hugetlb: fix hugepage allocation with memoryless nodes
[safe/jmp/linux-2.6] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
20
21 #include <linux/hugetlb.h>
22 #include "internal.h"
23
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 static unsigned long surplus_huge_pages;
27 unsigned long max_huge_pages;
28 static struct list_head hugepage_freelists[MAX_NUMNODES];
29 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
30 static unsigned int free_huge_pages_node[MAX_NUMNODES];
31 static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
32 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
33 unsigned long hugepages_treat_as_movable;
34 int hugetlb_dynamic_pool;
35 static int hugetlb_next_nid;
36
37 /*
38  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
39  */
40 static DEFINE_SPINLOCK(hugetlb_lock);
41
42 static void clear_huge_page(struct page *page, unsigned long addr)
43 {
44         int i;
45
46         might_sleep();
47         for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
48                 cond_resched();
49                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
50         }
51 }
52
53 static void copy_huge_page(struct page *dst, struct page *src,
54                            unsigned long addr, struct vm_area_struct *vma)
55 {
56         int i;
57
58         might_sleep();
59         for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
60                 cond_resched();
61                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
62         }
63 }
64
65 static void enqueue_huge_page(struct page *page)
66 {
67         int nid = page_to_nid(page);
68         list_add(&page->lru, &hugepage_freelists[nid]);
69         free_huge_pages++;
70         free_huge_pages_node[nid]++;
71 }
72
73 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
74                                 unsigned long address)
75 {
76         int nid;
77         struct page *page = NULL;
78         struct mempolicy *mpol;
79         struct zonelist *zonelist = huge_zonelist(vma, address,
80                                         htlb_alloc_mask, &mpol);
81         struct zone **z;
82
83         for (z = zonelist->zones; *z; z++) {
84                 nid = zone_to_nid(*z);
85                 if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
86                     !list_empty(&hugepage_freelists[nid])) {
87                         page = list_entry(hugepage_freelists[nid].next,
88                                           struct page, lru);
89                         list_del(&page->lru);
90                         free_huge_pages--;
91                         free_huge_pages_node[nid]--;
92                         if (vma && vma->vm_flags & VM_MAYSHARE)
93                                 resv_huge_pages--;
94                         break;
95                 }
96         }
97         mpol_free(mpol);        /* unref if mpol !NULL */
98         return page;
99 }
100
101 static void update_and_free_page(struct page *page)
102 {
103         int i;
104         nr_huge_pages--;
105         nr_huge_pages_node[page_to_nid(page)]--;
106         for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
107                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
108                                 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
109                                 1 << PG_private | 1<< PG_writeback);
110         }
111         set_compound_page_dtor(page, NULL);
112         set_page_refcounted(page);
113         __free_pages(page, HUGETLB_PAGE_ORDER);
114 }
115
116 static void free_huge_page(struct page *page)
117 {
118         int nid = page_to_nid(page);
119
120         BUG_ON(page_count(page));
121         INIT_LIST_HEAD(&page->lru);
122
123         spin_lock(&hugetlb_lock);
124         if (surplus_huge_pages_node[nid]) {
125                 update_and_free_page(page);
126                 surplus_huge_pages--;
127                 surplus_huge_pages_node[nid]--;
128         } else {
129                 enqueue_huge_page(page);
130         }
131         spin_unlock(&hugetlb_lock);
132 }
133
134 /*
135  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
136  * balanced by operating on them in a round-robin fashion.
137  * Returns 1 if an adjustment was made.
