mm: export remove_from_page_cache() to modules
[safe/jmp/linux-2.6] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43
44 #include <asm/mman.h>
45
46 /*
47  * Shared mappings implemented 30.11.1994. It's not fully working yet,
48  * though.
49  *
50  * Shared mappings now work. 15.8.1995  Bruno.
51  *
52  * finished 'unifying' the page and buffer cache and SMP-threaded the
53  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54  *
55  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56  */
57
58 /*
59  * Lock ordering:
60  *
61  *  ->i_mmap_lock               (truncate_pagecache)
62  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
63  *      ->swap_lock             (exclusive_swap_page, others)
64  *        ->mapping->tree_lock
65  *
66  *  ->i_mutex
67  *    ->i_mmap_lock             (truncate->unmap_mapping_range)
68  *
69  *  ->mmap_sem
70  *    ->i_mmap_lock
71  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
72  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
73  *
74  *  ->mmap_sem
75  *    ->lock_page               (access_process_vm)
76  *
77  *  ->i_mutex                   (generic_file_buffered_write)
78  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
79  *
80  *  ->i_mutex
81  *    ->i_alloc_sem             (various)
82  *
83  *  ->inode_lock
84  *    ->sb_lock                 (fs/fs-writeback.c)
85  *    ->mapping->tree_lock      (__sync_single_inode)
86  *
87  *  ->i_mmap_lock
88  *    ->anon_vma.lock           (vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock               (try_to_unmap_one)
95  *    ->private_lock            (try_to_unmap_one)
96  *    ->tree_lock               (try_to_unmap_one)
97  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
98  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
99  *    ->private_lock            (page_remove_rmap->set_page_dirty)
100  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
101  *    ->inode_lock              (page_remove_rmap->set_page_dirty)
102  *    ->inode_lock              (zap_pte_range->set_page_dirty)
103  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
104  *
105  *  ->task->proc_lock
106  *    ->dcache_lock             (proc_pid_lookup)
107  *
108  *  (code doesn't rely on that order, so you could switch it around)
109  *  ->tasklist_lock             (memory_failure, collect_procs_ao)
110  *    ->i_mmap_lock
111  */
112
113 /*
114  * Remove a page from the page cache and free it. Caller has to make
115  * sure the page is locked and that nobody else uses it - or that usage
116  * is safe.  The caller must hold the mapping's tree_lock.
117  */
118 void __remove_from_page_cache(struct page *page)
119 {
120         struct address_space *mapping = page->mapping;
121
122         radix_tree_delete(&mapping->page_tree, page->index);
123         page->mapping = NULL;
124         mapping->nrpages--;
125         __dec_zone_page_state(page, NR_FILE_PAGES);
126         if (PageSwapBacked(page))
127                 __dec_zone_page_state(page, NR_SHMEM);
128         BUG_ON(page_mapped(page));
129
130         /*
131          * Some filesystems seem to re-dirty the page even after
132          * the VM has canceled the dirty bit (eg ext3 journaling).
133          *
134          * Fix it up by doing a final dirty accounting check after
135          * having removed the page entirely.
136          */
137         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
138                 dec_zone_page_state(page, NR_FILE_DIRTY);
139                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
140         }
141 }
142
143 void remove_from_page_cache(struct page *page)
144 {
145         struct address_space *mapping = page->mapping;
146
147         BUG_ON(!PageLocked(page));
148
149         spin_lock_irq(&mapping->tree_lock);
150         __remove_from_page_cache(page);
151         spin_unlock_irq(&mapping->tree_lock);
152         mem_cgroup_uncharge_cache_page(page);
153 }
154 EXPORT_SYMBOL(remove_from_page_cache);
155
156 static int sync_page(void *word)
157 {
158         struct address_space *mapping;
159         struct page *page;
160
161         page = container_of((unsigned long *)word, struct page, flags);
162
163         /*
164          * page_mapping() is being called without PG_locked held.
165          * Some knowledge of the state and use of the page is used to
166          * reduce the requirements down to a memory barrier.
167          * The danger here is of a stale page_mapping() return value
168          * indicating a struct address_space different from the one it's
169          * associated with when it is associated with one.
170          * After smp_mb(), it's either the correct page_mapping() for
171          * the page, or an old page_mapping() and the page's own
172          * page_mapping() has gone NULL.
173          * The ->sync_page() address_space operation must tolerate
174          * page_mapping() going NULL. By an amazing coincidence,
175          * this comes about because none of the users of the page
176          * in the ->sync_page() methods make essential use of the
177          * page_mapping(), merely passing the page down to the backing
178          * device's unplug functions when it's non-NULL, which in turn
179          * ignore it for all cases but swap, where only page_private(page) is
180          * of interest. When page_mapping() does go NULL, the entire
181          * call stack gracefully ignores the page and returns.
182          * -- wli
183          */
184         smp_mb();
185         mapping = page_mapping(page);
186         if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
187                 mapping->a_ops->sync_page(page);
188         io_schedule();
189         return 0;
190 }
191
192 static int sync_page_killable(void *word)
193 {
194         sync_page(word);
195         return fatal_signal_pending(current) ? -EINTR : 0;
196 }
197
198 /**
199  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
200  * @mapping:    address space structure to write
201  * @start:      offset in bytes where the range starts
202  * @end:        offset in bytes where the range ends (inclusive)
203  * @sync_mode:  enable synchronous operation
204  *
205  * Start writeback against all of a mapping's dirty pages that lie
206  * within the byte offsets <start, end> inclusive.
207  *
208  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
209  * opposed to a regular memory cleansing writeback.  The difference between
210  * these two operations is that if a dirty page/buffer is encountered, it must
211  * be waited upon, and not just skipped over.
212  */
213 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
214                                 loff_t end, int sync_mode)
215 {
216         int ret;
217         struct writeback_control wbc = {
218                 .sync_mode = sync_mode,
219                 .nr_to_write = LONG_MAX,
220                 .range_start = start,
221                 .range_end = end,
222         };
223
224         if (!mapping_cap_writeback_dirty(mapping))
225                 return 0;
226
227         ret = do_writepages(mapping, &wbc);
228         return ret;
229 }
230
231 static inline int __filemap_fdatawrite(struct address_space *mapping,
232         int sync_mode)
233 {
234         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
235 }
236
237 int filemap_fdatawrite(struct address_space *mapping)
238 {
239         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
240 }
241 EXPORT_SYMBOL(filemap_fdatawrite);
242
243 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
244                                 loff_t end)
245 {
246         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
247 }
248 EXPORT_SYMBOL(filemap_fdatawrite_range);
249
250 /**
251  * filemap_flush - mostly a non-blocking flush
252  * @mapping:    target address_space
253  *
254  * This is a mostly non-blocking flush.  Not suitable for data-integrity
255  * purposes - I/O may not be started against all dirty pages.
256  */
257 int filemap_flush(struct address_space *mapping)
258 {
259         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
260 }
261 EXPORT_SYMBOL(filemap_flush);
262
263 /**
264  * filemap_fdatawait_range - wait for writeback to complete
265  * @mapping:            address space structure to wait for
266  * @start_byte:         offset in bytes where the range starts
267  * @end_byte:           offset in bytes where the range ends (inclusive)
268  *
269  * Walk the list of under-writeback pages of the given address space
270  * in the given range and wait for all of them.
271  */
272 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
273                             loff_t end_byte)
274 {
275         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
276         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
277         struct pagevec pvec;
278         int nr_pages;
279         int ret = 0;
280
281         if (end_byte < start_byte)
282                 return 0;
283
284         pagevec_init(&pvec, 0);
285         while ((index <= end) &&
286                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
287                         PAGECACHE_TAG_WRITEBACK,
288                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
289                 unsigned i;
290
291                 for (i = 0; i < nr_pages; i++) {
292                         struct page *page = pvec.pages[i];
293
294                         /* until radix tree lookup accepts end_index */
295                         if (page->index > end)
296                                 continue;
297
298                         wait_on_page_writeback(page);
299                         if (PageError(page))
300                                 ret = -EIO;
301                 }
302                 pagevec_release(&pvec);
303                 cond_resched();
304         }
305
306         /* Check for outstanding write errors */
307         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
308                 ret = -ENOSPC;
309         if (test_and_clear_bit(AS_EIO, &mapping->flags))
310                 ret = -EIO;
311
312         return ret;
313 }
314 EXPORT_SYMBOL(filemap_fdatawait_range);
315
316 /**
317  * filemap_fdatawait - wait for all under-writeback pages to complete
318  * @mapping: address space structure to wait for
319  *
320  * Walk the list of under-writeback pages of the given address space
321  * and wait for all of them.
322  */
323 int filemap_fdatawait(struct address_space *mapping)
324 {
325         loff_t i_size = i_size_read(mapping->host);
326
327         if (i_size == 0)
328                 return 0;
329
330         return filemap_fdatawait_range(mapping, 0, i_size - 1);
331 }
332 EXPORT_SYMBOL(filemap_fdatawait);
333
334 int filemap_write_and_wait(struct address_space *mapping)
335 {
336         int err = 0;
337
338         if (mapping->nrpages) {
339                 err = filemap_fdatawrite(mapping);
340                 /*
341                  * Even if the above returned error, the pages may be
342                  * written partially (e.g. -ENOSPC), so we wait for it.
343                  * But the -EIO is special case, it may indicate the worst
344                  * thing (e.g. bug) happened, so we avoid waiting for it.
