worker_thread: don't play with SIGCHLD and numa policy
[safe/jmp/linux-2.6] / kernel / workqueue.c
1 /*
2  * linux/kernel/workqueue.c
3  *
4  * Generic mechanism for defining kernel helper threads for running
5  * arbitrary tasks in process context.
6  *
7  * Started by Ingo Molnar, Copyright (C) 2002
8  *
9  * Derived from the taskqueue/keventd code by:
10  *
11  *   David Woodhouse <dwmw2@infradead.org>
12  *   Andrew Morton <andrewm@uow.edu.au>
13  *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
14  *   Theodore Ts'o <tytso@mit.edu>
15  *
16  * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
17  */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35
36 /*
37  * The per-CPU workqueue (if single thread, we always use the first
38  * possible cpu).
39  */
40 struct cpu_workqueue_struct {
41
42         spinlock_t lock;
43
44         struct list_head worklist;
45         wait_queue_head_t more_work;
46         struct work_struct *current_work;
47
48         struct workqueue_struct *wq;
49         struct task_struct *thread;
50         int should_stop;
51
52         int run_depth;          /* Detect run_workqueue() recursion depth */
53 } ____cacheline_aligned;
54
55 /*
56  * The externally visible workqueue abstraction is an array of
57  * per-CPU workqueues:
58  */
59 struct workqueue_struct {
60         struct cpu_workqueue_struct *cpu_wq;
61         struct list_head list;
62         const char *name;
63         int singlethread;
64         int freezeable;         /* Freeze threads during suspend */
65 };
66
67 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
68    threads to each one as cpus come/go. */
69 static DEFINE_MUTEX(workqueue_mutex);
70 static LIST_HEAD(workqueues);
71
72 static int singlethread_cpu __read_mostly;
73 static cpumask_t cpu_singlethread_map __read_mostly;
74 /* optimization, we could use cpu_possible_map */
75 static cpumask_t cpu_populated_map __read_mostly;
76
77 /* If it's single threaded, it isn't in the list of workqueues. */
78 static inline int is_single_threaded(struct workqueue_struct *wq)
79 {
80         return wq->singlethread;
81 }
82
83 static const cpumask_t *wq_cpu_map(struct workqueue_struct *wq)
84 {
85         return is_single_threaded(wq)
86                 ? &cpu_singlethread_map : &cpu_populated_map;
87 }
88
89 static
90 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
91 {
92         if (unlikely(is_single_threaded(wq)))
93                 cpu = singlethread_cpu;
94         return per_cpu_ptr(wq->cpu_wq, cpu);
95 }
96
97 /*
98  * Set the workqueue on which a work item is to be run
99  * - Must *only* be called if the pending flag is set
100  */
101 static inline void set_wq_data(struct work_struct *work,
102                                 struct cpu_workqueue_struct *cwq)
103 {
104         unsigned long new;
105
106         BUG_ON(!work_pending(work));
107
108         new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
109         new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
110         atomic_long_set(&work->data, new);
111 }
112
113 static inline
114 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
115 {
116         return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
117 }
118
119 static void insert_work(struct cpu_workqueue_struct *cwq,
120                                 struct work_struct *work, int tail)
121 {
122         set_wq_data(work, cwq);
123         if (tail)
124                 list_add_tail(&work->entry, &cwq->worklist);
125         else
126                 list_add(&work->entry, &cwq->worklist);
127         wake_up(&cwq->more_work);
128 }
129
130 /* Preempt must be disabled. */
131 static void __queue_work(struct cpu_workqueue_struct *cwq,
132                          struct work_struct *work)
133 {
134         unsigned long flags;
135
136         spin_lock_irqsave(&cwq->lock, flags);
137         insert_work(cwq, work, 1);
138         spin_unlock_irqrestore(&cwq->lock, flags);
139 }
140
141 /**
142  * queue_work - queue work on a workqueue
143  * @wq: workqueue to use
144  * @work: work to queue
145  *
146  * Returns 0 if @work was already on a queue, non-zero otherwise.
