workqueue: kill NOAUTOREL works
[safe/jmp/linux-2.6] / kernel / workqueue.c
1 /*
2  * linux/kernel/workqueue.c
3  *
4  * Generic mechanism for defining kernel helper threads for running
5  * arbitrary tasks in process context.
6  *
7  * Started by Ingo Molnar, Copyright (C) 2002
8  *
9  * Derived from the taskqueue/keventd code by:
10  *
11  *   David Woodhouse <dwmw2@infradead.org>
12  *   Andrew Morton <andrewm@uow.edu.au>
13  *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
14  *   Theodore Ts'o <tytso@mit.edu>
15  *
16  * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
17  */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35
36 /*
37  * The per-CPU workqueue (if single thread, we always use the first
38  * possible cpu).
39  */
40 struct cpu_workqueue_struct {
41
42         spinlock_t lock;
43
44         struct list_head worklist;
45         wait_queue_head_t more_work;
46         struct work_struct *current_work;
47
48         struct workqueue_struct *wq;
49         struct task_struct *thread;
50         int should_stop;
51
52         int run_depth;          /* Detect run_workqueue() recursion depth */
53 } ____cacheline_aligned;
54
55 /*
56  * The externally visible workqueue abstraction is an array of
57  * per-CPU workqueues:
58  */
59 struct workqueue_struct {
60         struct cpu_workqueue_struct *cpu_wq;
61         struct list_head list;
62         const char *name;
63         int singlethread;
64         int freezeable;         /* Freeze threads during suspend */
65 };
66
67 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
68    threads to each one as cpus come/go. */
69 static DEFINE_MUTEX(workqueue_mutex);
70 static LIST_HEAD(workqueues);
71
72 static int singlethread_cpu __read_mostly;
73 static cpumask_t cpu_singlethread_map __read_mostly;
74 /* optimization, we could use cpu_possible_map */
75 static cpumask_t cpu_populated_map __read_mostly;
76
77 /* If it's single threaded, it isn't in the list of workqueues. */
78 static inline int is_single_threaded(struct workqueue_struct *wq)
79 {
80         return wq->singlethread;
81 }
82
83 static const cpumask_t *wq_cpu_map(struct workqueue_struct *wq)
84 {
85         return is_single_threaded(wq)
86                 ? &cpu_singlethread_map : &cpu_populated_map;
87 }
88
89 static
90 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
91 {
92         if (unlikely(is_single_threaded(wq)))
93                 cpu = singlethread_cpu;
94         return per_cpu_ptr(wq->cpu_wq, cpu);
95 }
96
97 /*
98  * Set the workqueue on which a work item is to be run
99  * - Must *only* be called if the pending flag is set
100  */
101 static inline void set_wq_data(struct work_struct *work,
102                                 struct cpu_workqueue_struct *cwq)
103 {
104         unsigned long new;
105
106         BUG_ON(!work_pending(work));
107
108         new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
109         new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
110         atomic_long_set(&work->data, new);
111 }
112
113 static inline
114 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
115 {
116         return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
117 }
118
119 static void insert_work(struct cpu_workqueue_struct *cwq,
120                                 struct work_struct *work, int tail)
121 {
122         set_wq_data(work, cwq);
123         if (tail)
124                 list_add_tail(&work->entry, &cwq->worklist);
125         else
126                 list_add(&work->entry, &cwq->worklist);
127         wake_up(&cwq->more_work);
128 }
129
130 /* Preempt must be disabled. */
131 static void __queue_work(struct cpu_workqueue_struct *cwq,
132                          struct work_struct *work)
133 {
134         unsigned long flags;
135
136         spin_lock_irqsave(&cwq->lock, flags);
137         insert_work(cwq, work, 1);
138         spin_unlock_irqrestore(&cwq->lock, flags);
139 }
140
141 /**
142  * queue_work - queue work on a workqueue
143  * @wq: workqueue to use
144  * @work: work to queue
145  *
146  * Returns 0 if @work was already on a queue, non-zero otherwise.
147  *
148  * We queue the work to the CPU it was submitted, but there is no
149  * guarantee that it will be processed by that CPU.
