sched: Keep kthreads at default priority
[safe/jmp/linux-2.6] / kernel / workqueue.c
1 /*
2  * linux/kernel/workqueue.c
3  *
4  * Generic mechanism for defining kernel helper threads for running
5  * arbitrary tasks in process context.
6  *
7  * Started by Ingo Molnar, Copyright (C) 2002
8  *
9  * Derived from the taskqueue/keventd code by:
10  *
11  *   David Woodhouse <dwmw2@infradead.org>
12  *   Andrew Morton
13  *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
14  *   Theodore Ts'o <tytso@mit.edu>
15  *
16  * Made to use alloc_percpu by Christoph Lameter.
17  */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35 #include <linux/lockdep.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/workqueue.h>
38
39 /*
40  * The per-CPU workqueue (if single thread, we always use the first
41  * possible cpu).
42  */
43 struct cpu_workqueue_struct {
44
45         spinlock_t lock;
46
47         struct list_head worklist;
48         wait_queue_head_t more_work;
49         struct work_struct *current_work;
50
51         struct workqueue_struct *wq;
52         struct task_struct *thread;
53 } ____cacheline_aligned;
54
55 /*
56  * The externally visible workqueue abstraction is an array of
57  * per-CPU workqueues:
58  */
59 struct workqueue_struct {
60         struct cpu_workqueue_struct *cpu_wq;
61         struct list_head list;
62         const char *name;
63         int singlethread;
64         int freezeable;         /* Freeze threads during suspend */
65         int rt;
66 #ifdef CONFIG_LOCKDEP
67         struct lockdep_map lockdep_map;
68 #endif
69 };
70
71 /* Serializes the accesses to the list of workqueues. */
72 static DEFINE_SPINLOCK(workqueue_lock);
73 static LIST_HEAD(workqueues);
74
75 static int singlethread_cpu __read_mostly;
76 static const struct cpumask *cpu_singlethread_map __read_mostly;
77 /*
78  * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
79  * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
80  * which comes in between can't use for_each_online_cpu(). We could
81  * use cpu_possible_map, the cpumask below is more a documentation
82  * than optimization.
83  */
84 static cpumask_var_t cpu_populated_map __read_mostly;
85
86 /* If it's single threaded, it isn't in the list of workqueues. */
87 static inline int is_wq_single_threaded(struct workqueue_struct *wq)
88 {
89         return wq->singlethread;
90 }
91
92 static const struct cpumask *wq_cpu_map(struct workqueue_struct *wq)
93 {
94         return is_wq_single_threaded(wq)
95                 ? cpu_singlethread_map : cpu_populated_map;
96 }
97
98 static
99 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
100 {
101         if (unlikely(is_wq_single_threaded(wq)))
102                 cpu = singlethread_cpu;
103         return per_cpu_ptr(wq->cpu_wq, cpu);
104 }
105
106 /*
107  * Set the workqueue on which a work item is to be run
108  * - Must *only* be called if the pending flag is set
109  */
110 static inline void set_wq_data(struct work_struct *work,
111                                 struct cpu_workqueue_struct *cwq)
112 {
113         unsigned long new;
114
115         BUG_ON(!work_pending(work));
116
117         new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
118         new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
119         atomic_long_set(&work->data, new);
120 }
121
122 static inline
123 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
124 {
125         return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
126 }
127
128 static void insert_work(struct cpu_workqueue_struct *cwq,
129                         struct work_struct *work, struct list_head *head)
130 {
131         trace_workqueue_insertion(cwq->thread, work);
132
133         set_wq_data(work, cwq);
134         /*
135          * Ensure that we get the right work->data if we see the
136          * result of list_add() below, see try_to_grab_pending().