147  *
148  * We queue the work to the CPU it was submitted, but there is no
149  * guarantee that it will be processed by that CPU.
150  */
151 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
152 {
153         int ret = 0;
154
155         if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
156                 BUG_ON(!list_empty(&work->entry));
157                 __queue_work(wq_per_cpu(wq, get_cpu()), work);
158                 put_cpu();
159                 ret = 1;
160         }
161         return ret;
162 }
163 EXPORT_SYMBOL_GPL(queue_work);
164
165 void delayed_work_timer_fn(unsigned long __data)
166 {
167         struct delayed_work *dwork = (struct delayed_work *)__data;
168         struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
169         struct workqueue_struct *wq = cwq->wq;
170
171         __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
172 }
173
174 /**
175  * queue_delayed_work - queue work on a workqueue after delay
176  * @wq: workqueue to use
177  * @dwork: delayable work to queue
178  * @delay: number of jiffies to wait before queueing
179  *
180  * Returns 0 if @work was already on a queue, non-zero otherwise.
181  */
182 int fastcall queue_delayed_work(struct workqueue_struct *wq,
183                         struct delayed_work *dwork, unsigned long delay)
184 {
185         timer_stats_timer_set_start_info(&dwork->timer);
186         if (delay == 0)
187                 return queue_work(wq, &dwork->work);
188
189         return queue_delayed_work_on(-1, wq, dwork, delay);
190 }
191 EXPORT_SYMBOL_GPL(queue_delayed_work);
192
193 /**
194  * queue_delayed_work_on - queue work on specific CPU after delay
195  * @cpu: CPU number to execute work on
196  * @wq: workqueue to use
197  * @dwork: work to queue
198  * @delay: number of jiffies to wait before queueing
199  *
200  * Returns 0 if @work was already on a queue, non-zero otherwise.
201  */
202 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
203                         struct delayed_work *dwork, unsigned long delay)
204 {
205         int ret = 0;
206         struct timer_list *timer = &dwork->timer;
207         struct work_struct *work = &dwork->work;
208
209         if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
210                 BUG_ON(timer_pending(timer));
211                 BUG_ON(!list_empty(&work->entry));
212
213                 /* This stores cwq for the moment, for the timer_fn */
214                 set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
215                 timer->expires = jiffies + delay;
216                 timer->data = (unsigned long)dwork;
217                 timer->function = delayed_work_timer_fn;
218
219                 if (unlikely(cpu >= 0))
220                         add_timer_on(timer, cpu);
221                 else
222                         add_timer(timer);
223                 ret = 1;
224         }
225         return ret;
226 }
227 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
228
229 static void run_workqueue(struct cpu_workqueue_struct *cwq)
230 {
231         spin_lock_irq(&cwq->lock);
232         cwq->run_depth++;
233         if (cwq->run_depth > 3) {
234                 /* morton gets to eat his hat */
235                 printk("%s: recursion depth exceeded: %d\n",
236                         __FUNCTION__, cwq->run_depth);
237                 dump_stack();
238         }
239         while (!list_empty(&cwq->worklist)) {
240                 struct work_struct *work = list_entry(cwq->worklist.next,
241                                                 struct work_struct, entry);
242                 work_func_t f = work->func;
243
244                 cwq->current_work = work;
245                 list_del_init(cwq->worklist.next);
246                 spin_unlock_irq(&cwq->lock);
247
248                 BUG_ON(get_wq_data(work) != cwq);
249                 work_clear_pending(work);
250                 f(work);
251
252                 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
253                         printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
254                                         "%s/0x%08x/%d\n",
255                                         current->comm, preempt_count(),
256                                         current->pid);
257                         printk(KERN_ERR "    last function: ");
258                         print_symbol("%s\n", (unsigned long)f);
259                         debug_show_held_locks(current);
260                         dump_stack();
261                 }
262
263                 spin_lock_irq(&cwq->lock);
264                 cwq->current_work = NULL;
265         }
266         cwq->run_depth--;