345                  */
346                 if (err != -EIO) {
347                         int err2 = filemap_fdatawait(mapping);
348                         if (!err)
349                                 err = err2;
350                 }
351         }
352         return err;
353 }
354 EXPORT_SYMBOL(filemap_write_and_wait);
355
356 /**
357  * filemap_write_and_wait_range - write out & wait on a file range
358  * @mapping:    the address_space for the pages
359  * @lstart:     offset in bytes where the range starts
360  * @lend:       offset in bytes where the range ends (inclusive)
361  *
362  * Write out and wait upon file offsets lstart->lend, inclusive.
363  *
364  * Note that `lend' is inclusive (describes the last byte to be written) so
365  * that this function can be used to write to the very end-of-file (end = -1).
366  */
367 int filemap_write_and_wait_range(struct address_space *mapping,
368                                  loff_t lstart, loff_t lend)
369 {
370         int err = 0;
371
372         if (mapping->nrpages) {
373                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
374                                                  WB_SYNC_ALL);
375                 /* See comment of filemap_write_and_wait() */
376                 if (err != -EIO) {
377                         int err2 = filemap_fdatawait_range(mapping,
378                                                 lstart, lend);
379                         if (!err)
380                                 err = err2;
381                 }
382         }
383         return err;
384 }
385 EXPORT_SYMBOL(filemap_write_and_wait_range);
386
387 /**
388  * add_to_page_cache_locked - add a locked page to the pagecache
389  * @page:       page to add
390  * @mapping:    the page's address_space
391  * @offset:     page index
392  * @gfp_mask:   page allocation mode
393  *
394  * This function is used to add a page to the pagecache. It must be locked.
395  * This function does not add the page to the LRU.  The caller must do that.
396  */
397 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
398                 pgoff_t offset, gfp_t gfp_mask)
399 {
400         int error;
401
402         VM_BUG_ON(!PageLocked(page));
403
404         error = mem_cgroup_cache_charge(page, current->mm,
405                                         gfp_mask & GFP_RECLAIM_MASK);
406         if (error)
407                 goto out;
408
409         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
410         if (error == 0) {
411                 page_cache_get(page);
412                 page->mapping = mapping;
413                 page->index = offset;
414
415                 spin_lock_irq(&mapping->tree_lock);
416                 error = radix_tree_insert(&mapping->page_tree, offset, page);
417                 if (likely(!error)) {
418                         mapping->nrpages++;
419                         __inc_zone_page_state(page, NR_FILE_PAGES);
420                         if (PageSwapBacked(page))
421                                 __inc_zone_page_state(page, NR_SHMEM);
422                         spin_unlock_irq(&mapping->tree_lock);
423                 } else {
424                         page->mapping = NULL;
425                         spin_unlock_irq(&mapping->tree_lock);
426                         mem_cgroup_uncharge_cache_page(page);
427                         page_cache_release(page);
428                 }
429                 radix_tree_preload_end();
430         } else
431                 mem_cgroup_uncharge_cache_page(page);
432 out:
433         return error;
434 }
435 EXPORT_SYMBOL(add_to_page_cache_locked);
436
437 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
438                                 pgoff_t offset, gfp_t gfp_mask)
439 {
440         int ret;
441
442         /*
443          * Splice_read and readahead add shmem/tmpfs pages into the page cache
444          * before shmem_readpage has a chance to mark them as SwapBacked: they
445          * need to go on the active_anon lru below, and mem_cgroup_cache_charge
446          * (called in add_to_page_cache) needs to know where they're going too.
447          */
448         if (mapping_cap_swap_backed(mapping))
449                 SetPageSwapBacked(page);
450
451         ret = add_to_page_cache(page, mapping, offset, gfp_mask);
452         if (ret == 0) {
453                 if (page_is_file_cache(page))
454                         lru_cache_add_file(page);
455                 else
456                         lru_cache_add_active_anon(page);
457         }
458         return ret;
459 }
460 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
461
462 #ifdef CONFIG_NUMA
463 struct page *__page_cache_alloc(gfp_t gfp)
464 {
465         if (cpuset_do_page_mem_spread()) {
466                 int n = cpuset_mem_spread_node();
467                 return alloc_pages_exact_node(n, gfp, 0);
468         }
469         return alloc_pages(gfp, 0);
470 }
471 EXPORT_SYMBOL(__page_cache_alloc);
472 #endif
473
474 static int __sleep_on_page_lock(void *word)
475 {
476         io_schedule();
477         return 0;
478 }
479
480 /*
481  * In order to wait for pages to become available there must be
482  * waitqueues associated with pages. By using a hash table of
483  * waitqueues where the bucket discipline is to maintain all
484  * waiters on the same queue and wake all when any of the pages
485  * become available, and for the woken contexts to check to be
486  * sure the appropriate page became available, this saves space
487  * at a cost of "thundering herd" phenomena during rare hash
488  * collisions.
489  */
490 static wait_queue_head_t *page_waitqueue(struct page *page)
491 {
492         const struct zone *zone = page_zone(page);
493
494         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
495 }
496
497 static inline void wake_up_page(struct page *page, int bit)
498 {
499         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
500 }
501
502 void wait_on_page_bit(struct page *page, int bit_nr)
503 {
504         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
505
506         if (test_bit(bit_nr, &page->flags))
507                 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
508                                                         TASK_UNINTERRUPTIBLE);
509 }
510 EXPORT_SYMBOL(wait_on_page_bit);
511
512 /**
513  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
514  * @page: Page defining the wait queue of interest
515  * @waiter: Waiter to add to the queue
516  *
517  * Add an arbitrary @waiter to the wait queue for the nominated @page.
518  */
519 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
520 {
521         wait_queue_head_t *q = page_waitqueue(page);
522         unsigned long flags;
523
524         spin_lock_irqsave(&q->lock, flags);
525         __add_wait_queue(q, waiter);
526         spin_unlock_irqrestore(&q->lock, flags);
527 }
528 EXPORT_SYMBOL_GPL(add_page_wait_queue);
529
530 /**
531  * unlock_page - unlock a locked page
532  * @page: the page
533  *
534  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
535  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
536  * mechananism between PageLocked pages and PageWriteback pages is shared.
537  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
538  *
539  * The mb is necessary to enforce ordering between the clear_bit and the read
540  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
541  */
542 void unlock_page(struct page *page)
543 {
544         VM_BUG_ON(!PageLocked(page));
545         clear_bit_unlock(PG_locked, &page->flags);
546         smp_mb__after_clear_bit();
547         wake_up_page(page, PG_locked);
548 }
549 EXPORT_SYMBOL(unlock_page);
550
551 /**
552  * end_page_writeback - end writeback against a page
553  * @page: the page
554  */
555 void end_page_writeback(struct page *page)
556 {
557         if (TestClearPageReclaim(page))
558                 rotate_reclaimable_page(page);
559
560         if (!test_clear_page_writeback(page))
561                 BUG();
562
563         smp_mb__after_clear_bit();
564         wake_up_page(page, PG_writeback);
565 }
566 EXPORT_SYMBOL(end_page_writeback);
567
568 /**
569  * __lock_page - get a lock on the page, assuming we need to sleep to get it
570  * @page: the page to lock
571  *
572  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
573  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
574  * chances are that on the second loop, the block layer's plug list is empty,
575  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
576  */
577 void __lock_page(struct page *page)
578 {
579         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
580
581         __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
582                                                         TASK_UNINTERRUPTIBLE);
583 }
584 EXPORT_SYMBOL(__lock_page);
585
586 int __lock_page_killable(struct page *page)
587 {
588         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
589
590         return __wait_on_bit_lock(page_waitqueue(page), &wait,
591                                         sync_page_killable, TASK_KILLABLE);
592 }
593 EXPORT_SYMBOL_GPL(__lock_page_killable);
594
595 /**
596  * __lock_page_nosync - get a lock on the page, without calling sync_page()
597  * @page: the page to lock
598  *
599  * Variant of lock_page that does not require the caller to hold a reference
600  * on the page's mapping.
601  */
602 void __lock_page_nosync(struct page *page)
603 {
604         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
605         __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
606                                                         TASK_UNINTERRUPTIBLE);
607 }
608
609 /**
610  * find_get_page - find and get a page reference
611  * @mapping: the address_space to search
612  * @offset: the page index
613  *
614  * Is there a pagecache struct page at the given (mapping, offset) tuple?
615  * If yes, increment its refcount and return it; if no, return NULL.
616  */
617 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
618 {
619         void **pagep;
620         struct page *page;
621
622         rcu_read_lock();
623 repeat:
624         page = NULL;
625         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
626         if (pagep) {
627                 page = radix_tree_deref_slot(pagep);
628                 if (unlikely(!page || page == RADIX_TREE_RETRY))
629                         goto repeat;
630
631                 if (!page_cache_get_speculative(page))
632                         goto repeat;
633
634                 /*
635                  * Has the page moved?
636                  * This is part of the lockless pagecache protocol. See
637                  * include/linux/pagemap.h for details.
638                  */
639                 if (unlikely(page != *pagep)) {
640                         page_cache_release(page);
641                         goto repeat;
642                 }
643         }
644         rcu_read_unlock();
645
646         return page;
647 }
648 EXPORT_SYMBOL(find_get_page);
649
650 /**
651  * find_lock_page - locate, pin and lock a pagecache page
652  * @mapping: the address_space to search
653  * @offset: the page index
654  *
655  * Locates the desired pagecache page, locks it, increments its reference
656  * count and returns its address.
657  *
658  * Returns zero if the page was not present. find_lock_page() may sleep.