137          */
138         smp_wmb();
139         list_add_tail(&work->entry, head);
140         wake_up(&cwq->more_work);
141 }
142
143 static void __queue_work(struct cpu_workqueue_struct *cwq,
144                          struct work_struct *work)
145 {
146         unsigned long flags;
147
148         spin_lock_irqsave(&cwq->lock, flags);
149         insert_work(cwq, work, &cwq->worklist);
150         spin_unlock_irqrestore(&cwq->lock, flags);
151 }
152
153 /**
154  * queue_work - queue work on a workqueue
155  * @wq: workqueue to use
156  * @work: work to queue
157  *
158  * Returns 0 if @work was already on a queue, non-zero otherwise.
159  *
160  * We queue the work to the CPU on which it was submitted, but if the CPU dies
161  * it can be processed by another CPU.
162  */
163 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
164 {
165         int ret;
166
167         ret = queue_work_on(get_cpu(), wq, work);
168         put_cpu();
169
170         return ret;
171 }
172 EXPORT_SYMBOL_GPL(queue_work);
173
174 /**
175  * queue_work_on - queue work on specific cpu
176  * @cpu: CPU number to execute work on
177  * @wq: workqueue to use
178  * @work: work to queue
179  *
180  * Returns 0 if @work was already on a queue, non-zero otherwise.
181  *
182  * We queue the work to a specific CPU, the caller must ensure it
183  * can't go away.
184  */
185 int
186 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
187 {
188         int ret = 0;
189
190         if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
191                 BUG_ON(!list_empty(&work->entry));
192                 __queue_work(wq_per_cpu(wq, cpu), work);
193                 ret = 1;
194         }
195         return ret;
196 }
197 EXPORT_SYMBOL_GPL(queue_work_on);
198
199 static void delayed_work_timer_fn(unsigned long __data)
200 {
201         struct delayed_work *dwork = (struct delayed_work *)__data;
202         struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
203         struct workqueue_struct *wq = cwq->wq;
204
205         __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
206 }
207
208 /**
209  * queue_delayed_work - queue work on a workqueue after delay
210  * @wq: workqueue to use
211  * @dwork: delayable work to queue
212  * @delay: number of jiffies to wait before queueing
213  *
214  * Returns 0 if @work was already on a queue, non-zero otherwise.
215  */
216 int queue_delayed_work(struct workqueue_struct *wq,
217                         struct delayed_work *dwork, unsigned long delay)
218 {
219         if (delay == 0)
220                 return queue_work(wq, &dwork->work);
221
222         return queue_delayed_work_on(-1, wq, dwork, delay);
223 }
224 EXPORT_SYMBOL_GPL(queue_delayed_work);
225
226 /**
227  * queue_delayed_work_on - queue work on specific CPU after delay
228  * @cpu: CPU number to execute work on
229  * @wq: workqueue to use
230  * @dwork: work to queue
231  * @delay: number of jiffies to wait before queueing
232  *
233  * Returns 0 if @work was already on a queue, non-zero otherwise.
234  */
235 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
236                         struct delayed_work *dwork, unsigned long delay)
237 {
238         int ret = 0;
239         struct timer_list *timer = &dwork->timer;
240         struct work_struct *work = &dwork->work;
241
242         if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
243                 BUG_ON(timer_pending(timer));
244                 BUG_ON(!list_empty(&work->entry));
245
246                 timer_stats_timer_set_start_info(&dwork->timer);
247
248                 /* This stores cwq for the moment, for the timer_fn */
249                 set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
250                 timer->expires = jiffies + delay;
251                 timer->data = (unsigned long)dwork;
252                 timer->function = delayed_work_timer_fn;
253
254                 if (unlikely(cpu >= 0))
255                         add_timer_on(timer, cpu);
256                 else
257                         add_timer(timer);
258                 ret = 1;
259         }
260         return ret;
261 }
262 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
263
264 static void run_workqueue(struct cpu_workqueue_struct *cwq)
265 {
266         spin_lock_irq(&cwq->lock);
267         while (!list_empty(&cwq->worklist)) {
268                 struct work_struct *work = list_entry(cwq->worklist.next,
269                                                 struct work_struct, entry);
270                 work_func_t f = work->func;
271 #ifdef CONFIG_LOCKDEP
272                 /*
273                  * It is permissible to free the struct work_struct
274                  * from inside the function that is called from it,
275                  * this we need to take into account for lockdep too.
