workqueue: introduce cpu_singlethread_map
[safe/jmp/linux-2.6] / kernel / workqueue.c
1 /*
2  * linux/kernel/workqueue.c
3  *
4  * Generic mechanism for defining kernel helper threads for running
5  * arbitrary tasks in process context.
6  *
7  * Started by Ingo Molnar, Copyright (C) 2002
8  *
9  * Derived from the taskqueue/keventd code by:
10  *
11  *   David Woodhouse <dwmw2@infradead.org>
12  *   Andrew Morton <andrewm@uow.edu.au>
13  *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
14  *   Theodore Ts'o <tytso@mit.edu>
15  *
16  * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
17  */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35
36 /*
37  * The per-CPU workqueue (if single thread, we always use the first
38  * possible cpu).
39  */
40 struct cpu_workqueue_struct {
41
42         spinlock_t lock;
43
44         struct list_head worklist;
45         wait_queue_head_t more_work;
46         struct work_struct *current_work;
47
48         struct workqueue_struct *wq;
49         struct task_struct *thread;
50         int should_stop;
51
52         int run_depth;          /* Detect run_workqueue() recursion depth */
53 } ____cacheline_aligned;
54
55 /*
56  * The externally visible workqueue abstraction is an array of
57  * per-CPU workqueues:
58  */
59 struct workqueue_struct {
60         struct cpu_workqueue_struct *cpu_wq;
61         const char *name;
62         struct list_head list;  /* Empty if single thread */
63         int freezeable;         /* Freeze threads during suspend */
64 };
65
66 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
67    threads to each one as cpus come/go. */
68 static DEFINE_MUTEX(workqueue_mutex);
69 static LIST_HEAD(workqueues);
70
71 static int singlethread_cpu __read_mostly;
72 static cpumask_t cpu_singlethread_map __read_mostly;
73 /* optimization, we could use cpu_possible_map */
74 static cpumask_t cpu_populated_map __read_mostly;
75
76 /* If it's single threaded, it isn't in the list of workqueues. */
77 static inline int is_single_threaded(struct workqueue_struct *wq)
78 {
79         return list_empty(&wq->list);
80 }
81
82 static const cpumask_t *wq_cpu_map(struct workqueue_struct *wq)
83 {
84         return is_single_threaded(wq)
85                 ? &cpu_singlethread_map : &cpu_populated_map;
86 }
87
88 /*
89  * Set the workqueue on which a work item is to be run
90  * - Must *only* be called if the pending flag is set
91  */
92 static inline void set_wq_data(struct work_struct *work, void *wq)
93 {
94         unsigned long new;
95
96         BUG_ON(!work_pending(work));
97
98         new = (unsigned long) wq | (1UL << WORK_STRUCT_PENDING);
99         new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
100         atomic_long_set(&work->data, new);
101 }
102
103 static inline void *get_wq_data(struct work_struct *work)
104 {
105         return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
106 }
107
108 static void insert_work(struct cpu_workqueue_struct *cwq,
109                                 struct work_struct *work, int tail)
110 {
111         set_wq_data(work, cwq);
112         if (tail)
113                 list_add_tail(&work->entry, &cwq->worklist);
114         else
115                 list_add(&work->entry, &cwq->worklist);
116         wake_up(&cwq->more_work);
117 }
118
119 /* Preempt must be disabled. */
120 static void __queue_work(struct cpu_workqueue_struct *cwq,
121                          struct work_struct *work)
122 {
123         unsigned long flags;
124
125         spin_lock_irqsave(&cwq->lock, flags);
126         insert_work(cwq, work, 1);
127         spin_unlock_irqrestore(&cwq->lock, flags);
128 }
129
130 /**
131  * queue_work - queue work on a workqueue
132  * @wq: workqueue to use
133  * @work: work to queue
134  *
135  * Returns 0 if @work was already on a queue, non-zero otherwise.
136  *
137  * We queue the work to the CPU it was submitted, but there is no
138  * guarantee that it will be processed by that CPU.
