hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on...
[safe/jmp/linux-2.6] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
20
21 #include <linux/hugetlb.h>
22 #include "internal.h"
23
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 static unsigned long surplus_huge_pages;
27 static unsigned long nr_overcommit_huge_pages;
28 unsigned long max_huge_pages;
29 unsigned long sysctl_overcommit_huge_pages;
30 static struct list_head hugepage_freelists[MAX_NUMNODES];
31 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
32 static unsigned int free_huge_pages_node[MAX_NUMNODES];
33 static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36 static int hugetlb_next_nid;
37
38 /*
39  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
40  */
41 static DEFINE_SPINLOCK(hugetlb_lock);
42
43 #define HPAGE_RESV_OWNER    (1UL << (BITS_PER_LONG - 1))
44 #define HPAGE_RESV_UNMAPPED (1UL << (BITS_PER_LONG - 2))
45 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
46 /*
47  * These helpers are used to track how many pages are reserved for
48  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
49  * is guaranteed to have their future faults succeed.
50  *
51  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
52  * the reserve counters are updated with the hugetlb_lock held. It is safe
53  * to reset the VMA at fork() time as it is not in use yet and there is no
54  * chance of the global counters getting corrupted as a result of the values.
55  */
56 static unsigned long vma_resv_huge_pages(struct vm_area_struct *vma)
57 {
58         VM_BUG_ON(!is_vm_hugetlb_page(vma));
59         if (!(vma->vm_flags & VM_SHARED))
60                 return (unsigned long)vma->vm_private_data & ~HPAGE_RESV_MASK;
61         return 0;
62 }
63
64 static void set_vma_resv_huge_pages(struct vm_area_struct *vma,
65                                                         unsigned long reserve)
66 {
67         unsigned long flags;
68         VM_BUG_ON(!is_vm_hugetlb_page(vma));
69         VM_BUG_ON(vma->vm_flags & VM_SHARED);
70
71         flags = (unsigned long)vma->vm_private_data & HPAGE_RESV_MASK;
72         vma->vm_private_data = (void *)(reserve | flags);
73 }
74
75 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
76 {
77         unsigned long reserveflags = (unsigned long)vma->vm_private_data;
78         VM_BUG_ON(!is_vm_hugetlb_page(vma));
79         vma->vm_private_data = (void *)(reserveflags | flags);
80 }
81
82 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
83 {
84         VM_BUG_ON(!is_vm_hugetlb_page(vma));
85         return ((unsigned long)vma->vm_private_data & flag) != 0;
86 }
87
88 /* Decrement the reserved pages in the hugepage pool by one */
89 static void decrement_hugepage_resv_vma(struct vm_area_struct *vma)
90 {
91         if (vma->vm_flags & VM_SHARED) {
92                 /* Shared mappings always use reserves */
93                 resv_huge_pages--;
94         } else {
95                 /*
96                  * Only the process that called mmap() has reserves for
97                  * private mappings.
98                  */
99                 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
100                         unsigned long flags, reserve;
101                         resv_huge_pages--;
102                         flags = (unsigned long)vma->vm_private_data &
103                                                         HPAGE_RESV_MASK;
104                         reserve = (unsigned long)vma->vm_private_data - 1;
105                         vma->vm_private_data = (void *)(reserve | flags);
106                 }
107         }
108 }
109
110 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
111 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
112 {
113         VM_BUG_ON(!is_vm_hugetlb_page(vma));
114         if (!(vma->vm_flags & VM_SHARED))
115                 vma->vm_private_data = (void *)0;
116 }
117
118 /* Returns true if the VMA has associated reserve pages */
119 static int vma_has_private_reserves(struct vm_area_struct *vma)
120 {
121         if (vma->vm_flags & VM_SHARED)
122                 return 0;
123         if (!vma_resv_huge_pages(vma))
124                 return 0;
125         return 1;
126 }
127
128 static void clear_huge_page(struct page *page, unsigned long addr)
129 {
130         int i;
131
132         might_sleep();
133         for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
134                 cond_resched();
135                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
136         }
137 }
138
139 static void copy_huge_page(struct page *dst, struct page *src,
140                            unsigned long addr, struct vm_area_struct *vma)
141 {
142         int i;
143
144         might_sleep();
145         for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
146                 cond_resched();
147                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
148         }
149 }
150
151 static void enqueue_huge_page(struct page *page)
152 {
153         int nid = page_to_nid(page);
154         list_add(&page->lru, &hugepage_freelists[nid]);
155         free_huge_pages++;
156         free_huge_pages_node[nid]++;
157 }
158
159 static struct page *dequeue_huge_page(void)
160 {
161         int nid;
162         struct page *page = NULL;
163
164         for (nid = 0; nid < MAX_NUMNODES; ++nid) {
165                 if (!list_empty(&hugepage_freelists[nid])) {
166                         page = list_entry(hugepage_freelists[nid].next,
167                                           struct page, lru);
168                         list_del(&page->lru);
169                         free_huge_pages--;
170                         free_huge_pages_node[nid]--;
171                         break;
172                 }
173         }
174         return page;
175 }
176
177 static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
178                                 unsigned long address, int avoid_reserve)
179 {
180         int nid;
181         struct page *page = NULL;
182         struct mempolicy *mpol;
183         nodemask_t *nodemask;
184         struct zonelist *zonelist = huge_zonelist(vma, address,
185                                         htlb_alloc_mask, &mpol, &nodemask);
186         struct zone *zone;
187         struct zoneref *z;
188
189         /*
190          * A child process with MAP_PRIVATE mappings created by their parent
191          * have no page reserves. This check ensures that reservations are
192          * not "stolen". The child may still get SIGKILLed
193          */
194         if (!vma_has_private_reserves(vma) &&
195                         free_huge_pages - resv_huge_pages == 0)
196                 return NULL;
197
198         /* If reserves cannot be used, ensure enough pages are in the pool */
199         if (avoid_reserve && free_huge_pages - resv_huge_pages == 0)
200                 return NULL;
201
202         for_each_zone_zonelist_nodemask(zone, z, zonelist,
203                                                 MAX_NR_ZONES - 1, nodemask) {
204                 nid = zone_to_nid(zone);
205                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
206                     !list_empty(&hugepage_freelists[nid])) {
207                         page = list_entry(hugepage_freelists[nid].next,
208                                           struct page, lru);
209                         list_del(&page->lru);
210                         free_huge_pages--;
211                         free_huge_pages_node[nid]--;
212
213                         if (!avoid_reserve)
214                                 decrement_hugepage_resv_vma(vma);
215
216                         break;
217                 }
218         }
219         mpol_cond_put(mpol);
220         return page;
221 }
222
223 static void update_and_free_page(struct page *page)
224 {
225         int i;
226         nr_huge_pages--;
227         nr_huge_pages_node[page_to_nid(page)]--;
228         for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
229                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
230                                 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
231                                 1 << PG_private | 1<< PG_writeback);
232         }
233         set_compound_page_dtor(page, NULL);
234         set_page_refcounted(page);
235         arch_release_hugepage(page);
236         __free_pages(page, HUGETLB_PAGE_ORDER);
237 }
238
239 static void free_huge_page(struct page *page)
240 {
241         int nid = page_to_nid(page);
242         struct address_space *mapping;
243
244         mapping = (struct address_space *) page_private(page);
245         set_page_private(page, 0);
246         BUG_ON(page_count(page));
247         INIT_LIST_HEAD(&page->lru);
248
249         spin_lock(&hugetlb_lock);
250         if (surplus_huge_pages_node[nid]) {
251                 update_and_free_page(page);
252                 surplus_huge_pages--;
253                 surplus_huge_pages_node[nid]--;
254         } else {
255                 enqueue_huge_page(page);
256         }
257         spin_unlock(&hugetlb_lock);
258         if (mapping)
259                 hugetlb_put_quota(mapping, 1);
260 }
261
262 /*
263  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
264  * balanced by operating on them in a round-robin fashion.