276                  * To avoid bogus "held lock freed" warnings as well
277                  * as problems when looking into work->lockdep_map,
278                  * make a copy and use that here.
279                  */
280                 struct lockdep_map lockdep_map = work->lockdep_map;
281 #endif
282                 trace_workqueue_execution(cwq->thread, work);
283                 cwq->current_work = work;
284                 list_del_init(cwq->worklist.next);
285                 spin_unlock_irq(&cwq->lock);
286
287                 BUG_ON(get_wq_data(work) != cwq);
288                 work_clear_pending(work);
289                 lock_map_acquire(&cwq->wq->lockdep_map);
290                 lock_map_acquire(&lockdep_map);
291                 f(work);
292                 lock_map_release(&lockdep_map);
293                 lock_map_release(&cwq->wq->lockdep_map);
294
295                 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
296                         printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
297                                         "%s/0x%08x/%d\n",
298                                         current->comm, preempt_count(),
299                                         task_pid_nr(current));
300                         printk(KERN_ERR "    last function: ");
301                         print_symbol("%s\n", (unsigned long)f);
302                         debug_show_held_locks(current);
303                         dump_stack();
304                 }
305
306                 spin_lock_irq(&cwq->lock);
307                 cwq->current_work = NULL;
308         }
309         spin_unlock_irq(&cwq->lock);
310 }
311
312 static int worker_thread(void *__cwq)
313 {
314         struct cpu_workqueue_struct *cwq = __cwq;
315         DEFINE_WAIT(wait);
316
317         if (cwq->wq->freezeable)
318                 set_freezable();
319
320         for (;;) {
321                 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
322                 if (!freezing(current) &&
323                     !kthread_should_stop() &&
324                     list_empty(&cwq->worklist))
325                         schedule();
326                 finish_wait(&cwq->more_work, &wait);
327
328                 try_to_freeze();
329
330                 if (kthread_should_stop())
331                         break;
332
333                 run_workqueue(cwq);
334         }
335
336         return 0;
337 }
338
339 struct wq_barrier {
340         struct work_struct      work;
341         struct completion       done;
342 };
343
344 static void wq_barrier_func(struct work_struct *work)
345 {
346         struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
347         complete(&barr->done);
348 }
349
350 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
351                         struct wq_barrier *barr, struct list_head *head)
352 {
353         INIT_WORK(&barr->work, wq_barrier_func);
354         __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
355
356         init_completion(&barr->done);
357
358         insert_work(cwq, &barr->work, head);
359 }
360
361 static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
362 {
363         int active = 0;
364         struct wq_barrier barr;
365
366         WARN_ON(cwq->thread == current);
367
368         spin_lock_irq(&cwq->lock);
369         if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
370                 insert_wq_barrier(cwq, &barr, &cwq->worklist);
371                 active = 1;
372         }
373         spin_unlock_irq(&cwq->lock);
374
375         if (active)
376                 wait_for_completion(&barr.done);
377
378         return active;
379 }
380
381 /**
382  * flush_workqueue - ensure that any scheduled work has run to completion.
383  * @wq: workqueue to flush
384  *
385  * Forces execution of the workqueue and blocks until its completion.
386  * This is typically used in driver shutdown handlers.
387  *
388  * We sleep until all works which were queued on entry have been handled,
389  * but we are not livelocked by new incoming ones.
390  *
391  * This function used to run the workqueues itself.  Now we just wait for the
392  * helper threads to do it.