659  */
660 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
661 {
662         struct page *page;
663
664 repeat:
665         page = find_get_page(mapping, offset);
666         if (page) {
667                 lock_page(page);
668                 /* Has the page been truncated? */
669                 if (unlikely(page->mapping != mapping)) {
670                         unlock_page(page);
671                         page_cache_release(page);
672                         goto repeat;
673                 }
674                 VM_BUG_ON(page->index != offset);
675         }
676         return page;
677 }
678 EXPORT_SYMBOL(find_lock_page);
679
680 /**
681  * find_or_create_page - locate or add a pagecache page
682  * @mapping: the page's address_space
683  * @index: the page's index into the mapping
684  * @gfp_mask: page allocation mode
685  *
686  * Locates a page in the pagecache.  If the page is not present, a new page
687  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
688  * LRU list.  The returned page is locked and has its reference count
689  * incremented.
690  *
691  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
692  * allocation!
693  *
694  * find_or_create_page() returns the desired page's address, or zero on
695  * memory exhaustion.
696  */
697 struct page *find_or_create_page(struct address_space *mapping,
698                 pgoff_t index, gfp_t gfp_mask)
699 {
700         struct page *page;
701         int err;
702 repeat:
703         page = find_lock_page(mapping, index);
704         if (!page) {
705                 page = __page_cache_alloc(gfp_mask);
706                 if (!page)
707                         return NULL;
708                 /*
709                  * We want a regular kernel memory (not highmem or DMA etc)
710                  * allocation for the radix tree nodes, but we need to honour
711                  * the context-specific requirements the caller has asked for.
712                  * GFP_RECLAIM_MASK collects those requirements.
713                  */
714                 err = add_to_page_cache_lru(page, mapping, index,
715                         (gfp_mask & GFP_RECLAIM_MASK));
716                 if (unlikely(err)) {
717                         page_cache_release(page);
718                         page = NULL;
719                         if (err == -EEXIST)
720                                 goto repeat;
721                 }
722         }
723         return page;
724 }
725 EXPORT_SYMBOL(find_or_create_page);
726
727 /**
728  * find_get_pages - gang pagecache lookup
729  * @mapping:    The address_space to search
730  * @start:      The starting page index
731  * @nr_pages:   The maximum number of pages
732  * @pages:      Where the resulting pages are placed
733  *
734  * find_get_pages() will search for and return a group of up to
735  * @nr_pages pages in the mapping.  The pages are placed at @pages.
736  * find_get_pages() takes a reference against the returned pages.
737  *
738  * The search returns a group of mapping-contiguous pages with ascending
739  * indexes.  There may be holes in the indices due to not-present pages.
740  *
741  * find_get_pages() returns the number of pages which were found.
742  */
743 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
744                             unsigned int nr_pages, struct page **pages)
745 {
746         unsigned int i;
747         unsigned int ret;
748         unsigned int nr_found;
749
750         rcu_read_lock();
751 restart:
752         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
753                                 (void ***)pages, start, nr_pages);
754         ret = 0;
755         for (i = 0; i < nr_found; i++) {
756                 struct page *page;
757 repeat:
758                 page = radix_tree_deref_slot((void **)pages[i]);
759                 if (unlikely(!page))
760                         continue;
761                 /*
762                  * this can only trigger if nr_found == 1, making livelock
763                  * a non issue.
764                  */
765                 if (unlikely(page == RADIX_TREE_RETRY))
766                         goto restart;
767
768                 if (!page_cache_get_speculative(page))
769                         goto repeat;
770
771                 /* Has the page moved? */
772                 if (unlikely(page != *((void **)pages[i]))) {
773                         page_cache_release(page);
774                         goto repeat;
775                 }
776
777                 pages[ret] = page;
778                 ret++;
779         }
780         rcu_read_unlock();
781         return ret;
782 }
783
784 /**
785  * find_get_pages_contig - gang contiguous pagecache lookup
786  * @mapping:    The address_space to search
787  * @index:      The starting page index
788  * @nr_pages:   The maximum number of pages
789  * @pages:      Where the resulting pages are placed
790  *
791  * find_get_pages_contig() works exactly like find_get_pages(), except
792  * that the returned number of pages are guaranteed to be contiguous.
793  *
794  * find_get_pages_contig() returns the number of pages which were found.
795  */
796 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
797                                unsigned int nr_pages, struct page **pages)
798 {
799         unsigned int i;
800         unsigned int ret;
801         unsigned int nr_found;
802
803         rcu_read_lock();
804 restart:
805         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
806                                 (void ***)pages, index, nr_pages);
807         ret = 0;
808         for (i = 0; i < nr_found; i++) {
809                 struct page *page;
810 repeat:
811                 page = radix_tree_deref_slot((void **)pages[i]);
812                 if (unlikely(!page))
813                         continue;
814                 /*
815                  * this can only trigger if nr_found == 1, making livelock
816                  * a non issue.
817                  */
818                 if (unlikely(page == RADIX_TREE_RETRY))
819                         goto restart;
820
821                 if (page->mapping == NULL || page->index != index)
822                         break;
823
824                 if (!page_cache_get_speculative(page))
825                         goto repeat;
826
827                 /* Has the page moved? */
828                 if (unlikely(page != *((void **)pages[i]))) {
829                         page_cache_release(page);
830                         goto repeat;
831                 }
832
833                 pages[ret] = page;
834                 ret++;
835                 index++;
836         }
837         rcu_read_unlock();
838         return ret;
839 }
840 EXPORT_SYMBOL(find_get_pages_contig);
841
842 /**
843  * find_get_pages_tag - find and return pages that match @tag
844  * @mapping:    the address_space to search
845  * @index:      the starting page index
846  * @tag:        the tag index
847  * @nr_pages:   the maximum number of pages
848  * @pages:      where the resulting pages are placed
849  *
850  * Like find_get_pages, except we only return pages which are tagged with
851  * @tag.   We update @index to index the next page for the traversal.
852  */
853 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
854                         int tag, unsigned int nr_pages, struct page **pages)
855 {
856         unsigned int i;
857         unsigned int ret;
858         unsigned int nr_found;
859
860         rcu_read_lock();
861 restart:
862         nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
863                                 (void ***)pages, *index, nr_pages, tag);
864         ret = 0;
865         for (i = 0; i < nr_found; i++) {
866                 struct page *page;
867 repeat:
868                 page = radix_tree_deref_slot((void **)pages[i]);
869                 if (unlikely(!page))
870                         continue;
871                 /*
872                  * this can only trigger if nr_found == 1, making livelock
873                  * a non issue.
874                  */
875                 if (unlikely(page == RADIX_TREE_RETRY))
876                         goto restart;
877
878                 if (!page_cache_get_speculative(page))
879                         goto repeat;
880
881                 /* Has the page moved? */
882                 if (unlikely(page != *((void **)pages[i]))) {
883                         page_cache_release(page);
884                         goto repeat;
885                 }
886
887                 pages[ret] = page;
888                 ret++;
889         }
890         rcu_read_unlock();
891
892         if (ret)
893                 *index = pages[ret - 1]->index + 1;
894
895         return ret;
896 }
897 EXPORT_SYMBOL(find_get_pages_tag);
898
899 /**
900  * grab_cache_page_nowait - returns locked page at given index in given cache
901  * @mapping: target address_space
902  * @index: the page index
903  *
904  * Same as grab_cache_page(), but do not wait if the page is unavailable.
905  * This is intended for speculative data generators, where the data can
906  * be regenerated if the page couldn't be grabbed.  This routine should
907  * be safe to call while holding the lock for another page.
908  *
909  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
910  * and deadlock against the caller's locked page.
911  */
912 struct page *
913 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
914 {
915         struct page *page = find_get_page(mapping, index);
916
917         if (page) {
918                 if (trylock_page(page))
919                         return page;
920                 page_cache_release(page);
921                 return NULL;
922         }
923         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
924         if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
925                 page_cache_release(page);
926                 page = NULL;
927         }
928         return page;
929 }
930 EXPORT_SYMBOL(grab_cache_page_nowait);
931
932 /*
933  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
934  * a _large_ part of the i/o request. Imagine the worst scenario:
935  *
936  *      ---R__________________________________________B__________
937  *         ^ reading here                             ^ bad block(assume 4k)
938  *
939  * read(R) => miss => readahead(R...B) => media error => frustrating retries
940  * => failing the whole request => read(R) => read(R+1) =>
941  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
942  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
943  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
944  *
945  * It is going insane. Fix it by quickly scaling down the readahead size.
946  */
947 static void shrink_readahead_size_eio(struct file *filp,
948                                         struct file_ra_state *ra)
949 {
950         ra->ra_pages /= 4;
951 }
952
953 /**
954  * do_generic_file_read - generic file read routine
955  * @filp:       the file to read
956  * @ppos:       current file position
957  * @desc:       read_descriptor
958  * @actor:      read method
959  *
960  * This is a generic file read routine, and uses the
961  * mapping->a_ops->readpage() function for the actual low-level stuff.
962  *
963  * This is really ugly. But the goto's actually try to clarify some
964  * of the logic when it comes to error handling etc.