265  * Returns 1 if an adjustment was made.
266  */
267 static int adjust_pool_surplus(int delta)
268 {
269         static int prev_nid;
270         int nid = prev_nid;
271         int ret = 0;
272
273         VM_BUG_ON(delta != -1 && delta != 1);
274         do {
275                 nid = next_node(nid, node_online_map);
276                 if (nid == MAX_NUMNODES)
277                         nid = first_node(node_online_map);
278
279                 /* To shrink on this node, there must be a surplus page */
280                 if (delta < 0 && !surplus_huge_pages_node[nid])
281                         continue;
282                 /* Surplus cannot exceed the total number of pages */
283                 if (delta > 0 && surplus_huge_pages_node[nid] >=
284                                                 nr_huge_pages_node[nid])
285                         continue;
286
287                 surplus_huge_pages += delta;
288                 surplus_huge_pages_node[nid] += delta;
289                 ret = 1;
290                 break;
291         } while (nid != prev_nid);
292
293         prev_nid = nid;
294         return ret;
295 }
296
297 static struct page *alloc_fresh_huge_page_node(int nid)
298 {
299         struct page *page;
300
301         page = alloc_pages_node(nid,
302                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
303                                                 __GFP_REPEAT|__GFP_NOWARN,
304                 HUGETLB_PAGE_ORDER);
305         if (page) {
306                 if (arch_prepare_hugepage(page)) {
307                         __free_pages(page, HUGETLB_PAGE_ORDER);
308                         return NULL;
309                 }
310                 set_compound_page_dtor(page, free_huge_page);
311                 spin_lock(&hugetlb_lock);
312                 nr_huge_pages++;
313                 nr_huge_pages_node[nid]++;
314                 spin_unlock(&hugetlb_lock);
315                 put_page(page); /* free it into the hugepage allocator */
316         }
317
318         return page;
319 }
320
321 static int alloc_fresh_huge_page(void)
322 {
323         struct page *page;
324         int start_nid;
325         int next_nid;
326         int ret = 0;
327
328         start_nid = hugetlb_next_nid;
329
330         do {
331                 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
332                 if (page)
333                         ret = 1;
334                 /*
335                  * Use a helper variable to find the next node and then
336                  * copy it back to hugetlb_next_nid afterwards:
337                  * otherwise there's a window in which a racer might
338                  * pass invalid nid MAX_NUMNODES to alloc_pages_node.
339                  * But we don't need to use a spin_lock here: it really
340                  * doesn't matter if occasionally a racer chooses the
341                  * same nid as we do.  Move nid forward in the mask even
342                  * if we just successfully allocated a hugepage so that
343                  * the next caller gets hugepages on the next node.
344                  */
345                 next_nid = next_node(hugetlb_next_nid, node_online_map);
346                 if (next_nid == MAX_NUMNODES)
347                         next_nid = first_node(node_online_map);
348                 hugetlb_next_nid = next_nid;
349         } while (!page && hugetlb_next_nid != start_nid);
350
351         if (ret)
352                 count_vm_event(HTLB_BUDDY_PGALLOC);
353         else
354                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
355
356         return ret;
357 }
358
359 static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
360                                                 unsigned long address)
361 {
362         struct page *page;
363         unsigned int nid;
364
365         /*
366          * Assume we will successfully allocate the surplus page to
367          * prevent racing processes from causing the surplus to exceed
368          * overcommit
369          *
370          * This however introduces a different race, where a process B
371          * tries to grow the static hugepage pool while alloc_pages() is
372          * called by process A. B will only examine the per-node
373          * counters in determining if surplus huge pages can be
374          * converted to normal huge pages in adjust_pool_surplus(). A
375          * won't be able to increment the per-node counter, until the
376          * lock is dropped by B, but B doesn't drop hugetlb_lock until
377          * no more huge pages can be converted from surplus to normal
378          * state (and doesn't try to convert again). Thus, we have a
379          * case where a surplus huge page exists, the pool is grown, and
380          * the surplus huge page still exists after, even though it
381          * should just have been converted to a normal huge page. This
382          * does not leak memory, though, as the hugepage will be freed
383          * once it is out of use. It also does not allow the counters to
384          * go out of whack in adjust_pool_surplus() as we don't modify
385          * the node values until we've gotten the hugepage and only the
386          * per-node value is checked there.