267         spin_unlock_irq(&cwq->lock);
268 }
269
270 /*
271  * NOTE: the caller must not touch *cwq if this func returns true
272  */
273 static int cwq_should_stop(struct cpu_workqueue_struct *cwq)
274 {
275         int should_stop = cwq->should_stop;
276
277         if (unlikely(should_stop)) {
278                 spin_lock_irq(&cwq->lock);
279                 should_stop = cwq->should_stop && list_empty(&cwq->worklist);
280                 if (should_stop)
281                         cwq->thread = NULL;
282                 spin_unlock_irq(&cwq->lock);
283         }
284
285         return should_stop;
286 }
287
288 static int worker_thread(void *__cwq)
289 {
290         struct cpu_workqueue_struct *cwq = __cwq;
291         DEFINE_WAIT(wait);
292
293         if (!cwq->wq->freezeable)
294                 current->flags |= PF_NOFREEZE;
295
296         set_user_nice(current, -5);
297
298         for (;;) {
299                 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
300                 if (!freezing(current) && !cwq->should_stop
301                     && list_empty(&cwq->worklist))
302                         schedule();
303                 finish_wait(&cwq->more_work, &wait);
304
305                 try_to_freeze();
306
307                 if (cwq_should_stop(cwq))
308                         break;
309
310                 run_workqueue(cwq);
311         }
312
313         return 0;
314 }
315
316 struct wq_barrier {
317         struct work_struct      work;
318         struct completion       done;
319 };
320
321 static void wq_barrier_func(struct work_struct *work)
322 {
323         struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
324         complete(&barr->done);
325 }
326
327 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
328                                         struct wq_barrier *barr, int tail)
329 {
330         INIT_WORK(&barr->work, wq_barrier_func);
331         __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
332
333         init_completion(&barr->done);
334
335         insert_work(cwq, &barr->work, tail);
336 }
337
338 static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
339 {
340         if (cwq->thread == current) {
341                 /*
342                  * Probably keventd trying to flush its own queue. So simply run
343                  * it by hand rather than deadlocking.
344                  */
345                 run_workqueue(cwq);
346         } else {
347                 struct wq_barrier barr;
348                 int active = 0;
349
350                 spin_lock_irq(&cwq->lock);
351                 if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
352                         insert_wq_barrier(cwq, &barr, 1);
353                         active = 1;
354                 }
355                 spin_unlock_irq(&cwq->lock);
356
357                 if (active)
358                         wait_for_completion(&barr.done);
359         }
360 }
361
362 /**
363  * flush_workqueue - ensure that any scheduled work has run to completion.
364  * @wq: workqueue to flush
365  *
366  * Forces execution of the workqueue and blocks until its completion.
367  * This is typically used in driver shutdown handlers.
368  *
369  * We sleep until all works which were queued on entry have been handled,
370  * but we are not livelocked by new incoming ones.
371  *
372  * This function used to run the workqueues itself.  Now we just wait for the
373  * helper threads to do it.
374  */
375 void fastcall flush_workqueue(struct workqueue_struct *wq)
376 {
377         const cpumask_t *cpu_map = wq_cpu_map(wq);
378         int cpu;
379
380         might_sleep();
381         for_each_cpu_mask(cpu, *cpu_map)
382                 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
383 }
384 EXPORT_SYMBOL_GPL(flush_workqueue);
385
386 static void wait_on_work(struct cpu_workqueue_struct *cwq,
387                                 struct work_struct *work)
388 {
389         struct wq_barrier barr;
390         int running = 0;
391
392         spin_lock_irq(&cwq->lock);
393         if (unlikely(cwq->current_work == work)) {
394                 insert_wq_barrier(cwq, &barr, 0);
395                 running = 1;
396         }
397         spin_unlock_irq(&cwq->lock);
398
399         if (unlikely(running))
400                 wait_for_completion(&barr.done);
401 }
402
403 /**
404  * cancel_work_sync - block until a work_struct's callback has terminated
405  * @work: the work which is to be flushed
406  *
407  * cancel_work_sync() will attempt to cancel the work if it is queued. If the
408  * work's callback appears to be running, cancel_work_sync() will block until
409  * it has completed.
