unify queue_delayed_work() and queue_delayed_work_on()
[safe/jmp/linux-2.6] / kernel / workqueue.c
1 /*
2  * linux/kernel/workqueue.c
3  *
4  * Generic mechanism for defining kernel helper threads for running
5  * arbitrary tasks in process context.
6  *
7  * Started by Ingo Molnar, Copyright (C) 2002
8  *
9  * Derived from the taskqueue/keventd code by:
10  *
11  *   David Woodhouse <dwmw2@infradead.org>
12  *   Andrew Morton <andrewm@uow.edu.au>
13  *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
14  *   Theodore Ts'o <tytso@mit.edu>
15  *
16  * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
17  */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35
36 /*
37  * The per-CPU workqueue (if single thread, we always use the first
38  * possible cpu).
39  */
40 struct cpu_workqueue_struct {
41
42         spinlock_t lock;
43
44         struct list_head worklist;
45         wait_queue_head_t more_work;
46         struct work_struct *current_work;
47
48         struct workqueue_struct *wq;
49         struct task_struct *thread;
50         int should_stop;
51
52         int run_depth;          /* Detect run_workqueue() recursion depth */
53 } ____cacheline_aligned;
54
55 /*
56  * The externally visible workqueue abstraction is an array of
57  * per-CPU workqueues:
58  */
59 struct workqueue_struct {
60         struct cpu_workqueue_struct *cpu_wq;
61         struct list_head list;
62         const char *name;
63         int singlethread;
64         int freezeable;         /* Freeze threads during suspend */
65 };
66
67 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
68    threads to each one as cpus come/go. */
69 static DEFINE_MUTEX(workqueue_mutex);
70 static LIST_HEAD(workqueues);
71
72 static int singlethread_cpu __read_mostly;
73 static cpumask_t cpu_singlethread_map __read_mostly;
74 /* optimization, we could use cpu_possible_map */
75 static cpumask_t cpu_populated_map __read_mostly;
76
77 /* If it's single threaded, it isn't in the list of workqueues. */
78 static inline int is_single_threaded(struct workqueue_struct *wq)
79 {
80         return wq->singlethread;
81 }
82
83 static const cpumask_t *wq_cpu_map(struct workqueue_struct *wq)
84 {
85         return is_single_threaded(wq)
86                 ? &cpu_singlethread_map : &cpu_populated_map;
87 }
88
89 /*
90  * Set the workqueue on which a work item is to be run
91  * - Must *only* be called if the pending flag is set
92  */
93 static inline void set_wq_data(struct work_struct *work,
94                                 struct cpu_workqueue_struct *cwq)
95 {
96         unsigned long new;
97
98         BUG_ON(!work_pending(work));
99
100         new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
101         new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
102         atomic_long_set(&work->data, new);
103 }
104
105 static inline
106 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
107 {
108         return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
109 }
110
111 static void insert_work(struct cpu_workqueue_struct *cwq,
112                                 struct work_struct *work, int tail)
113 {
114         set_wq_data(work, cwq);
115         if (tail)
116                 list_add_tail(&work->entry, &cwq->worklist);
117         else
118                 list_add(&work->entry, &cwq->worklist);
119         wake_up(&cwq->more_work);
120 }
121
122 /* Preempt must be disabled. */
123 static void __queue_work(struct cpu_workqueue_struct *cwq,
124                          struct work_struct *work)
125 {
126         unsigned long flags;
127
128         spin_lock_irqsave(&cwq->lock, flags);
129         insert_work(cwq, work, 1);
130         spin_unlock_irqrestore(&cwq->lock, flags);
131 }
132
133 /**
134  * queue_work - queue work on a workqueue
135  * @wq: workqueue to use
136  * @work: work to queue
137  *
138  * Returns 0 if @work was already on a queue, non-zero otherwise.
139  *
140  * We queue the work to the CPU it was submitted, but there is no
141  * guarantee that it will be processed by that CPU.