150  */
151 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
152 {
153         int ret = 0;
154
155         if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
156                 BUG_ON(!list_empty(&work->entry));
157                 __queue_work(wq_per_cpu(wq, get_cpu()), work);
158                 put_cpu();
159                 ret = 1;
160         }
161         return ret;
162 }
163 EXPORT_SYMBOL_GPL(queue_work);
164
165 void delayed_work_timer_fn(unsigned long __data)
166 {
167         struct delayed_work *dwork = (struct delayed_work *)__data;
168         struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
169         struct workqueue_struct *wq = cwq->wq;
170
171         __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
172 }
173
174 /**
175  * queue_delayed_work - queue work on a workqueue after delay
176  * @wq: workqueue to use
177  * @dwork: delayable work to queue
178  * @delay: number of jiffies to wait before queueing
179  *
180  * Returns 0 if @work was already on a queue, non-zero otherwise.
181  */
182 int fastcall queue_delayed_work(struct workqueue_struct *wq,
183                         struct delayed_work *dwork, unsigned long delay)
184 {
185         timer_stats_timer_set_start_info(&dwork->timer);
186         if (delay == 0)
187                 return queue_work(wq, &dwork->work);
188
189         return queue_delayed_work_on(-1, wq, dwork, delay);
190 }
191 EXPORT_SYMBOL_GPL(queue_delayed_work);
192
193 /**
194  * queue_delayed_work_on - queue work on specific CPU after delay
195  * @cpu: CPU number to execute work on
196  * @wq: workqueue to use
197  * @dwork: work to queue
198  * @delay: number of jiffies to wait before queueing
199  *
200  * Returns 0 if @work was already on a queue, non-zero otherwise.
201  */
202 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
203                         struct delayed_work *dwork, unsigned long delay)
204 {
205         int ret = 0;
206         struct timer_list *timer = &dwork->timer;
207         struct work_struct *work = &dwork->work;
208
209         if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
210                 BUG_ON(timer_pending(timer));
211                 BUG_ON(!list_empty(&work->entry));
212
213                 /* This stores cwq for the moment, for the timer_fn */
214                 set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
215                 timer->expires = jiffies + delay;
216                 timer->data = (unsigned long)dwork;
217                 timer->function = delayed_work_timer_fn;
218
219                 if (unlikely(cpu >= 0))
220                         add_timer_on(timer, cpu);
221                 else
222                         add_timer(timer);
223                 ret = 1;
224         }
225         return ret;
226 }
227 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
228
229 static void run_workqueue(struct cpu_workqueue_struct *cwq)
230 {
231         spin_lock_irq(&cwq->lock);
232         cwq->run_depth++;
233         if (cwq->run_depth > 3) {
234                 /* morton gets to eat his hat */
235                 printk("%s: recursion depth exceeded: %d\n",
236                         __FUNCTION__, cwq->run_depth);
237                 dump_stack();
238         }
239         while (!list_empty(&cwq->worklist)) {
240                 struct work_struct *work = list_entry(cwq->worklist.next,
241                                                 struct work_struct, entry);
242                 work_func_t f = work->func;
243
244                 cwq->current_work = work;
245                 list_del_init(cwq->worklist.next);
246                 spin_unlock_irq(&cwq->lock);
247
248                 BUG_ON(get_wq_data(work) != cwq);
249                 work_clear_pending(work);
250                 f(work);
251
252                 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
253                         printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
254                                         "%s/0x%08x/%d\n",
255                                         current->comm, preempt_count(),
256                                         current->pid);
257                         printk(KERN_ERR "    last function: ");
258                         print_symbol("%s\n", (unsigned long)f);
259                         debug_show_held_locks(current);
260                         dump_stack();
261                 }
262
263                 spin_lock_irq(&cwq->lock);
264                 cwq->current_work = NULL;
265         }
266         cwq->run_depth--;
267         spin_unlock_irq(&cwq->lock);
268 }
269
270 /*
271  * NOTE: the caller must not touch *cwq if this func returns true
272  */
273 static int cwq_should_stop(struct cpu_workqueue_struct *cwq)
274 {
275         int should_stop = cwq->should_stop;
276
277         if (unlikely(should_stop)) {
278                 spin_lock_irq(&cwq->lock);
279                 should_stop = cwq->should_stop && list_empty(&cwq->worklist);
280                 if (should_stop)
281                         cwq->thread = NULL;
282                 spin_unlock_irq(&cwq->lock);
283         }
284
285         return should_stop;
286 }
287
288 static int worker_thread(void *__cwq)
289 {
290         struct cpu_workqueue_struct *cwq = __cwq;
291         DEFINE_WAIT(wait);
292         struct k_sigaction sa;
293         sigset_t blocked;
294
295         if (!cwq->wq->freezeable)
296                 current->flags |= PF_NOFREEZE;
297
298         set_user_nice(current, -5);
299
300         /* Block and flush all signals */
301         sigfillset(&blocked);
302         sigprocmask(SIG_BLOCK, &blocked, NULL);
303         flush_signals(current);
304
305         /*
306          * We inherited MPOL_INTERLEAVE from the booting kernel.