965  */
966 static void do_generic_file_read(struct file *filp, loff_t *ppos,
967                 read_descriptor_t *desc, read_actor_t actor)
968 {
969         struct address_space *mapping = filp->f_mapping;
970         struct inode *inode = mapping->host;
971         struct file_ra_state *ra = &filp->f_ra;
972         pgoff_t index;
973         pgoff_t last_index;
974         pgoff_t prev_index;
975         unsigned long offset;      /* offset into pagecache page */
976         unsigned int prev_offset;
977         int error;
978
979         index = *ppos >> PAGE_CACHE_SHIFT;
980         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
981         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
982         last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
983         offset = *ppos & ~PAGE_CACHE_MASK;
984
985         for (;;) {
986                 struct page *page;
987                 pgoff_t end_index;
988                 loff_t isize;
989                 unsigned long nr, ret;
990
991                 cond_resched();
992 find_page:
993                 page = find_get_page(mapping, index);
994                 if (!page) {
995                         page_cache_sync_readahead(mapping,
996                                         ra, filp,
997                                         index, last_index - index);
998                         page = find_get_page(mapping, index);
999                         if (unlikely(page == NULL))
1000                                 goto no_cached_page;
1001                 }
1002                 if (PageReadahead(page)) {
1003                         page_cache_async_readahead(mapping,
1004                                         ra, filp, page,
1005                                         index, last_index - index);
1006                 }
1007                 if (!PageUptodate(page)) {
1008                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1009                                         !mapping->a_ops->is_partially_uptodate)
1010                                 goto page_not_up_to_date;
1011                         if (!trylock_page(page))
1012                                 goto page_not_up_to_date;
1013                         if (!mapping->a_ops->is_partially_uptodate(page,
1014                                                                 desc, offset))
1015                                 goto page_not_up_to_date_locked;
1016                         unlock_page(page);
1017                 }
1018 page_ok:
1019                 /*
1020                  * i_size must be checked after we know the page is Uptodate.
1021                  *
1022                  * Checking i_size after the check allows us to calculate
1023                  * the correct value for "nr", which means the zero-filled
1024                  * part of the page is not copied back to userspace (unless
1025                  * another truncate extends the file - this is desired though).
1026                  */
1027
1028                 isize = i_size_read(inode);
1029                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1030                 if (unlikely(!isize || index > end_index)) {
1031                         page_cache_release(page);
1032                         goto out;
1033                 }
1034
1035                 /* nr is the maximum number of bytes to copy from this page */
1036                 nr = PAGE_CACHE_SIZE;
1037                 if (index == end_index) {
1038                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1039                         if (nr <= offset) {
1040                                 page_cache_release(page);
1041                                 goto out;
1042                         }
1043                 }
1044                 nr = nr - offset;
1045
1046                 /* If users can be writing to this page using arbitrary
1047                  * virtual addresses, take care about potential aliasing
1048                  * before reading the page on the kernel side.
1049                  */
1050                 if (mapping_writably_mapped(mapping))
1051                         flush_dcache_page(page);
1052
1053                 /*
1054                  * When a sequential read accesses a page several times,
1055                  * only mark it as accessed the first time.
1056                  */
1057                 if (prev_index != index || offset != prev_offset)
1058                         mark_page_accessed(page);
1059                 prev_index = index;
1060
1061                 /*
1062                  * Ok, we have the page, and it's up-to-date, so
1063                  * now we can copy it to user space...
1064                  *
1065                  * The actor routine returns how many bytes were actually used..
1066                  * NOTE! This may not be the same as how much of a user buffer
1067                  * we filled up (we may be padding etc), so we can only update
1068                  * "pos" here (the actor routine has to update the user buffer
1069                  * pointers and the remaining count).
1070                  */
1071                 ret = actor(desc, page, offset, nr);
1072                 offset += ret;
1073                 index += offset >> PAGE_CACHE_SHIFT;
1074                 offset &= ~PAGE_CACHE_MASK;
1075                 prev_offset = offset;
1076
1077                 page_cache_release(page);
1078                 if (ret == nr && desc->count)
1079                         continue;
1080                 goto out;
1081
1082 page_not_up_to_date:
1083                 /* Get exclusive access to the page ... */
1084                 error = lock_page_killable(page);
1085                 if (unlikely(error))
1086                         goto readpage_error;
1087
1088 page_not_up_to_date_locked:
1089                 /* Did it get truncated before we got the lock? */
1090                 if (!page->mapping) {
1091                         unlock_page(page);
1092                         page_cache_release(page);
1093                         continue;
1094                 }
1095
1096                 /* Did somebody else fill it already? */
1097                 if (PageUptodate(page)) {
1098                         unlock_page(page);
1099                         goto page_ok;
1100                 }
1101
1102 readpage:
1103                 /* Start the actual read. The read will unlock the page. */
1104                 error = mapping->a_ops->readpage(filp, page);
1105
1106                 if (unlikely(error)) {
1107                         if (error == AOP_TRUNCATED_PAGE) {
1108                                 page_cache_release(page);
1109                                 goto find_page;
1110                         }
1111                         goto readpage_error;
1112                 }
1113
1114                 if (!PageUptodate(page)) {
1115                         error = lock_page_killable(page);
1116                         if (unlikely(error))
1117                                 goto readpage_error;
1118                         if (!PageUptodate(page)) {
1119                                 if (page->mapping == NULL) {
1120                                         /*
1121                                          * invalidate_mapping_pages got it
1122                                          */
1123                                         unlock_page(page);
1124                                         page_cache_release(page);
1125                                         goto find_page;
1126                                 }
1127                                 unlock_page(page);
1128                                 shrink_readahead_size_eio(filp, ra);
1129                                 error = -EIO;
1130                                 goto readpage_error;
1131                         }
1132                         unlock_page(page);
1133                 }
1134
1135                 goto page_ok;
1136
1137 readpage_error:
1138                 /* UHHUH! A synchronous read error occurred. Report it */
1139                 desc->error = error;
1140                 page_cache_release(page);
1141                 goto out;
1142
1143 no_cached_page:
1144                 /*
1145                  * Ok, it wasn't cached, so we need to create a new
1146                  * page..
1147                  */
1148                 page = page_cache_alloc_cold(mapping);
1149                 if (!page) {
1150                         desc->error = -ENOMEM;
1151                         goto out;
1152                 }
1153                 error = add_to_page_cache_lru(page, mapping,
1154                                                 index, GFP_KERNEL);
1155                 if (error) {
1156                         page_cache_release(page);
1157                         if (error == -EEXIST)
1158                                 goto find_page;
1159                         desc->error = error;
1160                         goto out;
1161                 }
1162                 goto readpage;
1163         }
1164
1165 out:
1166         ra->prev_pos = prev_index;
1167         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1168         ra->prev_pos |= prev_offset;
1169
1170         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1171         file_accessed(filp);
1172 }
1173
1174 int file_read_actor(read_descriptor_t *desc, struct page *page,
1175                         unsigned long offset, unsigned long size)
1176 {
1177         char *kaddr;
1178         unsigned long left, count = desc->count;
1179
1180         if (size > count)
1181                 size = count;
1182
1183         /*
1184          * Faults on the destination of a read are common, so do it before
1185          * taking the kmap.
1186          */
1187         if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1188                 kaddr = kmap_atomic(page, KM_USER0);
1189                 left = __copy_to_user_inatomic(desc->arg.buf,
1190                                                 kaddr + offset, size);
1191                 kunmap_atomic(kaddr, KM_USER0);
1192                 if (left == 0)
1193                         goto success;
1194         }
1195
1196         /* Do it the slow way */
1197         kaddr = kmap(page);
1198         left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1199         kunmap(page);
1200
1201         if (left) {
1202                 size -= left;
1203                 desc->error = -EFAULT;
1204         }
1205 success:
1206         desc->count = count - size;
1207         desc->written += size;
1208         desc->arg.buf += size;
1209         return size;
1210 }
1211
1212 /*
1213  * Performs necessary checks before doing a write
1214  * @iov:        io vector request
1215  * @nr_segs:    number of segments in the iovec
1216  * @count:      number of bytes to write
1217  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1218  *
1219  * Adjust number of segments and amount of bytes to write (nr_segs should be
1220  * properly initialized first). Returns appropriate error code that caller
1221  * should return or zero in case that write should be allowed.
1222  */
1223 int generic_segment_checks(const struct iovec *iov,
1224                         unsigned long *nr_segs, size_t *count, int access_flags)
1225 {
1226         unsigned long   seg;
1227         size_t cnt = 0;
1228         for (seg = 0; seg < *nr_segs; seg++) {
1229                 const struct iovec *iv = &iov[seg];
1230
1231                 /*
1232                  * If any segment has a negative length, or the cumulative
1233                  * length ever wraps negative then return -EINVAL.
1234                  */
1235                 cnt += iv->iov_len;
1236                 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1237                         return -EINVAL;
1238                 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1239                         continue;
1240                 if (seg == 0)
1241                         return -EFAULT;
1242                 *nr_segs = seg;
1243                 cnt -= iv->iov_len;     /* This segment is no good */
1244                 break;
1245         }
1246         *count = cnt;
1247         return 0;
1248 }
1249 EXPORT_SYMBOL(generic_segment_checks);
1250
1251 /**
1252  * generic_file_aio_read - generic filesystem read routine
1253  * @iocb:       kernel I/O control block
1254  * @iov:        io vector request
1255  * @nr_segs:    number of segments in the iovec
1256  * @pos:        current file position
1257  *
1258  * This is the "read()" routine for all filesystems
1259  * that can use the page cache directly.