410  *
411  * cancel_work_sync() is designed to be used when the caller is tearing down
412  * data structures which the callback function operates upon. It is expected
413  * that, prior to calling cancel_work_sync(), the caller has arranged for the
414  * work to not be requeued.
415  */
416 void cancel_work_sync(struct work_struct *work)
417 {
418         struct cpu_workqueue_struct *cwq;
419         struct workqueue_struct *wq;
420         const cpumask_t *cpu_map;
421         int cpu;
422
423         might_sleep();
424
425         cwq = get_wq_data(work);
426         /* Was it ever queued ? */
427         if (!cwq)
428                 return;
429
430         /*
431          * This work can't be re-queued, no need to re-check that
432          * get_wq_data() is still the same when we take cwq->lock.
433          */
434         spin_lock_irq(&cwq->lock);
435         list_del_init(&work->entry);
436         work_clear_pending(work);
437         spin_unlock_irq(&cwq->lock);
438
439         wq = cwq->wq;
440         cpu_map = wq_cpu_map(wq);
441
442         for_each_cpu_mask(cpu, *cpu_map)
443                 wait_on_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
444 }
445 EXPORT_SYMBOL_GPL(cancel_work_sync);
446
447
448 static struct workqueue_struct *keventd_wq;
449
450 /**
451  * schedule_work - put work task in global workqueue
452  * @work: job to be done
453  *
454  * This puts a job in the kernel-global workqueue.
455  */
456 int fastcall schedule_work(struct work_struct *work)
457 {
458         return queue_work(keventd_wq, work);
459 }
460 EXPORT_SYMBOL(schedule_work);
461
462 /**
463  * schedule_delayed_work - put work task in global workqueue after delay
464  * @dwork: job to be done
465  * @delay: number of jiffies to wait or 0 for immediate execution
466  *
467  * After waiting for a given time this puts a job in the kernel-global
468  * workqueue.
469  */
470 int fastcall schedule_delayed_work(struct delayed_work *dwork,
471                                         unsigned long delay)
472 {
473         timer_stats_timer_set_start_info(&dwork->timer);
474         return queue_delayed_work(keventd_wq, dwork, delay);
475 }
476 EXPORT_SYMBOL(schedule_delayed_work);
477
478 /**
479  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
480  * @cpu: cpu to use
481  * @dwork: job to be done
482  * @delay: number of jiffies to wait
483  *
484  * After waiting for a given time this puts a job in the kernel-global
485  * workqueue on the specified CPU.
486  */
487 int schedule_delayed_work_on(int cpu,
488                         struct delayed_work *dwork, unsigned long delay)
489 {
490         return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
491 }
492 EXPORT_SYMBOL(schedule_delayed_work_on);
493
494 /**
495  * schedule_on_each_cpu - call a function on each online CPU from keventd
496  * @func: the function to call
497  *
498  * Returns zero on success.
499  * Returns -ve errno on failure.
500  *
501  * Appears to be racy against CPU hotplug.
502  *
503  * schedule_on_each_cpu() is very slow.
504  */
505 int schedule_on_each_cpu(work_func_t func)
506 {
507         int cpu;
508         struct work_struct *works;
509
510         works = alloc_percpu(struct work_struct);
511         if (!works)
512                 return -ENOMEM;
513
514         preempt_disable();              /* CPU hotplug */
515         for_each_online_cpu(cpu) {
516                 struct work_struct *work = per_cpu_ptr(works, cpu);
517
518                 INIT_WORK(work, func);
519                 set_bit(WORK_STRUCT_PENDING, work_data_bits(work));
520                 __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work);
521         }
522         preempt_enable();
523         flush_workqueue(keventd_wq);
524         free_percpu(works);
525         return 0;
526 }
527
528 void flush_scheduled_work(void)
529 {
530         flush_workqueue(keventd_wq);
531 }
532 EXPORT_SYMBOL(flush_scheduled_work);
533
534 /**
535  * cancel_rearming_delayed_work - kill off a delayed work whose handler rearms the delayed work.
