lock);
51
52 /*
53  * Region tracking -- allows tracking of reservations and instantiated pages
54  *                    across the pages in a mapping.
55  *
56  * The region data structures are protected by a combination of the mmap_sem
57  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
58  * must either hold the mmap_sem for write, or the mmap_sem for read and
59  * the hugetlb_instantiation mutex:
60  *
61  *      down_write(&mm->mmap_sem);
62  * or
63  *      down_read(&mm->mmap_sem);
64  *      mutex_lock(&hugetlb_instantiation_mutex);
65  */
66 struct file_region {
67         struct list_head link;
68         long from;
69         long to;
70 };
71
72 static long region_add(struct list_head *head, long f, long t)
73 {
74         struct file_region *rg, *nrg, *trg;
75
76         /* Locate the region we are either in or before. */
77         list_for_each_entry(rg, head, link)
78                 if (f <= rg->to)
79                         break;
80
81         /* Round our left edge to the current segment if it encloses us. */
82         if (f > rg->from)
83                 f = rg->from;
84
85         /* Check for and consume any regions we now overlap with. */
86         nrg = rg;
87         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
88                 if (&rg->link == head)
89                         break;
90                 if (rg->from > t)
91                         break;
92
93                 /* If this area reaches higher then extend our area to
94                  * include it completely.  If this is not the first area
95                  * which we intend to reuse, free it. */
96                 if (rg->to > t)
97                         t = rg->to;
98                 if (rg != nrg) {
99                         list_del(&rg->link);
100                         kfree(rg);
101                 }
102         }
103         nrg->from = f;
104         nrg->to = t;
105         return 0;
106 }
107
108 static long region_chg(struct list_head *head, long f, long t)
109 {
110         struct file_region *rg, *nrg;
111         long chg = 0;
112
113         /* Locate the region we are before or in. */
114         list_for_each_entry(rg, head, link)
115                 if (f <= rg->to)
116                         break;
117
118         /* If we are below the current region then a new region is required.
119          * Subtle, allocate a new region at the position but make it zero
120          * size such that we can guarantee to record the reservation. */
121         if (&rg->link == head || t < rg->from) {
122                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
123                 if (!nrg)
124                         return -ENOMEM;
125                 nrg->from = f;
126                 nrg->to   = f;
127                 INIT_LIST_HEAD(&nrg->link);
128                 list_add(&nrg->link, rg->link.prev);
129
130                 return t - f;
131         }
132
133         /* Round our left edge to the current segment if it encloses us. */
134         if (f > rg->from)
135                 f = rg->from;
136         chg = t - f;
137
138         /* Check for and consume any regions we now overlap with. */
139         list_for_each_entry(rg, rg->link.prev, link) {
140                 if (&rg->link == head)
141                         break;
142                 if (rg->from > t)
143                         return chg;
144
145                 /* We overlap with this area, if it extends futher than
146                  * us then we must extend ourselves.  Account for its
147                  * existing reservation. */
148                 if (rg->to > t) {
149                         chg += rg->to - t;
150                         t = rg->to;
151                 }
152                 chg -= rg->to - rg->from;
153         }
154         return chg;
155 }
156
157 static long region_truncate(struct list_head *head, long end)
158 {
159         struct file_region *rg, *trg;
160         long chg = 0;
161
162         /* Locate the region we are either in or before. */
163         list_for_each_entry(rg, head, link)
164                 if (end <= rg->to)
165                         break;
166         if (&rg->link == head)
167                 return 0;
168
169         /* If we are in the middle of a region then adjust it. */
170         if (end > rg->from) {
171                 chg = rg->to - end;
172                 rg->to = end;
173                 rg = list_entry(rg->link.next, typeof(*rg), link);
174         }
175
176         /* Drop any remaining regions. */
177         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
178                 if (&rg->link == head)
179                         break;
180                 chg += rg->to - rg->from;
181                 list_del(&rg->link);
182                 kfree(rg);
183         }
184         return chg;
185 }
186
187 static long region_count(struct list_head *head, long f, long t)
188 {
189         struct file_region *rg;
190         long chg = 0;
191
192         /* Locate each segment we overlap with, and count that overlap. */
193         list_for_each_entry(rg, head, link) {
194                 int seg_from;
195                 int seg_to;
196
197                 if (rg->to <= f)
198                         continue;
199                 if (rg->from >= t)
200                         break;
201
202                 seg_from = max(rg->from, f);
203                 seg_to = min(rg->to, t);
204
205                 chg += seg_to - seg_from;
206         }
207
208         return chg;
209 }
210
211 /*
212  * Convert the address within this vma to the page offset within
213  * the mapping, in pagecache page units; huge pages here.
214  */
215 static pgoff_t vma_hugecache_offset(struct hstate *h,
216                         struct vm_area_struct *vma, unsigned long address)
217 {
218         return ((address - vma->vm_start) >> huge_page_shift(h)) +
219                         (vma->vm_pgoff >> huge_page_order(h));
220 }
221
222 /*
223  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
224  * bits of the reservation map pointer, which are always clear due to
225  * alignment.
226  */
227 #define HPAGE_RESV_OWNER    (1UL << 0)
228 #define HPAGE_RESV_UNMAPPED (1UL << 1)
229 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
230
231 /*
232  * These helpers are used to track how many pages are reserved for
233  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
234  * is guaranteed to have their future faults succeed.
235  *
236  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
237  * the reserve counters are updated with the hugetlb_lock held. It is safe
238  * to reset the VMA at fork() time as it is not in use yet and there is no
239  * chance of the global counters getting corrupted as a result of the values.
240  *
241  * The private mapping reservation is represented in a subtly different
242  * manner to a shared mapping.  A shared mapping has a region map associated
243  * with the underlying file, this region map represents the backing file
244  * pages which have ever had a reservation assigned which this persists even
245  * after the page is instantiated.  A private mapping has a region map
246  * associated with the original mmap which is attached to all VMAs which
247  * reference it, this region map represents those offsets which have consumed
248  * reservation ie. where pages have been instantiated.
249  */
250 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
251 {
252         return (unsigned long)vma->vm_private_data;
253 }
254
255 static void set_vma_private_data(struct vm_area_struct *vma,
256                                                         unsigned long value)
257 {
258         vma->vm_private_data = (void *)value;
259 }
260
261 struct resv_map {
262         struct kref refs;
263         struct list_head regions;
264 };
265
266 static struct resv_map *resv_map_alloc(void)
267 {
268         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
269         if (!resv_map)
270                 return NULL;
271
272         kref_init(&resv_map->refs);
273         INIT_LIST_HEAD(&resv_map->regions);
274
275         return resv_map;
276 }
277
278 static void resv_map_release(struct kref *ref)
279 {
280         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
281
282         /* Clear out any active regions before we release the map. */
283         region_truncate(&resv_map->regions, 0);
284         kfree(resv_map);
285 }
286
287 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
288 {
289         VM_BUG_ON(!is_vm_hugetlb_page(vma));
290         if (!(vma->vm_flags & VM_SHARED))
291                 return (struct resv_map *)(get_vma_private_data(vma) &
292                                                         ~HPAGE_RESV_MASK);
293         return NULL;
294 }
295
296 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
297 {
298         VM_BUG_ON(!is_vm_hugetlb_page(vma));
299         VM_BUG_ON(vma->vm_flags & VM_SHARED);
300
301         set_vma_private_data(vma, (get_vma_private_data(vma) &
302                                 HPAGE_RESV_MASK) | (unsigned long)map);
303 }
304
305 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
306 {
307         VM_BUG_ON(!is_vm_hugetlb_page(vma));
308         VM_BUG_ON(vma->vm_flags & VM_SHARED);
309
310         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
311 }
312
313 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
314 {
315         VM_BUG_ON(!is_vm_hugetlb_page(vma));
316
317         return (get_vma_private_data(vma) & flag) != 0;
318 }
319
320 /* Decrement the reserved pages in the hugepage pool by one */
321 static void decrement_hugepage_resv_vma(struct hstate *h,
322                         struct vm_area_struct *vma)
323 {
324         if (vma->vm_flags & VM_NORESERVE)
325                 return;
326
327         if (vma->vm_flags & VM_SHARED) {
328                 /* Shared mappings always use reserves */
329                 h->resv_huge_pages--;
330         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
331                 /*
332                  * Only the process that called mmap() has reserves for
333                  * private mappings.
