workqueue: don't save interrupts in run_workqueue()
[safe/jmp/linux-2.6] / kernel / workqueue.c
1 /*
2  * linux/kernel/workqueue.c
3  *
4  * Generic mechanism for defining kernel helper threads for running
5  * arbitrary tasks in process context.
6  *
7  * Started by Ingo Molnar, Copyright (C) 2002
8  *
9  * Derived from the taskqueue/keventd code by:
10  *
11  *   David Woodhouse <dwmw2@infradead.org>
12  *   Andrew Morton <andrewm@uow.edu.au>
13  *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
14  *   Theodore Ts'o <tytso@mit.edu>
15  *
16  * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
17  */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35
36 /*
37  * The per-CPU workqueue (if single thread, we always use the first
38  * possible cpu).
39  */
40 struct cpu_workqueue_struct {
41
42         spinlock_t lock;
43
44         struct list_head worklist;
45         wait_queue_head_t more_work;
46         struct work_struct *current_work;
47
48         struct workqueue_struct *wq;
49         struct task_struct *thread;
50         int should_stop;
51
52         int run_depth;          /* Detect run_workqueue() recursion depth */
53 } ____cacheline_aligned;
54
55 /*
56  * The externally visible workqueue abstraction is an array of
57  * per-CPU workqueues:
58  */
59 struct workqueue_struct {
60         struct cpu_workqueue_struct *cpu_wq;
61         const char *name;
62         struct list_head list;  /* Empty if single thread */
63         int freezeable;         /* Freeze threads during suspend */
64 };
65
66 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
67    threads to each one as cpus come/go. */
68 static DEFINE_MUTEX(workqueue_mutex);
69 static LIST_HEAD(workqueues);
70
71 static int singlethread_cpu __read_mostly;
72 /* optimization, we could use cpu_possible_map */
73 static cpumask_t cpu_populated_map __read_mostly;
74
75 /* If it's single threaded, it isn't in the list of workqueues. */
76 static inline int is_single_threaded(struct workqueue_struct *wq)
77 {
78         return list_empty(&wq->list);
79 }
80
81 /*
82  * Set the workqueue on which a work item is to be run
83  * - Must *only* be called if the pending flag is set
84  */
85 static inline void set_wq_data(struct work_struct *work, void *wq)
86 {
87         unsigned long new;
88
89         BUG_ON(!work_pending(work));
90
91         new = (unsigned long) wq | (1UL << WORK_STRUCT_PENDING);
92         new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
93         atomic_long_set(&work->data, new);
94 }
95
96 static inline void *get_wq_data(struct work_struct *work)
97 {
98         return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
99 }
100
101 static void insert_work(struct cpu_workqueue_struct *cwq,
102                                 struct work_struct *work, int tail)
103 {
104         set_wq_data(work, cwq);
105         if (tail)
106                 list_add_tail(&work->entry, &cwq->worklist);
107         else
108                 list_add(&work->entry, &cwq->worklist);
109         wake_up(&cwq->more_work);
110 }
111
112 /* Preempt must be disabled. */
113 static void __queue_work(struct cpu_workqueue_struct *cwq,
114                          struct work_struct *work)
115 {
116         unsigned long flags;
117
118         spin_lock_irqsave(&cwq->lock, flags);
119         insert_work(cwq, work, 1);
120         spin_unlock_irqrestore(&cwq->lock, flags);
121 }
122
123 /**
124  * queue_work - queue work on a workqueue
125  * @wq: workqueue to use
126  * @work: work to queue
127  *
128  * Returns 0 if @work was already on a queue, non-zero otherwise.
129  *
130  * We queue the work to the CPU it was submitted, but there is no
131  * guarantee that it will be processed by that CPU.
132  */
133 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
134 {
135         int ret = 0, cpu = get_cpu();
136
137         if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
138                 if (unlikely(is_single_threaded(wq)))
139                         cpu = singlethread_cpu;
140                 BUG_ON(!list_empty(&work->entry));
141                 __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
142                 ret = 1;
143         }
144         put_cpu();
145         return ret;
146 }
147 EXPORT_SYMBOL_GPL(queue_work);
148
149 void delayed_work_timer_fn(unsigned long __data)
150 {
151         struct delayed_work *dwork = (struct delayed_work *)__data;
152         struct workqueue_struct *wq = get_wq_data(&dwork->work);
153         int cpu = smp_processor_id();
154
155         if (unlikely(is_single_threaded(wq)))
156                 cpu = singlethread_cpu;
157
158         __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), &dwork->work);
159 }
160
161 /**
162  * queue_delayed_work - queue work on a workqueue after delay
163  * @wq: workqueue to use
164  * @dwork: delayable work to queue
165  * @delay: number of jiffies to wait before queueing
166  *
167  * Returns 0 if @work was already on a queue, non-zero otherwise.