139  */
140 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
141 {
142         int ret = 0, cpu = get_cpu();
143
144         if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
145                 if (unlikely(is_single_threaded(wq)))
146                         cpu = singlethread_cpu;
147                 BUG_ON(!list_empty(&work->entry));
148                 __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
149                 ret = 1;
150         }
151         put_cpu();
152         return ret;
153 }
154 EXPORT_SYMBOL_GPL(queue_work);
155
156 void delayed_work_timer_fn(unsigned long __data)
157 {
158         struct delayed_work *dwork = (struct delayed_work *)__data;
159         struct workqueue_struct *wq = get_wq_data(&dwork->work);
160         int cpu = smp_processor_id();
161
162         if (unlikely(is_single_threaded(wq)))
163                 cpu = singlethread_cpu;
164
165         __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), &dwork->work);
166 }
167
168 /**
169  * queue_delayed_work - queue work on a workqueue after delay
170  * @wq: workqueue to use
171  * @dwork: delayable work to queue
172  * @delay: number of jiffies to wait before queueing
173  *
174  * Returns 0 if @work was already on a queue, non-zero otherwise.
175  */
176 int fastcall queue_delayed_work(struct workqueue_struct *wq,
177                         struct delayed_work *dwork, unsigned long delay)
178 {
179         int ret = 0;
180         struct timer_list *timer = &dwork->timer;
181         struct work_struct *work = &dwork->work;
182
183         timer_stats_timer_set_start_info(timer);
184         if (delay == 0)
185                 return queue_work(wq, work);
186
187         if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
188                 BUG_ON(timer_pending(timer));
189                 BUG_ON(!list_empty(&work->entry));
190
191                 /* This stores wq for the moment, for the timer_fn */
192                 set_wq_data(work, wq);
193                 timer->expires = jiffies + delay;
194                 timer->data = (unsigned long)dwork;
195                 timer->function = delayed_work_timer_fn;
196                 add_timer(timer);
197                 ret = 1;
198         }
199         return ret;
200 }
201 EXPORT_SYMBOL_GPL(queue_delayed_work);
202
203 /**
204  * queue_delayed_work_on - queue work on specific CPU after delay
205  * @cpu: CPU number to execute work on
206  * @wq: workqueue to use
207  * @dwork: work to queue
208  * @delay: number of jiffies to wait before queueing
209  *
210  * Returns 0 if @work was already on a queue, non-zero otherwise.
211  */
212 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
213                         struct delayed_work *dwork, unsigned long delay)
214 {
215         int ret = 0;
216         struct timer_list *timer = &dwork->timer;
217         struct work_struct *work = &dwork->work;
218
219         if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
220                 BUG_ON(timer_pending(timer));
221                 BUG_ON(!list_empty(&work->entry));
222
223                 /* This stores wq for the moment, for the timer_fn */
224                 set_wq_data(work, wq);
225                 timer->expires = jiffies + delay;
226                 timer->data = (unsigned long)dwork;
227                 timer->function = delayed_work_timer_fn;
228                 add_timer_on(timer, cpu);
229                 ret = 1;
230         }
231         return ret;
232 }
233 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
234
235 static void run_workqueue(struct cpu_workqueue_struct *cwq)
236 {
237         spin_lock_irq(&cwq->lock);
238         cwq->run_depth++;
239         if (cwq->run_depth > 3) {
240                 /* morton gets to eat his hat */
241                 printk("%s: recursion depth exceeded: %d\n",
242                         __FUNCTION__, cwq->run_depth);
243                 dump_stack();
244         }
245         while (!list_empty(&cwq->worklist)) {
246                 struct work_struct *work = list_entry(cwq->worklist.next,
247                                                 struct work_struct, entry);
248                 work_func_t f = work->func;
249
250                 cwq->current_work = work;
251                 list_del_init(cwq->worklist.next);
252                 spin_unlock_irq(&cwq->lock);
253
254                 BUG_ON(get_wq_data(work) != cwq);
255                 if (!test_bit(WORK_STRUCT_NOAUTOREL, work_data_bits(work)))
256                         work_release(work);
257                 f(work);
258
259                 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
260                         printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
261                                         "%s/0x%08x/%d\n",
262                                         current->comm, preempt_count(),
263                                         current->pid);
264                         printk(KERN_ERR "    last function: ");
265                         print_symbol("%s\n", (unsigned long)f);
266                         debug_show_held_locks(current);
267                         dump_stack();
268                 }
269
270                 spin_lock_irq(&cwq->lock);
271                 cwq->current_work = NULL;
272         }
273         cwq->run_depth--;
274         spin_unlock_irq(&cwq->lock);
275 }
276
277 /*
278  * NOTE: the caller must not touch *cwq if this func returns true
279  */
280 static int cwq_should_stop(struct cpu_workqueue_struct *cwq)
281 {
282         int should_stop = cwq->should_stop;
283
284         if (unlikely(should_stop)) {
285                 spin_lock_irq(&cwq->lock);
286                 should_stop = cwq->should_stop && list_empty(&cwq->worklist);
287                 if (should_stop)
288                         cwq->thread = NULL;
289                 spin_unlock_irq(&cwq->lock);
290         }
291
292         return should_stop;
293 }
294
295 static int worker_thread(void *__cwq)
296 {
297         struct cpu_workqueue_struct *cwq = __cwq;
298         DEFINE_WAIT(wait);
299         struct k_sigaction sa;
300         sigset_t blocked;
301
302         if (!cwq->wq->freezeable)
303                 current->flags |= PF_NOFREEZE;
304
305         set_user_nice(current, -5);
306
307         /* Block and flush all signals */
308         sigfillset(&blocked);
309         sigprocmask(SIG_BLOCK, &blocked, NULL);
310         flush_signals(current);
311
312         /*
313          * We inherited MPOL_INTERLEAVE from the booting kernel.