138  */
139 static int adjust_pool_surplus(int delta)
140 {
141         static int prev_nid;
142         int nid = prev_nid;
143         int ret = 0;
144
145         VM_BUG_ON(delta != -1 && delta != 1);
146         do {
147                 nid = next_node(nid, node_online_map);
148                 if (nid == MAX_NUMNODES)
149                         nid = first_node(node_online_map);
150
151                 /* To shrink on this node, there must be a surplus page */
152                 if (delta < 0 && !surplus_huge_pages_node[nid])
153                         continue;
154                 /* Surplus cannot exceed the total number of pages */
155                 if (delta > 0 && surplus_huge_pages_node[nid] >=
156                                                 nr_huge_pages_node[nid])
157                         continue;
158
159                 surplus_huge_pages += delta;
160                 surplus_huge_pages_node[nid] += delta;
161                 ret = 1;
162                 break;
163         } while (nid != prev_nid);
164
165         prev_nid = nid;
166         return ret;
167 }
168
169 static struct page *alloc_fresh_huge_page_node(int nid)
170 {
171         struct page *page;
172
173         page = alloc_pages_node(nid,
174                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
175                 HUGETLB_PAGE_ORDER);
176         if (page) {
177                 set_compound_page_dtor(page, free_huge_page);
178                 spin_lock(&hugetlb_lock);
179                 nr_huge_pages++;
180                 nr_huge_pages_node[nid]++;
181                 spin_unlock(&hugetlb_lock);
182                 put_page(page); /* free it into the hugepage allocator */
183         }
184
185         return page;
186 }
187
188 static int alloc_fresh_huge_page(void)
189 {
190         struct page *page;
191         int start_nid;
192         int next_nid;
193         int ret = 0;
194
195         start_nid = hugetlb_next_nid;
196
197         do {
198                 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
199                 if (page)
200                         ret = 1;
201                 /*
202                  * Use a helper variable to find the next node and then
203                  * copy it back to hugetlb_next_nid afterwards:
204                  * otherwise there's a window in which a racer might
205                  * pass invalid nid MAX_NUMNODES to alloc_pages_node.
206                  * But we don't need to use a spin_lock here: it really
207                  * doesn't matter if occasionally a racer chooses the
208                  * same nid as we do.  Move nid forward in the mask even
209                  * if we just successfully allocated a hugepage so that
210                  * the next caller gets hugepages on the next node.
211                  */
212                 next_nid = next_node(hugetlb_next_nid, node_online_map);
213                 if (next_nid == MAX_NUMNODES)
214                         next_nid = first_node(node_online_map);
215                 hugetlb_next_nid = next_nid;
216         } while (!page && hugetlb_next_nid != start_nid);
217
218         return ret;
219 }
220
221 static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
222                                                 unsigned long address)
223 {
224         struct page *page;
225
226         /* Check if the dynamic pool is enabled */
227         if (!hugetlb_dynamic_pool)
228                 return NULL;
229
230         page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
231                                         HUGETLB_PAGE_ORDER);
232         if (page) {
233                 set_compound_page_dtor(page, free_huge_page);
234                 spin_lock(&hugetlb_lock);
235                 nr_huge_pages++;
236                 nr_huge_pages_node[page_to_nid(page)]++;
237                 surplus_huge_pages++;
238                 surplus_huge_pages_node[page_to_nid(page)]++;
239                 spin_unlock(&hugetlb_lock);
240         }
241
242         return page;
243 }
244
245 /*
246  * Increase the hugetlb pool such that it can accomodate a reservation
247  * of size 'delta'.
248  */
249 static int gather_surplus_pages(int delta)
250 {
251         struct list_head surplus_list;
252         struct page *page, *tmp;
253         int ret, i;
254         int needed, allocated;
255
256         needed = (resv_huge_pages + delta) - free_huge_pages;
257         if (needed <= 0)
258                 return 0;
259
260         allocated = 0;
261         INIT_LIST_HEAD(&surplus_list);
262
263         ret = -ENOMEM;
264 retry:
265         spin_unlock(&hugetlb_lock);
266         for (i = 0; i < needed; i++) {
267                 page = alloc_buddy_huge_page(NULL, 0);
268                 if (!page) {
269                         /*
270                          * We were not able to allocate enough pages to
271                          * satisfy the entire reservation so we free what
272                          * we've allocated so far.
273                          */
274                         spin_lock(&hugetlb_lock);
275                         needed = 0;
276                         goto free;
277                 }
278
279                 list_add(&page->lru, &surplus_list);
280         }
281         allocated += needed;
282
283         /*
284          * After retaking hugetlb_lock, we need to recalculate 'needed'
285          * because either resv_huge_pages or free_huge_pages may have changed.
286          */
287         spin_lock(&hugetlb_lock);
288         needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
289         if (needed > 0)
290                 goto retry;
291
292         /*
293          * The surplus_list now contains _at_least_ the number of extra pages
294          * needed to accomodate the reservation.  Add the appropriate number
295          * of pages to the hugetlb pool and free the extras back to the buddy
296          * allocator.