393  */
394 void flush_workqueue(struct workqueue_struct *wq)
395 {
396         const struct cpumask *cpu_map = wq_cpu_map(wq);
397         int cpu;
398
399         might_sleep();
400         lock_map_acquire(&wq->lockdep_map);
401         lock_map_release(&wq->lockdep_map);
402         for_each_cpu(cpu, cpu_map)
403                 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
404 }
405 EXPORT_SYMBOL_GPL(flush_workqueue);
406
407 /**
408  * flush_work - block until a work_struct's callback has terminated
409  * @work: the work which is to be flushed
410  *
411  * Returns false if @work has already terminated.
412  *
413  * It is expected that, prior to calling flush_work(), the caller has
414  * arranged for the work to not be requeued, otherwise it doesn't make
415  * sense to use this function.
416  */
417 int flush_work(struct work_struct *work)
418 {
419         struct cpu_workqueue_struct *cwq;
420         struct list_head *prev;
421         struct wq_barrier barr;
422
423         might_sleep();
424         cwq = get_wq_data(work);
425         if (!cwq)
426                 return 0;
427
428         lock_map_acquire(&cwq->wq->lockdep_map);
429         lock_map_release(&cwq->wq->lockdep_map);
430
431         prev = NULL;
432         spin_lock_irq(&cwq->lock);
433         if (!list_empty(&work->entry)) {
434                 /*
435                  * See the comment near try_to_grab_pending()->smp_rmb().
436                  * If it was re-queued under us we are not going to wait.
437                  */
438                 smp_rmb();
439                 if (unlikely(cwq != get_wq_data(work)))
440                         goto out;
441                 prev = &work->entry;
442         } else {
443                 if (cwq->current_work != work)
444                         goto out;
445                 prev = &cwq->worklist;
446         }
447         insert_wq_barrier(cwq, &barr, prev->next);
448 out:
449         spin_unlock_irq(&cwq->lock);
450         if (!prev)
451                 return 0;
452
453         wait_for_completion(&barr.done);
454         return 1;
455 }
456 EXPORT_SYMBOL_GPL(flush_work);
457
458 /*
459  * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
460  * so this work can't be re-armed in any way.
461  */
462 static int try_to_grab_pending(struct work_struct *work)
463 {
464         struct cpu_workqueue_struct *cwq;
465         int ret = -1;
466
467         if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
468                 return 0;
469
470         /*
471          * The queueing is in progress, or it is already queued. Try to
472          * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
473          */
474
475         cwq = get_wq_data(work);
476         if (!cwq)
477                 return ret;
478
479         spin_lock_irq(&cwq->lock);
480         if (!list_empty(&work->entry)) {
481                 /*
482                  * This work is queued, but perhaps we locked the wrong cwq.
483                  * In that case we must see the new value after rmb(), see
484                  * insert_work()->wmb().
485                  */
486                 smp_rmb();
487                 if (cwq == get_wq_data(work)) {
488                         list_del_init(&work->entry);
489                         ret = 1;
490                 }
491         }
492         spin_unlock_irq(&cwq->lock);
493
494         return ret;
495 }
496
497 static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
498                                 struct work_struct *work)
499 {
500         struct wq_barrier barr;
501         int running = 0;
502
503         spin_lock_irq(&cwq->lock);
504         if (unlikely(cwq->current_work == work)) {
505                 insert_wq_barrier(cwq, &barr, cwq->worklist.next);
506                 running = 1;
507         }
508         spin_unlock_irq(&cwq->lock);
509
510         if (unlikely(running))
511                 wait_for_completion(&barr.done);
512 }
513
514 static void wait_on_work(struct work_struct *work)
515 {
516         struct cpu_workqueue_struct *cwq;
517         struct workqueue_struct *wq;
518         const struct cpumask *cpu_map;
519         int cpu;
520
521         might_sleep();
522
523         lock_map_acquire(&work->lockdep_map);
524         lock_map_release(&work->lockdep_map);
525
526         cwq = get_wq_data(work);
527         if (!cwq)
528                 return;
529
530         wq = cwq->wq;
531         cpu_map = wq_cpu_map(wq);
532
533         for_each_cpu(cpu, cpu_map)
534                 wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
535 }
536
537 static int __cancel_work_timer(struct work_struct *work,
538                                 struct timer_list* timer)
539 {
540         int ret;
541
542         do {
543                 ret = (timer && likely(del_timer(timer)));
544                 if (!ret)
545                         ret = try_to_grab_pending(work);
546                 wait_on_work(work);
547         } while (unlikely(ret < 0));
548
549         work_clear_pending(work);
550         return ret;
551 }
552
553 /**
554  * cancel_work_sync - block until a work_struct's callback has terminated
555  * @work: the work which is to be flushed
556  *
557  * Returns true if @work was pending.