168  */
169 int fastcall queue_delayed_work(struct workqueue_struct *wq,
170                         struct delayed_work *dwork, unsigned long delay)
171 {
172         int ret = 0;
173         struct timer_list *timer = &dwork->timer;
174         struct work_struct *work = &dwork->work;
175
176         timer_stats_timer_set_start_info(timer);
177         if (delay == 0)
178                 return queue_work(wq, work);
179
180         if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
181                 BUG_ON(timer_pending(timer));
182                 BUG_ON(!list_empty(&work->entry));
183
184                 /* This stores wq for the moment, for the timer_fn */
185                 set_wq_data(work, wq);
186                 timer->expires = jiffies + delay;
187                 timer->data = (unsigned long)dwork;
188                 timer->function = delayed_work_timer_fn;
189                 add_timer(timer);
190                 ret = 1;
191         }
192         return ret;
193 }
194 EXPORT_SYMBOL_GPL(queue_delayed_work);
195
196 /**
197  * queue_delayed_work_on - queue work on specific CPU after delay
198  * @cpu: CPU number to execute work on
199  * @wq: workqueue to use
200  * @dwork: work to queue
201  * @delay: number of jiffies to wait before queueing
202  *
203  * Returns 0 if @work was already on a queue, non-zero otherwise.
204  */
205 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
206                         struct delayed_work *dwork, unsigned long delay)
207 {
208         int ret = 0;
209         struct timer_list *timer = &dwork->timer;
210         struct work_struct *work = &dwork->work;
211
212         if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
213                 BUG_ON(timer_pending(timer));
214                 BUG_ON(!list_empty(&work->entry));
215
216                 /* This stores wq for the moment, for the timer_fn */
217                 set_wq_data(work, wq);
218                 timer->expires = jiffies + delay;
219                 timer->data = (unsigned long)dwork;
220                 timer->function = delayed_work_timer_fn;
221                 add_timer_on(timer, cpu);
222                 ret = 1;
223         }
224         return ret;
225 }
226 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
227
228 static void run_workqueue(struct cpu_workqueue_struct *cwq)
229 {
230         spin_lock_irq(&cwq->lock);
231         cwq->run_depth++;
232         if (cwq->run_depth > 3) {
233                 /* morton gets to eat his hat */
234                 printk("%s: recursion depth exceeded: %d\n",
235                         __FUNCTION__, cwq->run_depth);
236                 dump_stack();
237         }
238         while (!list_empty(&cwq->worklist)) {
239                 struct work_struct *work = list_entry(cwq->worklist.next,
240                                                 struct work_struct, entry);
241                 work_func_t f = work->func;
242
243                 cwq->current_work = work;
244                 list_del_init(cwq->worklist.next);
245                 spin_unlock_irq(&cwq->lock);
246
247                 BUG_ON(get_wq_data(work) != cwq);
248                 if (!test_bit(WORK_STRUCT_NOAUTOREL, work_data_bits(work)))
249                         work_release(work);
250                 f(work);
251
252                 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
253                         printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
254                                         "%s/0x%08x/%d\n",
255                                         current->comm, preempt_count(),
256                                         current->pid);
257                         printk(KERN_ERR "    last function: ");
258                         print_symbol("%s\n", (unsigned long)f);
259                         debug_show_held_locks(current);
260                         dump_stack();
261                 }
262
263                 spin_lock_irq(&cwq->lock);
264                 cwq->current_work = NULL;
265         }
266         cwq->run_depth--;
267         spin_unlock_irq(&cwq->lock);
268 }
269
270 /*
271  * NOTE: the caller must not touch *cwq if this func returns true
272  */
273 static int cwq_should_stop(struct cpu_workqueue_struct *cwq)
274 {
275         int should_stop = cwq->should_stop;
276
277         if (unlikely(should_stop)) {
278                 spin_lock_irq(&cwq->lock);
279                 should_stop = cwq->should_stop && list_empty(&cwq->worklist);
280                 if (should_stop)
281                         cwq->thread = NULL;
282                 spin_unlock_irq(&cwq->lock);
283         }
284
285         return should_stop;
286 }
287
288 static int worker_thread(void *__cwq)
289 {
290         struct cpu_workqueue_struct *cwq = __cwq;
291         DEFINE_WAIT(wait);
292         struct k_sigaction sa;
293         sigset_t blocked;
294
295         if (!cwq->wq->freezeable)
296                 current->flags |= PF_NOFREEZE;
297
298         set_user_nice(current, -5);
299
300         /* Block and flush all signals */
301         sigfillset(&blocked);
302         sigprocmask(SIG_BLOCK, &blocked, NULL);
303         flush_signals(current);
304
305         /*
306          * We inherited MPOL_INTERLEAVE from the booting kernel.