334                  */
335                 h->resv_huge_pages--;
336         }
337 }
338
339 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
340 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
341 {
342         VM_BUG_ON(!is_vm_hugetlb_page(vma));
343         if (!(vma->vm_flags & VM_SHARED))
344                 vma->vm_private_data = (void *)0;
345 }
346
347 /* Returns true if the VMA has associated reserve pages */
348 static int vma_has_reserves(struct vm_area_struct *vma)
349 {
350         if (vma->vm_flags & VM_SHARED)
351                 return 1;
352         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
353                 return 1;
354         return 0;
355 }
356
357 static void clear_gigantic_page(struct page *page,
358                         unsigned long addr, unsigned long sz)
359 {
360         int i;
361         struct page *p = page;
362
363         might_sleep();
364         for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
365                 cond_resched();
366                 clear_user_highpage(p, addr + i * PAGE_SIZE);
367         }
368 }
369 static void clear_huge_page(struct page *page,
370                         unsigned long addr, unsigned long sz)
371 {
372         int i;
373
374         if (unlikely(sz > MAX_ORDER_NR_PAGES))
375                 return clear_gigantic_page(page, addr, sz);
376
377         might_sleep();
378         for (i = 0; i < sz/PAGE_SIZE; i++) {
379                 cond_resched();
380                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
381         }
382 }
383
384 static void copy_gigantic_page(struct page *dst, struct page *src,
385                            unsigned long addr, struct vm_area_struct *vma)
386 {
387         int i;
388         struct hstate *h = hstate_vma(vma);
389         struct page *dst_base = dst;
390         struct page *src_base = src;
391         might_sleep();
392         for (i = 0; i < pages_per_huge_page(h); ) {
393                 cond_resched();
394                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
395
396                 i++;
397                 dst = mem_map_next(dst, dst_base, i);
398                 src = mem_map_next(src, src_base, i);
399         }
400 }
401 static void copy_huge_page(struct page *dst, struct page *src,
402                            unsigned long addr, struct vm_area_struct *vma)
403 {
404         int i;
405         struct hstate *h = hstate_vma(vma);
406
407         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES))
408                 return copy_gigantic_page(dst, src, addr, vma);
409
410         might_sleep();
411         for (i = 0; i < pages_per_huge_page(h); i++) {
412                 cond_resched();
413                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
414         }
415 }
416
417 static void enqueue_huge_page(struct hstate *h, struct page *page)
418 {
419         int nid = page_to_nid(page);
420         list_add(&page->lru, &h->hugepage_freelists[nid]);
421         h->free_huge_pages++;
422         h->free_huge_pages_node[nid]++;
423 }
424
425 static struct page *dequeue_huge_page(struct hstate *h)
426 {
427         int nid;
428         struct page *page = NULL;
429
430         for (nid = 0; nid < MAX_NUMNODES; ++nid) {
431                 if (!list_empty(&h->hugepage_freelists[nid])) {
432                         page = list_entry(h->hugepage_freelists[nid].next,
433                                           struct page, lru);
434                         list_del(&page->lru);
435                         h->free_huge_pages--;
436                         h->free_huge_pages_node[nid]--;
437                         break;
438                 }
439         }
440         return page;
441 }
442
443 static struct page *dequeue_huge_page_vma(struct hstate *h,
444                                 struct vm_area_struct *vma,
445                                 unsigned long address, int avoid_reserve)
446 {
447         int nid;
448         struct page *page = NULL;
449         struct mempolicy *mpol;
450         nodemask_t *nodemask;
451         struct zonelist *zonelist = huge_zonelist(vma, address,
452                                         htlb_alloc_mask, &mpol, &nodemask);
453         struct zone *zone;
454         struct zoneref *z;
455
456         /*
457          * A child process with MAP_PRIVATE mappings created by their parent
458          * have no page reserves. This check ensures that reservations are
459          * not "stolen". The child may still get SIGKILLed
460          */
461         if (!vma_has_reserves(vma) &&
462                         h->free_huge_pages - h->resv_huge_pages == 0)
463                 return NULL;
464
465         /* If reserves cannot be used, ensure enough pages are in the pool */
466         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
467                 return NULL;
468
469         for_each_zone_zonelist_nodemask(zone, z, zonelist,
470                                                 MAX_NR_ZONES - 1, nodemask) {
471                 nid = zone_to_nid(zone);
472                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
473                     !list_empty(&h->hugepage_freelists[nid])) {
474                         page = list_entry(h->hugepage_freelists[nid].next,
475                                           struct page, lru);
476                         list_del(&page->lru);
477                         h->free_huge_pages--;
478                         h->free_huge_pages_node[nid]--;
479
480                         if (!avoid_reserve)
481                                 decrement_hugepage_resv_vma(h, vma);
482
483                         break;
484                 }
485         }
486         mpol_cond_put(mpol);
487         return page;
488 }
489
490 static void update_and_free_page(struct hstate *h, struct page *page)
491 {
492         int i;
493
494         h->nr_huge_pages--;
495         h->nr_huge_pages_node[page_to_nid(page)]--;
496         for (i = 0; i < pages_per_huge_page(h); i++) {
497                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
498                                 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
499                                 1 << PG_private | 1<< PG_writeback);
500         }
501         set_compound_page_dtor(page, NULL);
502         set_page_refcounted(page);
503         arch_release_hugepage(page);
504         __free_pages(page, huge_page_order(h));
505 }
506
507 struct hstate *size_to_hstate(unsigned long size)
508 {
509         struct hstate *h;
510
511         for_each_hstate(h) {
512                 if (huge_page_size(h) == size)
513                         return h;
514         }
515         return NULL;
516 }
517
518 static void free_huge_page(struct page *page)
519 {
520         /*
521          * Can't pass hstate in here because it is called from the
522          * compound page destructor.
523          */
524         struct hstate *h = page_hstate(page);
525         int nid = page_to_nid(page);
526         struct address_space *mapping;
527
528         mapping = (struct address_space *) page_private(page);
529         set_page_private(page, 0);
530         BUG_ON(page_count(page));
531         INIT_LIST_HEAD(&page->lru);
532
533         spin_lock(&hugetlb_lock);
534         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
535                 update_and_free_page(h, page);
536                 h->surplus_huge_pages--;
537                 h->surplus_huge_pages_node[nid]--;
538         } else {
539                 enqueue_huge_page(h, page);
540         }
541         spin_unlock(&hugetlb_lock);
542         if (mapping)
543                 hugetlb_put_quota(mapping, 1);
544 }
545
546 /*
547  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
548  * balanced by operating on them in a round-robin fashion.
549  * Returns 1 if an adjustment was made.
550  */
551 static int adjust_pool_surplus(struct hstate *h, int delta)
552 {
553         static int prev_nid;
554         int nid = prev_nid;
555         int ret = 0;
556
557         VM_BUG_ON(delta != -1 && delta != 1);
558         do {
559                 nid = next_node(nid, node_online_map);
560                 if (nid == MAX_NUMNODES)
561                         nid = first_node(node_online_map);
562
563                 /* To shrink on this node, there must be a surplus page */
564                 if (delta < 0 && !h->surplus_huge_pages_node[nid])
565                         continue;
566                 /* Surplus cannot exceed the total number of pages */
567                 if (delta > 0 && h->surplus_huge_pages_node[nid] >=
568                                                 h->nr_huge_pages_node[nid])
569                         continue;
570
571                 h->surplus_huge_pages += delta;
572                 h->surplus_huge_pages_node[nid] += delta;
573                 ret = 1;
574                 break;
575         } while (nid != prev_nid);
576
577         prev_nid = nid;
578         return ret;
579 }
580
581 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
582 {
583         set_compound_page_dtor(page, free_huge_page);
584         spin_lock(&hugetlb_lock);
585         h->nr_huge_pages++;
586         h->nr_huge_pages_node[nid]++;
587         spin_unlock(&hugetlb_lock);
588         put_page(page); /* free it into the hugepage allocator */
589 }
590
591 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
592 {
593         struct page *page;
594
595         if (h->order >= MAX_ORDER)
596                 return NULL;
597
598         page = alloc_pages_node(nid,
599                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
600                                                 __GFP_REPEAT|__GFP_NOWARN,
601                 huge_page_order(h));
602         if (page) {
603                 if (arch_prepare_hugepage(page)) {
604                         __free_pages(page, huge_page_order(h));
605                         return NULL;
606                 }
607                 prep_new_huge_page(h, page, nid);
608         }
609
610         return page;
611 }
612
613 /*
614  * Use a helper variable to find the next node and then
615  * copy it back to hugetlb_next_nid afterwards:
616  * otherwise there's a window in which a racer might
617  * pass invalid nid MAX_NUMNODES to alloc_pages_node.
618  * But we don't need to use a spin_lock here: it really
619  * doesn't matter if occasionally a racer chooses the
620  * same nid as we do.  Move nid forward in the mask even
621  * if we just successfully allocated a hugepage so that
622  * the next caller gets hugepages on the next node.