536  * @dwork: the delayed work struct
537  *
538  * Note that the work callback function may still be running on return from
539  * cancel_delayed_work(). Run flush_workqueue() or cancel_work_sync() to wait
540  * on it.
541  */
542 void cancel_rearming_delayed_work(struct delayed_work *dwork)
543 {
544         struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
545
546         /* Was it ever queued ? */
547         if (cwq != NULL) {
548                 struct workqueue_struct *wq = cwq->wq;
549
550                 while (!cancel_delayed_work(dwork))
551                         flush_workqueue(wq);
552         }
553 }
554 EXPORT_SYMBOL(cancel_rearming_delayed_work);
555
556 /**
557  * execute_in_process_context - reliably execute the routine with user context
558  * @fn:         the function to execute
559  * @ew:         guaranteed storage for the execute work structure (must
560  *              be available when the work executes)
561  *
562  * Executes the function immediately if process context is available,
563  * otherwise schedules the function for delayed execution.
564  *
565  * Returns:     0 - function was executed
566  *              1 - function was scheduled for execution
567  */
568 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
569 {
570         if (!in_interrupt()) {
571                 fn(&ew->work);
572                 return 0;
573         }
574
575         INIT_WORK(&ew->work, fn);
576         schedule_work(&ew->work);
577
578         return 1;
579 }
580 EXPORT_SYMBOL_GPL(execute_in_process_context);
581
582 int keventd_up(void)
583 {
584         return keventd_wq != NULL;
585 }
586
587 int current_is_keventd(void)
588 {
589         struct cpu_workqueue_struct *cwq;
590         int cpu = smp_processor_id();   /* preempt-safe: keventd is per-cpu */
591         int ret = 0;
592
593         BUG_ON(!keventd_wq);
594
595         cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
596         if (current == cwq->thread)
597                 ret = 1;
598
599         return ret;
600
601 }
602
603 static struct cpu_workqueue_struct *
604 init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
605 {
606         struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
607
608         cwq->wq = wq;
609         spin_lock_init(&cwq->lock);
610         INIT_LIST_HEAD(&cwq->worklist);
611         init_waitqueue_head(&cwq->more_work);
612
613         return cwq;
614 }
615
616 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
617 {
618         struct workqueue_struct *wq = cwq->wq;
619         const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d";
620         struct task_struct *p;
621
622         p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
623         /*
624          * Nobody can add the work_struct to this cwq,
625          *      if (caller is __create_workqueue)
626          *              nobody should see this wq
627          *      else // caller is CPU_UP_PREPARE
628          *              cpu is not on cpu_online_map
629          * so we can abort safely.
630          */
631         if (IS_ERR(p))
632                 return PTR_ERR(p);
633
634         cwq->thread = p;
635         cwq->should_stop = 0;
636
637         return 0;
638 }
639
640 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
641 {
642         struct task_struct *p = cwq->thread;
643
644         if (p != NULL) {
645                 if (cpu >= 0)
646                         kthread_bind(p, cpu);
647                 wake_up_process(p);
648         }
649 }
650
651 struct workqueue_struct *__create_workqueue(const char *name,
652                                             int singlethread, int freezeable)
653 {
654         struct workqueue_struct *wq;
655         struct cpu_workqueue_struct *cwq;
656         int err = 0, cpu;
657
658         wq = kzalloc(sizeof(*wq), GFP_KERNEL);
659         if (!wq)
660                 return NULL;
661
662         wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
663         if (!wq->cpu_wq) {
664                 kfree(wq);
665                 return NULL;
666         }
667
668         wq->name = name;
669         wq->singlethread = singlethread;
670         wq->freezeable = freezeable;
671         INIT_LIST_HEAD(&wq->list);
672
673         if (singlethread) {
674                 cwq = init_cpu_workqueue(wq, singlethread_cpu);
675                 err = create_workqueue_thread(cwq, singlethread_cpu);
676                 start_workqueue_thread(cwq, -1);
677         } else {
678                 mutex_lock(&workqueue_mutex);
679                 list_add(&wq->list, &workqueues);
680
681                 for_each_possible_cpu(cpu) {
682                         cwq = init_cpu_workqueue(wq, cpu);
683                         if (err || !cpu_online(cpu))
684                                 continue;
685                         err = create_workqueue_thread(cwq, cpu);
686                         start_workqueue_thread(cwq, cpu);
687                 }
688                 mutex_unlock(&workqueue_mutex);
689         }
690
691         if (err) {
692                 destroy_workqueue(wq);
693                 wq = NULL;
694         }
695         return wq;
696 }
697 EXPORT_SYMBOL_GPL(__create_workqueue);
698
699 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
700 {
701         struct wq_barrier barr;
702         int alive = 0;
703
704         spin_lock_irq(&cwq->lock);
705         if (cwq->thread != NULL) {
706                 insert_wq_barrier(cwq, &barr, 1);
707                 cwq->should_stop = 1;
708                 alive = 1;
709         }
710         spin_unlock_irq(&cwq->lock);
711
712         if (alive) {
713                 wait_for_completion(&barr.done);
714
715                 while (unlikely(cwq->thread != NULL))
716                         cpu_relax();
717                 /*
718                  * Wait until cwq->thread unlocks cwq->lock,
719                  * it won't touch *cwq after that.