307          * Set MPOL_DEFAULT to insure node local allocations.
308          */
309         numa_default_policy();
310
311         /* SIG_IGN makes children autoreap: see do_notify_parent(). */
312         sa.sa.sa_handler = SIG_IGN;
313         sa.sa.sa_flags = 0;
314         siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
315         do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
316
317         for (;;) {
318                 if (cwq->wq->freezeable)
319                         try_to_freeze();
320
321                 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
322                 if (!cwq->should_stop && list_empty(&cwq->worklist))
323                         schedule();
324                 finish_wait(&cwq->more_work, &wait);
325
326                 if (cwq_should_stop(cwq))
327                         break;
328
329                 run_workqueue(cwq);
330         }
331
332         return 0;
333 }
334
335 struct wq_barrier {
336         struct work_struct      work;
337         struct completion       done;
338 };
339
340 static void wq_barrier_func(struct work_struct *work)
341 {
342         struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
343         complete(&barr->done);
344 }
345
346 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
347                                         struct wq_barrier *barr, int tail)
348 {
349         INIT_WORK(&barr->work, wq_barrier_func);
350         __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
351
352         init_completion(&barr->done);
353
354         insert_work(cwq, &barr->work, tail);
355 }
356
357 static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
358 {
359         if (cwq->thread == current) {
360                 /*
361                  * Probably keventd trying to flush its own queue. So simply run
362                  * it by hand rather than deadlocking.
363                  */
364                 run_workqueue(cwq);
365         } else {
366                 struct wq_barrier barr;
367                 int active = 0;
368
369                 spin_lock_irq(&cwq->lock);
370                 if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
371                         insert_wq_barrier(cwq, &barr, 1);
372                         active = 1;
373                 }
374                 spin_unlock_irq(&cwq->lock);
375
376                 if (active)
377                         wait_for_completion(&barr.done);
378         }
379 }
380
381 /**
382  * flush_workqueue - ensure that any scheduled work has run to completion.
383  * @wq: workqueue to flush
384  *
385  * Forces execution of the workqueue and blocks until its completion.
386  * This is typically used in driver shutdown handlers.
387  *
388  * We sleep until all works which were queued on entry have been handled,
389  * but we are not livelocked by new incoming ones.
390  *
391  * This function used to run the workqueues itself.  Now we just wait for the
392  * helper threads to do it.
393  */
394 void fastcall flush_workqueue(struct workqueue_struct *wq)
395 {
396         might_sleep();
397
398         if (is_single_threaded(wq))
399                 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, singlethread_cpu));
400         else {
401                 int cpu;
402
403                 for_each_cpu_mask(cpu, cpu_populated_map)
404                         flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
405         }
406 }
407 EXPORT_SYMBOL_GPL(flush_workqueue);
408
409 static void wait_on_work(struct cpu_workqueue_struct *cwq,
410                                 struct work_struct *work)
411 {
412         struct wq_barrier barr;
413         int running = 0;
414
415         spin_lock_irq(&cwq->lock);
416         if (unlikely(cwq->current_work == work)) {
417                 insert_wq_barrier(cwq, &barr, 0);
418                 running = 1;
419         }
420         spin_unlock_irq(&cwq->lock);
421
422         if (unlikely(running))
423                 wait_for_completion(&barr.done);
424 }
425
426 /**
427  * flush_work - block until a work_struct's callback has terminated
428  * @wq: the workqueue on which the work is queued
429  * @work: the work which is to be flushed
430  *
431  * flush_work() will attempt to cancel the work if it is queued.  If the work's
432  * callback appears to be running, flush_work() will block until it has
433  * completed.