623  */
624 static int hstate_next_node(struct hstate *h)
625 {
626         int next_nid;
627         next_nid = next_node(h->hugetlb_next_nid, node_online_map);
628         if (next_nid == MAX_NUMNODES)
629                 next_nid = first_node(node_online_map);
630         h->hugetlb_next_nid = next_nid;
631         return next_nid;
632 }
633
634 static int alloc_fresh_huge_page(struct hstate *h)
635 {
636         struct page *page;
637         int start_nid;
638         int next_nid;
639         int ret = 0;
640
641         start_nid = h->hugetlb_next_nid;
642
643         do {
644                 page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
645                 if (page)
646                         ret = 1;
647                 next_nid = hstate_next_node(h);
648         } while (!page && h->hugetlb_next_nid != start_nid);
649
650         if (ret)
651                 count_vm_event(HTLB_BUDDY_PGALLOC);
652         else
653                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
654
655         return ret;
656 }
657
658 static struct page *alloc_buddy_huge_page(struct hstate *h,
659                         struct vm_area_struct *vma, unsigned long address)
660 {
661         struct page *page;
662         unsigned int nid;
663
664         if (h->order >= MAX_ORDER)
665                 return NULL;
666
667         /*
668          * Assume we will successfully allocate the surplus page to
669          * prevent racing processes from causing the surplus to exceed
670          * overcommit
671          *
672          * This however introduces a different race, where a process B
673          * tries to grow the static hugepage pool while alloc_pages() is
674          * called by process A. B will only examine the per-node
675          * counters in determining if surplus huge pages can be
676          * converted to normal huge pages in adjust_pool_surplus(). A
677          * won't be able to increment the per-node counter, until the
678          * lock is dropped by B, but B doesn't drop hugetlb_lock until
679          * no more huge pages can be converted from surplus to normal
680          * state (and doesn't try to convert again). Thus, we have a
681          * case where a surplus huge page exists, the pool is grown, and
682          * the surplus huge page still exists after, even though it
683          * should just have been converted to a normal huge page. This
684          * does not leak memory, though, as the hugepage will be freed
685          * once it is out of use. It also does not allow the counters to
686          * go out of whack in adjust_pool_surplus() as we don't modify
687          * the node values until we've gotten the hugepage and only the
688          * per-node value is checked there.
689          */
690         spin_lock(&hugetlb_lock);
691         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
692                 spin_unlock(&hugetlb_lock);
693                 return NULL;
694         } else {
695                 h->nr_huge_pages++;
696                 h->surplus_huge_pages++;
697         }
698         spin_unlock(&hugetlb_lock);
699
700         page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
701                                         __GFP_REPEAT|__GFP_NOWARN,
702                                         huge_page_order(h));
703
704         if (page && arch_prepare_hugepage(page)) {
705                 __free_pages(page, huge_page_order(h));
706                 return NULL;
707         }
708
709         spin_lock(&hugetlb_lock);
710         if (page) {
711                 /*
712                  * This page is now managed by the hugetlb allocator and has
713                  * no users -- drop the buddy allocator's reference.
714                  */
715                 put_page_testzero(page);
716                 VM_BUG_ON(page_count(page));
717                 nid = page_to_nid(page);
718                 set_compound_page_dtor(page, free_huge_page);
719                 /*
720                  * We incremented the global counters already
721                  */
722                 h->nr_huge_pages_node[nid]++;
723                 h->surplus_huge_pages_node[nid]++;
724                 __count_vm_event(HTLB_BUDDY_PGALLOC);
725         } else {
726                 h->nr_huge_pages--;
727                 h->surplus_huge_pages--;
728                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
729         }
730         spin_unlock(&hugetlb_lock);
731
732         return page;
733 }
734
735 /*
736  * Increase the hugetlb pool such that it can accomodate a reservation
737  * of size 'delta'.
738  */
739 static int gather_surplus_pages(struct hstate *h, int delta)
740 {
741         struct list_head surplus_list;
742         struct page *page, *tmp;
743         int ret, i;
744         int needed, allocated;
745
746         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
747         if (needed <= 0) {
748                 h->resv_huge_pages += delta;
749                 return 0;
750         }
751
752         allocated = 0;
753         INIT_LIST_HEAD(&surplus_list);
754
755         ret = -ENOMEM;
756 retry:
757         spin_unlock(&hugetlb_lock);
758         for (i = 0; i < needed; i++) {
759                 page = alloc_buddy_huge_page(h, NULL, 0);
760                 if (!page) {
761                         /*
762                          * We were not able to allocate enough pages to
763                          * satisfy the entire reservation so we free what
764                          * we've allocated so far.
765                          */
766                         spin_lock(&hugetlb_lock);
767                         needed = 0;
768                         goto free;
769                 }
770
771                 list_add(&page->lru, &surplus_list);
772         }
773         allocated += needed;
774
775         /*
776          * After retaking hugetlb_lock, we need to recalculate 'needed'
777          * because either resv_huge_pages or free_huge_pages may have changed.
778          */
779         spin_lock(&hugetlb_lock);
780         needed = (h->resv_huge_pages + delta) -
781                         (h->free_huge_pages + allocated);
782         if (needed > 0)
783                 goto retry;
784
785         /*
786          * The surplus_list now contains _at_least_ the number of extra pages
787          * needed to accomodate the reservation.  Add the appropriate number
788          * of pages to the hugetlb pool and free the extras back to the buddy
789          * allocator.  Commit the entire reservation here to prevent another
790          * process from stealing the pages as they are added to the pool but
791          * before they are reserved.
792          */
793         needed += allocated;
794         h->resv_huge_pages += delta;
795         ret = 0;
796 free:
797         /* Free the needed pages to the hugetlb pool */
798         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
799                 if ((--needed) < 0)
800                         break;
801                 list_del(&page->lru);
802                 enqueue_huge_page(h, page);
803         }
804
805         /* Free unnecessary surplus pages to the buddy allocator */
806         if (!list_empty(&surplus_list)) {
807                 spin_unlock(&hugetlb_lock);
808                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
809                         list_del(&page->lru);
810                         /*
811                          * The page has a reference count of zero already, so
812                          * call free_huge_page directly instead of using
813                          * put_page.  This must be done with hugetlb_lock
814                          * unlocked which is safe because free_huge_page takes
815                          * hugetlb_lock before deciding how to free the page.
816                          */
817                         free_huge_page(page);
818                 }
819                 spin_lock(&hugetlb_lock);
820         }
821
822         return ret;
823 }
824
825 /*
826  * When releasing a hugetlb pool reservation, any surplus pages that were
827  * allocated to satisfy the reservation must be explicitly freed if they were
828  * never used.
829  */
830 static void return_unused_surplus_pages(struct hstate *h,
831                                         unsigned long unused_resv_pages)
832 {
833         static int nid = -1;
834         struct page *page;
835         unsigned long nr_pages;
836
837         /*
838          * We want to release as many surplus pages as possible, spread
839          * evenly across all nodes. Iterate across all nodes until we
840          * can no longer free unreserved surplus pages. This occurs when
841          * the nodes with surplus pages have no free pages.
842          */
843         unsigned long remaining_iterations = num_online_nodes();
844
845         /* Uncommit the reservation */
846         h->resv_huge_pages -= unused_resv_pages;
847
848         /* Cannot return gigantic pages currently */
849         if (h->order >= MAX_ORDER)
850                 return;
851
852         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
853
854         while (remaining_iterations-- && nr_pages) {
855                 nid = next_node(nid, node_online_map);
856                 if (nid == MAX_NUMNODES)
857                         nid = first_node(node_online_map);
858
859                 if (!h->surplus_huge_pages_node[nid])
860                         continue;
861
862                 if (!list_empty(&h->hugepage_freelists[nid])) {
863                         page = list_entry(h->hugepage_freelists[nid].next,
864                                           struct page, lru);
865                         list_del(&page->lru);
866                         update_and_free_page(h, page);
867                         h->free_huge_pages--;
868                         h->free_huge_pages_node[nid]--;
869                         h->surplus_huge_pages--;
870                         h->surplus_huge_pages_node[nid]--;
871                         nr_pages--;
872                         remaining_iterations = num_online_nodes();
873                 }
874         }
875 }
876
877 /*
878  * Determine if the huge page at addr within the vma has an associated
879  * reservation.  Where it does not we will need to logically increase
880  * reservation and actually increase quota before an allocation can occur.
881  * Where any new reservation would be required the reservation change is
882  * prepared, but not committed.  Once the page has been quota'd allocated
883  * an instantiated the change should be committed via vma_commit_reservation.
884  * No action is required on failure.