142  */
143 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
144 {
145         int ret = 0, cpu = get_cpu();
146
147         if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
148                 if (unlikely(is_single_threaded(wq)))
149                         cpu = singlethread_cpu;
150                 BUG_ON(!list_empty(&work->entry));
151                 __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
152                 ret = 1;
153         }
154         put_cpu();
155         return ret;
156 }
157 EXPORT_SYMBOL_GPL(queue_work);
158
159 void delayed_work_timer_fn(unsigned long __data)
160 {
161         struct delayed_work *dwork = (struct delayed_work *)__data;
162         struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
163         struct workqueue_struct *wq = cwq->wq;
164         int cpu = smp_processor_id();
165
166         if (unlikely(is_single_threaded(wq)))
167                 cpu = singlethread_cpu;
168
169         __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), &dwork->work);
170 }
171
172 /**
173  * queue_delayed_work - queue work on a workqueue after delay
174  * @wq: workqueue to use
175  * @dwork: delayable work to queue
176  * @delay: number of jiffies to wait before queueing
177  *
178  * Returns 0 if @work was already on a queue, non-zero otherwise.
179  */
180 int fastcall queue_delayed_work(struct workqueue_struct *wq,
181                         struct delayed_work *dwork, unsigned long delay)
182 {
183         timer_stats_timer_set_start_info(&dwork->timer);
184         if (delay == 0)
185                 return queue_work(wq, &dwork->work);
186
187         return queue_delayed_work_on(-1, wq, dwork, delay);
188 }
189 EXPORT_SYMBOL_GPL(queue_delayed_work);
190
191 /**
192  * queue_delayed_work_on - queue work on specific CPU after delay
193  * @cpu: CPU number to execute work on
194  * @wq: workqueue to use
195  * @dwork: work to queue
196  * @delay: number of jiffies to wait before queueing
197  *
198  * Returns 0 if @work was already on a queue, non-zero otherwise.
199  */
200 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
201                         struct delayed_work *dwork, unsigned long delay)
202 {
203         int ret = 0;
204         struct timer_list *timer = &dwork->timer;
205         struct work_struct *work = &dwork->work;
206
207         if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
208                 BUG_ON(timer_pending(timer));
209                 BUG_ON(!list_empty(&work->entry));
210
211                 /* This stores cwq for the moment, for the timer_fn */
212                 set_wq_data(work,
213                         per_cpu_ptr(wq->cpu_wq, wq->singlethread ?
214                                 singlethread_cpu : raw_smp_processor_id()));
215                 timer->expires = jiffies + delay;
216                 timer->data = (unsigned long)dwork;
217                 timer->function = delayed_work_timer_fn;
218
219                 if (unlikely(cpu >= 0))
220                         add_timer_on(timer, cpu);
221                 else
222                         add_timer(timer);
223                 ret = 1;
224         }
225         return ret;
226 }
227 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
228
229 static void run_workqueue(struct cpu_workqueue_struct *cwq)
230 {
231         spin_lock_irq(&cwq->lock);
232         cwq->run_depth++;
233         if (cwq->run_depth > 3) {
234                 /* morton gets to eat his hat */
235                 printk("%s: recursion depth exceeded: %d\n",
236                         __FUNCTION__, cwq->run_depth);
237                 dump_stack();
238         }
239         while (!list_empty(&cwq->worklist)) {
240                 struct work_struct *work = list_entry(cwq->worklist.next,
241                                                 struct work_struct, entry);
242                 work_func_t f = work->func;
243
244                 cwq->current_work = work;
245                 list_del_init(cwq->worklist.next);
246                 spin_unlock_irq(&cwq->lock);
247
248                 BUG_ON(get_wq_data(work) != cwq);
249                 if (!test_bit(WORK_STRUCT_NOAUTOREL, work_data_bits(work)))
250                         work_release(work);
251                 f(work);
252
253                 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
254                         printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
255                                         "%s/0x%08x/%d\n",
256                                         current->comm, preempt_count(),
257                                         current->pid);
258                         printk(KERN_ERR "    last function: ");
259                         print_symbol("%s\n", (unsigned long)f);
260                         debug_show_held_locks(current);
261                         dump_stack();
262                 }
263
264                 spin_lock_irq(&cwq->lock);
265                 cwq->current_work = NULL;
266         }
267         cwq->run_depth--;
268         spin_unlock_irq(&cwq->lock);
269 }
270
271 /*
272  * NOTE: the caller must not touch *cwq if this func returns true
273  */
274 static int cwq_should_stop(struct cpu_workqueue_struct *cwq)
275 {
276         int should_stop = cwq->should_stop;
277
278         if (unlikely(should_stop)) {
279                 spin_lock_irq(&cwq->lock);
280                 should_stop = cwq->should_stop && list_empty(&cwq->worklist);
281                 if (should_stop)
282                         cwq->thread = NULL;
283                 spin_unlock_irq(&cwq->lock);
284         }
285
286         return should_stop;
287 }
288
289 static int worker_thread(void *__cwq)
290 {
291         struct cpu_workqueue_struct *cwq = __cwq;
292         DEFINE_WAIT(wait);
293         struct k_sigaction sa;
294         sigset_t blocked;
295
296         if (!cwq->wq->freezeable)
297                 current->flags |= PF_NOFREEZE;
298
299         set_user_nice(current, -5);
300
301         /* Block and flush all signals */
302         sigfillset(&blocked);
303         sigprocmask(SIG_BLOCK, &blocked, NULL);
304         flush_signals(current);
305
306         /*
307          * We inherited MPOL_INTERLEAVE from the booting kernel.