387          */
388         spin_lock(&hugetlb_lock);
389         if (surplus_huge_pages >= nr_overcommit_huge_pages) {
390                 spin_unlock(&hugetlb_lock);
391                 return NULL;
392         } else {
393                 nr_huge_pages++;
394                 surplus_huge_pages++;
395         }
396         spin_unlock(&hugetlb_lock);
397
398         page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
399                                         __GFP_REPEAT|__GFP_NOWARN,
400                                         HUGETLB_PAGE_ORDER);
401
402         spin_lock(&hugetlb_lock);
403         if (page) {
404                 /*
405                  * This page is now managed by the hugetlb allocator and has
406                  * no users -- drop the buddy allocator's reference.
407                  */
408                 put_page_testzero(page);
409                 VM_BUG_ON(page_count(page));
410                 nid = page_to_nid(page);
411                 set_compound_page_dtor(page, free_huge_page);
412                 /*
413                  * We incremented the global counters already
414                  */
415                 nr_huge_pages_node[nid]++;
416                 surplus_huge_pages_node[nid]++;
417                 __count_vm_event(HTLB_BUDDY_PGALLOC);
418         } else {
419                 nr_huge_pages--;
420                 surplus_huge_pages--;
421                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
422         }
423         spin_unlock(&hugetlb_lock);
424
425         return page;
426 }
427
428 /*
429  * Increase the hugetlb pool such that it can accomodate a reservation
430  * of size 'delta'.
431  */
432 static int gather_surplus_pages(int delta)
433 {
434         struct list_head surplus_list;
435         struct page *page, *tmp;
436         int ret, i;
437         int needed, allocated;
438
439         needed = (resv_huge_pages + delta) - free_huge_pages;
440         if (needed <= 0) {
441                 resv_huge_pages += delta;
442                 return 0;
443         }
444
445         allocated = 0;
446         INIT_LIST_HEAD(&surplus_list);
447
448         ret = -ENOMEM;
449 retry:
450         spin_unlock(&hugetlb_lock);
451         for (i = 0; i < needed; i++) {
452                 page = alloc_buddy_huge_page(NULL, 0);
453                 if (!page) {
454                         /*
455                          * We were not able to allocate enough pages to
456                          * satisfy the entire reservation so we free what
457                          * we've allocated so far.
458                          */
459                         spin_lock(&hugetlb_lock);
460                         needed = 0;
461                         goto free;
462                 }
463
464                 list_add(&page->lru, &surplus_list);
465         }
466         allocated += needed;
467
468         /*
469          * After retaking hugetlb_lock, we need to recalculate 'needed'
470          * because either resv_huge_pages or free_huge_pages may have changed.
471          */
472         spin_lock(&hugetlb_lock);
473         needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
474         if (needed > 0)
475                 goto retry;
476
477         /*
478          * The surplus_list now contains _at_least_ the number of extra pages
479          * needed to accomodate the reservation.  Add the appropriate number
480          * of pages to the hugetlb pool and free the extras back to the buddy
481          * allocator.  Commit the entire reservation here to prevent another
482          * process from stealing the pages as they are added to the pool but
483          * before they are reserved.
484          */
485         needed += allocated;
486         resv_huge_pages += delta;
487         ret = 0;
488 free:
489         /* Free the needed pages to the hugetlb pool */
490         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
491                 if ((--needed) < 0)
492                         break;
493                 list_del(&page->lru);
494                 enqueue_huge_page(page);
495         }
496
497         /* Free unnecessary surplus pages to the buddy allocator */
498         if (!list_empty(&surplus_list)) {
499                 spin_unlock(&hugetlb_lock);
500                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
501                         list_del(&page->lru);
502                         /*
503                          * The page has a reference count of zero already, so
504                          * call free_huge_page directly instead of using
505                          * put_page.  This must be done with hugetlb_lock
506                          * unlocked which is safe because free_huge_page takes
507                          * hugetlb_lock before deciding how to free the page.
508                          */
509                         free_huge_page(page);
510                 }
511                 spin_lock(&hugetlb_lock);
512         }
513
514         return ret;
515 }
516
517 /*
518  * When releasing a hugetlb pool reservation, any surplus pages that were
519  * allocated to satisfy the reservation must be explicitly freed if they were
520  * never used.
521  */
522 static void return_unused_surplus_pages(unsigned long unused_resv_pages)
523 {
524         static int nid = -1;
525         struct page *page;
526         unsigned long nr_pages;
527
528         /*
529          * We want to release as many surplus pages as possible, spread
530          * evenly across all nodes. Iterate across all nodes until we
531          * can no longer free unreserved surplus pages. This occurs when
532          * the nodes with surplus pages have no free pages.
533          */
534         unsigned long remaining_iterations = num_online_nodes();
535
536         /* Uncommit the reservation */
537         resv_huge_pages -= unused_resv_pages;
538
539         nr_pages = min(unused_resv_pages, surplus_huge_pages);
540
541         while (remaining_iterations-- && nr_pages) {
542                 nid = next_node(nid, node_online_map);
543                 if (nid == MAX_NUMNODES)
544                         nid = first_node(node_online_map);
545
546                 if (!surplus_huge_pages_node[nid])
547                         continue;
548
549                 if (!list_empty(&hugepage_freelists[nid])) {
550                         page = list_entry(hugepage_freelists[nid].next,
551                                           struct page, lru);
552                         list_del(&page->lru);
553                         update_and_free_page(page);
554                         free_huge_pages--;
555                         free_huge_pages_node[nid]--;
556                         surplus_huge_pages--;
557                         surplus_huge_pages_node[nid]--;
558                         nr_pages--;
559                         remaining_iterations = num_online_nodes();
560                 }
561         }
562 }
563
564 static struct page *alloc_huge_page(struct vm_area_struct *vma,
565                                     unsigned long addr, int avoid_reserve)
566 {
567         struct page *page;
568         struct address_space *mapping = vma->vm_file->f_mapping;
569         struct inode *inode = mapping->host;
570         unsigned int chg = 0;
571
572         /*
573          * Processes that did not create the mapping will have no reserves and
574          * will not have accounted against quota. Check that the quota can be
575          * made before satisfying the allocation
576          */
577         if (!(vma->vm_flags & VM_SHARED) &&
578                         !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
579                 chg = 1;
580                 if (hugetlb_get_quota(inode->i_mapping, chg))
581                         return ERR_PTR(-ENOSPC);
582         }
583
584         spin_lock(&hugetlb_lock);
585         page = dequeue_huge_page_vma(vma, addr, avoid_reserve);
586         spin_unlock(&hugetlb_lock);
587
588         if (!page) {
589                 page = alloc_buddy_huge_page(vma, addr);
590                 if (!page) {
591                         hugetlb_put_quota(inode->i_mapping, chg);
592                         return ERR_PTR(-VM_FAULT_OOM);
593                 }
594         }
595