885  */
886 static int vma_needs_reservation(struct hstate *h,
887                         struct vm_area_struct *vma, unsigned long addr)
888 {
889         struct address_space *mapping = vma->vm_file->f_mapping;
890         struct inode *inode = mapping->host;
891
892         if (vma->vm_flags & VM_SHARED) {
893                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
894                 return region_chg(&inode->i_mapping->private_list,
895                                                         idx, idx + 1);
896
897         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
898                 return 1;
899
900         } else  {
901                 int err;
902                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
903                 struct resv_map *reservations = vma_resv_map(vma);
904
905                 err = region_chg(&reservations->regions, idx, idx + 1);
906                 if (err < 0)
907                         return err;
908                 return 0;
909         }
910 }
911 static void vma_commit_reservation(struct hstate *h,
912                         struct vm_area_struct *vma, unsigned long addr)
913 {
914         struct address_space *mapping = vma->vm_file->f_mapping;
915         struct inode *inode = mapping->host;
916
917         if (vma->vm_flags & VM_SHARED) {
918                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
919                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
920
921         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
922                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
923                 struct resv_map *reservations = vma_resv_map(vma);
924
925                 /* Mark this page used in the map. */
926                 region_add(&reservations->regions, idx, idx + 1);
927         }
928 }
929
930 static struct page *alloc_huge_page(struct vm_area_struct *vma,
931                                     unsigned long addr, int avoid_reserve)
932 {
933         struct hstate *h = hstate_vma(vma);
934         struct page *page;
935         struct address_space *mapping = vma->vm_file->f_mapping;
936         struct inode *inode = mapping->host;
937         unsigned int chg;
938
939         /*
940          * Processes that did not create the mapping will have no reserves and
941          * will not have accounted against quota. Check that the quota can be
942          * made before satisfying the allocation
943          * MAP_NORESERVE mappings may also need pages and quota allocated
944          * if no reserve mapping overlaps.
945          */
946         chg = vma_needs_reservation(h, vma, addr);
947         if (chg < 0)
948                 return ERR_PTR(chg);
949         if (chg)
950                 if (hugetlb_get_quota(inode->i_mapping, chg))
951                         return ERR_PTR(-ENOSPC);
952
953         spin_lock(&hugetlb_lock);
954         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
955         spin_unlock(&hugetlb_lock);
956
957         if (!page) {
958                 page = alloc_buddy_huge_page(h, vma, addr);
959                 if (!page) {
960                         hugetlb_put_quota(inode->i_mapping, chg);
961                         return ERR_PTR(-VM_FAULT_OOM);
962                 }
963         }
964
965         set_page_refcounted(page);
966         set_page_private(page, (unsigned long) mapping);
967
968         vma_commit_reservation(h, vma, addr);
969
970         return page;
971 }
972
973 __attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h)
974 {
975         struct huge_bootmem_page *m;
976         int nr_nodes = nodes_weight(node_online_map);
977
978         while (nr_nodes) {
979                 void *addr;
980
981                 addr = __alloc_bootmem_node_nopanic(
982                                 NODE_DATA(h->hugetlb_next_nid),
983                                 huge_page_size(h), huge_page_size(h), 0);
984
985                 if (addr) {
986                         /*
987                          * Use the beginning of the huge page to store the
988                          * huge_bootmem_page struct (until gather_bootmem
989                          * puts them into the mem_map).
990                          */
991                         m = addr;
992                         if (m)
993                                 goto found;
994                 }
995                 hstate_next_node(h);
996                 nr_nodes--;
997         }
998         return 0;
999
1000 found:
1001         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1002         /* Put them into a private list first because mem_map is not up yet */
1003         list_add(&m->list, &huge_boot_pages);
1004         m->hstate = h;
1005         return 1;
1006 }
1007
1008 /* Put bootmem huge pages into the standard lists after mem_map is up */
1009 static void __init gather_bootmem_prealloc(void)
1010 {
1011         struct huge_bootmem_page *m;
1012
1013         list_for_each_entry(m, &huge_boot_pages, list) {
1014                 struct page *page = virt_to_page(m);
1015                 struct hstate *h = m->hstate;
1016                 __ClearPageReserved(page);
1017                 WARN_ON(page_count(page) != 1);
1018                 prep_compound_page(page, h->order);
1019                 prep_new_huge_page(h, page, page_to_nid(page));
1020         }
1021 }
1022
1023 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1024 {
1025         unsigned long i;
1026
1027         for (i = 0; i < h->max_huge_pages; ++i) {
1028                 if (h->order >= MAX_ORDER) {
1029                         if (!alloc_bootmem_huge_page(h))
1030                                 break;
1031                 } else if (!alloc_fresh_huge_page(h))
1032                         break;
1033         }
1034         h->max_huge_pages = i;
1035 }
1036
1037 static void __init hugetlb_init_hstates(void)
1038 {
1039         struct hstate *h;
1040
1041         for_each_hstate(h) {
1042                 /* oversize hugepages were init'ed in early boot */
1043                 if (h->order < MAX_ORDER)
1044                         hugetlb_hstate_alloc_pages(h);
1045         }
1046 }
1047
1048 static char * __init memfmt(char *buf, unsigned long n)
1049 {
1050         if (n >= (1UL << 30))
1051                 sprintf(buf, "%lu GB", n >> 30);
1052         else if (n >= (1UL << 20))
1053                 sprintf(buf, "%lu MB", n >> 20);
1054         else
1055                 sprintf(buf, "%lu KB", n >> 10);
1056         return buf;
1057 }
1058
1059 static void __init report_hugepages(void)
1060 {
1061         struct hstate *h;
1062
1063         for_each_hstate(h) {
1064                 char buf[32];
1065                 printk(KERN_INFO "HugeTLB registered %s page size, "
1066                                  "pre-allocated %ld pages\n",
1067                         memfmt(buf, huge_page_size(h)),
1068                         h->free_huge_pages);
1069         }
1070 }
1071
1072 #ifdef CONFIG_HIGHMEM
1073 static void try_to_free_low(struct hstate *h, unsigned long count)
1074 {
1075         int i;
1076
1077         if (h->order >= MAX_ORDER)
1078                 return;
1079
1080         for (i = 0; i < MAX_NUMNODES; ++i) {
1081                 struct page *page, *next;
1082                 struct list_head *freel = &h->hugepage_freelists[i];
1083                 list_for_each_entry_safe(page, next, freel, lru) {
1084                         if (count >= h->nr_huge_pages)
1085                                 return;
1086                         if (PageHighMem(page))
1087                                 continue;
1088                         list_del(&page->lru);
1089                         update_and_free_page(h, page);
1090                         h->free_huge_pages--;
1091                         h->free_huge_pages_node[page_to_nid(page)]--;
1092                 }
1093         }
1094 }
1095 #else
1096 static inline void try_to_free_low(struct hstate *h, unsigned long count)
1097 {
1098 }
1099 #endif
1100
1101 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1102 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1103 {
1104         unsigned long min_count, ret;
1105
1106         if (h->order >= MAX_ORDER)
1107                 return h->max_huge_pages;
1108
1109         /*
1110          * Increase the pool size
1111          * First take pages out of surplus state.  Then make up the
1112          * remaining difference by allocating fresh huge pages.
1113          *
1114          * We might race with alloc_buddy_huge_page() here and be unable
1115          * to convert a surplus huge page to a normal huge page. That is
1116          * not critical, though, it just means the overall size of the
1117          * pool might be one hugepage larger than it needs to be, but
1118          * within all the constraints specified by the sysctls.
1119          */
1120         spin_lock(&hugetlb_lock);
1121         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1122                 if (!adjust_pool_surplus(h, -1))
1123                         break;
1124         }
1125
1126         while (count > persistent_huge_pages(h)) {
1127                 /*
1128                  * If this allocation races such that we no longer need the
1129                  * page, free_huge_page will handle it by freeing the page
1130                  * and reducing the surplus.
1131                  */
1132                 spin_unlock(&hugetlb_lock);
1133                 ret = alloc_fresh_huge_page(h);
1134                 spin_lock(&hugetlb_lock);
1135                 if (!ret)
1136                         goto out;
1137
1138         }
1139
1140         /*
1141          * Decrease the pool size
1142          * First return free pages to the buddy allocator (being careful
1143          * to keep enough around to satisfy reservations).  Then place
1144          * pages into surplus state as needed so the pool will shrink
1145          * to the desired size as pages become free.
1146          *
1147          * By placing pages into the surplus state independent of the
1148          * overcommit value, we are allowing the surplus pool size to
1149          * exceed overcommit. There are few sane options here. Since
1150          * alloc_buddy_huge_page() is checking the global counter,
1151          * though, we'll note that we're not allowed to exceed surplus
1152          * and won't grow the pool anywhere else. Not until one of the
1153          * sysctls are changed, or the surplus pages go out of use.