308          * Set MPOL_DEFAULT to insure node local allocations.
309          */
310         numa_default_policy();
311
312         /* SIG_IGN makes children autoreap: see do_notify_parent(). */
313         sa.sa.sa_handler = SIG_IGN;
314         sa.sa.sa_flags = 0;
315         siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
316         do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
317
318         for (;;) {
319                 if (cwq->wq->freezeable)
320                         try_to_freeze();
321
322                 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
323                 if (!cwq->should_stop && list_empty(&cwq->worklist))
324                         schedule();
325                 finish_wait(&cwq->more_work, &wait);
326
327                 if (cwq_should_stop(cwq))
328                         break;
329
330                 run_workqueue(cwq);
331         }
332
333         return 0;
334 }
335
336 struct wq_barrier {
337         struct work_struct      work;
338         struct completion       done;
339 };
340
341 static void wq_barrier_func(struct work_struct *work)
342 {
343         struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
344         complete(&barr->done);
345 }
346
347 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
348                                         struct wq_barrier *barr, int tail)
349 {
350         INIT_WORK(&barr->work, wq_barrier_func);
351         __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
352
353         init_completion(&barr->done);
354
355         insert_work(cwq, &barr->work, tail);
356 }
357
358 static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
359 {
360         if (cwq->thread == current) {
361                 /*
362                  * Probably keventd trying to flush its own queue. So simply run
363                  * it by hand rather than deadlocking.
364                  */
365                 run_workqueue(cwq);
366         } else {
367                 struct wq_barrier barr;
368                 int active = 0;
369
370                 spin_lock_irq(&cwq->lock);
371                 if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
372                         insert_wq_barrier(cwq, &barr, 1);
373                         active = 1;
374                 }
375                 spin_unlock_irq(&cwq->lock);
376
377                 if (active)
378                         wait_for_completion(&barr.done);
379         }
380 }
381
382 /**
383  * flush_workqueue - ensure that any scheduled work has run to completion.
384  * @wq: workqueue to flush
385  *
386  * Forces execution of the workqueue and blocks until its completion.
387  * This is typically used in driver shutdown handlers.
388  *
389  * We sleep until all works which were queued on entry have been handled,
390  * but we are not livelocked by new incoming ones.
391  *
392  * This function used to run the workqueues itself.  Now we just wait for the
393  * helper threads to do it.
394  */
395 void fastcall flush_workqueue(struct workqueue_struct *wq)
396 {
397         const cpumask_t *cpu_map = wq_cpu_map(wq);
398         int cpu;
399
400         might_sleep();
401         for_each_cpu_mask(cpu, *cpu_map)
402                 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
403 }
404 EXPORT_SYMBOL_GPL(flush_workqueue);
405
406 static void wait_on_work(struct cpu_workqueue_struct *cwq,
407                                 struct work_struct *work)
408 {
409         struct wq_barrier barr;
410         int running = 0;
411
412         spin_lock_irq(&cwq->lock);
413         if (unlikely(cwq->current_work == work)) {
414                 insert_wq_barrier(cwq, &barr, 0);
415                 running = 1;
416         }
417         spin_unlock_irq(&cwq->lock);
418
419         if (unlikely(running))
420                 wait_for_completion(&barr.done);
421 }
422
423 /**
424  * flush_work - block until a work_struct's callback has terminated
425  * @wq: the workqueue on which the work is queued
426  * @work: the work which is to be flushed
427  *
428  * flush_work() will attempt to cancel the work if it is queued.  If the work's
429  * callback appears to be running, flush_work() will block until it has
430  * completed.