434  *
435  * flush_work() is designed to be used when the caller is tearing down data
436  * structures which the callback function operates upon.  It is expected that,
437  * prior to calling flush_work(), the caller has arranged for the work to not
438  * be requeued.
439  */
440 void flush_work(struct workqueue_struct *wq, struct work_struct *work)
441 {
442         struct cpu_workqueue_struct *cwq;
443
444         might_sleep();
445
446         cwq = get_wq_data(work);
447         /* Was it ever queued ? */
448         if (!cwq)
449                 return;
450
451         /*
452          * This work can't be re-queued, no need to re-check that
453          * get_wq_data() is still the same when we take cwq->lock.
454          */
455         spin_lock_irq(&cwq->lock);
456         list_del_init(&work->entry);
457         work_release(work);
458         spin_unlock_irq(&cwq->lock);
459
460         if (is_single_threaded(wq))
461                 wait_on_work(per_cpu_ptr(wq->cpu_wq, singlethread_cpu), work);
462         else {
463                 int cpu;
464
465                 for_each_cpu_mask(cpu, cpu_populated_map)
466                         wait_on_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
467         }
468 }
469 EXPORT_SYMBOL_GPL(flush_work);
470
471
472 static struct workqueue_struct *keventd_wq;
473
474 /**
475  * schedule_work - put work task in global workqueue
476  * @work: job to be done
477  *
478  * This puts a job in the kernel-global workqueue.
479  */
480 int fastcall schedule_work(struct work_struct *work)
481 {
482         return queue_work(keventd_wq, work);
483 }
484 EXPORT_SYMBOL(schedule_work);
485
486 /**
487  * schedule_delayed_work - put work task in global workqueue after delay
488  * @dwork: job to be done
489  * @delay: number of jiffies to wait or 0 for immediate execution
490  *
491  * After waiting for a given time this puts a job in the kernel-global
492  * workqueue.
493  */
494 int fastcall schedule_delayed_work(struct delayed_work *dwork,
495                                         unsigned long delay)
496 {
497         timer_stats_timer_set_start_info(&dwork->timer);
498         return queue_delayed_work(keventd_wq, dwork, delay);
499 }
500 EXPORT_SYMBOL(schedule_delayed_work);
501
502 /**
503  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
504  * @cpu: cpu to use
505  * @dwork: job to be done
506  * @delay: number of jiffies to wait
507  *
508  * After waiting for a given time this puts a job in the kernel-global
509  * workqueue on the specified CPU.
510  */
511 int schedule_delayed_work_on(int cpu,
512                         struct delayed_work *dwork, unsigned long delay)
513 {
514         return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
515 }
516 EXPORT_SYMBOL(schedule_delayed_work_on);
517
518 /**
519  * schedule_on_each_cpu - call a function on each online CPU from keventd
520  * @func: the function to call
521  *
522  * Returns zero on success.
523  * Returns -ve errno on failure.
524  *
525  * Appears to be racy against CPU hotplug.
526  *
527  * schedule_on_each_cpu() is very slow.
528  */
529 int schedule_on_each_cpu(work_func_t func)
530 {
531         int cpu;
532         struct work_struct *works;
533
534         works = alloc_percpu(struct work_struct);
535         if (!works)
536                 return -ENOMEM;
537
538         preempt_disable();              /* CPU hotplug */
539         for_each_online_cpu(cpu) {
540                 struct work_struct *work = per_cpu_ptr(works, cpu);
541
542                 INIT_WORK(work, func);
543                 set_bit(WORK_STRUCT_PENDING, work_data_bits(work));
544                 __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work);
545         }
546         preempt_enable();
547         flush_workqueue(keventd_wq);
548         free_percpu(works);
549         return 0;
550 }
551
552 void flush_scheduled_work(void)
553 {
554         flush_workqueue(keventd_wq);
555 }
556 EXPORT_SYMBOL(flush_scheduled_work);
557
558 void flush_work_keventd(struct work_struct *work)
559 {
560         flush_work(keventd_wq, work);
561 }
562 EXPORT_SYMBOL(flush_work_keventd);
563
564 /**
565  * cancel_rearming_delayed_workqueue - reliably kill off a delayed work whose handler rearms the delayed work.