1154          */
1155         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1156         min_count = max(count, min_count);
1157         try_to_free_low(h, min_count);
1158         while (min_count < persistent_huge_pages(h)) {
1159                 struct page *page = dequeue_huge_page(h);
1160                 if (!page)
1161                         break;
1162                 update_and_free_page(h, page);
1163         }
1164         while (count < persistent_huge_pages(h)) {
1165                 if (!adjust_pool_surplus(h, 1))
1166                         break;
1167         }
1168 out:
1169         ret = persistent_huge_pages(h);
1170         spin_unlock(&hugetlb_lock);
1171         return ret;
1172 }
1173
1174 #define HSTATE_ATTR_RO(_name) \
1175         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1176
1177 #define HSTATE_ATTR(_name) \
1178         static struct kobj_attribute _name##_attr = \
1179                 __ATTR(_name, 0644, _name##_show, _name##_store)
1180
1181 static struct kobject *hugepages_kobj;
1182 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1183
1184 static struct hstate *kobj_to_hstate(struct kobject *kobj)
1185 {
1186         int i;
1187         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1188                 if (hstate_kobjs[i] == kobj)
1189                         return &hstates[i];
1190         BUG();
1191         return NULL;
1192 }
1193
1194 static ssize_t nr_hugepages_show(struct kobject *kobj,
1195                                         struct kobj_attribute *attr, char *buf)
1196 {
1197         struct hstate *h = kobj_to_hstate(kobj);
1198         return sprintf(buf, "%lu\n", h->nr_huge_pages);
1199 }
1200 static ssize_t nr_hugepages_store(struct kobject *kobj,
1201                 struct kobj_attribute *attr, const char *buf, size_t count)
1202 {
1203         int err;
1204         unsigned long input;
1205         struct hstate *h = kobj_to_hstate(kobj);
1206
1207         err = strict_strtoul(buf, 10, &input);
1208         if (err)
1209                 return 0;
1210
1211         h->max_huge_pages = set_max_huge_pages(h, input);
1212
1213         return count;
1214 }
1215 HSTATE_ATTR(nr_hugepages);
1216
1217 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1218                                         struct kobj_attribute *attr, char *buf)
1219 {
1220         struct hstate *h = kobj_to_hstate(kobj);
1221         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1222 }
1223 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1224                 struct kobj_attribute *attr, const char *buf, size_t count)
1225 {
1226         int err;
1227         unsigned long input;
1228         struct hstate *h = kobj_to_hstate(kobj);
1229
1230         err = strict_strtoul(buf, 10, &input);
1231         if (err)
1232                 return 0;
1233
1234         spin_lock(&hugetlb_lock);
1235         h->nr_overcommit_huge_pages = input;
1236         spin_unlock(&hugetlb_lock);
1237
1238         return count;
1239 }
1240 HSTATE_ATTR(nr_overcommit_hugepages);
1241
1242 static ssize_t free_hugepages_show(struct kobject *kobj,
1243                                         struct kobj_attribute *attr, char *buf)
1244 {
1245         struct hstate *h = kobj_to_hstate(kobj);
1246         return sprintf(buf, "%lu\n", h->free_huge_pages);
1247 }
1248 HSTATE_ATTR_RO(free_hugepages);
1249
1250 static ssize_t resv_hugepages_show(struct kobject *kobj,
1251                                         struct kobj_attribute *attr, char *buf)
1252 {
1253         struct hstate *h = kobj_to_hstate(kobj);
1254         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1255 }
1256 HSTATE_ATTR_RO(resv_hugepages);
1257
1258 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1259                                         struct kobj_attribute *attr, char *buf)
1260 {
1261         struct hstate *h = kobj_to_hstate(kobj);
1262         return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1263 }
1264 HSTATE_ATTR_RO(surplus_hugepages);
1265
1266 static struct attribute *hstate_attrs[] = {
1267         &nr_hugepages_attr.attr,
1268         &nr_overcommit_hugepages_attr.attr,
1269         &free_hugepages_attr.attr,
1270         &resv_hugepages_attr.attr,
1271         &surplus_hugepages_attr.attr,
1272         NULL,
1273 };
1274
1275 static struct attribute_group hstate_attr_group = {
1276         .attrs = hstate_attrs,
1277 };
1278
1279 static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1280 {
1281         int retval;
1282
1283         hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1284                                                         hugepages_kobj);
1285         if (!hstate_kobjs[h - hstates])
1286                 return -ENOMEM;
1287
1288         retval = sysfs_create_group(hstate_kobjs[h - hstates],
1289                                                         &hstate_attr_group);
1290         if (retval)
1291                 kobject_put(hstate_kobjs[h - hstates]);
1292
1293         return retval;
1294 }
1295
1296 static void __init hugetlb_sysfs_init(void)
1297 {
1298         struct hstate *h;
1299         int err;
1300
1301         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1302         if (!hugepages_kobj)
1303                 return;
1304
1305         for_each_hstate(h) {
1306                 err = hugetlb_sysfs_add_hstate(h);
1307                 if (err)
1308                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1309                                                                 h->name);
1310         }
1311 }
1312
1313 static void __exit hugetlb_exit(void)
1314 {
1315         struct hstate *h;
1316
1317         for_each_hstate(h) {
1318                 kobject_put(hstate_kobjs[h - hstates]);
1319         }
1320
1321         kobject_put(hugepages_kobj);
1322 }
1323 module_exit(hugetlb_exit);
1324
1325 static int __init hugetlb_init(void)
1326 {
1327         /* Some platform decide whether they support huge pages at boot
1328          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1329          * there is no such support
1330          */
1331         if (HPAGE_SHIFT == 0)
1332                 return 0;
1333
1334         if (!size_to_hstate(default_hstate_size)) {
1335                 default_hstate_size = HPAGE_SIZE;
1336                 if (!size_to_hstate(default_hstate_size))
1337                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1338         }
1339         default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1340         if (default_hstate_max_huge_pages)
1341                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1342
1343         hugetlb_init_hstates();
1344
1345         gather_bootmem_prealloc();
1346
1347         report_hugepages();
1348
1349         hugetlb_sysfs_init();
1350
1351         return 0;
1352 }
1353 module_init(hugetlb_init);
1354
1355 /* Should be called on processing a hugepagesz=... option */
1356 void __init hugetlb_add_hstate(unsigned order)
1357 {
1358         struct hstate *h;
1359         unsigned long i;
1360
1361         if (size_to_hstate(PAGE_SIZE << order)) {
1362                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1363                 return;
1364         }
1365         BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1366         BUG_ON(order == 0);
1367         h = &hstates[max_hstate++];
1368         h->order = order;
1369         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1370         h->nr_huge_pages = 0;
1371         h->free_huge_pages = 0;
1372         for (i = 0; i < MAX_NUMNODES; ++i)
1373                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1374         h->hugetlb_next_nid = first_node(node_online_map);
1375         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1376                                         huge_page_size(h)/1024);
1377
1378         parsed_hstate = h;
1379 }
1380
1381 static int __init hugetlb_nrpages_setup(char *s)
1382 {
1383         unsigned long *mhp;
1384         static unsigned long *last_mhp;
1385
1386         /*
1387          * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1388          * so this hugepages= parameter goes to the "default hstate".
1389          */
1390         if (!max_hstate)
1391                 mhp = &default_hstate_max_huge_pages;
1392         else
1393                 mhp = &parsed_hstate->max_huge_pages;
1394
1395         if (mhp == last_mhp) {
1396                 printk(KERN_WARNING "hugepages= specified twice without "
1397                         "interleaving hugepagesz=, ignoring\n");
1398                 return 1;
1399         }
1400
1401         if (sscanf(s, "%lu", mhp) <= 0)
1402                 *mhp = 0;
1403
1404         /*
1405          * Global state is always initialized later in hugetlb_init.
1406          * But we need to allocate >= MAX_ORDER hstates here early to still
1407          * use the bootmem allocator.