1260  */
1261 ssize_t
1262 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1263                 unsigned long nr_segs, loff_t pos)
1264 {
1265         struct file *filp = iocb->ki_filp;
1266         ssize_t retval;
1267         unsigned long seg;
1268         size_t count;
1269         loff_t *ppos = &iocb->ki_pos;
1270
1271         count = 0;
1272         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1273         if (retval)
1274                 return retval;
1275
1276         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1277         if (filp->f_flags & O_DIRECT) {
1278                 loff_t size;
1279                 struct address_space *mapping;
1280                 struct inode *inode;
1281
1282                 mapping = filp->f_mapping;
1283                 inode = mapping->host;
1284                 if (!count)
1285                         goto out; /* skip atime */
1286                 size = i_size_read(inode);
1287                 if (pos < size) {
1288                         retval = filemap_write_and_wait_range(mapping, pos,
1289                                         pos + iov_length(iov, nr_segs) - 1);
1290                         if (!retval) {
1291                                 retval = mapping->a_ops->direct_IO(READ, iocb,
1292                                                         iov, pos, nr_segs);
1293                         }
1294                         if (retval > 0)
1295                                 *ppos = pos + retval;
1296                         if (retval) {
1297                                 file_accessed(filp);
1298                                 goto out;
1299                         }
1300                 }
1301         }
1302
1303         for (seg = 0; seg < nr_segs; seg++) {
1304                 read_descriptor_t desc;
1305
1306                 desc.written = 0;
1307                 desc.arg.buf = iov[seg].iov_base;
1308                 desc.count = iov[seg].iov_len;
1309                 if (desc.count == 0)
1310                         continue;
1311                 desc.error = 0;
1312                 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1313                 retval += desc.written;
1314                 if (desc.error) {
1315                         retval = retval ?: desc.error;
1316                         break;
1317                 }
1318                 if (desc.count > 0)
1319                         break;
1320         }
1321 out:
1322         return retval;
1323 }
1324 EXPORT_SYMBOL(generic_file_aio_read);
1325
1326 static ssize_t
1327 do_readahead(struct address_space *mapping, struct file *filp,
1328              pgoff_t index, unsigned long nr)
1329 {
1330         if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1331                 return -EINVAL;
1332
1333         force_page_cache_readahead(mapping, filp, index, nr);
1334         return 0;
1335 }
1336
1337 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1338 {
1339         ssize_t ret;
1340         struct file *file;
1341
1342         ret = -EBADF;
1343         file = fget(fd);
1344         if (file) {
1345                 if (file->f_mode & FMODE_READ) {
1346                         struct address_space *mapping = file->f_mapping;
1347                         pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1348                         pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1349                         unsigned long len = end - start + 1;
1350                         ret = do_readahead(mapping, file, start, len);
1351                 }
1352                 fput(file);
1353         }
1354         return ret;
1355 }
1356 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1357 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1358 {
1359         return SYSC_readahead((int) fd, offset, (size_t) count);
1360 }
1361 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1362 #endif
1363
1364 #ifdef CONFIG_MMU
1365 /**
1366  * page_cache_read - adds requested page to the page cache if not already there
1367  * @file:       file to read
1368  * @offset:     page index
1369  *
1370  * This adds the requested page to the page cache if it isn't already there,
1371  * and schedules an I/O to read in its contents from disk.
1372  */
1373 static int page_cache_read(struct file *file, pgoff_t offset)
1374 {
1375         struct address_space *mapping = file->f_mapping;
1376         struct page *page; 
1377         int ret;
1378
1379         do {
1380                 page = page_cache_alloc_cold(mapping);
1381                 if (!page)
1382                         return -ENOMEM;
1383
1384                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1385                 if (ret == 0)
1386                         ret = mapping->a_ops->readpage(file, page);
1387                 else if (ret == -EEXIST)
1388                         ret = 0; /* losing race to add is OK */
1389
1390                 page_cache_release(page);
1391
1392         } while (ret == AOP_TRUNCATED_PAGE);
1393                 
1394         return ret;
1395 }
1396
1397 #define MMAP_LOTSAMISS  (100)
1398
1399 /*
1400  * Synchronous readahead happens when we don't even find
1401  * a page in the page cache at all.
1402  */
1403 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1404                                    struct file_ra_state *ra,
1405                                    struct file *file,
1406                                    pgoff_t offset)
1407 {
1408         unsigned long ra_pages;
1409         struct address_space *mapping = file->f_mapping;
1410
1411         /* If we don't want any read-ahead, don't bother */
1412         if (VM_RandomReadHint(vma))
1413                 return;
1414
1415         if (VM_SequentialReadHint(vma) ||
1416                         offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1417                 page_cache_sync_readahead(mapping, ra, file, offset,
1418                                           ra->ra_pages);
1419                 return;
1420         }
1421
1422         if (ra->mmap_miss < INT_MAX)
1423                 ra->mmap_miss++;
1424
1425         /*
1426          * Do we miss much more than hit in this file? If so,
1427          * stop bothering with read-ahead. It will only hurt.
1428          */
1429         if (ra->mmap_miss > MMAP_LOTSAMISS)
1430                 return;
1431
1432         /*
1433          * mmap read-around
1434          */
1435         ra_pages = max_sane_readahead(ra->ra_pages);
1436         if (ra_pages) {
1437                 ra->start = max_t(long, 0, offset - ra_pages/2);
1438                 ra->size = ra_pages;
1439                 ra->async_size = 0;
1440                 ra_submit(ra, mapping, file);
1441         }
1442 }
1443
1444 /*
1445  * Asynchronous readahead happens when we find the page and PG_readahead,
1446  * so we want to possibly extend the readahead further..
1447  */
1448 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1449                                     struct file_ra_state *ra,
1450                                     struct file *file,
1451                                     struct page *page,
1452                                     pgoff_t offset)
1453 {
1454         struct address_space *mapping = file->f_mapping;
1455
1456         /* If we don't want any read-ahead, don't bother */
1457         if (VM_RandomReadHint(vma))
1458                 return;
1459         if (ra->mmap_miss > 0)
1460                 ra->mmap_miss--;
1461         if (PageReadahead(page))
1462                 page_cache_async_readahead(mapping, ra, file,
1463                                            page, offset, ra->ra_pages);
1464 }
1465
1466 /**
1467  * filemap_fault - read in file data for page fault handling
1468  * @vma:        vma in which the fault was taken
1469  * @vmf:        struct vm_fault containing details of the fault
1470  *
1471  * filemap_fault() is invoked via the vma operations vector for a
1472  * mapped memory region to read in file data during a page fault.
1473  *
1474  * The goto's are kind of ugly, but this streamlines the normal case of having
1475  * it in the page cache, and handles the special cases reasonably without
1476  * having a lot of duplicated code.
1477  */
1478 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1479 {
1480         int error;
1481         struct file *file = vma->vm_file;
1482         struct address_space *mapping = file->f_mapping;
1483         struct file_ra_state *ra = &file->f_ra;
1484         struct inode *inode = mapping->host;
1485         pgoff_t offset = vmf->pgoff;
1486         struct page *page;
1487         pgoff_t size;
1488         int ret = 0;
1489
1490         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1491         if (offset >= size)
1492                 return VM_FAULT_SIGBUS;
1493
1494         /*
1495          * Do we have something in the page cache already?
1496          */
1497         page = find_get_page(mapping, offset);
1498         if (likely(page)) {
1499                 /*
1500                  * We found the page, so try async readahead before
1501                  * waiting for the lock.
1502                  */
1503                 do_async_mmap_readahead(vma, ra, file, page, offset);
1504                 lock_page(page);
1505
1506                 /* Did it get truncated? */
1507                 if (unlikely(page->mapping != mapping)) {
1508                         unlock_page(page);
1509                         put_page(page);
1510                         goto no_cached_page;
1511                 }
1512         } else {
1513                 /* No page in the page cache at all */
1514                 do_sync_mmap_readahead(vma, ra, file, offset);
1515                 count_vm_event(PGMAJFAULT);
1516                 ret = VM_FAULT_MAJOR;
1517 retry_find:
1518                 page = find_lock_page(mapping, offset);
1519                 if (!page)
1520                         goto no_cached_page;
1521         }
1522
1523         /*
1524          * We have a locked page in the page cache, now we need to check
1525          * that it's up-to-date. If not, it is going to be due to an error.
1526          */
1527         if (unlikely(!PageUptodate(page)))
1528                 goto page_not_uptodate;
1529
1530         /*
1531          * Found the page and have a reference on it.
1532          * We must recheck i_size under page lock.
1533          */
1534         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1535         if (unlikely(offset >= size)) {
1536                 unlock_page(page);
1537                 page_cache_release(page);
1538                 return VM_FAULT_SIGBUS;
1539         }
1540
1541         ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1542         vmf->page = page;
1543         return ret | VM_FAULT_LOCKED;
1544
1545 no_cached_page:
1546         /*
1547          * We're only likely to ever get here if MADV_RANDOM is in
1548          * effect.
1549          */
1550         error = page_cache_read(file, offset);
1551
1552         /*
1553          * The page we want has now been added to the page cache.
1554          * In the unlikely event that someone removed it in the
1555          * meantime, we'll just come back here and read it again.
1556          */
1557         if (error >= 0)
1558                 goto retry_find;
1559
1560         /*
1561          * An error return from page_cache_read can result if the
1562          * system is low on memory, or a problem occurs while trying
1563          * to schedule I/O.
1564          */
1565         if (error == -ENOMEM)
1566                 return VM_FAULT_OOM;
1567         return VM_FAULT_SIGBUS;
1568
1569 page_not_uptodate:
1570         /*
1571          * Umm, take care of errors if the page isn't up-to-date.
1572          * Try to re-read it _once_. We do this synchronously,
1573          * because there really aren't any performance issues here
1574          * and we need to check for errors.