566  * @wq:   the controlling workqueue structure
567  * @dwork: the delayed work struct
568  */
569 void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq,
570                                        struct delayed_work *dwork)
571 {
572         while (!cancel_delayed_work(dwork))
573                 flush_workqueue(wq);
574 }
575 EXPORT_SYMBOL(cancel_rearming_delayed_workqueue);
576
577 /**
578  * cancel_rearming_delayed_work - reliably kill off a delayed keventd work whose handler rearms the delayed work.
579  * @dwork: the delayed work struct
580  */
581 void cancel_rearming_delayed_work(struct delayed_work *dwork)
582 {
583         cancel_rearming_delayed_workqueue(keventd_wq, dwork);
584 }
585 EXPORT_SYMBOL(cancel_rearming_delayed_work);
586
587 /**
588  * execute_in_process_context - reliably execute the routine with user context
589  * @fn:         the function to execute
590  * @ew:         guaranteed storage for the execute work structure (must
591  *              be available when the work executes)
592  *
593  * Executes the function immediately if process context is available,
594  * otherwise schedules the function for delayed execution.
595  *
596  * Returns:     0 - function was executed
597  *              1 - function was scheduled for execution
598  */
599 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
600 {
601         if (!in_interrupt()) {
602                 fn(&ew->work);
603                 return 0;
604         }
605
606         INIT_WORK(&ew->work, fn);
607         schedule_work(&ew->work);
608
609         return 1;
610 }
611 EXPORT_SYMBOL_GPL(execute_in_process_context);
612
613 int keventd_up(void)
614 {
615         return keventd_wq != NULL;
616 }
617
618 int current_is_keventd(void)
619 {
620         struct cpu_workqueue_struct *cwq;
621         int cpu = smp_processor_id();   /* preempt-safe: keventd is per-cpu */
622         int ret = 0;
623
624         BUG_ON(!keventd_wq);
625
626         cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
627         if (current == cwq->thread)
628                 ret = 1;
629
630         return ret;
631
632 }
633
634 static struct cpu_workqueue_struct *
635 init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
636 {
637         struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
638
639         cwq->wq = wq;
640         spin_lock_init(&cwq->lock);
641         INIT_LIST_HEAD(&cwq->worklist);
642         init_waitqueue_head(&cwq->more_work);
643
644         return cwq;
645 }
646
647 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
648 {
649         struct workqueue_struct *wq = cwq->wq;
650         const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d";
651         struct task_struct *p;
652
653         p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
654         /*
655          * Nobody can add the work_struct to this cwq,
656          *      if (caller is __create_workqueue)
657          *              nobody should see this wq
658          *      else // caller is CPU_UP_PREPARE
659          *              cpu is not on cpu_online_map
660          * so we can abort safely.
661          */
662         if (IS_ERR(p))
663                 return PTR_ERR(p);
664
665         cwq->thread = p;
666         cwq->should_stop = 0;
667         if (!is_single_threaded(wq))
668                 kthread_bind(p, cpu);
669
670         if (is_single_threaded(wq) || cpu_online(cpu))
671                 wake_up_process(p);
672
673         return 0;
674 }
675
676 struct workqueue_struct *__create_workqueue(const char *name,
677                                             int singlethread, int freezeable)
678 {
679         struct workqueue_struct *wq;
680         struct cpu_workqueue_struct *cwq;
681         int err = 0, cpu;
682
683         wq = kzalloc(sizeof(*wq), GFP_KERNEL);
684         if (!wq)
685                 return NULL;
686
687         wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
688         if (!wq->cpu_wq) {
689                 kfree(wq);
690                 return NULL;
691         }
692
693         wq->name = name;
694         wq->freezeable = freezeable;
695
696         if (singlethread) {
697                 INIT_LIST_HEAD(&wq->list);
698                 cwq = init_cpu_workqueue(wq, singlethread_cpu);
699                 err = create_workqueue_thread(cwq, singlethread_cpu);
700         } else {
701                 mutex_lock(&workqueue_mutex);
702                 list_add(&wq->list, &workqueues);
703
704                 for_each_possible_cpu(cpu) {
705                         cwq = init_cpu_workqueue(wq, cpu);
706                         if (err || !cpu_online(cpu))
707                                 continue;
708                         err = create_workqueue_thread(cwq, cpu);
709                 }
710                 mutex_unlock(&workqueue_mutex);
711         }
712
713         if (err) {
714                 destroy_workqueue(wq);
715                 wq = NULL;
716         }
717         return wq;
718 }
719 EXPORT_SYMBOL_GPL(__create_workqueue);
720
721 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
722 {
723         struct wq_barrier barr;
724         int alive = 0;
725
726         spin_lock_irq(&cwq->lock);
727         if (cwq->thread != NULL) {
728                 insert_wq_barrier(cwq, &barr, 1);
729                 cwq->should_stop = 1;
730                 alive = 1;
731         }
732         spin_unlock_irq(&cwq->lock);
733
734         if (alive) {
735                 wait_for_completion(&barr.done);
736
737                 while (unlikely(cwq->thread != NULL))
738                         cpu_relax();
739                 /*
740                  * Wait until cwq->thread unlocks cwq->lock,
741                  * it won't touch *cwq after that.