1408          */
1409         if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1410                 hugetlb_hstate_alloc_pages(parsed_hstate);
1411
1412         last_mhp = mhp;
1413
1414         return 1;
1415 }
1416 __setup("hugepages=", hugetlb_nrpages_setup);
1417
1418 static int __init hugetlb_default_setup(char *s)
1419 {
1420         default_hstate_size = memparse(s, &s);
1421         return 1;
1422 }
1423 __setup("default_hugepagesz=", hugetlb_default_setup);
1424
1425 static unsigned int cpuset_mems_nr(unsigned int *array)
1426 {
1427         int node;
1428         unsigned int nr = 0;
1429
1430         for_each_node_mask(node, cpuset_current_mems_allowed)
1431                 nr += array[node];
1432
1433         return nr;
1434 }
1435
1436 #ifdef CONFIG_SYSCTL
1437 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1438                            struct file *file, void __user *buffer,
1439                            size_t *length, loff_t *ppos)
1440 {
1441         struct hstate *h = &default_hstate;
1442         unsigned long tmp;
1443
1444         if (!write)
1445                 tmp = h->max_huge_pages;
1446
1447         table->data = &tmp;
1448         table->maxlen = sizeof(unsigned long);
1449         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1450
1451         if (write)
1452                 h->max_huge_pages = set_max_huge_pages(h, tmp);
1453
1454         return 0;
1455 }
1456
1457 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1458                         struct file *file, void __user *buffer,
1459                         size_t *length, loff_t *ppos)
1460 {
1461         proc_dointvec(table, write, file, buffer, length, ppos);
1462         if (hugepages_treat_as_movable)
1463                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1464         else
1465                 htlb_alloc_mask = GFP_HIGHUSER;
1466         return 0;
1467 }
1468
1469 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1470                         struct file *file, void __user *buffer,
1471                         size_t *length, loff_t *ppos)
1472 {
1473         struct hstate *h = &default_hstate;
1474         unsigned long tmp;
1475
1476         if (!write)
1477                 tmp = h->nr_overcommit_huge_pages;
1478
1479         table->data = &tmp;
1480         table->maxlen = sizeof(unsigned long);
1481         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1482
1483         if (write) {
1484                 spin_lock(&hugetlb_lock);
1485                 h->nr_overcommit_huge_pages = tmp;
1486                 spin_unlock(&hugetlb_lock);
1487         }
1488
1489         return 0;
1490 }
1491
1492 #endif /* CONFIG_SYSCTL */
1493
1494 void hugetlb_report_meminfo(struct seq_file *m)
1495 {
1496         struct hstate *h = &default_hstate;
1497         seq_printf(m,
1498                         "HugePages_Total:   %5lu\n"
1499                         "HugePages_Free:    %5lu\n"
1500                         "HugePages_Rsvd:    %5lu\n"
1501                         "HugePages_Surp:    %5lu\n"
1502                         "Hugepagesize:   %8lu kB\n",
1503                         h->nr_huge_pages,
1504                         h->free_huge_pages,
1505                         h->resv_huge_pages,
1506                         h->surplus_huge_pages,
1507                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1508 }
1509
1510 int hugetlb_report_node_meminfo(int nid, char *buf)
1511 {
1512         struct hstate *h = &default_hstate;
1513         return sprintf(buf,
1514                 "Node %d HugePages_Total: %5u\n"
1515                 "Node %d HugePages_Free:  %5u\n"
1516                 "Node %d HugePages_Surp:  %5u\n",
1517                 nid, h->nr_huge_pages_node[nid],
1518                 nid, h->free_huge_pages_node[nid],
1519                 nid, h->surplus_huge_pages_node[nid]);
1520 }
1521
1522 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1523 unsigned long hugetlb_total_pages(void)
1524 {
1525         struct hstate *h = &default_hstate;
1526         return h->nr_huge_pages * pages_per_huge_page(h);
1527 }
1528
1529 static int hugetlb_acct_memory(struct hstate *h, long delta)
1530 {
1531         int ret = -ENOMEM;
1532
1533         spin_lock(&hugetlb_lock);
1534         /*
1535          * When cpuset is configured, it breaks the strict hugetlb page
1536          * reservation as the accounting is done on a global variable. Such
1537          * reservation is completely rubbish in the presence of cpuset because
1538          * the reservation is not checked against page availability for the
1539          * current cpuset. Application can still potentially OOM'ed by kernel
1540          * with lack of free htlb page in cpuset that the task is in.
1541          * Attempt to enforce strict accounting with cpuset is almost
1542          * impossible (or too ugly) because cpuset is too fluid that
1543          * task or memory node can be dynamically moved between cpusets.
1544          *
1545          * The change of semantics for shared hugetlb mapping with cpuset is
1546          * undesirable. However, in order to preserve some of the semantics,
1547          * we fall back to check against current free page availability as
1548          * a best attempt and hopefully to minimize the impact of changing
1549          * semantics that cpuset has.
1550          */
1551         if (delta > 0) {
1552                 if (gather_surplus_pages(h, delta) < 0)
1553                         goto out;
1554
1555                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1556                         return_unused_surplus_pages(h, delta);
1557                         goto out;
1558                 }
1559         }
1560
1561         ret = 0;
1562         if (delta < 0)
1563                 return_unused_surplus_pages(h, (unsigned long) -delta);
1564
1565 out:
1566         spin_unlock(&hugetlb_lock);
1567         return ret;
1568 }
1569
1570 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1571 {
1572         struct resv_map *reservations = vma_resv_map(vma);
1573
1574         /*
1575          * This new VMA should share its siblings reservation map if present.
1576          * The VMA will only ever have a valid reservation map pointer where
1577          * it is being copied for another still existing VMA.  As that VMA
1578          * has a reference to the reservation map it cannot dissappear until
1579          * after this open call completes.  It is therefore safe to take a
1580          * new reference here without additional locking.
1581          */
1582         if (reservations)
1583                 kref_get(&reservations->refs);
1584 }
1585
1586 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1587 {
1588         struct hstate *h = hstate_vma(vma);
1589         struct resv_map *reservations = vma_resv_map(vma);
1590         unsigned long reserve;
1591         unsigned long start;
1592         unsigned long end;
1593
1594         if (reservations) {
1595                 start = vma_hugecache_offset(h, vma, vma->vm_start);
1596                 end = vma_hugecache_offset(h, vma, vma->vm_end);
1597
1598                 reserve = (end - start) -
1599                         region_count(&reservations->regions, start, end);
1600
1601                 kref_put(&reservations->refs, resv_map_release);
1602
1603                 if (reserve) {
1604                         hugetlb_acct_memory(h, -reserve);
1605                         hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1606                 }
1607         }
1608 }
1609
1610 /*
1611  * We cannot handle pagefaults against hugetlb pages at all.  They cause
1612  * handle_mm_fault() to try to instantiate regular-sized pages in the
1613  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
1614  * this far.
1615  */
1616 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1617 {
1618         BUG();
1619         return 0;
1620 }
1621
1622 struct vm_operations_struct hugetlb_vm_ops = {
1623         .fault = hugetlb_vm_op_fault,
1624         .open = hugetlb_vm_op_open,
1625         .close = hugetlb_vm_op_close,
1626 };
1627
1628 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1629                                 int writable)
1630 {
1631         pte_t entry;
1632
1633         if (writable) {
1634                 entry =
1635                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1636         } else {
1637                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1638         }
1639         entry = pte_mkyoung(entry);
1640         entry = pte_mkhuge(entry);
1641
1642         return entry;
1643 }
1644
1645 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1646                                    unsigned long address, pte_t *ptep)
1647 {
1648         pte_t entry;
1649
1650         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1651         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1652                 update_mmu_cache(vma, address, entry);
1653         }
1654 }
1655
1656
1657 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1658                             struct vm_area_struct *vma)
1659 {
1660         pte_t *src_pte, *dst_pte, entry;
1661         struct page *ptepage;
1662         unsigned long addr;
1663         int cow;
1664         struct hstate *h = hstate_vma(vma);
1665         unsigned long sz = huge_page_size(h);
1666
1667         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1668
1669         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1670                 src_pte = huge_pte_offset(src, addr);
1671                 if (!src_pte)
1672                         continue;
1673                 dst_pte = huge_pte_alloc(dst, addr, sz);
1674                 if (!dst_pte)
1675                         goto nomem;
1676
1677                 /* If the pagetables are shared don't copy or take references */
1678                 if (dst_pte == src_pte)
1679                         continue;
1680
1681                 spin_lock(&dst->page_table_lock);
1682                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1683                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1684                         if (cow)
1685                                 huge_ptep_set_wrprotect(src, addr, src_pte);
1686                         entry = huge_ptep_get(src_pte);
1687                         ptepage = pte_page(entry);
1688                         get_page(ptepage);
1689                         set_huge_pte_at(dst, addr, dst_pte, entry);
1690                 }
1691                 spin_unlock(&src->page_table_lock);
1692                 spin_unlock(&dst->page_table_lock);
1693         }
1694         return 0;
1695
1696 nomem:
1697         return -ENOMEM;
1698 }
1699
1700 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1701                             unsigned long end, struct page *ref_page)
1702 {
1703         struct mm_struct *mm = vma->vm_mm;
1704         unsigned long address;
1705         pte_t *ptep;
1706         pte_t pte;
1707         struct page *page;
1708         struct page *tmp;
1709         struct hstate *h = hstate_vma(vma);
1710         unsigned long sz = huge_page_size(h);
1711
1712         /*
1713          * A page gathering list, protected by per file i_mmap_lock. The
1714          * lock is used to avoid list corruption from multiple unmapping
1715          * of the same page since we are using page->lru.
1716          */
1717         LIST_HEAD(page_list);
1718
1719         WARN_ON(!is_vm_hugetlb_page(vma));
1720         BUG_ON(start & ~huge_page_mask(h));
1721         BUG_ON(end & ~huge_page_mask(h));
1722
1723         mmu_notifier_invalidate_range_start(mm, start, end);
1724         spin_lock(&mm->page_table_lock);
1725         for (address = start; address < end; address += sz) {
1726                 ptep = huge_pte_offset(mm, address);
1727                 if (!ptep)
1728                         continue;
1729
1730                 if (huge_pmd_unshare(mm, &address, ptep))
1731                         continue;
1732
1733                 /*
1734                  * If a reference page is supplied, it is because a specific
1735                  * page is being unmapped, not a range. Ensure the page we
1736                  * are about to unmap is the actual page of interest.