307          * Set MPOL_DEFAULT to insure node local allocations.
308          */
309         numa_default_policy();
310
311         /* SIG_IGN makes children autoreap: see do_notify_parent(). */
312         sa.sa.sa_handler = SIG_IGN;
313         sa.sa.sa_flags = 0;
314         siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
315         do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
316
317         for (;;) {
318                 if (cwq->wq->freezeable)
319                         try_to_freeze();
320
321                 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
322                 if (!cwq->should_stop && list_empty(&cwq->worklist))
323                         schedule();
324                 finish_wait(&cwq->more_work, &wait);
325
326                 if (cwq_should_stop(cwq))
327                         break;
328
329                 run_workqueue(cwq);
330         }
331
332         return 0;
333 }
334
335 struct wq_barrier {
336         struct work_struct      work;
337         struct completion       done;
338 };
339
340 static void wq_barrier_func(struct work_struct *work)
341 {
342         struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
343         complete(&barr->done);
344 }
345
346 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
347                                         struct wq_barrier *barr, int tail)
348 {
349         INIT_WORK(&barr->work, wq_barrier_func);
350         __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
351
352         init_completion(&barr->done);
353
354         insert_work(cwq, &barr->work, tail);
355 }
356
357 static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
358 {
359         if (cwq->thread == current) {
360                 /*
361                  * Probably keventd trying to flush its own queue. So simply run
362                  * it by hand rather than deadlocking.
363                  */
364                 run_workqueue(cwq);
365         } else {
366                 struct wq_barrier barr;
367                 int active = 0;
368
369                 spin_lock_irq(&cwq->lock);
370                 if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
371                         insert_wq_barrier(cwq, &barr, 1);
372                         active = 1;
373                 }
374                 spin_unlock_irq(&cwq->lock);
375
376                 if (active)
377                         wait_for_completion(&barr.done);
378         }
379 }
380
381 /**
382  * flush_workqueue - ensure that any scheduled work has run to completion.
383  * @wq: workqueue to flush
384  *
385  * Forces execution of the workqueue and blocks until its completion.
386  * This is typically used in driver shutdown handlers.
387  *
388  * We sleep until all works which were queued on entry have been handled,
389  * but we are not livelocked by new incoming ones.
390  *
391  * This function used to run the workqueues itself.  Now we just wait for the
392  * helper threads to do it.
393  */
394 void fastcall flush_workqueue(struct workqueue_struct *wq)
395 {
396         const cpumask_t *cpu_map = wq_cpu_map(wq);
397         int cpu;
398
399         might_sleep();
400         for_each_cpu_mask(cpu, *cpu_map)
401                 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
402 }
403 EXPORT_SYMBOL_GPL(flush_workqueue);
404
405 static void wait_on_work(struct cpu_workqueue_struct *cwq,
406                                 struct work_struct *work)
407 {
408         struct wq_barrier barr;
409         int running = 0;
410
411         spin_lock_irq(&cwq->lock);
412         if (unlikely(cwq->current_work == work)) {
413                 insert_wq_barrier(cwq, &barr, 0);
414                 running = 1;
415         }
416         spin_unlock_irq(&cwq->lock);
417
418         if (unlikely(running))
419                 wait_for_completion(&barr.done);
420 }
421
422 /**
423  * flush_work - block until a work_struct's callback has terminated
424  * @wq: the workqueue on which the work is queued
425  * @work: the work which is to be flushed
426  *
427  * flush_work() will attempt to cancel the work if it is queued.  If the work's
428  * callback appears to be running, flush_work() will block until it has
429  * completed.