720                  */
721                 smp_rmb();
722                 spin_unlock_wait(&cwq->lock);
723         }
724 }
725
726 /**
727  * destroy_workqueue - safely terminate a workqueue
728  * @wq: target workqueue
729  *
730  * Safely destroy a workqueue. All work currently pending will be done first.
731  */
732 void destroy_workqueue(struct workqueue_struct *wq)
733 {
734         const cpumask_t *cpu_map = wq_cpu_map(wq);
735         struct cpu_workqueue_struct *cwq;
736         int cpu;
737
738         mutex_lock(&workqueue_mutex);
739         list_del(&wq->list);
740         mutex_unlock(&workqueue_mutex);
741
742         for_each_cpu_mask(cpu, *cpu_map) {
743                 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
744                 cleanup_workqueue_thread(cwq, cpu);
745         }
746
747         free_percpu(wq->cpu_wq);
748         kfree(wq);
749 }
750 EXPORT_SYMBOL_GPL(destroy_workqueue);
751
752 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
753                                                 unsigned long action,
754                                                 void *hcpu)
755 {
756         unsigned int cpu = (unsigned long)hcpu;
757         struct cpu_workqueue_struct *cwq;
758         struct workqueue_struct *wq;
759
760         switch (action) {
761         case CPU_LOCK_ACQUIRE:
762                 mutex_lock(&workqueue_mutex);
763                 return NOTIFY_OK;
764
765         case CPU_LOCK_RELEASE:
766                 mutex_unlock(&workqueue_mutex);
767                 return NOTIFY_OK;
768
769         case CPU_UP_PREPARE:
770                 cpu_set(cpu, cpu_populated_map);
771         }
772
773         list_for_each_entry(wq, &workqueues, list) {
774                 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
775
776                 switch (action) {
777                 case CPU_UP_PREPARE:
778                         if (!create_workqueue_thread(cwq, cpu))
779                                 break;
780                         printk(KERN_ERR "workqueue for %i failed\n", cpu);
781                         return NOTIFY_BAD;
782
783                 case CPU_ONLINE:
784                         start_workqueue_thread(cwq, cpu);
785                         break;
786
787                 case CPU_UP_CANCELED:
788                         start_workqueue_thread(cwq, -1);
789                 case CPU_DEAD:
790                         cleanup_workqueue_thread(cwq, cpu);
791                         break;
792                 }
793         }
794
795         return NOTIFY_OK;
796 }
797
798 void __init init_workqueues(void)
799 {
800         cpu_populated_map = cpu_online_map;
801         singlethread_cpu = first_cpu(cpu_possible_map);
802         cpu_singlethread_map = cpumask_of_cpu(singlethread_cpu);
803         hotcpu_notifier(workqueue_cpu_callback, 0);
804         keventd_wq = create_workqueue("events");
805         BUG_ON(!keventd_wq);
806 }