742                  */
743                 smp_rmb();
744                 spin_unlock_wait(&cwq->lock);
745         }
746 }
747
748 /**
749  * destroy_workqueue - safely terminate a workqueue
750  * @wq: target workqueue
751  *
752  * Safely destroy a workqueue. All work currently pending will be done first.
753  */
754 void destroy_workqueue(struct workqueue_struct *wq)
755 {
756         struct cpu_workqueue_struct *cwq;
757
758         if (is_single_threaded(wq)) {
759                 cwq = per_cpu_ptr(wq->cpu_wq, singlethread_cpu);
760                 cleanup_workqueue_thread(cwq, singlethread_cpu);
761         } else {
762                 int cpu;
763
764                 mutex_lock(&workqueue_mutex);
765                 list_del(&wq->list);
766                 mutex_unlock(&workqueue_mutex);
767
768                 for_each_cpu_mask(cpu, cpu_populated_map) {
769                         cwq = per_cpu_ptr(wq->cpu_wq, cpu);
770                         cleanup_workqueue_thread(cwq, cpu);
771                 }
772         }
773
774         free_percpu(wq->cpu_wq);
775         kfree(wq);
776 }
777 EXPORT_SYMBOL_GPL(destroy_workqueue);
778
779 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
780                                                 unsigned long action,
781                                                 void *hcpu)
782 {
783         unsigned int cpu = (unsigned long)hcpu;
784         struct cpu_workqueue_struct *cwq;
785         struct workqueue_struct *wq;
786
787         switch (action) {
788         case CPU_LOCK_ACQUIRE:
789                 mutex_lock(&workqueue_mutex);
790                 return NOTIFY_OK;
791
792         case CPU_LOCK_RELEASE:
793                 mutex_unlock(&workqueue_mutex);
794                 return NOTIFY_OK;
795
796         case CPU_UP_PREPARE:
797                 cpu_set(cpu, cpu_populated_map);
798         }
799
800         list_for_each_entry(wq, &workqueues, list) {
801                 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
802
803                 switch (action) {
804                 case CPU_UP_PREPARE:
805                         if (!create_workqueue_thread(cwq, cpu))
806                                 break;
807                         printk(KERN_ERR "workqueue for %i failed\n", cpu);
808                         return NOTIFY_BAD;
809
810                 case CPU_ONLINE:
811                         wake_up_process(cwq->thread);
812                         break;
813
814                 case CPU_UP_CANCELED:
815                         if (cwq->thread)
816                                 wake_up_process(cwq->thread);
817                 case CPU_DEAD:
818                         cleanup_workqueue_thread(cwq, cpu);
819                         break;
820                 }
821         }
822
823         return NOTIFY_OK;
824 }
825
826 void init_workqueues(void)
827 {
828         cpu_populated_map = cpu_online_map;
829         singlethread_cpu = first_cpu(cpu_possible_map);
830         hotcpu_notifier(workqueue_cpu_callback, 0);
831         keventd_wq = create_workqueue("events");
832         BUG_ON(!keventd_wq);
833 }