431  *
432  * flush_work() is designed to be used when the caller is tearing down data
433  * structures which the callback function operates upon.  It is expected that,
434  * prior to calling flush_work(), the caller has arranged for the work to not
435  * be requeued.
436  */
437 void flush_work(struct workqueue_struct *wq, struct work_struct *work)
438 {
439         const cpumask_t *cpu_map = wq_cpu_map(wq);
440         struct cpu_workqueue_struct *cwq;
441         int cpu;
442
443         might_sleep();
444
445         cwq = get_wq_data(work);
446         /* Was it ever queued ? */
447         if (!cwq)
448                 return;
449
450         /*
451          * This work can't be re-queued, no need to re-check that
452          * get_wq_data() is still the same when we take cwq->lock.
453          */
454         spin_lock_irq(&cwq->lock);
455         list_del_init(&work->entry);
456         work_release(work);
457         spin_unlock_irq(&cwq->lock);
458
459         for_each_cpu_mask(cpu, *cpu_map)
460                 wait_on_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
461 }
462 EXPORT_SYMBOL_GPL(flush_work);
463
464
465 static struct workqueue_struct *keventd_wq;
466
467 /**
468  * schedule_work - put work task in global workqueue
469  * @work: job to be done
470  *
471  * This puts a job in the kernel-global workqueue.
472  */
473 int fastcall schedule_work(struct work_struct *work)
474 {
475         return queue_work(keventd_wq, work);
476 }
477 EXPORT_SYMBOL(schedule_work);
478
479 /**
480  * schedule_delayed_work - put work task in global workqueue after delay
481  * @dwork: job to be done
482  * @delay: number of jiffies to wait or 0 for immediate execution
483  *
484  * After waiting for a given time this puts a job in the kernel-global
485  * workqueue.
486  */
487 int fastcall schedule_delayed_work(struct delayed_work *dwork,
488                                         unsigned long delay)
489 {
490         timer_stats_timer_set_start_info(&dwork->timer);
491         return queue_delayed_work(keventd_wq, dwork, delay);
492 }
493 EXPORT_SYMBOL(schedule_delayed_work);
494
495 /**
496  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
497  * @cpu: cpu to use
498  * @dwork: job to be done
499  * @delay: number of jiffies to wait
500  *
501  * After waiting for a given time this puts a job in the kernel-global
502  * workqueue on the specified CPU.
503  */
504 int schedule_delayed_work_on(int cpu,
505                         struct delayed_work *dwork, unsigned long delay)
506 {
507         return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
508 }
509 EXPORT_SYMBOL(schedule_delayed_work_on);
510
511 /**
512  * schedule_on_each_cpu - call a function on each online CPU from keventd
513  * @func: the function to call
514  *
515  * Returns zero on success.
516  * Returns -ve errno on failure.
517  *
518  * Appears to be racy against CPU hotplug.
519  *
520  * schedule_on_each_cpu() is very slow.
521  */
522 int schedule_on_each_cpu(work_func_t func)
523 {
524         int cpu;
525         struct work_struct *works;
526
527         works = alloc_percpu(struct work_struct);
528         if (!works)
529                 return -ENOMEM;
530
531         preempt_disable();              /* CPU hotplug */
532         for_each_online_cpu(cpu) {
533                 struct work_struct *work = per_cpu_ptr(works, cpu);
534
535                 INIT_WORK(work, func);
536                 set_bit(WORK_STRUCT_PENDING, work_data_bits(work));
537                 __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work);
538         }
539         preempt_enable();
540         flush_workqueue(keventd_wq);
541         free_percpu(works);
542         return 0;
543 }
544
545 void flush_scheduled_work(void)
546 {
547         flush_workqueue(keventd_wq);
548 }
549 EXPORT_SYMBOL(flush_scheduled_work);
550
551 void flush_work_keventd(struct work_struct *work)
552 {
553         flush_work(keventd_wq, work);
554 }
555 EXPORT_SYMBOL(flush_work_keventd);
556
557 /**
558  * cancel_rearming_delayed_workqueue - kill off a delayed work whose handler rearms the delayed work.