1575          */
1576         ClearPageError(page);
1577         error = mapping->a_ops->readpage(file, page);
1578         if (!error) {
1579                 wait_on_page_locked(page);
1580                 if (!PageUptodate(page))
1581                         error = -EIO;
1582         }
1583         page_cache_release(page);
1584
1585         if (!error || error == AOP_TRUNCATED_PAGE)
1586                 goto retry_find;
1587
1588         /* Things didn't work out. Return zero to tell the mm layer so. */
1589         shrink_readahead_size_eio(file, ra);
1590         return VM_FAULT_SIGBUS;
1591 }
1592 EXPORT_SYMBOL(filemap_fault);
1593
1594 const struct vm_operations_struct generic_file_vm_ops = {
1595         .fault          = filemap_fault,
1596 };
1597
1598 /* This is used for a general mmap of a disk file */
1599
1600 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1601 {
1602         struct address_space *mapping = file->f_mapping;
1603
1604         if (!mapping->a_ops->readpage)
1605                 return -ENOEXEC;
1606         file_accessed(file);
1607         vma->vm_ops = &generic_file_vm_ops;
1608         vma->vm_flags |= VM_CAN_NONLINEAR;
1609         return 0;
1610 }
1611
1612 /*
1613  * This is for filesystems which do not implement ->writepage.
1614  */
1615 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1616 {
1617         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1618                 return -EINVAL;
1619         return generic_file_mmap(file, vma);
1620 }
1621 #else
1622 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1623 {
1624         return -ENOSYS;
1625 }
1626 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1627 {
1628         return -ENOSYS;
1629 }
1630 #endif /* CONFIG_MMU */
1631
1632 EXPORT_SYMBOL(generic_file_mmap);
1633 EXPORT_SYMBOL(generic_file_readonly_mmap);
1634
1635 static struct page *__read_cache_page(struct address_space *mapping,
1636                                 pgoff_t index,
1637                                 int (*filler)(void *,struct page*),
1638                                 void *data,
1639                                 gfp_t gfp)
1640 {
1641         struct page *page;
1642         int err;
1643 repeat:
1644         page = find_get_page(mapping, index);
1645         if (!page) {
1646                 page = __page_cache_alloc(gfp | __GFP_COLD);
1647                 if (!page)
1648                         return ERR_PTR(-ENOMEM);
1649                 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1650                 if (unlikely(err)) {
1651                         page_cache_release(page);
1652                         if (err == -EEXIST)
1653                                 goto repeat;
1654                         /* Presumably ENOMEM for radix tree node */
1655                         return ERR_PTR(err);
1656                 }
1657                 err = filler(data, page);
1658                 if (err < 0) {
1659                         page_cache_release(page);
1660                         page = ERR_PTR(err);
1661                 }
1662         }
1663         return page;
1664 }
1665
1666 static struct page *do_read_cache_page(struct address_space *mapping,
1667                                 pgoff_t index,
1668                                 int (*filler)(void *,struct page*),
1669                                 void *data,
1670                                 gfp_t gfp)
1671
1672 {
1673         struct page *page;
1674         int err;
1675
1676 retry:
1677         page = __read_cache_page(mapping, index, filler, data, gfp);
1678         if (IS_ERR(page))
1679                 return page;
1680         if (PageUptodate(page))
1681                 goto out;
1682
1683         lock_page(page);
1684         if (!page->mapping) {
1685                 unlock_page(page);
1686                 page_cache_release(page);
1687                 goto retry;
1688         }
1689         if (PageUptodate(page)) {
1690                 unlock_page(page);
1691                 goto out;
1692         }
1693         err = filler(data, page);
1694         if (err < 0) {
1695                 page_cache_release(page);
1696                 return ERR_PTR(err);
1697         }
1698 out:
1699         mark_page_accessed(page);
1700         return page;
1701 }
1702
1703 /**
1704  * read_cache_page_async - read into page cache, fill it if needed
1705  * @mapping:    the page's address_space
1706  * @index:      the page index
1707  * @filler:     function to perform the read
1708  * @data:       destination for read data
1709  *
1710  * Same as read_cache_page, but don't wait for page to become unlocked
1711  * after submitting it to the filler.
1712  *
1713  * Read into the page cache. If a page already exists, and PageUptodate() is
1714  * not set, try to fill the page but don't wait for it to become unlocked.
1715  *
1716  * If the page does not get brought uptodate, return -EIO.
1717  */
1718 struct page *read_cache_page_async(struct address_space *mapping,
1719                                 pgoff_t index,
1720                                 int (*filler)(void *,struct page*),
1721                                 void *data)
1722 {
1723         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1724 }
1725 EXPORT_SYMBOL(read_cache_page_async);
1726
1727 static struct page *wait_on_page_read(struct page *page)
1728 {
1729         if (!IS_ERR(page)) {
1730                 wait_on_page_locked(page);
1731                 if (!PageUptodate(page)) {
1732                         page_cache_release(page);
1733                         page = ERR_PTR(-EIO);
1734                 }
1735         }
1736         return page;
1737 }
1738
1739 /**
1740  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1741  * @mapping:    the page's address_space
1742  * @index:      the page index
1743  * @gfp:        the page allocator flags to use if allocating
1744  *
1745  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1746  * any new page allocations done using the specified allocation flags. Note
1747  * that the Radix tree operations will still use GFP_KERNEL, so you can't
1748  * expect to do this atomically or anything like that - but you can pass in
1749  * other page requirements.
1750  *
1751  * If the page does not get brought uptodate, return -EIO.
1752  */
1753 struct page *read_cache_page_gfp(struct address_space *mapping,
1754                                 pgoff_t index,
1755                                 gfp_t gfp)
1756 {
1757         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1758
1759         return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1760 }
1761 EXPORT_SYMBOL(read_cache_page_gfp);
1762
1763 /**
1764  * read_cache_page - read into page cache, fill it if needed
1765  * @mapping:    the page's address_space
1766  * @index:      the page index
1767  * @filler:     function to perform the read
1768  * @data:       destination for read data
1769  *
1770  * Read into the page cache. If a page already exists, and PageUptodate() is
1771  * not set, try to fill the page then wait for it to become unlocked.
1772  *
1773  * If the page does not get brought uptodate, return -EIO.
1774  */
1775 struct page *read_cache_page(struct address_space *mapping,
1776                                 pgoff_t index,
1777                                 int (*filler)(void *,struct page*),
1778                                 void *data)
1779 {
1780         return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1781 }
1782 EXPORT_SYMBOL(read_cache_page);
1783
1784 /*
1785  * The logic we want is
1786  *
1787  *      if suid or (sgid and xgrp)
1788  *              remove privs
1789  */
1790 int should_remove_suid(struct dentry *dentry)
1791 {
1792         mode_t mode = dentry->d_inode->i_mode;
1793         int kill = 0;
1794
1795         /* suid always must be killed */
1796         if (unlikely(mode & S_ISUID))
1797                 kill = ATTR_KILL_SUID;
1798
1799         /*
1800          * sgid without any exec bits is just a mandatory locking mark; leave
1801          * it alone.  If some exec bits are set, it's a real sgid; kill it.
1802          */
1803         if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1804                 kill |= ATTR_KILL_SGID;
1805
1806         if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1807                 return kill;
1808
1809         return 0;
1810 }
1811 EXPORT_SYMBOL(should_remove_suid);
1812
1813 static int __remove_suid(struct dentry *dentry, int kill)
1814 {
1815         struct iattr newattrs;
1816
1817         newattrs.ia_valid = ATTR_FORCE | kill;
1818         return notify_change(dentry, &newattrs);
1819 }
1820
1821 int file_remove_suid(struct file *file)
1822 {
1823         struct dentry *dentry = file->f_path.dentry;
1824         int killsuid = should_remove_suid(dentry);
1825         int killpriv = security_inode_need_killpriv(dentry);
1826         int error = 0;
1827
1828         if (killpriv < 0)
1829                 return killpriv;
1830         if (killpriv)
1831                 error = security_inode_killpriv(dentry);
1832         if (!error && killsuid)
1833                 error = __remove_suid(dentry, killsuid);
1834
1835         return error;
1836 }
1837 EXPORT_SYMBOL(file_remove_suid);
1838
1839 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1840                         const struct iovec *iov, size_t base, size_t bytes)
1841 {
1842         size_t copied = 0, left = 0;
1843
1844         while (bytes) {
1845                 char __user *buf = iov->iov_base + base;
1846                 int copy = min(bytes, iov->iov_len - base);
1847
1848                 base = 0;
1849                 left = __copy_from_user_inatomic(vaddr, buf, copy);
1850                 copied += copy;
1851                 bytes -= copy;
1852                 vaddr += copy;
1853                 iov++;
1854
1855                 if (unlikely(left))
1856                         break;
1857         }
1858         return copied - left;
1859 }
1860
1861 /*
1862  * Copy as much as we can into the page and return the number of bytes which
1863  * were successfully copied.  If a fault is encountered then return the number of
1864  * bytes which were copied.
1865  */
1866 size_t iov_iter_copy_from_user_atomic(struct page *page,
1867                 struct iov_iter *i, unsigned long offset, size_t bytes)
1868 {
1869         char *kaddr;
1870         size_t copied;
1871
1872         BUG_ON(!in_atomic());
1873         kaddr = kmap_atomic(page, KM_USER0);
1874         if (likely(i->nr_segs == 1)) {
1875                 int left;
1876                 char __user *buf = i->iov->iov_base + i->iov_offset;
1877                 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1878                 copied = bytes - left;
1879         } else {
1880                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1881                                                 i->iov, i->iov_offset, bytes);
1882         }
1883         kunmap_atomic(kaddr, KM_USER0);
1884
1885         return copied;
1886 }
1887 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1888
1889 /*
1890  * This has the same sideeffects and return value as
1891  * iov_iter_copy_from_user_atomic().