430  *
431  * flush_work() is designed to be used when the caller is tearing down data
432  * structures which the callback function operates upon.  It is expected that,
433  * prior to calling flush_work(), the caller has arranged for the work to not
434  * be requeued.
435  */
436 void flush_work(struct workqueue_struct *wq, struct work_struct *work)
437 {
438         const cpumask_t *cpu_map = wq_cpu_map(wq);
439         struct cpu_workqueue_struct *cwq;
440         int cpu;
441
442         might_sleep();
443
444         cwq = get_wq_data(work);
445         /* Was it ever queued ? */
446         if (!cwq)
447                 return;
448
449         /*
450          * This work can't be re-queued, no need to re-check that
451          * get_wq_data() is still the same when we take cwq->lock.
452          */
453         spin_lock_irq(&cwq->lock);
454         list_del_init(&work->entry);
455         work_clear_pending(work);
456         spin_unlock_irq(&cwq->lock);
457
458         for_each_cpu_mask(cpu, *cpu_map)
459                 wait_on_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
460 }
461 EXPORT_SYMBOL_GPL(flush_work);
462
463
464 static struct workqueue_struct *keventd_wq;
465
466 /**
467  * schedule_work - put work task in global workqueue
468  * @work: job to be done
469  *
470  * This puts a job in the kernel-global workqueue.
471  */
472 int fastcall schedule_work(struct work_struct *work)
473 {
474         return queue_work(keventd_wq, work);
475 }
476 EXPORT_SYMBOL(schedule_work);
477
478 /**
479  * schedule_delayed_work - put work task in global workqueue after delay
480  * @dwork: job to be done
481  * @delay: number of jiffies to wait or 0 for immediate execution
482  *
483  * After waiting for a given time this puts a job in the kernel-global
484  * workqueue.
485  */
486 int fastcall schedule_delayed_work(struct delayed_work *dwork,
487                                         unsigned long delay)
488 {
489         timer_stats_timer_set_start_info(&dwork->timer);
490         return queue_delayed_work(keventd_wq, dwork, delay);
491 }
492 EXPORT_SYMBOL(schedule_delayed_work);
493
494 /**
495  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
496  * @cpu: cpu to use
497  * @dwork: job to be done
498  * @delay: number of jiffies to wait
499  *
500  * After waiting for a given time this puts a job in the kernel-global
501  * workqueue on the specified CPU.
502  */
503 int schedule_delayed_work_on(int cpu,
504                         struct delayed_work *dwork, unsigned long delay)
505 {
506         return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
507 }
508 EXPORT_SYMBOL(schedule_delayed_work_on);
509
510 /**
511  * schedule_on_each_cpu - call a function on each online CPU from keventd
512  * @func: the function to call
513  *
514  * Returns zero on success.
515  * Returns -ve errno on failure.
516  *
517  * Appears to be racy against CPU hotplug.
518  *
519  * schedule_on_each_cpu() is very slow.
520  */
521 int schedule_on_each_cpu(work_func_t func)
522 {
523         int cpu;
524         struct work_struct *works;
525
526         works = alloc_percpu(struct work_struct);
527         if (!works)
528                 return -ENOMEM;
529
530         preempt_disable();              /* CPU hotplug */
531         for_each_online_cpu(cpu) {
532                 struct work_struct *work = per_cpu_ptr(works, cpu);
533
534                 INIT_WORK(work, func);
535                 set_bit(WORK_STRUCT_PENDING, work_data_bits(work));
536                 __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work);
537         }
538         preempt_enable();
539         flush_workqueue(keventd_wq);
540         free_percpu(works);
541         return 0;
542 }
543
544 void flush_scheduled_work(void)
545 {
546         flush_workqueue(keventd_wq);
547 }
548 EXPORT_SYMBOL(flush_scheduled_work);
549
550 void flush_work_keventd(struct work_struct *work)
551 {
552         flush_work(keventd_wq, work);
553 }
554 EXPORT_SYMBOL(flush_work_keventd);
555
556 /**
557  * cancel_rearming_delayed_work - kill off a delayed work whose handler rearms the delayed work.