558  *
559  * cancel_work_sync() will cancel the work if it is queued. If the work's
560  * callback appears to be running, cancel_work_sync() will block until it
561  * has completed.
562  *
563  * It is possible to use this function if the work re-queues itself. It can
564  * cancel the work even if it migrates to another workqueue, however in that
565  * case it only guarantees that work->func() has completed on the last queued
566  * workqueue.
567  *
568  * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
569  * pending, otherwise it goes into a busy-wait loop until the timer expires.
570  *
571  * The caller must ensure that workqueue_struct on which this work was last
572  * queued can't be destroyed before this function returns.
573  */
574 int cancel_work_sync(struct work_struct *work)
575 {
576         return __cancel_work_timer(work, NULL);
577 }
578 EXPORT_SYMBOL_GPL(cancel_work_sync);
579
580 /**
581  * cancel_delayed_work_sync - reliably kill off a delayed work.
582  * @dwork: the delayed work struct
583  *
584  * Returns true if @dwork was pending.
585  *
586  * It is possible to use this function if @dwork rearms itself via queue_work()
587  * or queue_delayed_work(). See also the comment for cancel_work_sync().
588  */
589 int cancel_delayed_work_sync(struct delayed_work *dwork)
590 {
591         return __cancel_work_timer(&dwork->work, &dwork->timer);
592 }
593 EXPORT_SYMBOL(cancel_delayed_work_sync);
594
595 static struct workqueue_struct *keventd_wq __read_mostly;
596
597 /**
598  * schedule_work - put work task in global workqueue
599  * @work: job to be done
600  *
601  * This puts a job in the kernel-global workqueue.
602  */
603 int schedule_work(struct work_struct *work)
604 {
605         return queue_work(keventd_wq, work);
606 }
607 EXPORT_SYMBOL(schedule_work);
608
609 /*
610  * schedule_work_on - put work task on a specific cpu
611  * @cpu: cpu to put the work task on
612  * @work: job to be done
613  *
614  * This puts a job on a specific cpu
615  */
616 int schedule_work_on(int cpu, struct work_struct *work)
617 {
618         return queue_work_on(cpu, keventd_wq, work);
619 }
620 EXPORT_SYMBOL(schedule_work_on);
621
622 /**
623  * schedule_delayed_work - put work task in global workqueue after delay
624  * @dwork: job to be done
625  * @delay: number of jiffies to wait or 0 for immediate execution
626  *
627  * After waiting for a given time this puts a job in the kernel-global
628  * workqueue.
629  */
630 int schedule_delayed_work(struct delayed_work *dwork,
631                                         unsigned long delay)
632 {
633         return queue_delayed_work(keventd_wq, dwork, delay);
634 }
635 EXPORT_SYMBOL(schedule_delayed_work);
636
637 /**
638  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
639  * @cpu: cpu to use
640  * @dwork: job to be done
641  * @delay: number of jiffies to wait
642  *
643  * After waiting for a given time this puts a job in the kernel-global
644  * workqueue on the specified CPU.