297          */
298         needed += allocated;
299         ret = 0;
300 free:
301         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
302                 list_del(&page->lru);
303                 if ((--needed) >= 0)
304                         enqueue_huge_page(page);
305                 else
306                         update_and_free_page(page);
307         }
308
309         return ret;
310 }
311
312 /*
313  * When releasing a hugetlb pool reservation, any surplus pages that were
314  * allocated to satisfy the reservation must be explicitly freed if they were
315  * never used.
316  */
317 void return_unused_surplus_pages(unsigned long unused_resv_pages)
318 {
319         static int nid = -1;
320         struct page *page;
321         unsigned long nr_pages;
322
323         nr_pages = min(unused_resv_pages, surplus_huge_pages);
324
325         while (nr_pages) {
326                 nid = next_node(nid, node_online_map);
327                 if (nid == MAX_NUMNODES)
328                         nid = first_node(node_online_map);
329
330                 if (!surplus_huge_pages_node[nid])
331                         continue;
332
333                 if (!list_empty(&hugepage_freelists[nid])) {
334                         page = list_entry(hugepage_freelists[nid].next,
335                                           struct page, lru);
336                         list_del(&page->lru);
337                         update_and_free_page(page);
338                         free_huge_pages--;
339                         free_huge_pages_node[nid]--;
340                         surplus_huge_pages--;
341                         surplus_huge_pages_node[nid]--;
342                         nr_pages--;
343                 }
344         }
345 }
346
347 static struct page *alloc_huge_page(struct vm_area_struct *vma,
348                                     unsigned long addr)
349 {
350         struct page *page = NULL;
351         int use_reserved_page = vma->vm_flags & VM_MAYSHARE;
352
353         spin_lock(&hugetlb_lock);
354         if (!use_reserved_page && (free_huge_pages <= resv_huge_pages))
355                 goto fail;
356
357         page = dequeue_huge_page(vma, addr);
358         if (!page)
359                 goto fail;
360
361         spin_unlock(&hugetlb_lock);
362         set_page_refcounted(page);
363         return page;
364
365 fail:
366         spin_unlock(&hugetlb_lock);
367
368         /*
369          * Private mappings do not use reserved huge pages so the allocation
370          * may have failed due to an undersized hugetlb pool.  Try to grab a
371          * surplus huge page from the buddy allocator.
372          */
373         if (!use_reserved_page)
374                 page = alloc_buddy_huge_page(vma, addr);
375
376         return page;
377 }
378
379 static int __init hugetlb_init(void)
380 {
381         unsigned long i;
382
383         if (HPAGE_SHIFT == 0)
384                 return 0;
385
386         for (i = 0; i < MAX_NUMNODES; ++i)
387                 INIT_LIST_HEAD(&hugepage_freelists[i]);
388
389         hugetlb_next_nid = first_node(node_online_map);
390
391         for (i = 0; i < max_huge_pages; ++i) {
392                 if (!alloc_fresh_huge_page())
393                         break;
394         }
395         max_huge_pages = free_huge_pages = nr_huge_pages = i;
396         printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
397         return 0;
398 }
399 module_init(hugetlb_init);
400
401 static int __init hugetlb_setup(char *s)
402 {
403         if (sscanf(s, "%lu", &max_huge_pages) <= 0)
404                 max_huge_pages = 0;
405         return 1;
406 }
407 __setup("hugepages=", hugetlb_setup);
408
409 static unsigned int cpuset_mems_nr(unsigned int *array)
410 {
411         int node;
412         unsigned int nr = 0;
413
414         for_each_node_mask(node, cpuset_current_mems_allowed)
415                 nr += array[node];
416
417         return nr;
418 }
419
420 #ifdef CONFIG_SYSCTL
421 #ifdef CONFIG_HIGHMEM
422 static void try_to_free_low(unsigned long count)
423 {
424         int i;
425
426         for (i = 0; i < MAX_NUMNODES; ++i) {
427                 struct page *page, *next;
428                 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
429                         if (count >= nr_huge_pages)
430                                 return;
431                         if (PageHighMem(page))
432                                 continue;
433                         list_del(&page->lru);
434                         update_and_free_page(page);
435                         free_huge_pages--;
436                         free_huge_pages_node[page_to_nid(page)]--;
437                 }
438         }
439 }
440 #else
441 static inline void try_to_free_low(unsigned long count)
442 {
443 }
444 #endif
445
446 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
447 static unsigned long set_max_huge_pages(unsigned long count)
448 {
449         unsigned long min_count, ret;
450
451         /*
452          * Increase the pool size
453          * First take pages out of surplus state.  Then make up the
454          * remaining difference by allocating fresh huge pages.