596         set_page_refcounted(page);
597         set_page_private(page, (unsigned long) mapping);
598
599         return page;
600 }
601
602 static int __init hugetlb_init(void)
603 {
604         unsigned long i;
605
606         if (HPAGE_SHIFT == 0)
607                 return 0;
608
609         for (i = 0; i < MAX_NUMNODES; ++i)
610                 INIT_LIST_HEAD(&hugepage_freelists[i]);
611
612         hugetlb_next_nid = first_node(node_online_map);
613
614         for (i = 0; i < max_huge_pages; ++i) {
615                 if (!alloc_fresh_huge_page())
616                         break;
617         }
618         max_huge_pages = free_huge_pages = nr_huge_pages = i;
619         printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
620         return 0;
621 }
622 module_init(hugetlb_init);
623
624 static int __init hugetlb_setup(char *s)
625 {
626         if (sscanf(s, "%lu", &max_huge_pages) <= 0)
627                 max_huge_pages = 0;
628         return 1;
629 }
630 __setup("hugepages=", hugetlb_setup);
631
632 static unsigned int cpuset_mems_nr(unsigned int *array)
633 {
634         int node;
635         unsigned int nr = 0;
636
637         for_each_node_mask(node, cpuset_current_mems_allowed)
638                 nr += array[node];
639
640         return nr;
641 }
642
643 #ifdef CONFIG_SYSCTL
644 #ifdef CONFIG_HIGHMEM
645 static void try_to_free_low(unsigned long count)
646 {
647         int i;
648
649         for (i = 0; i < MAX_NUMNODES; ++i) {
650                 struct page *page, *next;
651                 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
652                         if (count >= nr_huge_pages)
653                                 return;
654                         if (PageHighMem(page))
655                                 continue;
656                         list_del(&page->lru);
657                         update_and_free_page(page);
658                         free_huge_pages--;
659                         free_huge_pages_node[page_to_nid(page)]--;
660                 }
661         }
662 }
663 #else
664 static inline void try_to_free_low(unsigned long count)
665 {
666 }
667 #endif
668
669 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
670 static unsigned long set_max_huge_pages(unsigned long count)
671 {
672         unsigned long min_count, ret;
673
674         /*
675          * Increase the pool size
676          * First take pages out of surplus state.  Then make up the
677          * remaining difference by allocating fresh huge pages.
678          *
679          * We might race with alloc_buddy_huge_page() here and be unable
680          * to convert a surplus huge page to a normal huge page. That is
681          * not critical, though, it just means the overall size of the
682          * pool might be one hugepage larger than it needs to be, but
683          * within all the constraints specified by the sysctls.
684          */
685         spin_lock(&hugetlb_lock);
686         while (surplus_huge_pages && count > persistent_huge_pages) {
687                 if (!adjust_pool_surplus(-1))
688                         break;
689         }
690
691         while (count > persistent_huge_pages) {
692                 /*
693                  * If this allocation races such that we no longer need the
694                  * page, free_huge_page will handle it by freeing the page
695                  * and reducing the surplus.
696                  */
697                 spin_unlock(&hugetlb_lock);
698                 ret = alloc_fresh_huge_page();
699                 spin_lock(&hugetlb_lock);
700                 if (!ret)
701                         goto out;
702
703         }
704
705         /*
706          * Decrease the pool size
707          * First return free pages to the buddy allocator (being careful
708          * to keep enough around to satisfy reservations).  Then place
709          * pages into surplus state as needed so the pool will shrink
710          * to the desired size as pages become free.
711          *
712          * By placing pages into the surplus state independent of the
713          * overcommit value, we are allowing the surplus pool size to
714          * exceed overcommit. There are few sane options here. Since
715          * alloc_buddy_huge_page() is checking the global counter,
716          * though, we'll note that we're not allowed to exceed surplus
717          * and won't grow the pool anywhere else. Not until one of the
718          * sysctls are changed, or the surplus pages go out of use.
719          */
720         min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
721         min_count = max(count, min_count);
722         try_to_free_low(min_count);
723         while (min_count < persistent_huge_pages) {
724                 struct page *page = dequeue_huge_page();
725                 if (!page)
726                         break;
727                 update_and_free_page(page);
728         }
729         while (count < persistent_huge_pages) {
730                 if (!adjust_pool_surplus(1))
731                         break;
732         }
733 out:
734         ret = persistent_huge_pages;
735         spin_unlock(&hugetlb_lock);
736         return ret;
737 }
738
739 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
740                            struct file *file, void __user *buffer,
741                            size_t *length, loff_t *ppos)
742 {
743         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
744         max_huge_pages = set_max_huge_pages(max_huge_pages);
745         return 0;
746 }
747
748 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
749                         struct file *file, void __user *buffer,
750                         size_t *length, loff_t *ppos)
751 {
752         proc_dointvec(table, write, file, buffer, length, ppos);
753         if (hugepages_treat_as_movable)
754                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
755         else
756                 htlb_alloc_mask = GFP_HIGHUSER;
757         return 0;
758 }
759
760 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
761                         struct file *file, void __user *buffer,
762                         size_t *length, loff_t *ppos)
763 {
764         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
765         spin_lock(&hugetlb_lock);
766         nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
767         spin_unlock(&hugetlb_lock);
768         return 0;
769 }
770
771 #endif /* CONFIG_SYSCTL */
772
773 int hugetlb_report_meminfo(char *buf)
774 {
775         return sprintf(buf,
776                         "HugePages_Total: %5lu\n"
777                         "HugePages_Free:  %5lu\n"
778                         "HugePages_Rsvd:  %5lu\n"
779                         "HugePages_Surp:  %5lu\n"
780                         "Hugepagesize:    %5lu kB\n",
781                         nr_huge_pages,
782                         free_huge_pages,
783                         resv_huge_pages,
784                         surplus_huge_pages,
785                         HPAGE_SIZE/1024);
786 }
787
788 int hugetlb_report_node_meminfo(int nid, char *buf)
789 {
790         return sprintf(buf,
791                 "Node %d HugePages_Total: %5u\n"
792                 "Node %d HugePages_Free:  %5u\n"
793                 "Node %d HugePages_Surp:  %5u\n",
794                 nid, nr_huge_pages_node[nid],
795                 nid, free_huge_pages_node[nid],
796                 nid, surplus_huge_pages_node[nid]);
797 }
798
799 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
800 unsigned long hugetlb_total_pages(void)
801 {
802         return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
803 }
804
805 static int hugetlb_acct_memory(long delta)
806 {
807         int ret = -ENOMEM;
808
809         spin_lock(&hugetlb_lock);
810         /*
811          * When cpuset is configured, it breaks the strict hugetlb page
812          * reservation as the accounting is done on a global variable. Such
813          * reservation is completely rubbish in the presence of cpuset because
814          * the reservation is not checked against page availability for the
815          * current cpuset. Application can still potentially OOM'ed by kernel
816          * with lack of free htlb page in cpuset that the task is in.