645  */
646 int schedule_delayed_work_on(int cpu,
647                         struct delayed_work *dwork, unsigned long delay)
648 {
649         return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
650 }
651 EXPORT_SYMBOL(schedule_delayed_work_on);
652
653 /**
654  * schedule_on_each_cpu - call a function on each online CPU from keventd
655  * @func: the function to call
656  *
657  * Returns zero on success.
658  * Returns -ve errno on failure.
659  *
660  * schedule_on_each_cpu() is very slow.
661  */
662 int schedule_on_each_cpu(work_func_t func)
663 {
664         int cpu;
665         struct work_struct *works;
666
667         works = alloc_percpu(struct work_struct);
668         if (!works)
669                 return -ENOMEM;
670
671         get_online_cpus();
672         for_each_online_cpu(cpu) {
673                 struct work_struct *work = per_cpu_ptr(works, cpu);
674
675                 INIT_WORK(work, func);
676                 schedule_work_on(cpu, work);
677         }
678         for_each_online_cpu(cpu)
679                 flush_work(per_cpu_ptr(works, cpu));
680         put_online_cpus();
681         free_percpu(works);
682         return 0;
683 }
684
685 void flush_scheduled_work(void)
686 {
687         flush_workqueue(keventd_wq);
688 }
689 EXPORT_SYMBOL(flush_scheduled_work);
690
691 /**
692  * execute_in_process_context - reliably execute the routine with user context
693  * @fn:         the function to execute
694  * @ew:         guaranteed storage for the execute work structure (must
695  *              be available when the work executes)
696  *
697  * Executes the function immediately if process context is available,
698  * otherwise schedules the function for delayed execution.
699  *
700  * Returns:     0 - function was executed
701  *              1 - function was scheduled for execution
702  */
703 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
704 {
705         if (!in_interrupt()) {
706                 fn(&ew->work);
707                 return 0;
708         }
709
710         INIT_WORK(&ew->work, fn);
711         schedule_work(&ew->work);
712
713         return 1;
714 }
715 EXPORT_SYMBOL_GPL(execute_in_process_context);
716
717 int keventd_up(void)
718 {
719         return keventd_wq != NULL;
720 }
721
722 int current_is_keventd(void)
723 {
724         struct cpu_workqueue_struct *cwq;
725         int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
726         int ret = 0;
727
728         BUG_ON(!keventd_wq);
729
730         cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
731         if (current == cwq->thread)
732                 ret = 1;
733
734         return ret;
735
736 }
737
738 static struct cpu_workqueue_struct *
739 init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
740 {
741         struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
742
743         cwq->wq = wq;
744         spin_lock_init(&cwq->lock);
745         INIT_LIST_HEAD(&cwq->worklist);
746         init_waitqueue_head(&cwq->more_work);
747
748         return cwq;
749 }
750
751 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
752 {
753         struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
754         struct workqueue_struct *wq = cwq->wq;
755         const char *fmt = is_wq_single_threaded(wq) ? "%s" : "%s/%d";
756         struct task_struct *p;
757
758         p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
759         /*
760          * Nobody can add the work_struct to this cwq,
761          *      if (caller is __create_workqueue)
762          *              nobody should see this wq
763          *      else // caller is CPU_UP_PREPARE
764          *              cpu is not on cpu_online_map
765          * so we can abort safely.