314          * Set MPOL_DEFAULT to insure node local allocations.
315          */
316         numa_default_policy();
317
318         /* SIG_IGN makes children autoreap: see do_notify_parent(). */
319         sa.sa.sa_handler = SIG_IGN;
320         sa.sa.sa_flags = 0;
321         siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
322         do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
323
324         for (;;) {
325                 if (cwq->wq->freezeable)
326                         try_to_freeze();
327
328                 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
329                 if (!cwq->should_stop && list_empty(&cwq->worklist))
330                         schedule();
331                 finish_wait(&cwq->more_work, &wait);
332
333                 if (cwq_should_stop(cwq))
334                         break;
335
336                 run_workqueue(cwq);
337         }
338
339         return 0;
340 }
341
342 struct wq_barrier {
343         struct work_struct      work;
344         struct completion       done;
345 };
346
347 static void wq_barrier_func(struct work_struct *work)
348 {
349         struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
350         complete(&barr->done);
351 }
352
353 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
354                                         struct wq_barrier *barr, int tail)
355 {
356         INIT_WORK(&barr->work, wq_barrier_func);
357         __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
358
359         init_completion(&barr->done);
360
361         insert_work(cwq, &barr->work, tail);
362 }
363
364 static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
365 {
366         if (cwq->thread == current) {
367                 /*
368                  * Probably keventd trying to flush its own queue. So simply run
369                  * it by hand rather than deadlocking.
370                  */
371                 run_workqueue(cwq);
372         } else {
373                 struct wq_barrier barr;
374                 int active = 0;
375
376                 spin_lock_irq(&cwq->lock);
377                 if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
378                         insert_wq_barrier(cwq, &barr, 1);
379                         active = 1;
380                 }
381                 spin_unlock_irq(&cwq->lock);
382
383                 if (active)
384                         wait_for_completion(&barr.done);
385         }
386 }
387
388 /**
389  * flush_workqueue - ensure that any scheduled work has run to completion.
390  * @wq: workqueue to flush
391  *
392  * Forces execution of the workqueue and blocks until its completion.
393  * This is typically used in driver shutdown handlers.
394  *
395  * We sleep until all works which were queued on entry have been handled,
396  * but we are not livelocked by new incoming ones.
397  *
398  * This function used to run the workqueues itself.  Now we just wait for the
399  * helper threads to do it.
400  */
401 void fastcall flush_workqueue(struct workqueue_struct *wq)
402 {
403         const cpumask_t *cpu_map = wq_cpu_map(wq);
404         int cpu
405
406         might_sleep();
407         for_each_cpu_mask(cpu, *cpu_map)
408                 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
409 }
410 EXPORT_SYMBOL_GPL(flush_workqueue);
411
412 static void wait_on_work(struct cpu_workqueue_struct *cwq,
413                                 struct work_struct *work)
414 {
415         struct wq_barrier barr;
416         int running = 0;
417
418         spin_lock_irq(&cwq->lock);
419         if (unlikely(cwq->current_work == work)) {
420                 insert_wq_barrier(cwq, &barr, 0);
421                 running = 1;
422         }
423         spin_unlock_irq(&cwq->lock);
424
425         if (unlikely(running))
426                 wait_for_completion(&barr.done);
427 }
428
429 /**
430  * flush_work - block until a work_struct's callback has terminated
431  * @wq: the workqueue on which the work is queued
432  * @work: the work which is to be flushed
433  *
434  * flush_work() will attempt to cancel the work if it is queued.  If the work's
435  * callback appears to be running, flush_work() will block until it has
436  * completed.