559  * @wq:   the controlling workqueue structure
560  * @dwork: the delayed work struct
561  *
562  * Note that the work callback function may still be running on return from
563  * cancel_delayed_work(). Run flush_workqueue() or flush_work() to wait on it.
564  */
565 void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq,
566                                        struct delayed_work *dwork)
567 {
568         /* Was it ever queued ? */
569         if (!get_wq_data(&dwork->work))
570                 return;
571
572         while (!cancel_delayed_work(dwork))
573                 flush_workqueue(wq);
574 }
575 EXPORT_SYMBOL(cancel_rearming_delayed_workqueue);
576
577 /**
578  * cancel_rearming_delayed_work - kill off a delayed keventd work whose handler rearms the delayed work.
579  * @dwork: the delayed work struct
580  */
581 void cancel_rearming_delayed_work(struct delayed_work *dwork)
582 {
583         cancel_rearming_delayed_workqueue(keventd_wq, dwork);
584 }
585 EXPORT_SYMBOL(cancel_rearming_delayed_work);
586
587 /**
588  * execute_in_process_context - reliably execute the routine with user context
589  * @fn:         the function to execute
590  * @ew:         guaranteed storage for the execute work structure (must
591  *              be available when the work executes)
592  *
593  * Executes the function immediately if process context is available,
594  * otherwise schedules the function for delayed execution.
595  *
596  * Returns:     0 - function was executed
597  *              1 - function was scheduled for execution
598  */
599 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
600 {
601         if (!in_interrupt()) {
602                 fn(&ew->work);
603                 return 0;
604         }
605
606         INIT_WORK(&ew->work, fn);
607         schedule_work(&ew->work);
608
609         return 1;
610 }
611 EXPORT_SYMBOL_GPL(execute_in_process_context);
612
613 int keventd_up(void)
614 {
615         return keventd_wq != NULL;
616 }
617
618 int current_is_keventd(void)
619 {
620         struct cpu_workqueue_struct *cwq;
621         int cpu = smp_processor_id();   /* preempt-safe: keventd is per-cpu */
622         int ret = 0;
623
624         BUG_ON(!keventd_wq);
625
626         cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
627         if (current == cwq->thread)
628                 ret = 1;
629
630         return ret;
631
632 }
633
634 static struct cpu_workqueue_struct *
635 init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
636 {
637         struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
638
639         cwq->wq = wq;
640         spin_lock_init(&cwq->lock);
641         INIT_LIST_HEAD(&cwq->worklist);
642         init_waitqueue_head(&cwq->more_work);
643
644         return cwq;
645 }
646
647 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
648 {
649         struct workqueue_struct *wq = cwq->wq;
650         const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d";
651         struct task_struct *p;
652
653         p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
654         /*
655          * Nobody can add the work_struct to this cwq,
656          *      if (caller is __create_workqueue)
657          *              nobody should see this wq
658          *      else // caller is CPU_UP_PREPARE
659          *              cpu is not on cpu_online_map
660          * so we can abort safely.