766          */
767         if (IS_ERR(p))
768                 return PTR_ERR(p);
769         if (cwq->wq->rt)
770                 sched_setscheduler_nocheck(p, SCHED_FIFO, &param);
771         cwq->thread = p;
772
773         trace_workqueue_creation(cwq->thread, cpu);
774
775         return 0;
776 }
777
778 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
779 {
780         struct task_struct *p = cwq->thread;
781
782         if (p != NULL) {
783                 if (cpu >= 0)
784                         kthread_bind(p, cpu);
785                 wake_up_process(p);
786         }
787 }
788
789 struct workqueue_struct *__create_workqueue_key(const char *name,
790                                                 int singlethread,
791                                                 int freezeable,
792                                                 int rt,
793                                                 struct lock_class_key *key,
794                                                 const char *lock_name)
795 {
796         struct workqueue_struct *wq;
797         struct cpu_workqueue_struct *cwq;
798         int err = 0, cpu;
799
800         wq = kzalloc(sizeof(*wq), GFP_KERNEL);
801         if (!wq)
802                 return NULL;
803
804         wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
805         if (!wq->cpu_wq) {
806                 kfree(wq);
807                 return NULL;
808         }
809
810         wq->name = name;
811         lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
812         wq->singlethread = singlethread;
813         wq->freezeable = freezeable;
814         wq->rt = rt;
815         INIT_LIST_HEAD(&wq->list);
816
817         if (singlethread) {
818                 cwq = init_cpu_workqueue(wq, singlethread_cpu);
819                 err = create_workqueue_thread(cwq, singlethread_cpu);
820                 start_workqueue_thread(cwq, -1);
821         } else {
822                 cpu_maps_update_begin();
823                 /*
824                  * We must place this wq on list even if the code below fails.
825                  * cpu_down(cpu) can remove cpu from cpu_populated_map before
826                  * destroy_workqueue() takes the lock, in that case we leak
827                  * cwq[cpu]->thread.
828                  */
829                 spin_lock(&workqueue_lock);
830                 list_add(&wq->list, &workqueues);
831                 spin_unlock(&workqueue_lock);
832                 /*
833                  * We must initialize cwqs for each possible cpu even if we
834                  * are going to call destroy_workqueue() finally. Otherwise
835                  * cpu_up() can hit the uninitialized cwq once we drop the
836                  * lock.
837                  */
838                 for_each_possible_cpu(cpu) {
839                         cwq = init_cpu_workqueue(wq, cpu);
840                         if (err || !cpu_online(cpu))
841                                 continue;
842                         err = create_workqueue_thread(cwq, cpu);
843                         start_workqueue_thread(cwq, cpu);
844                 }
845                 cpu_maps_update_done();
846         }
847
848         if (err) {
849                 destroy_workqueue(wq);
850                 wq = NULL;
851         }
852         return wq;
853 }
854 EXPORT_SYMBOL_GPL(__create_workqueue_key);
855
856 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq)
857 {
858         /*
859          * Our caller is either destroy_workqueue() or CPU_POST_DEAD,
860          * cpu_add_remove_lock protects cwq->thread.
861          */
862         if (cwq->thread == NULL)
863                 return;
864
865         lock_map_acquire(&cwq->wq->lockdep_map);
866         lock_map_release(&cwq->wq->lockdep_map);
867
868         flush_cpu_workqueue(cwq);
869         /*
870          * If the caller is CPU_POST_DEAD and cwq->worklist was not empty,
871          * a concurrent flush_workqueue() can insert a barrier after us.
872          * However, in that case run_workqueue() won't return and check
873          * kthread_should_stop() until it flushes all work_struct's.
874          * When ->worklist becomes empty it is safe to exit because no
875          * more work_structs can be queued on this cwq: flush_workqueue
876          * checks list_empty(), and a "normal" queue_work() can't use
877          * a dead CPU.
878          */
879         trace_workqueue_destruction(cwq->thread);
880         kthread_stop(cwq->thread);
881         cwq->thread = NULL;
882 }
883
884 /**
885  * destroy_workqueue - safely terminate a workqueue
886  * @wq: target workqueue
887  *
888  * Safely destroy a workqueue. All work currently pending will be done first.