1737                  */
1738                 if (ref_page) {
1739                         pte = huge_ptep_get(ptep);
1740                         if (huge_pte_none(pte))
1741                                 continue;
1742                         page = pte_page(pte);
1743                         if (page != ref_page)
1744                                 continue;
1745
1746                         /*
1747                          * Mark the VMA as having unmapped its page so that
1748                          * future faults in this VMA will fail rather than
1749                          * looking like data was lost
1750                          */
1751                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1752                 }
1753
1754                 pte = huge_ptep_get_and_clear(mm, address, ptep);
1755                 if (huge_pte_none(pte))
1756                         continue;
1757
1758                 page = pte_page(pte);
1759                 if (pte_dirty(pte))
1760                         set_page_dirty(page);
1761                 list_add(&page->lru, &page_list);
1762         }
1763         spin_unlock(&mm->page_table_lock);
1764         flush_tlb_range(vma, start, end);
1765         mmu_notifier_invalidate_range_end(mm, start, end);
1766         list_for_each_entry_safe(page, tmp, &page_list, lru) {
1767                 list_del(&page->lru);
1768                 put_page(page);
1769         }
1770 }
1771
1772 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1773                           unsigned long end, struct page *ref_page)
1774 {
1775         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1776         __unmap_hugepage_range(vma, start, end, ref_page);
1777         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1778 }
1779
1780 /*
1781  * This is called when the original mapper is failing to COW a MAP_PRIVATE
1782  * mappping it owns the reserve page for. The intention is to unmap the page
1783  * from other VMAs and let the children be SIGKILLed if they are faulting the
1784  * same region.
1785  */
1786 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1787                                 struct page *page, unsigned long address)
1788 {
1789         struct vm_area_struct *iter_vma;
1790         struct address_space *mapping;
1791         struct prio_tree_iter iter;
1792         pgoff_t pgoff;
1793
1794         /*
1795          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1796          * from page cache lookup which is in HPAGE_SIZE units.
1797          */
1798         address = address & huge_page_mask(hstate_vma(vma));
1799         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1800                 + (vma->vm_pgoff >> PAGE_SHIFT);
1801         mapping = (struct address_space *)page_private(page);
1802
1803         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1804                 /* Do not unmap the current VMA */
1805                 if (iter_vma == vma)
1806                         continue;
1807
1808                 /*
1809                  * Unmap the page from other VMAs without their own reserves.
1810                  * They get marked to be SIGKILLed if they fault in these
1811                  * areas. This is because a future no-page fault on this VMA
1812                  * could insert a zeroed page instead of the data existing
1813                  * from the time of fork. This would look like data corruption
1814                  */
1815                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1816                         unmap_hugepage_range(iter_vma,
1817                                 address, address + HPAGE_SIZE,
1818                                 page);
1819         }
1820
1821         return 1;
1822 }
1823
1824 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1825                         unsigned long address, pte_t *ptep, pte_t pte,
1826                         struct page *pagecache_page)
1827 {
1828         struct hstate *h = hstate_vma(vma);
1829         struct page *old_page, *new_page;
1830         int avoidcopy;
1831         int outside_reserve = 0;
1832
1833         old_page = pte_page(pte);
1834
1835 retry_avoidcopy:
1836         /* If no-one else is actually using this page, avoid the copy
1837          * and just make the page writable */
1838         avoidcopy = (page_count(old_page) == 1);
1839         if (avoidcopy) {
1840                 set_huge_ptep_writable(vma, address, ptep);
1841                 return 0;
1842         }
1843
1844         /*
1845          * If the process that created a MAP_PRIVATE mapping is about to
1846          * perform a COW due to a shared page count, attempt to satisfy
1847          * the allocation without using the existing reserves. The pagecache
1848          * page is used to determine if the reserve at this address was
1849          * consumed or not. If reserves were used, a partial faulted mapping
1850          * at the time of fork() could consume its reserves on COW instead
1851          * of the full address range.
1852          */
1853         if (!(vma->vm_flags & VM_SHARED) &&
1854                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1855                         old_page != pagecache_page)
1856                 outside_reserve = 1;
1857
1858         page_cache_get(old_page);
1859         new_page = alloc_huge_page(vma, address, outside_reserve);
1860
1861         if (IS_ERR(new_page)) {
1862                 page_cache_release(old_page);
1863
1864                 /*
1865                  * If a process owning a MAP_PRIVATE mapping fails to COW,
1866                  * it is due to references held by a child and an insufficient
1867                  * huge page pool. To guarantee the original mappers
1868                  * reliability, unmap the page from child processes. The child
1869                  * may get SIGKILLed if it later faults.
1870                  */
1871                 if (outside_reserve) {
1872                         BUG_ON(huge_pte_none(pte));
1873                         if (unmap_ref_private(mm, vma, old_page, address)) {
1874                                 BUG_ON(page_count(old_page) != 1);
1875                                 BUG_ON(huge_pte_none(pte));
1876                                 goto retry_avoidcopy;
1877                         }
1878                         WARN_ON_ONCE(1);
1879                 }
1880
1881                 return -PTR_ERR(new_page);
1882         }
1883
1884         spin_unlock(&mm->page_table_lock);
1885         copy_huge_page(new_page, old_page, address, vma);
1886         __SetPageUptodate(new_page);
1887         spin_lock(&mm->page_table_lock);
1888
1889         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1890         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1891                 /* Break COW */
1892                 huge_ptep_clear_flush(vma, address, ptep);
1893                 set_huge_pte_at(mm, address, ptep,
1894                                 make_huge_pte(vma, new_page, 1));
1895                 /* Make the old page be freed below */
1896                 new_page = old_page;
1897         }
1898         page_cache_release(new_page);
1899         page_cache_release(old_page);
1900         return 0;
1901 }
1902
1903 /* Return the pagecache page at a given address within a VMA */
1904 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1905                         struct vm_area_struct *vma, unsigned long address)
1906 {
1907         struct address_space *mapping;
1908         pgoff_t idx;
1909
1910         mapping = vma->vm_file->f_mapping;
1911         idx = vma_hugecache_offset(h, vma, address);
1912
1913         return find_lock_page(mapping, idx);
1914 }
1915
1916 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1917                         unsigned long address, pte_t *ptep, int write_access)
1918 {
1919         struct hstate *h = hstate_vma(vma);
1920         int ret = VM_FAULT_SIGBUS;
1921         pgoff_t idx;
1922         unsigned long size;
1923         struct page *page;
1924         struct address_space *mapping;
1925         pte_t new_pte;
1926
1927         /*
1928          * Currently, we are forced to kill the process in the event the
1929          * original mapper has unmapped pages from the child due to a failed
1930          * COW. Warn that such a situation has occured as it may not be obvious
1931          */
1932         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1933                 printk(KERN_WARNING
1934                         "PID %d killed due to inadequate hugepage pool\n",
1935                         current->pid);
1936                 return ret;
1937         }
1938
1939         mapping = vma->vm_file->f_mapping;
1940         idx = vma_hugecache_offset(h, vma, address);
1941
1942         /*
1943          * Use page lock to guard against racing truncation
1944          * before we get page_table_lock.
1945          */
1946 retry:
1947         page = find_lock_page(mapping, idx);
1948         if (!page) {
1949                 size = i_size_read(mapping->host) >> huge_page_shift(h);
1950                 if (idx >= size)
1951                         goto out;
1952                 page = alloc_huge_page(vma, address, 0);
1953                 if (IS_ERR(page)) {
1954                         ret = -PTR_ERR(page);
1955                         goto out;
1956                 }
1957                 clear_huge_page(page, address, huge_page_size(h));
1958                 __SetPageUptodate(page);
1959
1960                 if (vma->vm_flags & VM_SHARED) {
1961                         int err;
1962                         struct inode *inode = mapping->host;
1963
1964                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
1965                         if (err) {
1966                                 put_page(page);
1967                                 if (err == -EEXIST)
1968                                         goto retry;
1969                                 goto out;
1970                         }
1971
1972                         spin_lock(&inode->i_lock);
1973                         inode->i_blocks += blocks_per_huge_page(h);
1974                         spin_unlock(&inode->i_lock);
1975                 } else
1976                         lock_page(page);
1977         }
1978
1979         /*
1980          * If we are going to COW a private mapping later, we examine the
1981          * pending reservations for this page now. This will ensure that
1982          * any allocations necessary to record that reservation occur outside
1983          * the spinlock.
1984          */
1985         if (write_access && !(vma->vm_flags & VM_SHARED))
1986                 if (vma_needs_reservation(h, vma, address) < 0) {
1987                         ret = VM_FAULT_OOM;
1988                         goto backout_unlocked;
1989                 }
1990
1991         spin_lock(&mm->page_table_lock);
1992         size = i_size_read(mapping->host) >> huge_page_shift(h);
1993         if (idx >= size)
1994                 goto backout;
1995
1996         ret = 0;
1997         if (!huge_pte_none(huge_ptep_get(ptep)))
1998                 goto backout;
1999
2000         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2001                                 && (vma->vm_flags & VM_SHARED)));
2002         set_huge_pte_at(mm, address, ptep, new_pte);
2003
2004         if (write_access && !(vma->vm_flags & VM_SHARED)) {
2005                 /* Optimization, do the COW without a second fault */
2006                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2007         }
2008
2009         spin_unlock(&mm->page_table_lock);
2010         unlock_page(page);
2011 out:
2012         return ret;
2013
2014 backout:
2015         spin_unlock(&mm->page_table_lock);
2016 backout_unlocked:
2017         unlock_page(page);
2018         put_page(page);
2019         goto out;
2020 }
2021
2022 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2023                         unsigned long address, int write_access)
2024 {
2025         pte_t *ptep;
2026         pte_t entry;
2027         int ret;
2028         struct page *pagecache_page = NULL;
2029         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2030         struct hstate *h = hstate_vma(vma);
2031
2032         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2033         if (!ptep)
2034                 return VM_FAULT_OOM;
2035
2036         /*
2037          * Serialize hugepage allocation and instantiation, so that we don't
2038          * get spurious allocation failures if two CPUs race to instantiate
2039          * the same page in the page cache.