437  *
438  * flush_work() is designed to be used when the caller is tearing down data
439  * structures which the callback function operates upon.  It is expected that,
440  * prior to calling flush_work(), the caller has arranged for the work to not
441  * be requeued.
442  */
443 void flush_work(struct workqueue_struct *wq, struct work_struct *work)
444 {
445         const cpumask_t *cpu_map = wq_cpu_map(wq);
446         struct cpu_workqueue_struct *cwq;
447         int cpu;
448
449         might_sleep();
450
451         cwq = get_wq_data(work);
452         /* Was it ever queued ? */
453         if (!cwq)
454                 return;
455
456         /*
457          * This work can't be re-queued, no need to re-check that
458          * get_wq_data() is still the same when we take cwq->lock.
459          */
460         spin_lock_irq(&cwq->lock);
461         list_del_init(&work->entry);
462         work_release(work);
463         spin_unlock_irq(&cwq->lock);
464
465         for_each_cpu_mask(cpu, *cpu_map)
466                 wait_on_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
467 }
468 EXPORT_SYMBOL_GPL(flush_work);
469
470
471 static struct workqueue_struct *keventd_wq;
472
473 /**
474  * schedule_work - put work task in global workqueue
475  * @work: job to be done
476  *
477  * This puts a job in the kernel-global workqueue.
478  */
479 int fastcall schedule_work(struct work_struct *work)
480 {
481         return queue_work(keventd_wq, work);
482 }
483 EXPORT_SYMBOL(schedule_work);
484
485 /**
486  * schedule_delayed_work - put work task in global workqueue after delay
487  * @dwork: job to be done
488  * @delay: number of jiffies to wait or 0 for immediate execution
489  *
490  * After waiting for a given time this puts a job in the kernel-global
491  * workqueue.
492  */
493 int fastcall schedule_delayed_work(struct delayed_work *dwork,
494                                         unsigned long delay)
495 {
496         timer_stats_timer_set_start_info(&dwork->timer);
497         return queue_delayed_work(keventd_wq, dwork, delay);
498 }
499 EXPORT_SYMBOL(schedule_delayed_work);
500
501 /**
502  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
503  * @cpu: cpu to use
504  * @dwork: job to be done
505  * @delay: number of jiffies to wait
506  *
507  * After waiting for a given time this puts a job in the kernel-global
508  * workqueue on the specified CPU.
509  */
510 int schedule_delayed_work_on(int cpu,
511                         struct delayed_work *dwork, unsigned long delay)
512 {
513         return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
514 }
515 EXPORT_SYMBOL(schedule_delayed_work_on);
516
517 /**
518  * schedule_on_each_cpu - call a function on each online CPU from keventd
519  * @func: the function to call
520  *
521  * Returns zero on success.
522  * Returns -ve errno on failure.
523  *
524  * Appears to be racy against CPU hotplug.
525  *
526  * schedule_on_each_cpu() is very slow.
527  */
528 int schedule_on_each_cpu(work_func_t func)
529 {
530         int cpu;
531         struct work_struct *works;
532
533         works = alloc_percpu(struct work_struct);
534         if (!works)
535                 return -ENOMEM;
536
537         preempt_disable();              /* CPU hotplug */
538         for_each_online_cpu(cpu) {
539                 struct work_struct *work = per_cpu_ptr(works, cpu);
540
541                 INIT_WORK(work, func);
542                 set_bit(WORK_STRUCT_PENDING, work_data_bits(work));
543                 __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work);
544         }
545         preempt_enable();
546         flush_workqueue(keventd_wq);
547         free_percpu(works);
548         return 0;
549 }
550
551 void flush_scheduled_work(void)
552 {
553         flush_workqueue(keventd_wq);
554 }
555 EXPORT_SYMBOL(flush_scheduled_work);
556
557 void flush_work_keventd(struct work_struct *work)
558 {
559         flush_work(keventd_wq, work);
560 }
561 EXPORT_SYMBOL(flush_work_keventd);
562
563 /**
564  * cancel_rearming_delayed_workqueue - reliably kill off a delayed work whose handler rearms the delayed work.