889  */
890 void destroy_workqueue(struct workqueue_struct *wq)
891 {
892         const struct cpumask *cpu_map = wq_cpu_map(wq);
893         int cpu;
894
895         cpu_maps_update_begin();
896         spin_lock(&workqueue_lock);
897         list_del(&wq->list);
898         spin_unlock(&workqueue_lock);
899
900         for_each_cpu(cpu, cpu_map)
901                 cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu));
902         cpu_maps_update_done();
903
904         free_percpu(wq->cpu_wq);
905         kfree(wq);
906 }
907 EXPORT_SYMBOL_GPL(destroy_workqueue);
908
909 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
910                                                 unsigned long action,
911                                                 void *hcpu)
912 {
913         unsigned int cpu = (unsigned long)hcpu;
914         struct cpu_workqueue_struct *cwq;
915         struct workqueue_struct *wq;
916         int ret = NOTIFY_OK;
917
918         action &= ~CPU_TASKS_FROZEN;
919
920         switch (action) {
921         case CPU_UP_PREPARE:
922                 cpumask_set_cpu(cpu, cpu_populated_map);
923         }
924 undo:
925         list_for_each_entry(wq, &workqueues, list) {
926                 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
927
928                 switch (action) {
929                 case CPU_UP_PREPARE:
930                         if (!create_workqueue_thread(cwq, cpu))
931                                 break;
932                         printk(KERN_ERR "workqueue [%s] for %i failed\n",
933                                 wq->name, cpu);
934                         action = CPU_UP_CANCELED;
935                         ret = NOTIFY_BAD;
936                         goto undo;
937
938                 case CPU_ONLINE:
939                         start_workqueue_thread(cwq, cpu);
940                         break;
941
942                 case CPU_UP_CANCELED:
943                         start_workqueue_thread(cwq, -1);
944                 case CPU_POST_DEAD:
945                         cleanup_workqueue_thread(cwq);
946                         break;
947                 }
948         }
949
950         switch (action) {
951         case CPU_UP_CANCELED:
952         case CPU_POST_DEAD:
953                 cpumask_clear_cpu(cpu, cpu_populated_map);
954         }
955
956         return ret;
957 }
958
959 #ifdef CONFIG_SMP
960
961 struct work_for_cpu {
962         struct completion completion;
963         long (*fn)(void *);
964         void *arg;
965         long ret;
966 };
967
968 static int do_work_for_cpu(void *_wfc)
969 {
970         struct work_for_cpu *wfc = _wfc;
971         wfc->ret = wfc->fn(wfc->arg);
972         complete(&wfc->completion);
973         return 0;
974 }
975
976 /**
977  * work_on_cpu - run a function in user context on a particular cpu
978  * @cpu: the cpu to run on
979  * @fn: the function to run
980  * @arg: the function arg
981  *
982  * This will return the value @fn returns.
983  * It is up to the caller to ensure that the cpu doesn't go offline.
984  * The caller must not hold any locks which would prevent @fn from completing.
985  */
986 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
987 {
988         struct task_struct *sub_thread;
989         struct work_for_cpu wfc = {
990                 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
991                 .fn = fn,
992                 .arg = arg,
993         };
994
995         sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
996         if (IS_ERR(sub_thread))
997                 return PTR_ERR(sub_thread);
998         kthread_bind(sub_thread, cpu);
999         wake_up_process(sub_thread);
1000         wait_for_completion(&wfc.completion);
1001         return wfc.ret;
1002 }
1003 EXPORT_SYMBOL_GPL(work_on_cpu);
1004 #endif /* CONFIG_SMP */
1005
1006 void __init init_workqueues(void)
1007 {
1008         alloc_cpumask_var(&cpu_populated_map, GFP_KERNEL);
1009
1010         cpumask_copy(cpu_populated_map, cpu_online_mask);
1011         singlethread_cpu = cpumask_first(cpu_possible_mask);
1012         cpu_singlethread_map = cpumask_of(singlethread_cpu);
1013         hotcpu_notifier(workqueue_cpu_callback, 0);
1014         keventd_wq = create_workqueue("events");
1015         BUG_ON(!keventd_wq);
1016 }