558  * @dwork: the delayed work struct
559  *
560  * Note that the work callback function may still be running on return from
561  * cancel_delayed_work(). Run flush_workqueue() or flush_work() to wait on it.
562  */
563 void cancel_rearming_delayed_work(struct delayed_work *dwork)
564 {
565         struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
566
567         /* Was it ever queued ? */
568         if (cwq != NULL) {
569                 struct workqueue_struct *wq = cwq->wq;
570
571                 while (!cancel_delayed_work(dwork))
572                         flush_workqueue(wq);
573         }
574 }
575 EXPORT_SYMBOL(cancel_rearming_delayed_work);
576
577 /**
578  * execute_in_process_context - reliably execute the routine with user context
579  * @fn:         the function to execute
580  * @ew:         guaranteed storage for the execute work structure (must
581  *              be available when the work executes)
582  *
583  * Executes the function immediately if process context is available,
584  * otherwise schedules the function for delayed execution.
585  *
586  * Returns:     0 - function was executed
587  *              1 - function was scheduled for execution
588  */
589 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
590 {
591         if (!in_interrupt()) {
592                 fn(&ew->work);
593                 return 0;
594         }
595
596         INIT_WORK(&ew->work, fn);
597         schedule_work(&ew->work);
598
599         return 1;
600 }
601 EXPORT_SYMBOL_GPL(execute_in_process_context);
602
603 int keventd_up(void)
604 {
605         return keventd_wq != NULL;
606 }
607
608 int current_is_keventd(void)
609 {
610         struct cpu_workqueue_struct *cwq;
611         int cpu = smp_processor_id();   /* preempt-safe: keventd is per-cpu */
612         int ret = 0;
613
614         BUG_ON(!keventd_wq);
615
616         cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
617         if (current == cwq->thread)
618                 ret = 1;
619
620         return ret;
621
622 }
623
624 static struct cpu_workqueue_struct *
625 init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
626 {
627         struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
628
629         cwq->wq = wq;
630         spin_lock_init(&cwq->lock);
631         INIT_LIST_HEAD(&cwq->worklist);
632         init_waitqueue_head(&cwq->more_work);
633
634         return cwq;
635 }
636
637 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
638 {
639         struct workqueue_struct *wq = cwq->wq;
640         const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d";
641         struct task_struct *p;
642
643         p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
644         /*
645          * Nobody can add the work_struct to this cwq,
646          *      if (caller is __create_workqueue)
647          *              nobody should see this wq
648          *      else // caller is CPU_UP_PREPARE
649          *              cpu is not on cpu_online_map
650          * so we can abort safely.
651          */
652         if (IS_ERR(p))
653                 return PTR_ERR(p);
654
655         cwq->thread = p;
656         cwq->should_stop = 0;
657
658         return 0;
659 }
660
661 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
662 {
663         struct task_struct *p = cwq->thread;
664
665         if (p != NULL) {
666                 if (cpu >= 0)
667                         kthread_bind(p, cpu);
668                 wake_up_process(p);
669         }
670 }
671
672 struct workqueue_struct *__create_workqueue(const char *name,
673                                             int singlethread, int freezeable)
674 {
675         struct workqueue_struct *wq;
676         struct cpu_workqueue_struct *cwq;
677         int err = 0, cpu;
678
679         wq = kzalloc(sizeof(*wq), GFP_KERNEL);
680         if (!wq)
681                 return NULL;
682
683         wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
684         if (!wq->cpu_wq) {
685                 kfree(wq);
686                 return NULL;
687         }
688
689         wq->name = name;
690         wq->singlethread = singlethread;
691         wq->freezeable = freezeable;
692         INIT_LIST_HEAD(&wq->list);
693
694         if (singlethread) {
695                 cwq = init_cpu_workqueue(wq, singlethread_cpu);
696                 err = create_workqueue_thread(cwq, singlethread_cpu);