2040          */
2041         mutex_lock(&hugetlb_instantiation_mutex);
2042         entry = huge_ptep_get(ptep);
2043         if (huge_pte_none(entry)) {
2044                 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
2045                 goto out_mutex;
2046         }
2047
2048         ret = 0;
2049
2050         /*
2051          * If we are going to COW the mapping later, we examine the pending
2052          * reservations for this page now. This will ensure that any
2053          * allocations necessary to record that reservation occur outside the
2054          * spinlock. For private mappings, we also lookup the pagecache
2055          * page now as it is used to determine if a reservation has been
2056          * consumed.
2057          */
2058         if (write_access && !pte_write(entry)) {
2059                 if (vma_needs_reservation(h, vma, address) < 0) {
2060                         ret = VM_FAULT_OOM;
2061                         goto out_mutex;
2062                 }
2063
2064                 if (!(vma->vm_flags & VM_SHARED))
2065                         pagecache_page = hugetlbfs_pagecache_page(h,
2066                                                                 vma, address);
2067         }
2068
2069         spin_lock(&mm->page_table_lock);
2070         /* Check for a racing update before calling hugetlb_cow */
2071         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2072                 goto out_page_table_lock;
2073
2074
2075         if (write_access) {
2076                 if (!pte_write(entry)) {
2077                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2078                                                         pagecache_page);
2079                         goto out_page_table_lock;
2080                 }
2081                 entry = pte_mkdirty(entry);
2082         }
2083         entry = pte_mkyoung(entry);
2084         if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access))
2085                 update_mmu_cache(vma, address, entry);
2086
2087 out_page_table_lock:
2088         spin_unlock(&mm->page_table_lock);
2089
2090         if (pagecache_page) {
2091                 unlock_page(pagecache_page);
2092                 put_page(pagecache_page);
2093         }
2094
2095 out_mutex:
2096         mutex_unlock(&hugetlb_instantiation_mutex);
2097
2098         return ret;
2099 }
2100
2101 /* Can be overriden by architectures */
2102 __attribute__((weak)) struct page *
2103 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2104                pud_t *pud, int write)
2105 {
2106         BUG();
2107         return NULL;
2108 }
2109
2110 static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
2111 {
2112         if (!ptep || write || shared)
2113                 return 0;
2114         else
2115                 return huge_pte_none(huge_ptep_get(ptep));
2116 }
2117
2118 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2119                         struct page **pages, struct vm_area_struct **vmas,
2120                         unsigned long *position, int *length, int i,
2121                         int write)
2122 {
2123         unsigned long pfn_offset;
2124         unsigned long vaddr = *position;
2125         int remainder = *length;
2126         struct hstate *h = hstate_vma(vma);
2127         int zeropage_ok = 0;
2128         int shared = vma->vm_flags & VM_SHARED;
2129
2130         spin_lock(&mm->page_table_lock);
2131         while (vaddr < vma->vm_end && remainder) {
2132                 pte_t *pte;
2133                 struct page *page;
2134
2135                 /*
2136                  * Some archs (sparc64, sh*) have multiple pte_ts to
2137                  * each hugepage.  We have to make * sure we get the
2138                  * first, for the page indexing below to work.
2139                  */
2140                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2141                 if (huge_zeropage_ok(pte, write, shared))
2142                         zeropage_ok = 1;
2143
2144                 if (!pte ||
2145                     (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
2146                     (write && !pte_write(huge_ptep_get(pte)))) {
2147                         int ret;
2148
2149                         spin_unlock(&mm->page_table_lock);
2150                         ret = hugetlb_fault(mm, vma, vaddr, write);
2151                         spin_lock(&mm->page_table_lock);
2152                         if (!(ret & VM_FAULT_ERROR))
2153                                 continue;
2154
2155                         remainder = 0;
2156                         if (!i)
2157                                 i = -EFAULT;
2158                         break;
2159                 }
2160
2161                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2162                 page = pte_page(huge_ptep_get(pte));
2163 same_page:
2164                 if (pages) {
2165                         if (zeropage_ok)
2166                                 pages[i] = ZERO_PAGE(0);
2167                         else
2168                                 pages[i] = mem_map_offset(page, pfn_offset);
2169                         get_page(pages[i]);
2170                 }
2171
2172                 if (vmas)
2173                         vmas[i] = vma;
2174
2175                 vaddr += PAGE_SIZE;
2176                 ++pfn_offset;
2177                 --remainder;
2178                 ++i;
2179                 if (vaddr < vma->vm_end && remainder &&
2180                                 pfn_offset < pages_per_huge_page(h)) {
2181                         /*
2182                          * We use pfn_offset to avoid touching the pageframes
2183                          * of this compound page.
2184                          */
2185                         goto same_page;
2186                 }
2187         }
2188         spin_unlock(&mm->page_table_lock);
2189         *length = remainder;
2190         *position = vaddr;
2191
2192         return i;
2193 }
2194
2195 void hugetlb_change_protection(struct vm_area_struct *vma,
2196                 unsigned long address, unsigned long end, pgprot_t newprot)
2197 {
2198         struct mm_struct *mm = vma->vm_mm;
2199         unsigned long start = address;
2200         pte_t *ptep;
2201         pte_t pte;
2202         struct hstate *h = hstate_vma(vma);
2203
2204         BUG_ON(address >= end);
2205         flush_cache_range(vma, address, end);
2206
2207         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2208         spin_lock(&mm->page_table_lock);
2209         for (; address < end; address += huge_page_size(h)) {
2210                 ptep = huge_pte_offset(mm, address);
2211                 if (!ptep)
2212                         continue;
2213                 if (huge_pmd_unshare(mm, &address, ptep))
2214                         continue;
2215                 if (!huge_pte_none(huge_ptep_get(ptep))) {
2216                         pte = huge_ptep_get_and_clear(mm, address, ptep);
2217                         pte = pte_mkhuge(pte_modify(pte, newprot));
2218                         set_huge_pte_at(mm, address, ptep, pte);
2219                 }
2220         }
2221         spin_unlock(&mm->page_table_lock);
2222         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2223
2224         flush_tlb_range(vma, start, end);
2225 }
2226
2227 int hugetlb_reserve_pages(struct inode *inode,
2228                                         long from, long to,
2229                                         struct vm_area_struct *vma)
2230 {
2231         long ret, chg;
2232         struct hstate *h = hstate_inode(inode);
2233
2234         if (vma && vma->vm_flags & VM_NORESERVE)
2235                 return 0;
2236
2237         /*
2238          * Shared mappings base their reservation on the number of pages that
2239          * are already allocated on behalf of the file. Private mappings need
2240          * to reserve the full area even if read-only as mprotect() may be
2241          * called to make the mapping read-write. Assume !vma is a shm mapping
2242          */
2243         if (!vma || vma->vm_flags & VM_SHARED)
2244                 chg = region_chg(&inode->i_mapping->private_list, from, to);
2245         else {
2246                 struct resv_map *resv_map = resv_map_alloc();
2247                 if (!resv_map)
2248                         return -ENOMEM;
2249
2250                 chg = to - from;
2251
2252                 set_vma_resv_map(vma, resv_map);
2253                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2254         }
2255
2256         if (chg < 0)
2257                 return chg;
2258
2259         if (hugetlb_get_quota(inode->i_mapping, chg))
2260                 return -ENOSPC;
2261         ret = hugetlb_acct_memory(h, chg);
2262         if (ret < 0) {
2263                 hugetlb_put_quota(inode->i_mapping, chg);
2264                 return ret;
2265         }
2266         if (!vma || vma->vm_flags & VM_SHARED)
2267                 region_add(&inode->i_mapping->private_list, from, to);
2268         return 0;
2269 }
2270
2271 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2272 {
2273         struct hstate *h = hstate_inode(inode);
2274         long chg = region_truncate(&inode->i_mapping->private_list, offset);
2275
2276         spin_lock(&inode->i_lock);
2277         inode->i_blocks -= blocks_per_huge_page(h);
2278         spin_unlock(&inode->i_lock);
2279
2280         hugetlb_put_quota(inode->i_mapping, (chg - freed));
2281         hugetlb_acct_memory(h, -(chg - freed));
2282 }