455          */
456         spin_lock(&hugetlb_lock);
457         while (surplus_huge_pages && count > persistent_huge_pages) {
458                 if (!adjust_pool_surplus(-1))
459                         break;
460         }
461
462         while (count > persistent_huge_pages) {
463                 int ret;
464                 /*
465                  * If this allocation races such that we no longer need the
466                  * page, free_huge_page will handle it by freeing the page
467                  * and reducing the surplus.
468                  */
469                 spin_unlock(&hugetlb_lock);
470                 ret = alloc_fresh_huge_page();
471                 spin_lock(&hugetlb_lock);
472                 if (!ret)
473                         goto out;
474
475         }
476
477         /*
478          * Decrease the pool size
479          * First return free pages to the buddy allocator (being careful
480          * to keep enough around to satisfy reservations).  Then place
481          * pages into surplus state as needed so the pool will shrink
482          * to the desired size as pages become free.
483          */
484         min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
485         min_count = max(count, min_count);
486         try_to_free_low(min_count);
487         while (min_count < persistent_huge_pages) {
488                 struct page *page = dequeue_huge_page(NULL, 0);
489                 if (!page)
490                         break;
491                 update_and_free_page(page);
492         }
493         while (count < persistent_huge_pages) {
494                 if (!adjust_pool_surplus(1))
495                         break;
496         }
497 out:
498         ret = persistent_huge_pages;
499         spin_unlock(&hugetlb_lock);
500         return ret;
501 }
502
503 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
504                            struct file *file, void __user *buffer,
505                            size_t *length, loff_t *ppos)
506 {
507         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
508         max_huge_pages = set_max_huge_pages(max_huge_pages);
509         return 0;
510 }
511
512 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
513                         struct file *file, void __user *buffer,
514                         size_t *length, loff_t *ppos)
515 {
516         proc_dointvec(table, write, file, buffer, length, ppos);
517         if (hugepages_treat_as_movable)
518                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
519         else
520                 htlb_alloc_mask = GFP_HIGHUSER;
521         return 0;
522 }
523
524 #endif /* CONFIG_SYSCTL */
525
526 int hugetlb_report_meminfo(char *buf)
527 {
528         return sprintf(buf,
529                         "HugePages_Total: %5lu\n"
530                         "HugePages_Free:  %5lu\n"
531                         "HugePages_Rsvd:  %5lu\n"
532                         "HugePages_Surp:  %5lu\n"
533                         "Hugepagesize:    %5lu kB\n",
534                         nr_huge_pages,
535                         free_huge_pages,
536                         resv_huge_pages,
537                         surplus_huge_pages,
538                         HPAGE_SIZE/1024);
539 }
540
541 int hugetlb_report_node_meminfo(int nid, char *buf)
542 {
543         return sprintf(buf,
544                 "Node %d HugePages_Total: %5u\n"
545                 "Node %d HugePages_Free:  %5u\n",
546                 nid, nr_huge_pages_node[nid],
547                 nid, free_huge_pages_node[nid]);
548 }
549
550 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
551 unsigned long hugetlb_total_pages(void)
552 {
553         return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
554 }
555
556 /*
557  * We cannot handle pagefaults against hugetlb pages at all.  They cause
558  * handle_mm_fault() to try to instantiate regular-sized pages in the
559  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
560  * this far.