1892  * The difference is that it attempts to resolve faults.
1893  * Page must not be locked.
1894  */
1895 size_t iov_iter_copy_from_user(struct page *page,
1896                 struct iov_iter *i, unsigned long offset, size_t bytes)
1897 {
1898         char *kaddr;
1899         size_t copied;
1900
1901         kaddr = kmap(page);
1902         if (likely(i->nr_segs == 1)) {
1903                 int left;
1904                 char __user *buf = i->iov->iov_base + i->iov_offset;
1905                 left = __copy_from_user(kaddr + offset, buf, bytes);
1906                 copied = bytes - left;
1907         } else {
1908                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1909                                                 i->iov, i->iov_offset, bytes);
1910         }
1911         kunmap(page);
1912         return copied;
1913 }
1914 EXPORT_SYMBOL(iov_iter_copy_from_user);
1915
1916 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1917 {
1918         BUG_ON(i->count < bytes);
1919
1920         if (likely(i->nr_segs == 1)) {
1921                 i->iov_offset += bytes;
1922                 i->count -= bytes;
1923         } else {
1924                 const struct iovec *iov = i->iov;
1925                 size_t base = i->iov_offset;
1926
1927                 /*
1928                  * The !iov->iov_len check ensures we skip over unlikely
1929                  * zero-length segments (without overruning the iovec).
1930                  */
1931                 while (bytes || unlikely(i->count && !iov->iov_len)) {
1932                         int copy;
1933
1934                         copy = min(bytes, iov->iov_len - base);
1935                         BUG_ON(!i->count || i->count < copy);
1936                         i->count -= copy;
1937                         bytes -= copy;
1938                         base += copy;
1939                         if (iov->iov_len == base) {
1940                                 iov++;
1941                                 base = 0;
1942                         }
1943                 }
1944                 i->iov = iov;
1945                 i->iov_offset = base;
1946         }
1947 }
1948 EXPORT_SYMBOL(iov_iter_advance);
1949
1950 /*
1951  * Fault in the first iovec of the given iov_iter, to a maximum length
1952  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1953  * accessed (ie. because it is an invalid address).
1954  *
1955  * writev-intensive code may want this to prefault several iovecs -- that
1956  * would be possible (callers must not rely on the fact that _only_ the
1957  * first iovec will be faulted with the current implementation).
1958  */
1959 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1960 {
1961         char __user *buf = i->iov->iov_base + i->iov_offset;
1962         bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1963         return fault_in_pages_readable(buf, bytes);
1964 }
1965 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1966
1967 /*
1968  * Return the count of just the current iov_iter segment.
1969  */
1970 size_t iov_iter_single_seg_count(struct iov_iter *i)
1971 {
1972         const struct iovec *iov = i->iov;
1973         if (i->nr_segs == 1)
1974                 return i->count;
1975         else
1976                 return min(i->count, iov->iov_len - i->iov_offset);
1977 }
1978 EXPORT_SYMBOL(iov_iter_single_seg_count);
1979
1980 /*
1981  * Performs necessary checks before doing a write
1982  *
1983  * Can adjust writing position or amount of bytes to write.
1984  * Returns appropriate error code that caller should return or
1985  * zero in case that write should be allowed.
1986  */
1987 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1988 {
1989         struct inode *inode = file->f_mapping->host;
1990         unsigned long limit = rlimit(RLIMIT_FSIZE);
1991
1992         if (unlikely(*pos < 0))
1993                 return -EINVAL;
1994
1995         if (!isblk) {
1996                 /* FIXME: this is for backwards compatibility with 2.4 */
1997                 if (file->f_flags & O_APPEND)
1998                         *pos = i_size_read(inode);
1999
2000                 if (limit != RLIM_INFINITY) {
2001                         if (*pos >= limit) {
2002                                 send_sig(SIGXFSZ, current, 0);
2003                                 return -EFBIG;
2004                         }
2005                         if (*count > limit - (typeof(limit))*pos) {
2006                                 *count = limit - (typeof(limit))*pos;
2007                         }
2008                 }
2009         }
2010
2011         /*
2012          * LFS rule
2013          */
2014         if (unlikely(*pos + *count > MAX_NON_LFS &&
2015                                 !(file->f_flags & O_LARGEFILE))) {
2016                 if (*pos >= MAX_NON_LFS) {
2017                         return -EFBIG;
2018                 }
2019                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2020                         *count = MAX_NON_LFS - (unsigned long)*pos;
2021                 }
2022         }
2023
2024         /*
2025          * Are we about to exceed the fs block limit ?
2026          *
2027          * If we have written data it becomes a short write.  If we have
2028          * exceeded without writing data we send a signal and return EFBIG.
2029          * Linus frestrict idea will clean these up nicely..
2030          */
2031         if (likely(!isblk)) {
2032                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2033                         if (*count || *pos > inode->i_sb->s_maxbytes) {
2034                                 return -EFBIG;
2035                         }
2036                         /* zero-length writes at ->s_maxbytes are OK */
2037                 }
2038
2039                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2040                         *count = inode->i_sb->s_maxbytes - *pos;
2041         } else {
2042 #ifdef CONFIG_BLOCK
2043                 loff_t isize;
2044                 if (bdev_read_only(I_BDEV(inode)))
2045                         return -EPERM;
2046                 isize = i_size_read(inode);
2047                 if (*pos >= isize) {
2048                         if (*count || *pos > isize)
2049                                 return -ENOSPC;
2050                 }
2051
2052                 if (*pos + *count > isize)
2053                         *count = isize - *pos;
2054 #else
2055                 return -EPERM;
2056 #endif
2057         }
2058         return 0;
2059 }
2060 EXPORT_SYMBOL(generic_write_checks);
2061
2062 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2063                                 loff_t pos, unsigned len, unsigned flags,
2064                                 struct page **pagep, void **fsdata)
2065 {
2066         const struct address_space_operations *aops = mapping->a_ops;
2067
2068         return aops->write_begin(file, mapping, pos, len, flags,
2069                                                         pagep, fsdata);
2070 }
2071 EXPORT_SYMBOL(pagecache_write_begin);
2072
2073 int pagecache_write_end(struct file *file, struct address_space *mapping,
2074                                 loff_t pos, unsigned len, unsigned copied,
2075                                 struct page *page, void *fsdata)
2076 {
2077         const struct address_space_operations *aops = mapping->a_ops;
2078
2079         mark_page_accessed(page);
2080         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2081 }
2082 EXPORT_SYMBOL(pagecache_write_end);
2083
2084 ssize_t
2085 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2086                 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2087                 size_t count, size_t ocount)
2088 {
2089         struct file     *file = iocb->ki_filp;
2090         struct address_space *mapping = file->f_mapping;
2091         struct inode    *inode = mapping->host;
2092         ssize_t         written;
2093         size_t          write_len;
2094         pgoff_t         end;
2095
2096         if (count != ocount)
2097                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2098
2099         write_len = iov_length(iov, *nr_segs);
2100         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2101
2102         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2103         if (written)
2104                 goto out;
2105
2106         /*
2107          * After a write we want buffered reads to be sure to go to disk to get
2108          * the new data.  We invalidate clean cached page from the region we're
2109          * about to write.  We do this *before* the write so that we can return
2110          * without clobbering -EIOCBQUEUED from ->direct_IO().
2111          */
2112         if (mapping->nrpages) {
2113                 written = invalidate_inode_pages2_range(mapping,
2114                                         pos >> PAGE_CACHE_SHIFT, end);
2115                 /*
2116                  * If a page can not be invalidated, return 0 to fall back
2117                  * to buffered write.
2118                  */
2119                 if (written) {
2120                         if (written == -EBUSY)
2121                                 return 0;
2122                         goto out;
2123                 }
2124         }
2125
2126         written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2127
2128         /*
2129          * Finally, try again to invalidate clean pages which might have been
2130          * cached by non-direct readahead, or faulted in by get_user_pages()
2131          * if the source of the write was an mmap'ed region of the file
2132          * we're writing.  Either one is a pretty crazy thing to do,
2133          * so we don't support it 100%.  If this invalidation
2134          * fails, tough, the write still worked...
2135          */
2136         if (mapping->nrpages) {
2137                 invalidate_inode_pages2_range(mapping,
2138                                               pos >> PAGE_CACHE_SHIFT, end);
2139         }
2140
2141         if (written > 0) {
2142                 loff_t end = pos + written;
2143                 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2144                         i_size_write(inode,  end);
2145                         mark_inode_dirty(inode);
2146                 }
2147                 *ppos = end;
2148         }
2149 out:
2150         return written;
2151 }
2152 EXPORT_SYMBOL(generic_file_direct_write);
2153
2154 /*
2155  * Find or create a page at the given pagecache position. Return the locked
2156  * page. This function is specifically for buffered writes.
2157  */
2158 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2159                                         pgoff_t index, unsigned flags)
2160 {
2161         int status;
2162         struct page *page;
2163         gfp_t gfp_notmask = 0;
2164         if (flags & AOP_FLAG_NOFS)
2165                 gfp_notmask = __GFP_FS;
2166 repeat:
2167         page = find_lock_page(mapping, index);
2168         if (likely(page))
2169                 return page;
2170
2171         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2172         if (!page)
2173                 return NULL;
2174         status = add_to_page_cache_lru(page, mapping, index,
2175                                                 GFP_KERNEL & ~gfp_notmask);
2176         if (unlikely(status)) {
2177                 page_cache_release(page);
2178                 if (status == -EEXIST)
2179                         goto repeat;
2180                 return NULL;
2181         }
2182         return page;
2183 }
2184 EXPORT_SYMBOL(grab_cache_page_write_begin);
2185
2186 static ssize_t generic_perform_write(struct file *file,
2187                                 struct iov_iter *i, loff_t pos)
2188 {
2189         struct address_space *mapping = file->f_mapping;
2190         const struct address_space_operations *a_ops = mapping->a_ops;
2191         long status = 0;
2192         ssize_t written = 0;
2193         unsigned int flags = 0;
2194
2195         /*
2196          * Copies from kernel address space cannot fail (NFSD is a big user).