817          * Attempt to enforce strict accounting with cpuset is almost
818          * impossible (or too ugly) because cpuset is too fluid that
819          * task or memory node can be dynamically moved between cpusets.
820          *
821          * The change of semantics for shared hugetlb mapping with cpuset is
822          * undesirable. However, in order to preserve some of the semantics,
823          * we fall back to check against current free page availability as
824          * a best attempt and hopefully to minimize the impact of changing
825          * semantics that cpuset has.
826          */
827         if (delta > 0) {
828                 if (gather_surplus_pages(delta) < 0)
829                         goto out;
830
831                 if (delta > cpuset_mems_nr(free_huge_pages_node)) {
832                         return_unused_surplus_pages(delta);
833                         goto out;
834                 }
835         }
836
837         ret = 0;
838         if (delta < 0)
839                 return_unused_surplus_pages((unsigned long) -delta);
840
841 out:
842         spin_unlock(&hugetlb_lock);
843         return ret;
844 }
845
846 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
847 {
848         unsigned long reserve = vma_resv_huge_pages(vma);
849         if (reserve)
850                 hugetlb_acct_memory(-reserve);
851 }
852
853 /*
854  * We cannot handle pagefaults against hugetlb pages at all.  They cause
855  * handle_mm_fault() to try to instantiate regular-sized pages in the
856  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
857  * this far.
858  */
859 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
860 {
861         BUG();
862         return 0;
863 }
864
865 struct vm_operations_struct hugetlb_vm_ops = {
866         .fault = hugetlb_vm_op_fault,
867         .close = hugetlb_vm_op_close,
868 };
869
870 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
871                                 int writable)
872 {
873         pte_t entry;
874
875         if (writable) {
876                 entry =
877                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
878         } else {
879                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
880         }
881         entry = pte_mkyoung(entry);
882         entry = pte_mkhuge(entry);
883
884         return entry;
885 }
886
887 static void set_huge_ptep_writable(struct vm_area_struct *vma,
888                                    unsigned long address, pte_t *ptep)
889 {
890         pte_t entry;
891
892         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
893         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
894                 update_mmu_cache(vma, address, entry);
895         }
896 }
897
898
899 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
900                             struct vm_area_struct *vma)
901 {
902         pte_t *src_pte, *dst_pte, entry;
903         struct page *ptepage;
904         unsigned long addr;
905         int cow;
906
907         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
908
909         for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
910                 src_pte = huge_pte_offset(src, addr);
911                 if (!src_pte)
912                         continue;
913                 dst_pte = huge_pte_alloc(dst, addr);
914                 if (!dst_pte)
915                         goto nomem;
916
917                 /* If the pagetables are shared don't copy or take references */
918                 if (dst_pte == src_pte)
919                         continue;
920
921                 spin_lock(&dst->page_table_lock);
922                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
923                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
924                         if (cow)
925                                 huge_ptep_set_wrprotect(src, addr, src_pte);
926                         entry = huge_ptep_get(src_pte);
927                         ptepage = pte_page(entry);
928                         get_page(ptepage);
929                         set_huge_pte_at(dst, addr, dst_pte, entry);
930                 }
931                 spin_unlock(&src->page_table_lock);
932                 spin_unlock(&dst->page_table_lock);
933         }
934         return 0;
935
936 nomem:
937         return -ENOMEM;
938 }
939
940 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
941                             unsigned long end, struct page *ref_page)
942 {
943         struct mm_struct *mm = vma->vm_mm;
944         unsigned long address;
945         pte_t *ptep;
946         pte_t pte;
947         struct page *page;
948         struct page *tmp;
949         /*
950          * A page gathering list, protected by per file i_mmap_lock. The
951          * lock is used to avoid list corruption from multiple unmapping
952          * of the same page since we are using page->lru.
953          */
954         LIST_HEAD(page_list);
955
956         WARN_ON(!is_vm_hugetlb_page(vma));
957         BUG_ON(start & ~HPAGE_MASK);
958         BUG_ON(end & ~HPAGE_MASK);
959
960         spin_lock(&mm->page_table_lock);
961         for (address = start; address < end; address += HPAGE_SIZE) {
962                 ptep = huge_pte_offset(mm, address);
963                 if (!ptep)
964                         continue;
965
966                 if (huge_pmd_unshare(mm, &address, ptep))
967                         continue;
968
969                 /*
970                  * If a reference page is supplied, it is because a specific
971                  * page is being unmapped, not a range. Ensure the page we
972                  * are about to unmap is the actual page of interest.
973                  */
974                 if (ref_page) {
975                         pte = huge_ptep_get(ptep);
976                         if (huge_pte_none(pte))
977                                 continue;
978                         page = pte_page(pte);
979                         if (page != ref_page)
980                                 continue;
981
982                         /*
983                          * Mark the VMA as having unmapped its page so that
984                          * future faults in this VMA will fail rather than
985                          * looking like data was lost
986                          */
987                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
988                 }
989
990                 pte = huge_ptep_get_and_clear(mm, address, ptep);
991                 if (huge_pte_none(pte))
992                         continue;
993
994                 page = pte_page(pte);
995                 if (pte_dirty(pte))
996                         set_page_dirty(page);
997                 list_add(&page->lru, &page_list);
998         }
999         spin_unlock(&mm->page_table_lock);
1000         flush_tlb_range(vma, start, end);
1001         list_for_each_entry_safe(page, tmp, &page_list, lru) {
1002                 list_del(&page->lru);
1003                 put_page(page);
1004         }
1005 }
1006
1007 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1008                           unsigned long end, struct page *ref_page)
1009 {
1010         /*
1011          * It is undesirable to test vma->vm_file as it should be non-null
1012          * for valid hugetlb area. However, vm_file will be NULL in the error
1013          * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
1014          * do_mmap_pgoff() nullifies vma->vm_file before calling this function
1015          * to clean up. Since no pte has actually been setup, it is safe to
1016          * do nothing in this case.