565  * @wq:   the controlling workqueue structure
566  * @dwork: the delayed work struct
567  */
568 void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq,
569                                        struct delayed_work *dwork)
570 {
571         /* Was it ever queued ? */
572         if (!get_wq_data(&dwork->work))
573                 return;
574
575         while (!cancel_delayed_work(dwork))
576                 flush_workqueue(wq);
577 }
578 EXPORT_SYMBOL(cancel_rearming_delayed_workqueue);
579
580 /**
581  * cancel_rearming_delayed_work - reliably kill off a delayed keventd work whose handler rearms the delayed work.
582  * @dwork: the delayed work struct
583  */
584 void cancel_rearming_delayed_work(struct delayed_work *dwork)
585 {
586         cancel_rearming_delayed_workqueue(keventd_wq, dwork);
587 }
588 EXPORT_SYMBOL(cancel_rearming_delayed_work);
589
590 /**
591  * execute_in_process_context - reliably execute the routine with user context
592  * @fn:         the function to execute
593  * @ew:         guaranteed storage for the execute work structure (must
594  *              be available when the work executes)
595  *
596  * Executes the function immediately if process context is available,
597  * otherwise schedules the function for delayed execution.
598  *
599  * Returns:     0 - function was executed
600  *              1 - function was scheduled for execution
601  */
602 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
603 {
604         if (!in_interrupt()) {
605                 fn(&ew->work);
606                 return 0;
607         }
608
609         INIT_WORK(&ew->work, fn);
610         schedule_work(&ew->work);
611
612         return 1;
613 }
614 EXPORT_SYMBOL_GPL(execute_in_process_context);
615
616 int keventd_up(void)
617 {
618         return keventd_wq != NULL;
619 }
620
621 int current_is_keventd(void)
622 {
623         struct cpu_workqueue_struct *cwq;
624         int cpu = smp_processor_id();   /* preempt-safe: keventd is per-cpu */
625         int ret = 0;
626
627         BUG_ON(!keventd_wq);
628
629         cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
630         if (current == cwq->thread)
631                 ret = 1;
632
633         return ret;
634
635 }
636
637 static struct cpu_workqueue_struct *
638 init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
639 {
640         struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
641
642         cwq->wq = wq;
643         spin_lock_init(&cwq->lock);
644         INIT_LIST_HEAD(&cwq->worklist);
645         init_waitqueue_head(&cwq->more_work);
646
647         return cwq;
648 }
649
650 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
651 {
652         struct workqueue_struct *wq = cwq->wq;
653         const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d";
654         struct task_struct *p;
655
656         p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
657         /*
658          * Nobody can add the work_struct to this cwq,
659          *      if (caller is __create_workqueue)
660          *              nobody should see this wq
661          *      else // caller is CPU_UP_PREPARE
662          *              cpu is not on cpu_online_map
663          * so we can abort safely.