561  */
562 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
563 {
564         BUG();
565         return 0;
566 }
567
568 struct vm_operations_struct hugetlb_vm_ops = {
569         .fault = hugetlb_vm_op_fault,
570 };
571
572 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
573                                 int writable)
574 {
575         pte_t entry;
576
577         if (writable) {
578                 entry =
579                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
580         } else {
581                 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
582         }
583         entry = pte_mkyoung(entry);
584         entry = pte_mkhuge(entry);
585
586         return entry;
587 }
588
589 static void set_huge_ptep_writable(struct vm_area_struct *vma,
590                                    unsigned long address, pte_t *ptep)
591 {
592         pte_t entry;
593
594         entry = pte_mkwrite(pte_mkdirty(*ptep));
595         if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
596                 update_mmu_cache(vma, address, entry);
597         }
598 }
599
600
601 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
602                             struct vm_area_struct *vma)
603 {
604         pte_t *src_pte, *dst_pte, entry;
605         struct page *ptepage;
606         unsigned long addr;
607         int cow;
608
609         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
610
611         for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
612                 src_pte = huge_pte_offset(src, addr);
613                 if (!src_pte)
614                         continue;
615                 dst_pte = huge_pte_alloc(dst, addr);
616                 if (!dst_pte)
617                         goto nomem;
618                 spin_lock(&dst->page_table_lock);
619                 spin_lock(&src->page_table_lock);
620                 if (!pte_none(*src_pte)) {
621                         if (cow)
622                                 ptep_set_wrprotect(src, addr, src_pte);
623                         entry = *src_pte;
624                         ptepage = pte_page(entry);
625                         get_page(ptepage);
626                         set_huge_pte_at(dst, addr, dst_pte, entry);
627                 }
628                 spin_unlock(&src->page_table_lock);
629                 spin_unlock(&dst->page_table_lock);
630         }
631         return 0;
632
633 nomem:
634         return -ENOMEM;
635 }
636
637 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
638                             unsigned long end)
639 {
640         struct mm_struct *mm = vma->vm_mm;
641         unsigned long address;
642         pte_t *ptep;
643         pte_t pte;
644         struct page *page;
645         struct page *tmp;
646         /*
647          * A page gathering list, protected by per file i_mmap_lock. The
648          * lock is used to avoid list corruption from multiple unmapping
649          * of the same page since we are using page->lru.
650          */
651         LIST_HEAD(page_list);
652
653         WARN_ON(!is_vm_hugetlb_page(vma));
654         BUG_ON(start & ~HPAGE_MASK);
655         BUG_ON(end & ~HPAGE_MASK);
656
657         spin_lock(&mm->page_table_lock);
658         for (address = start; address < end; address += HPAGE_SIZE) {
659                 ptep = huge_pte_offset(mm, address);
660                 if (!ptep)
661                         continue;
662
663                 if (huge_pmd_unshare(mm, &address, ptep))
664                         continue;
665
666                 pte = huge_ptep_get_and_clear(mm, address, ptep);
667                 if (pte_none(pte))
668                         continue;
669
670                 page = pte_page(pte);
671                 if (pte_dirty(pte))
672                         set_page_dirty(page);
673                 list_add(&page->lru, &page_list);
674         }
675         spin_unlock(&mm->page_table_lock);
676         flush_tlb_range(vma, start, end);
677         list_for_each_entry_safe(page, tmp, &page_list, lru) {
678                 list_del(&page->lru);
679                 put_page(page);
680         }
681 }
682
683 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
684                           unsigned long end)
685 {
686         /*
687          * It is undesirable to test vma->vm_file as it should be non-null
688          * for valid hugetlb area. However, vm_file will be NULL in the error
689          * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
690          * do_mmap_pgoff() nullifies vma->vm_file before calling this function
691          * to clean up. Since no pte has actually been setup, it is safe to
692          * do nothing in this case.