1017          */
1018         if (vma->vm_file) {
1019                 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1020                 __unmap_hugepage_range(vma, start, end, ref_page);
1021                 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1022         }
1023 }
1024
1025 /*
1026  * This is called when the original mapper is failing to COW a MAP_PRIVATE
1027  * mappping it owns the reserve page for. The intention is to unmap the page
1028  * from other VMAs and let the children be SIGKILLed if they are faulting the
1029  * same region.
1030  */
1031 int unmap_ref_private(struct mm_struct *mm,
1032                                         struct vm_area_struct *vma,
1033                                         struct page *page,
1034                                         unsigned long address)
1035 {
1036         struct vm_area_struct *iter_vma;
1037         struct address_space *mapping;
1038         struct prio_tree_iter iter;
1039         pgoff_t pgoff;
1040
1041         /*
1042          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1043          * from page cache lookup which is in HPAGE_SIZE units.
1044          */
1045         address = address & huge_page_mask(hstate_vma(vma));
1046         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1047                 + (vma->vm_pgoff >> PAGE_SHIFT);
1048         mapping = (struct address_space *)page_private(page);
1049
1050         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1051                 /* Do not unmap the current VMA */
1052                 if (iter_vma == vma)
1053                         continue;
1054
1055                 /*
1056                  * Unmap the page from other VMAs without their own reserves.
1057                  * They get marked to be SIGKILLed if they fault in these
1058                  * areas. This is because a future no-page fault on this VMA
1059                  * could insert a zeroed page instead of the data existing
1060                  * from the time of fork. This would look like data corruption
1061                  */
1062                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1063                         unmap_hugepage_range(iter_vma,
1064                                 address, address + HPAGE_SIZE,
1065                                 page);
1066         }
1067
1068         return 1;
1069 }
1070
1071 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1072                         unsigned long address, pte_t *ptep, pte_t pte,
1073                         struct page *pagecache_page)
1074 {
1075         struct page *old_page, *new_page;
1076         int avoidcopy;
1077         int outside_reserve = 0;
1078
1079         old_page = pte_page(pte);
1080
1081 retry_avoidcopy:
1082         /* If no-one else is actually using this page, avoid the copy
1083          * and just make the page writable */
1084         avoidcopy = (page_count(old_page) == 1);
1085         if (avoidcopy) {
1086                 set_huge_ptep_writable(vma, address, ptep);
1087                 return 0;
1088         }
1089
1090         /*
1091          * If the process that created a MAP_PRIVATE mapping is about to
1092          * perform a COW due to a shared page count, attempt to satisfy
1093          * the allocation without using the existing reserves. The pagecache
1094          * page is used to determine if the reserve at this address was
1095          * consumed or not. If reserves were used, a partial faulted mapping
1096          * at the time of fork() could consume its reserves on COW instead
1097          * of the full address range.
1098          */
1099         if (!(vma->vm_flags & VM_SHARED) &&
1100                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1101                         old_page != pagecache_page)
1102                 outside_reserve = 1;
1103
1104         page_cache_get(old_page);
1105         new_page = alloc_huge_page(vma, address, outside_reserve);
1106
1107         if (IS_ERR(new_page)) {
1108                 page_cache_release(old_page);
1109
1110                 /*
1111                  * If a process owning a MAP_PRIVATE mapping fails to COW,
1112                  * it is due to references held by a child and an insufficient
1113                  * huge page pool. To guarantee the original mappers
1114                  * reliability, unmap the page from child processes. The child
1115                  * may get SIGKILLed if it later faults.
1116                  */
1117                 if (outside_reserve) {
1118                         BUG_ON(huge_pte_none(pte));
1119                         if (unmap_ref_private(mm, vma, old_page, address)) {
1120                                 BUG_ON(page_count(old_page) != 1);
1121                                 BUG_ON(huge_pte_none(pte));
1122                                 goto retry_avoidcopy;
1123                         }
1124                         WARN_ON_ONCE(1);
1125                 }
1126
1127                 return -PTR_ERR(new_page);
1128         }
1129
1130         spin_unlock(&mm->page_table_lock);
1131         copy_huge_page(new_page, old_page, address, vma);
1132         __SetPageUptodate(new_page);
1133         spin_lock(&mm->page_table_lock);
1134
1135         ptep = huge_pte_offset(mm, address & HPAGE_MASK);
1136         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1137                 /* Break COW */
1138                 huge_ptep_clear_flush(vma, address, ptep);
1139                 set_huge_pte_at(mm, address, ptep,
1140                                 make_huge_pte(vma, new_page, 1));
1141                 /* Make the old page be freed below */
1142                 new_page = old_page;
1143         }
1144         page_cache_release(new_page);
1145         page_cache_release(old_page);
1146         return 0;
1147 }
1148
1149 /* Return the pagecache page at a given address within a VMA */
1150 static struct page *hugetlbfs_pagecache_page(struct vm_area_struct *vma,
1151                         unsigned long address)
1152 {
1153         struct address_space *mapping;
1154         unsigned long idx;
1155
1156         mapping = vma->vm_file->f_mapping;
1157         idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
1158                 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
1159
1160         return find_lock_page(mapping, idx);
1161 }
1162
1163 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1164                         unsigned long address, pte_t *ptep, int write_access)
1165 {
1166         int ret = VM_FAULT_SIGBUS;
1167         unsigned long idx;
1168         unsigned long size;
1169         struct page *page;
1170         struct address_space *mapping;
1171         pte_t new_pte;
1172
1173         /*
1174          * Currently, we are forced to kill the process in the event the
1175          * original mapper has unmapped pages from the child due to a failed
1176          * COW. Warn that such a situation has occured as it may not be obvious
1177          */
1178         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1179                 printk(KERN_WARNING
1180                         "PID %d killed due to inadequate hugepage pool\n",
1181                         current->pid);
1182                 return ret;
1183         }
1184
1185         mapping = vma->vm_file->f_mapping;
1186         idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
1187                 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
1188
1189         /*
1190          * Use page lock to guard against racing truncation
1191          * before we get page_table_lock.