697                 start_workqueue_thread(cwq, -1);
698         } else {
699                 mutex_lock(&workqueue_mutex);
700                 list_add(&wq->list, &workqueues);
701
702                 for_each_possible_cpu(cpu) {
703                         cwq = init_cpu_workqueue(wq, cpu);
704                         if (err || !cpu_online(cpu))
705                                 continue;
706                         err = create_workqueue_thread(cwq, cpu);
707                         start_workqueue_thread(cwq, cpu);
708                 }
709                 mutex_unlock(&workqueue_mutex);
710         }
711
712         if (err) {
713                 destroy_workqueue(wq);
714                 wq = NULL;
715         }
716         return wq;
717 }
718 EXPORT_SYMBOL_GPL(__create_workqueue);
719
720 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
721 {
722         struct wq_barrier barr;
723         int alive = 0;
724
725         spin_lock_irq(&cwq->lock);
726         if (cwq->thread != NULL) {
727                 insert_wq_barrier(cwq, &barr, 1);
728                 cwq->should_stop = 1;
729                 alive = 1;
730         }
731         spin_unlock_irq(&cwq->lock);
732
733         if (alive) {
734                 wait_for_completion(&barr.done);
735
736                 while (unlikely(cwq->thread != NULL))
737                         cpu_relax();
738                 /*
739                  * Wait until cwq->thread unlocks cwq->lock,
740                  * it won't touch *cwq after that.
741                  */
742                 smp_rmb();
743                 spin_unlock_wait(&cwq->lock);
744         }
745 }
746
747 /**
748  * destroy_workqueue - safely terminate a workqueue
749  * @wq: target workqueue
750  *
751  * Safely destroy a workqueue. All work currently pending will be done first.
752  */
753 void destroy_workqueue(struct workqueue_struct *wq)
754 {
755         const cpumask_t *cpu_map = wq_cpu_map(wq);
756         struct cpu_workqueue_struct *cwq;
757         int cpu;
758
759         mutex_lock(&workqueue_mutex);
760         list_del(&wq->list);
761         mutex_unlock(&workqueue_mutex);
762
763         for_each_cpu_mask(cpu, *cpu_map) {
764                 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
765                 cleanup_workqueue_thread(cwq, cpu);
766         }
767
768         free_percpu(wq->cpu_wq);
769         kfree(wq);
770 }
771 EXPORT_SYMBOL_GPL(destroy_workqueue);
772
773 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
774                                                 unsigned long action,
775                                                 void *hcpu)
776 {
777         unsigned int cpu = (unsigned long)hcpu;
778         struct cpu_workqueue_struct *cwq;
779         struct workqueue_struct *wq;
780
781         switch (action) {
782         case CPU_LOCK_ACQUIRE:
783                 mutex_lock(&workqueue_mutex);
784                 return NOTIFY_OK;
785
786         case CPU_LOCK_RELEASE:
787                 mutex_unlock(&workqueue_mutex);
788                 return NOTIFY_OK;
789
790         case CPU_UP_PREPARE:
791                 cpu_set(cpu, cpu_populated_map);
792         }
793
794         list_for_each_entry(wq, &workqueues, list) {
795                 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
796
797                 switch (action) {
798                 case CPU_UP_PREPARE:
799                         if (!create_workqueue_thread(cwq, cpu))
800                                 break;
801                         printk(KERN_ERR "workqueue for %i failed\n", cpu);
802                         return NOTIFY_BAD;
803
804                 case CPU_ONLINE:
805                         start_workqueue_thread(cwq, cpu);
806                         break;
807
808                 case CPU_UP_CANCELED:
809                         start_workqueue_thread(cwq, -1);
810                 case CPU_DEAD:
811                         cleanup_workqueue_thread(cwq, cpu);
812                         break;
813                 }
814         }
815
816         return NOTIFY_OK;
817 }
818
819 void __init init_workqueues(void)
820 {
821         cpu_populated_map = cpu_online_map;
822         singlethread_cpu = first_cpu(cpu_possible_map);
823         cpu_singlethread_map = cpumask_of_cpu(singlethread_cpu);
824         hotcpu_notifier(workqueue_cpu_callback, 0);
825         keventd_wq = create_workqueue("events");
826         BUG_ON(!keventd_wq);
827 }