664          */
665         if (IS_ERR(p))
666                 return PTR_ERR(p);
667
668         cwq->thread = p;
669         cwq->should_stop = 0;
670         if (!is_single_threaded(wq))
671                 kthread_bind(p, cpu);
672
673         if (is_single_threaded(wq) || cpu_online(cpu))
674                 wake_up_process(p);
675
676         return 0;
677 }
678
679 struct workqueue_struct *__create_workqueue(const char *name,
680                                             int singlethread, int freezeable)
681 {
682         struct workqueue_struct *wq;
683         struct cpu_workqueue_struct *cwq;
684         int err = 0, cpu;
685
686         wq = kzalloc(sizeof(*wq), GFP_KERNEL);
687         if (!wq)
688                 return NULL;
689
690         wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
691         if (!wq->cpu_wq) {
692                 kfree(wq);
693                 return NULL;
694         }
695
696         wq->name = name;
697         wq->freezeable = freezeable;
698
699         if (singlethread) {
700                 INIT_LIST_HEAD(&wq->list);
701                 cwq = init_cpu_workqueue(wq, singlethread_cpu);
702                 err = create_workqueue_thread(cwq, singlethread_cpu);
703         } else {
704                 mutex_lock(&workqueue_mutex);
705                 list_add(&wq->list, &workqueues);
706
707                 for_each_possible_cpu(cpu) {
708                         cwq = init_cpu_workqueue(wq, cpu);
709                         if (err || !cpu_online(cpu))
710                                 continue;
711                         err = create_workqueue_thread(cwq, cpu);
712                 }
713                 mutex_unlock(&workqueue_mutex);
714         }
715
716         if (err) {
717                 destroy_workqueue(wq);
718                 wq = NULL;
719         }
720         return wq;
721 }
722 EXPORT_SYMBOL_GPL(__create_workqueue);
723
724 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
725 {
726         struct wq_barrier barr;
727         int alive = 0;
728
729         spin_lock_irq(&cwq->lock);
730         if (cwq->thread != NULL) {
731                 insert_wq_barrier(cwq, &barr, 1);
732                 cwq->should_stop = 1;
733                 alive = 1;
734         }
735         spin_unlock_irq(&cwq->lock);
736
737         if (alive) {
738                 wait_for_completion(&barr.done);
739
740                 while (unlikely(cwq->thread != NULL))
741                         cpu_relax();
742                 /*
743                  * Wait until cwq->thread unlocks cwq->lock,
744                  * it won't touch *cwq after that.
745                  */
746                 smp_rmb();
747                 spin_unlock_wait(&cwq->lock);
748         }
749 }
750
751 /**
752  * destroy_workqueue - safely terminate a workqueue
753  * @wq: target workqueue
754  *
755  * Safely destroy a workqueue. All work currently pending will be done first.
756  */
757 void destroy_workqueue(struct workqueue_struct *wq)
758 {
759         const cpumask_t *cpu_map = wq_cpu_map(wq);
760         struct cpu_workqueue_struct *cwq;
761         int cpu;
762
763         mutex_lock(&workqueue_mutex);
764         list_del(&wq->list);
765         mutex_unlock(&workqueue_mutex);
766
767         for_each_cpu_mask(cpu, *cpu_map) {
768                 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
769                 cleanup_workqueue_thread(cwq, cpu);
770         }
771
772         free_percpu(wq->cpu_wq);
773         kfree(wq);
774 }
775 EXPORT_SYMBOL_GPL(destroy_workqueue);
776
777 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
778                                                 unsigned long action,
779                                                 void *hcpu)
780 {
781         unsigned int cpu = (unsigned long)hcpu;
782         struct cpu_workqueue_struct *cwq;
783         struct workqueue_struct *wq;
784
785         switch (action) {
786         case CPU_LOCK_ACQUIRE:
787                 mutex_lock(&workqueue_mutex);
788                 return NOTIFY_OK;
789
790         case CPU_LOCK_RELEASE:
791                 mutex_unlock(&workqueue_mutex);
792                 return NOTIFY_OK;
793
794         case CPU_UP_PREPARE:
795                 cpu_set(cpu, cpu_populated_map);
796         }
797
798         list_for_each_entry(wq, &workqueues, list) {
799                 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
800
801                 switch (action) {
802                 case CPU_UP_PREPARE:
803                         if (!create_workqueue_thread(cwq, cpu))
804                                 break;
805                         printk(KERN_ERR "workqueue for %i failed\n", cpu);
806                         return NOTIFY_BAD;
807
808                 case CPU_ONLINE:
809                         wake_up_process(cwq->thread);
810                         break;
811
812                 case CPU_UP_CANCELED:
813                         if (cwq->thread)
814                                 wake_up_process(cwq->thread);
815                 case CPU_DEAD:
816                         cleanup_workqueue_thread(cwq, cpu);
817                         break;
818                 }
819         }
820
821         return NOTIFY_OK;
822 }
823
824 void init_workqueues(void)
825 {
826         cpu_populated_map = cpu_online_map;
827         singlethread_cpu = first_cpu(cpu_possible_map);
828         cpu_singlethread_map = cpumask_of_cpu(singlethread_cpu);
829         hotcpu_notifier(workqueue_cpu_callback, 0);
830         keventd_wq = create_workqueue("events");
831         BUG_ON(!keventd_wq);
832 }