1192          */
1193 retry:
1194         page = find_lock_page(mapping, idx);
1195         if (!page) {
1196                 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
1197                 if (idx >= size)
1198                         goto out;
1199                 page = alloc_huge_page(vma, address, 0);
1200                 if (IS_ERR(page)) {
1201                         ret = -PTR_ERR(page);
1202                         goto out;
1203                 }
1204                 clear_huge_page(page, address);
1205                 __SetPageUptodate(page);
1206
1207                 if (vma->vm_flags & VM_SHARED) {
1208                         int err;
1209                         struct inode *inode = mapping->host;
1210
1211                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
1212                         if (err) {
1213                                 put_page(page);
1214                                 if (err == -EEXIST)
1215                                         goto retry;
1216                                 goto out;
1217                         }
1218
1219                         spin_lock(&inode->i_lock);
1220                         inode->i_blocks += BLOCKS_PER_HUGEPAGE;
1221                         spin_unlock(&inode->i_lock);
1222                 } else
1223                         lock_page(page);
1224         }
1225
1226         spin_lock(&mm->page_table_lock);
1227         size = i_size_read(mapping->host) >> HPAGE_SHIFT;
1228         if (idx >= size)
1229                 goto backout;
1230
1231         ret = 0;
1232         if (!huge_pte_none(huge_ptep_get(ptep)))
1233                 goto backout;
1234
1235         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
1236                                 && (vma->vm_flags & VM_SHARED)));
1237         set_huge_pte_at(mm, address, ptep, new_pte);
1238
1239         if (write_access && !(vma->vm_flags & VM_SHARED)) {
1240                 /* Optimization, do the COW without a second fault */
1241                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1242         }
1243
1244         spin_unlock(&mm->page_table_lock);
1245         unlock_page(page);
1246 out:
1247         return ret;
1248
1249 backout:
1250         spin_unlock(&mm->page_table_lock);
1251         unlock_page(page);
1252         put_page(page);
1253         goto out;
1254 }
1255
1256 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1257                         unsigned long address, int write_access)
1258 {
1259         pte_t *ptep;
1260         pte_t entry;
1261         int ret;
1262         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1263
1264         ptep = huge_pte_alloc(mm, address);
1265         if (!ptep)
1266                 return VM_FAULT_OOM;
1267
1268         /*
1269          * Serialize hugepage allocation and instantiation, so that we don't
1270          * get spurious allocation failures if two CPUs race to instantiate
1271          * the same page in the page cache.
1272          */
1273         mutex_lock(&hugetlb_instantiation_mutex);
1274         entry = huge_ptep_get(ptep);
1275         if (huge_pte_none(entry)) {
1276                 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
1277                 mutex_unlock(&hugetlb_instantiation_mutex);
1278                 return ret;
1279         }
1280
1281         ret = 0;
1282
1283         spin_lock(&mm->page_table_lock);
1284         /* Check for a racing update before calling hugetlb_cow */
1285         if (likely(pte_same(entry, huge_ptep_get(ptep))))
1286                 if (write_access && !pte_write(entry)) {
1287                         struct page *page;
1288                         page = hugetlbfs_pagecache_page(vma, address);
1289                         ret = hugetlb_cow(mm, vma, address, ptep, entry, page);
1290                         if (page) {
1291                                 unlock_page(page);
1292                                 put_page(page);
1293                         }
1294                 }
1295         spin_unlock(&mm->page_table_lock);
1296         mutex_unlock(&hugetlb_instantiation_mutex);
1297
1298         return ret;
1299 }
1300
1301 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1302                         struct page **pages, struct vm_area_struct **vmas,
1303                         unsigned long *position, int *length, int i,
1304                         int write)
1305 {
1306         unsigned long pfn_offset;
1307         unsigned long vaddr = *position;
1308         int remainder = *length;
1309
1310         spin_lock(&mm->page_table_lock);
1311         while (vaddr < vma->vm_end && remainder) {
1312                 pte_t *pte;
1313                 struct page *page;
1314
1315                 /*
1316                  * Some archs (sparc64, sh*) have multiple pte_ts to
1317                  * each hugepage.  We have to make * sure we get the
1318                  * first, for the page indexing below to work.
1319                  */
1320                 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
1321
1322                 if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
1323                     (write && !pte_write(huge_ptep_get(pte)))) {
1324                         int ret;
1325
1326                         spin_unlock(&mm->page_table_lock);
1327                         ret = hugetlb_fault(mm, vma, vaddr, write);
1328                         spin_lock(&mm->page_table_lock);
1329                         if (!(ret & VM_FAULT_ERROR))
1330                                 continue;
1331
1332                         remainder = 0;
1333                         if (!i)
1334                                 i = -EFAULT;
1335                         break;
1336                 }
1337
1338                 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1339                 page = pte_page(huge_ptep_get(pte));
1340 same_page:
1341                 if (pages) {
1342                         get_page(page);
1343                         pages[i] = page + pfn_offset;
1344                 }
1345
1346                 if (vmas)
1347                         vmas[i] = vma;
1348
1349                 vaddr += PAGE_SIZE;
1350                 ++pfn_offset;
1351                 --remainder;
1352                 ++i;
1353                 if (vaddr < vma->vm_end && remainder &&
1354                                 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
1355                         /*
1356                          * We use pfn_offset to avoid touching the pageframes
1357                          * of this compound page.