693          */
694         if (vma->vm_file) {
695                 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
696                 __unmap_hugepage_range(vma, start, end);
697                 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
698         }
699 }
700
701 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
702                         unsigned long address, pte_t *ptep, pte_t pte)
703 {
704         struct page *old_page, *new_page;
705         int avoidcopy;
706
707         old_page = pte_page(pte);
708
709         /* If no-one else is actually using this page, avoid the copy
710          * and just make the page writable */
711         avoidcopy = (page_count(old_page) == 1);
712         if (avoidcopy) {
713                 set_huge_ptep_writable(vma, address, ptep);
714                 return 0;
715         }
716
717         page_cache_get(old_page);
718         new_page = alloc_huge_page(vma, address);
719
720         if (!new_page) {
721                 page_cache_release(old_page);
722                 return VM_FAULT_OOM;
723         }
724
725         spin_unlock(&mm->page_table_lock);
726         copy_huge_page(new_page, old_page, address, vma);
727         spin_lock(&mm->page_table_lock);
728
729         ptep = huge_pte_offset(mm, address & HPAGE_MASK);
730         if (likely(pte_same(*ptep, pte))) {
731                 /* Break COW */
732                 set_huge_pte_at(mm, address, ptep,
733                                 make_huge_pte(vma, new_page, 1));
734                 /* Make the old page be freed below */
735                 new_page = old_page;
736         }
737         page_cache_release(new_page);
738         page_cache_release(old_page);
739         return 0;
740 }
741
742 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
743                         unsigned long address, pte_t *ptep, int write_access)
744 {
745         int ret = VM_FAULT_SIGBUS;
746         unsigned long idx;
747         unsigned long size;
748         struct page *page;
749         struct address_space *mapping;
750         pte_t new_pte;
751
752         mapping = vma->vm_file->f_mapping;
753         idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
754                 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
755
756         /*
757          * Use page lock to guard against racing truncation
758          * before we get page_table_lock.
759          */
760 retry:
761         page = find_lock_page(mapping, idx);
762         if (!page) {
763                 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
764                 if (idx >= size)
765                         goto out;
766                 if (hugetlb_get_quota(mapping))
767                         goto out;
768                 page = alloc_huge_page(vma, address);
769                 if (!page) {
770                         hugetlb_put_quota(mapping);
771                         ret = VM_FAULT_OOM;
772                         goto out;
773                 }
774                 clear_huge_page(page, address);
775
776                 if (vma->vm_flags & VM_SHARED) {
777                         int err;
778
779                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
780                         if (err) {
781                                 put_page(page);
782                                 hugetlb_put_quota(mapping);
783                                 if (err == -EEXIST)
784                                         goto retry;
785                                 goto out;
786                         }
787                 } else
788                         lock_page(page);
789         }
790
791         spin_lock(&mm->page_table_lock);
792         size = i_size_read(mapping->host) >> HPAGE_SHIFT;
793         if (idx >= size)
794                 goto backout;
795
796         ret = 0;
797         if (!pte_none(*ptep))
798                 goto backout;
799
800         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
801                                 && (vma->vm_flags & VM_SHARED)));
802         set_huge_pte_at(mm, address, ptep, new_pte);
803
804         if (write_access && !(vma->vm_flags & VM_SHARED)) {
805                 /* Optimization, do the COW without a second fault */
806                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
807         }
808
809         spin_unlock(&mm->page_table_lock);
810         unlock_page(page);
811 out:
812         return ret;
813
814 backout:
815         spin_unlock(&mm->page_table_lock);
816         hugetlb_put_quota(mapping);
817         unlock_page(page);
818         put_page(page);
819         goto out;
820 }
821
822 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
823                         unsigned long address, int write_access)
824 {
825         pte_t *ptep;
826         pte_t entry;
827         int ret;
828         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
829
830         ptep = huge_pte_alloc(mm, address);
831         if (!ptep)
832                 return VM_FAULT_OOM;
833
834         /*
835          * Serialize hugepage allocation and instantiation, so that we don't
836          * get spurious allocation failures if two CPUs race to instantiate
837          * the same page in the page cache.
838          */
839         mutex_lock(&hugetlb_instantiation_mutex);
840         entry = *ptep;
841         if (pte_none(entry)) {
842                 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
843                 mutex_unlock(&hugetlb_instantiation_mutex);
844                 return ret;
845         }
846
847         ret = 0;
848
849         spin_lock(&mm->page_table_lock);
850         /* Check for a racing update before calling hugetlb_cow */
851         if (likely(pte_same(entry, *ptep)))
852                 if (write_access && !pte_write(entry))
853                         ret = hugetlb_cow(mm, vma, address, ptep, entry);
854         spin_unlock(&mm->page_table_lock);
855         mutex_unlock(&hugetlb_instantiation_mutex);
856
857         return ret;
858 }
859
860 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
861                         struct page **pages, struct vm_area_struct **vmas,
862                         unsigned long *position, int *length, int i)
863 {
864         unsigned long pfn_offset;
865         unsigned long vaddr = *position;
866         int remainder = *length;
867
868         spin_lock(&mm->page_table_lock);
869         while (vaddr < vma->vm_end && remainder) {
870                 pte_t *pte;
871                 struct page *page;
872
873                 /*
874                  * Some archs (sparc64, sh*) have multiple pte_ts to
875                  * each hugepage.  We have to make * sure we get the
876                  * first, for the page indexing below to work.