661          */
662         if (IS_ERR(p))
663                 return PTR_ERR(p);
664
665         cwq->thread = p;
666         cwq->should_stop = 0;
667
668         return 0;
669 }
670
671 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
672 {
673         struct task_struct *p = cwq->thread;
674
675         if (p != NULL) {
676                 if (cpu >= 0)
677                         kthread_bind(p, cpu);
678                 wake_up_process(p);
679         }
680 }
681
682 struct workqueue_struct *__create_workqueue(const char *name,
683                                             int singlethread, int freezeable)
684 {
685         struct workqueue_struct *wq;
686         struct cpu_workqueue_struct *cwq;
687         int err = 0, cpu;
688
689         wq = kzalloc(sizeof(*wq), GFP_KERNEL);
690         if (!wq)
691                 return NULL;
692
693         wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
694         if (!wq->cpu_wq) {
695                 kfree(wq);
696                 return NULL;
697         }
698
699         wq->name = name;
700         wq->singlethread = singlethread;
701         wq->freezeable = freezeable;
702         INIT_LIST_HEAD(&wq->list);
703
704         if (singlethread) {
705                 cwq = init_cpu_workqueue(wq, singlethread_cpu);
706                 err = create_workqueue_thread(cwq, singlethread_cpu);
707                 start_workqueue_thread(cwq, -1);
708         } else {
709                 mutex_lock(&workqueue_mutex);
710                 list_add(&wq->list, &workqueues);
711
712                 for_each_possible_cpu(cpu) {
713                         cwq = init_cpu_workqueue(wq, cpu);
714                         if (err || !cpu_online(cpu))
715                                 continue;
716                         err = create_workqueue_thread(cwq, cpu);
717                         start_workqueue_thread(cwq, cpu);
718                 }
719                 mutex_unlock(&workqueue_mutex);
720         }
721
722         if (err) {
723                 destroy_workqueue(wq);
724                 wq = NULL;
725         }
726         return wq;
727 }
728 EXPORT_SYMBOL_GPL(__create_workqueue);
729
730 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
731 {
732         struct wq_barrier barr;
733         int alive = 0;
734
735         spin_lock_irq(&cwq->lock);
736         if (cwq->thread != NULL) {
737                 insert_wq_barrier(cwq, &barr, 1);
738                 cwq->should_stop = 1;
739                 alive = 1;
740         }
741         spin_unlock_irq(&cwq->lock);
742
743         if (alive) {
744                 wait_for_completion(&barr.done);
745
746                 while (unlikely(cwq->thread != NULL))
747                         cpu_relax();
748                 /*
749                  * Wait until cwq->thread unlocks cwq->lock,
750                  * it won't touch *cwq after that.
751                  */
752                 smp_rmb();
753                 spin_unlock_wait(&cwq->lock);
754         }
755 }
756
757 /**
758  * destroy_workqueue - safely terminate a workqueue
759  * @wq: target workqueue
760  *
761  * Safely destroy a workqueue. All work currently pending will be done first.
762  */
763 void destroy_workqueue(struct workqueue_struct *wq)
764 {
765         const cpumask_t *cpu_map = wq_cpu_map(wq);
766         struct cpu_workqueue_struct *cwq;
767         int cpu;
768
769         mutex_lock(&workqueue_mutex);
770         list_del(&wq->list);
771         mutex_unlock(&workqueue_mutex);
772
773         for_each_cpu_mask(cpu, *cpu_map) {
774                 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
775                 cleanup_workqueue_thread(cwq, cpu);
776         }
777
778         free_percpu(wq->cpu_wq);
779         kfree(wq);
780 }
781 EXPORT_SYMBOL_GPL(destroy_workqueue);
782
783 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
784                                                 unsigned long action,
785                                                 void *hcpu)
786 {
787         unsigned int cpu = (unsigned long)hcpu;
788         struct cpu_workqueue_struct *cwq;
789         struct workqueue_struct *wq;
790
791         switch (action) {
792         case CPU_LOCK_ACQUIRE:
793                 mutex_lock(&workqueue_mutex);
794                 return NOTIFY_OK;
795
796         case CPU_LOCK_RELEASE:
797                 mutex_unlock(&workqueue_mutex);
798                 return NOTIFY_OK;
799
800         case CPU_UP_PREPARE:
801                 cpu_set(cpu, cpu_populated_map);
802         }
803
804         list_for_each_entry(wq, &workqueues, list) {
805                 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
806
807                 switch (action) {
808                 case CPU_UP_PREPARE:
809                         if (!create_workqueue_thread(cwq, cpu))
810                                 break;
811                         printk(KERN_ERR "workqueue for %i failed\n", cpu);
812                         return NOTIFY_BAD;
813
814                 case CPU_ONLINE:
815                         start_workqueue_thread(cwq, cpu);
816                         break;
817
818                 case CPU_UP_CANCELED:
819                         start_workqueue_thread(cwq, -1);
820                 case CPU_DEAD:
821                         cleanup_workqueue_thread(cwq, cpu);
822                         break;
823                 }
824         }
825
826         return NOTIFY_OK;
827 }
828
829 void __init init_workqueues(void)
830 {
831         cpu_populated_map = cpu_online_map;
832         singlethread_cpu = first_cpu(cpu_possible_map);
833         cpu_singlethread_map = cpumask_of_cpu(singlethread_cpu);
834         hotcpu_notifier(workqueue_cpu_callback, 0);
835         keventd_wq = create_workqueue("events");
836         BUG_ON(!keventd_wq);
837 }