1358                          */
1359                         goto same_page;
1360                 }
1361         }
1362         spin_unlock(&mm->page_table_lock);
1363         *length = remainder;
1364         *position = vaddr;
1365
1366         return i;
1367 }
1368
1369 void hugetlb_change_protection(struct vm_area_struct *vma,
1370                 unsigned long address, unsigned long end, pgprot_t newprot)
1371 {
1372         struct mm_struct *mm = vma->vm_mm;
1373         unsigned long start = address;
1374         pte_t *ptep;
1375         pte_t pte;
1376
1377         BUG_ON(address >= end);
1378         flush_cache_range(vma, address, end);
1379
1380         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1381         spin_lock(&mm->page_table_lock);
1382         for (; address < end; address += HPAGE_SIZE) {
1383                 ptep = huge_pte_offset(mm, address);
1384                 if (!ptep)
1385                         continue;
1386                 if (huge_pmd_unshare(mm, &address, ptep))
1387                         continue;
1388                 if (!huge_pte_none(huge_ptep_get(ptep))) {
1389                         pte = huge_ptep_get_and_clear(mm, address, ptep);
1390                         pte = pte_mkhuge(pte_modify(pte, newprot));
1391                         set_huge_pte_at(mm, address, ptep, pte);
1392                 }
1393         }
1394         spin_unlock(&mm->page_table_lock);
1395         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1396
1397         flush_tlb_range(vma, start, end);
1398 }
1399
1400 struct file_region {
1401         struct list_head link;
1402         long from;
1403         long to;
1404 };
1405
1406 static long region_add(struct list_head *head, long f, long t)
1407 {
1408         struct file_region *rg, *nrg, *trg;
1409
1410         /* Locate the region we are either in or before. */
1411         list_for_each_entry(rg, head, link)
1412                 if (f <= rg->to)
1413                         break;
1414
1415         /* Round our left edge to the current segment if it encloses us. */
1416         if (f > rg->from)
1417                 f = rg->from;
1418
1419         /* Check for and consume any regions we now overlap with. */
1420         nrg = rg;
1421         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1422                 if (&rg->link == head)
1423                         break;
1424                 if (rg->from > t)
1425                         break;
1426
1427                 /* If this area reaches higher then extend our area to
1428                  * include it completely.  If this is not the first area
1429                  * which we intend to reuse, free it. */
1430                 if (rg->to > t)
1431                         t = rg->to;
1432                 if (rg != nrg) {
1433                         list_del(&rg->link);
1434                         kfree(rg);
1435                 }
1436         }
1437         nrg->from = f;
1438         nrg->to = t;
1439         return 0;
1440 }
1441
1442 static long region_chg(struct list_head *head, long f, long t)
1443 {
1444         struct file_region *rg, *nrg;
1445         long chg = 0;
1446
1447         /* Locate the region we are before or in. */
1448         list_for_each_entry(rg, head, link)
1449                 if (f <= rg->to)
1450                         break;
1451
1452         /* If we are below the current region then a new region is required.
1453          * Subtle, allocate a new region at the position but make it zero
1454          * size such that we can guarantee to record the reservation. */
1455         if (&rg->link == head || t < rg->from) {
1456                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1457                 if (!nrg)
1458                         return -ENOMEM;
1459                 nrg->from = f;
1460                 nrg->to   = f;
1461                 INIT_LIST_HEAD(&nrg->link);
1462                 list_add(&nrg->link, rg->link.prev);
1463
1464                 return t - f;
1465         }
1466
1467         /* Round our left edge to the current segment if it encloses us. */
1468         if (f > rg->from)
1469                 f = rg->from;
1470         chg = t - f;
1471
1472         /* Check for and consume any regions we now overlap with. */
1473         list_for_each_entry(rg, rg->link.prev, link) {
1474                 if (&rg->link == head)
1475                         break;
1476                 if (rg->from > t)
1477                         return chg;
1478
1479                 /* We overlap with this area, if it extends futher than
1480                  * us then we must extend ourselves.  Account for its
1481                  * existing reservation. */
1482                 if (rg->to > t) {
1483                         chg += rg->to - t;
1484                         t = rg->to;
1485                 }
1486                 chg -= rg->to - rg->from;
1487         }
1488         return chg;
1489 }
1490
1491 static long region_truncate(struct list_head *head, long end)
1492 {
1493         struct file_region *rg, *trg;
1494         long chg = 0;
1495
1496         /* Locate the region we are either in or before. */
1497         list_for_each_entry(rg, head, link)
1498                 if (end <= rg->to)
1499                         break;
1500         if (&rg->link == head)
1501                 return 0;
1502
1503         /* If we are in the middle of a region then adjust it. */
1504         if (end > rg->from) {
1505                 chg = rg->to - end;
1506                 rg->to = end;
1507                 rg = list_entry(rg->link.next, typeof(*rg), link);
1508         }
1509
1510         /* Drop any remaining regions. */
1511         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1512                 if (&rg->link == head)
1513                         break;
1514                 chg += rg->to - rg->from;
1515                 list_del(&rg->link);
1516                 kfree(rg);
1517         }
1518         return chg;
1519 }
1520
1521 int hugetlb_reserve_pages(struct inode *inode,
1522                                         long from, long to,
1523                                         struct vm_area_struct *vma)
1524 {
1525         long ret, chg;
1526
1527         /*
1528          * Shared mappings base their reservation on the number of pages that
1529          * are already allocated on behalf of the file. Private mappings need
1530          * to reserve the full area even if read-only as mprotect() may be
1531          * called to make the mapping read-write. Assume !vma is a shm mapping
1532          */
1533         if (!vma || vma->vm_flags & VM_SHARED)
1534                 chg = region_chg(&inode->i_mapping->private_list, from, to);
1535         else {
1536                 chg = to - from;
1537                 set_vma_resv_huge_pages(vma, chg);
1538                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
1539         }
1540
1541         if (chg < 0)
1542                 return chg;
1543
1544         if (hugetlb_get_quota(inode->i_mapping, chg))
1545                 return -ENOSPC;
1546         ret = hugetlb_acct_memory(chg);
1547         if (ret < 0) {
1548                 hugetlb_put_quota(inode->i_mapping, chg);
1549                 return ret;
1550         }
1551         if (!vma || vma->vm_flags & VM_SHARED)
1552                 region_add(&inode->i_mapping->private_list, from, to);
1553         return 0;
1554 }
1555
1556 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1557 {
1558         long chg = region_truncate(&inode->i_mapping->private_list, offset);
1559
1560         spin_lock(&inode->i_lock);
1561         inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1562         spin_unlock(&inode->i_lock);
1563
1564         hugetlb_put_quota(inode->i_mapping, (chg - freed));
1565         hugetlb_acct_memory(-(chg - freed));
1566 }