877                  */
878                 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
879
880                 if (!pte || pte_none(*pte)) {
881                         int ret;
882
883                         spin_unlock(&mm->page_table_lock);
884                         ret = hugetlb_fault(mm, vma, vaddr, 0);
885                         spin_lock(&mm->page_table_lock);
886                         if (!(ret & VM_FAULT_ERROR))
887                                 continue;
888
889                         remainder = 0;
890                         if (!i)
891                                 i = -EFAULT;
892                         break;
893                 }
894
895                 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
896                 page = pte_page(*pte);
897 same_page:
898                 if (pages) {
899                         get_page(page);
900                         pages[i] = page + pfn_offset;
901                 }
902
903                 if (vmas)
904                         vmas[i] = vma;
905
906                 vaddr += PAGE_SIZE;
907                 ++pfn_offset;
908                 --remainder;
909                 ++i;
910                 if (vaddr < vma->vm_end && remainder &&
911                                 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
912                         /*
913                          * We use pfn_offset to avoid touching the pageframes
914                          * of this compound page.
915                          */
916                         goto same_page;
917                 }
918         }
919         spin_unlock(&mm->page_table_lock);
920         *length = remainder;
921         *position = vaddr;
922
923         return i;
924 }
925
926 void hugetlb_change_protection(struct vm_area_struct *vma,
927                 unsigned long address, unsigned long end, pgprot_t newprot)
928 {
929         struct mm_struct *mm = vma->vm_mm;
930         unsigned long start = address;
931         pte_t *ptep;
932         pte_t pte;
933
934         BUG_ON(address >= end);
935         flush_cache_range(vma, address, end);
936
937         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
938         spin_lock(&mm->page_table_lock);
939         for (; address < end; address += HPAGE_SIZE) {
940                 ptep = huge_pte_offset(mm, address);
941                 if (!ptep)
942                         continue;
943                 if (huge_pmd_unshare(mm, &address, ptep))
944                         continue;
945                 if (!pte_none(*ptep)) {
946                         pte = huge_ptep_get_and_clear(mm, address, ptep);
947                         pte = pte_mkhuge(pte_modify(pte, newprot));
948                         set_huge_pte_at(mm, address, ptep, pte);
949                 }
950         }
951         spin_unlock(&mm->page_table_lock);
952         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
953
954         flush_tlb_range(vma, start, end);
955 }
956
957 struct file_region {
958         struct list_head link;
959         long from;
960         long to;
961 };
962
963 static long region_add(struct list_head *head, long f, long t)
964 {
965         struct file_region *rg, *nrg, *trg;
966
967         /* Locate the region we are either in or before. */
968         list_for_each_entry(rg, head, link)
969                 if (f <= rg->to)
970                         break;
971
972         /* Round our left edge to the current segment if it encloses us. */
973         if (f > rg->from)
974                 f = rg->from;
975
976         /* Check for and consume any regions we now overlap with. */
977         nrg = rg;
978         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
979                 if (&rg->link == head)
980                         break;
981                 if (rg->from > t)
982                         break;
983
984                 /* If this area reaches higher then extend our area to
985                  * include it completely.  If this is not the first area
986                  * which we intend to reuse, free it. */
987                 if (rg->to > t)
988                         t = rg->to;
989                 if (rg != nrg) {
990                         list_del(&rg->link);
991                         kfree(rg);
992                 }
993         }
994         nrg->from = f;
995         nrg->to = t;
996         return 0;
997 }
998
999 static long region_chg(struct list_head *head, long f, long t)
1000 {
1001         struct file_region *rg, *nrg;
1002         long chg = 0;
1003
1004         /* Locate the region we are before or in. */
1005         list_for_each_entry(rg, head, link)
1006                 if (f <= rg->to)
1007                         break;
1008
1009         /* If we are below the current region then a new region is required.