2197          */
2198         if (segment_eq(get_fs(), KERNEL_DS))
2199                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2200
2201         do {
2202                 struct page *page;
2203                 pgoff_t index;          /* Pagecache index for current page */
2204                 unsigned long offset;   /* Offset into pagecache page */
2205                 unsigned long bytes;    /* Bytes to write to page */
2206                 size_t copied;          /* Bytes copied from user */
2207                 void *fsdata;
2208
2209                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2210                 index = pos >> PAGE_CACHE_SHIFT;
2211                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2212                                                 iov_iter_count(i));
2213
2214 again:
2215
2216                 /*
2217                  * Bring in the user page that we will copy from _first_.
2218                  * Otherwise there's a nasty deadlock on copying from the
2219                  * same page as we're writing to, without it being marked
2220                  * up-to-date.
2221                  *
2222                  * Not only is this an optimisation, but it is also required
2223                  * to check that the address is actually valid, when atomic
2224                  * usercopies are used, below.
2225                  */
2226                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2227                         status = -EFAULT;
2228                         break;
2229                 }
2230
2231                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2232                                                 &page, &fsdata);
2233                 if (unlikely(status))
2234                         break;
2235
2236                 if (mapping_writably_mapped(mapping))
2237                         flush_dcache_page(page);
2238
2239                 pagefault_disable();
2240                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2241                 pagefault_enable();
2242                 flush_dcache_page(page);
2243
2244                 mark_page_accessed(page);
2245                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2246                                                 page, fsdata);
2247                 if (unlikely(status < 0))
2248                         break;
2249                 copied = status;
2250
2251                 cond_resched();
2252
2253                 iov_iter_advance(i, copied);
2254                 if (unlikely(copied == 0)) {
2255                         /*
2256                          * If we were unable to copy any data at all, we must
2257                          * fall back to a single segment length write.
2258                          *
2259                          * If we didn't fallback here, we could livelock
2260                          * because not all segments in the iov can be copied at
2261                          * once without a pagefault.
2262                          */
2263                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2264                                                 iov_iter_single_seg_count(i));
2265                         goto again;
2266                 }
2267                 pos += copied;
2268                 written += copied;
2269
2270                 balance_dirty_pages_ratelimited(mapping);
2271
2272         } while (iov_iter_count(i));
2273
2274         return written ? written : status;
2275 }
2276
2277 ssize_t
2278 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2279                 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2280                 size_t count, ssize_t written)
2281 {
2282         struct file *file = iocb->ki_filp;
2283         ssize_t status;
2284         struct iov_iter i;
2285
2286         iov_iter_init(&i, iov, nr_segs, count, written);
2287         status = generic_perform_write(file, &i, pos);
2288
2289         if (likely(status >= 0)) {
2290                 written += status;
2291                 *ppos = pos + status;
2292         }
2293         
2294         return written ? written : status;
2295 }
2296 EXPORT_SYMBOL(generic_file_buffered_write);
2297
2298 /**
2299  * __generic_file_aio_write - write data to a file
2300  * @iocb:       IO state structure (file, offset, etc.)
2301  * @iov:        vector with data to write
2302  * @nr_segs:    number of segments in the vector
2303  * @ppos:       position where to write
2304  *
2305  * This function does all the work needed for actually writing data to a
2306  * file. It does all basic checks, removes SUID from the file, updates
2307  * modification times and calls proper subroutines depending on whether we
2308  * do direct IO or a standard buffered write.
2309  *
2310  * It expects i_mutex to be grabbed unless we work on a block device or similar
2311  * object which does not need locking at all.
2312  *
2313  * This function does *not* take care of syncing data in case of O_SYNC write.
2314  * A caller has to handle it. This is mainly due to the fact that we want to
2315  * avoid syncing under i_mutex.
2316  */
2317 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2318                                  unsigned long nr_segs, loff_t *ppos)
2319 {
2320         struct file *file = iocb->ki_filp;
2321         struct address_space * mapping = file->f_mapping;
2322         size_t ocount;          /* original count */
2323         size_t count;           /* after file limit checks */
2324         struct inode    *inode = mapping->host;
2325         loff_t          pos;
2326         ssize_t         written;
2327         ssize_t         err;
2328
2329         ocount = 0;
2330         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2331         if (err)
2332                 return err;
2333
2334         count = ocount;
2335         pos = *ppos;
2336
2337         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2338
2339         /* We can write back this queue in page reclaim */
2340         current->backing_dev_info = mapping->backing_dev_info;
2341         written = 0;
2342
2343         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2344         if (err)
2345                 goto out;
2346
2347         if (count == 0)
2348                 goto out;
2349
2350         err = file_remove_suid(file);
2351         if (err)
2352                 goto out;
2353
2354         file_update_time(file);
2355
2356         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2357         if (unlikely(file->f_flags & O_DIRECT)) {
2358                 loff_t endbyte;
2359                 ssize_t written_buffered;
2360
2361                 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2362                                                         ppos, count, ocount);
2363                 if (written < 0 || written == count)
2364                         goto out;
2365                 /*
2366                  * direct-io write to a hole: fall through to buffered I/O
2367                  * for completing the rest of the request.
2368                  */
2369                 pos += written;
2370                 count -= written;
2371                 written_buffered = generic_file_buffered_write(iocb, iov,
2372                                                 nr_segs, pos, ppos, count,
2373                                                 written);
2374                 /*
2375                  * If generic_file_buffered_write() retuned a synchronous error
2376                  * then we want to return the number of bytes which were
2377                  * direct-written, or the error code if that was zero.  Note
2378                  * that this differs from normal direct-io semantics, which
2379                  * will return -EFOO even if some bytes were written.
2380                  */
2381                 if (written_buffered < 0) {
2382                         err = written_buffered;
2383                         goto out;
2384                 }
2385
2386                 /*
2387                  * We need to ensure that the page cache pages are written to
2388                  * disk and invalidated to preserve the expected O_DIRECT
2389                  * semantics.
2390                  */
2391                 endbyte = pos + written_buffered - written - 1;
2392                 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2393                 if (err == 0) {
2394                         written = written_buffered;
2395                         invalidate_mapping_pages(mapping,
2396                                                  pos >> PAGE_CACHE_SHIFT,
2397                                                  endbyte >> PAGE_CACHE_SHIFT);
2398                 } else {
2399                         /*
2400                          * We don't know how much we wrote, so just return
2401                          * the number of bytes which were direct-written
2402                          */
2403                 }
2404         } else {
2405                 written = generic_file_buffered_write(iocb, iov, nr_segs,
2406                                 pos, ppos, count, written);
2407         }
2408 out:
2409         current->backing_dev_info = NULL;
2410         return written ? written : err;
2411 }
2412 EXPORT_SYMBOL(__generic_file_aio_write);
2413
2414 /**
2415  * generic_file_aio_write - write data to a file
2416  * @iocb:       IO state structure
2417  * @iov:        vector with data to write
2418  * @nr_segs:    number of segments in the vector
2419  * @pos:        position in file where to write
2420  *
2421  * This is a wrapper around __generic_file_aio_write() to be used by most
2422  * filesystems. It takes care of syncing the file in case of O_SYNC file
2423  * and acquires i_mutex as needed.
2424  */
2425 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2426                 unsigned long nr_segs, loff_t pos)
2427 {
2428         struct file *file = iocb->ki_filp;
2429         struct inode *inode = file->f_mapping->host;
2430         ssize_t ret;
2431
2432         BUG_ON(iocb->ki_pos != pos);
2433
2434         mutex_lock(&inode->i_mutex);
2435         ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2436         mutex_unlock(&inode->i_mutex);
2437
2438         if (ret > 0 || ret == -EIOCBQUEUED) {
2439                 ssize_t err;
2440
2441                 err = generic_write_sync(file, pos, ret);
2442                 if (err < 0 && ret > 0)
2443                         ret = err;
2444         }
2445         return ret;
2446 }
2447 EXPORT_SYMBOL(generic_file_aio_write);
2448
2449 /**
2450  * try_to_release_page() - release old fs-specific metadata on a page
2451  *
2452  * @page: the page which the kernel is trying to free
2453  * @gfp_mask: memory allocation flags (and I/O mode)
2454  *
2455  * The address_space is to try to release any data against the page
2456  * (presumably at page->private).  If the release was successful, return `1'.
2457  * Otherwise return zero.
2458  *
2459  * This may also be called if PG_fscache is set on a page, indicating that the
2460  * page is known to the local caching routines.
2461  *
2462  * The @gfp_mask argument specifies whether I/O may be performed to release
2463  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2464  *
2465  */
2466 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2467 {
2468         struct address_space * const mapping = page->mapping;
2469
2470         BUG_ON(!PageLocked(page));
2471         if (PageWriteback(page))
2472                 return 0;
2473
2474         if (mapping && mapping->a_ops->releasepage)
2475                 return mapping->a_ops->releasepage(page, gfp_mask);
2476         return try_to_free_buffers(page);
2477 }
2478
2479 EXPORT_SYMBOL(try_to_release_page);