1010          * Subtle, allocate a new region at the position but make it zero
1011          * size such that we can guarentee to record the reservation. */
1012         if (&rg->link == head || t < rg->from) {
1013                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1014                 if (nrg == 0)
1015                         return -ENOMEM;
1016                 nrg->from = f;
1017                 nrg->to   = f;
1018                 INIT_LIST_HEAD(&nrg->link);
1019                 list_add(&nrg->link, rg->link.prev);
1020
1021                 return t - f;
1022         }
1023
1024         /* Round our left edge to the current segment if it encloses us. */
1025         if (f > rg->from)
1026                 f = rg->from;
1027         chg = t - f;
1028
1029         /* Check for and consume any regions we now overlap with. */
1030         list_for_each_entry(rg, rg->link.prev, link) {
1031                 if (&rg->link == head)
1032                         break;
1033                 if (rg->from > t)
1034                         return chg;
1035
1036                 /* We overlap with this area, if it extends futher than
1037                  * us then we must extend ourselves.  Account for its
1038                  * existing reservation. */
1039                 if (rg->to > t) {
1040                         chg += rg->to - t;
1041                         t = rg->to;
1042                 }
1043                 chg -= rg->to - rg->from;
1044         }
1045         return chg;
1046 }
1047
1048 static long region_truncate(struct list_head *head, long end)
1049 {
1050         struct file_region *rg, *trg;
1051         long chg = 0;
1052
1053         /* Locate the region we are either in or before. */
1054         list_for_each_entry(rg, head, link)
1055                 if (end <= rg->to)
1056                         break;
1057         if (&rg->link == head)
1058                 return 0;
1059
1060         /* If we are in the middle of a region then adjust it. */
1061         if (end > rg->from) {
1062                 chg = rg->to - end;
1063                 rg->to = end;
1064                 rg = list_entry(rg->link.next, typeof(*rg), link);
1065         }
1066
1067         /* Drop any remaining regions. */
1068         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1069                 if (&rg->link == head)
1070                         break;
1071                 chg += rg->to - rg->from;
1072                 list_del(&rg->link);
1073                 kfree(rg);
1074         }
1075         return chg;
1076 }
1077
1078 static int hugetlb_acct_memory(long delta)
1079 {
1080         int ret = -ENOMEM;
1081
1082         spin_lock(&hugetlb_lock);
1083         /*
1084          * When cpuset is configured, it breaks the strict hugetlb page
1085          * reservation as the accounting is done on a global variable. Such
1086          * reservation is completely rubbish in the presence of cpuset because
1087          * the reservation is not checked against page availability for the
1088          * current cpuset. Application can still potentially OOM'ed by kernel
1089          * with lack of free htlb page in cpuset that the task is in.
1090          * Attempt to enforce strict accounting with cpuset is almost
1091          * impossible (or too ugly) because cpuset is too fluid that
1092          * task or memory node can be dynamically moved between cpusets.
1093          *
1094          * The change of semantics for shared hugetlb mapping with cpuset is
1095          * undesirable. However, in order to preserve some of the semantics,
1096          * we fall back to check against current free page availability as
1097          * a best attempt and hopefully to minimize the impact of changing
1098          * semantics that cpuset has.
1099          */
1100         if (delta > 0) {
1101                 if (gather_surplus_pages(delta) < 0)
1102                         goto out;
1103
1104                 if (delta > cpuset_mems_nr(free_huge_pages_node))
1105                         goto out;
1106         }
1107
1108         ret = 0;
1109         resv_huge_pages += delta;
1110         if (delta < 0)
1111                 return_unused_surplus_pages((unsigned long) -delta);
1112
1113 out:
1114         spin_unlock(&hugetlb_lock);
1115         return ret;
1116 }
1117
1118 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1119 {
1120         long ret, chg;
1121
1122         chg = region_chg(&inode->i_mapping->private_list, from, to);
1123         if (chg < 0)
1124                 return chg;
1125
1126         ret = hugetlb_acct_memory(chg);
1127         if (ret < 0)
1128                 return ret;
1129         region_add(&inode->i_mapping->private_list, from, to);
1130         return 0;
1131 }
1132
1133 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1134 {
1135         long chg = region_truncate(&inode->i_mapping->private_list, offset);
1136         hugetlb_acct_memory(freed - chg);
1137 }