Remove obsolete #include <linux/config.h>
[safe/jmp/linux-2.6] / kernel / wait.c
1 /*
2  * Generic waiting primitives.
3  *
4  * (C) 2004 William Irwin, Oracle
5  */
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/wait.h>
11 #include <linux/hash.h>
12
13 void fastcall add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
14 {
15         unsigned long flags;
16
17         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
18         spin_lock_irqsave(&q->lock, flags);
19         __add_wait_queue(q, wait);
20         spin_unlock_irqrestore(&q->lock, flags);
21 }
22 EXPORT_SYMBOL(add_wait_queue);
23
24 void fastcall add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
25 {
26         unsigned long flags;
27
28         wait->flags |= WQ_FLAG_EXCLUSIVE;
29         spin_lock_irqsave(&q->lock, flags);
30         __add_wait_queue_tail(q, wait);
31         spin_unlock_irqrestore(&q->lock, flags);
32 }
33 EXPORT_SYMBOL(add_wait_queue_exclusive);
34
35 void fastcall remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
36 {
37         unsigned long flags;
38
39         spin_lock_irqsave(&q->lock, flags);
40         __remove_wait_queue(q, wait);
41         spin_unlock_irqrestore(&q->lock, flags);
42 }
43 EXPORT_SYMBOL(remove_wait_queue);
44
45
46 /*
47  * Note: we use "set_current_state()" _after_ the wait-queue add,
48  * because we need a memory barrier there on SMP, so that any
49  * wake-function that tests for the wait-queue being active
50  * will be guaranteed to see waitqueue addition _or_ subsequent
51  * tests in this thread will see the wakeup having taken place.
52  *
53  * The spin_unlock() itself is semi-permeable and only protects
54  * one way (it only protects stuff inside the critical region and
55  * stops them from bleeding out - it would still allow subsequent
56  * loads to move into the the critical region).
57  */
58 void fastcall
59 prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
60 {
61         unsigned long flags;
62
63         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
64         spin_lock_irqsave(&q->lock, flags);
65         if (list_empty(&wait->task_list))
66                 __add_wait_queue(q, wait);
67         /*
68          * don't alter the task state if this is just going to
69          * queue an async wait queue callback
70          */
71         if (is_sync_wait(wait))
72                 set_current_state(state);
73         spin_unlock_irqrestore(&q->lock, flags);
74 }
75 EXPORT_SYMBOL(prepare_to_wait);
76
77 void fastcall
78 prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
79 {
80         unsigned long flags;
81
82         wait->flags |= WQ_FLAG_EXCLUSIVE;
83         spin_lock_irqsave(&q->lock, flags);
84         if (list_empty(&wait->task_list))
85                 __add_wait_queue_tail(q, wait);
86         /*
87          * don't alter the task state if this is just going to
88          * queue an async wait queue callback
89          */
90         if (is_sync_wait(wait))
91                 set_current_state(state);
92         spin_unlock_irqrestore(&q->lock, flags);
93 }
94 EXPORT_SYMBOL(prepare_to_wait_exclusive);
95
96 void fastcall finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
97 {
98         unsigned long flags;
99
100         __set_current_state(TASK_RUNNING);
101         /*
102          * We can check for list emptiness outside the lock
103          * IFF:
104          *  - we use the "careful" check that verifies both
105          *    the next and prev pointers, so that there cannot
106          *    be any half-pending updates in progress on other
107          *    CPU's that we haven't seen yet (and that might
108          *    still change the stack area.
109          * and
110          *  - all other users take the lock (ie we can only
111          *    have _one_ other CPU that looks at or modifies
112          *    the list).
113          */
114         if (!list_empty_careful(&wait->task_list)) {
115                 spin_lock_irqsave(&q->lock, flags);
116                 list_del_init(&wait->task_list);
117                 spin_unlock_irqrestore(&q->lock, flags);
118         }
119 }
120 EXPORT_SYMBOL(finish_wait);
121
122 int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
123 {
124         int ret = default_wake_function(wait, mode, sync, key);
125
126         if (ret)
127                 list_del_init(&wait->task_list);
128         return ret;
129 }
130 EXPORT_SYMBOL(autoremove_wake_function);
131
132 int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
133 {
134         struct wait_bit_key *key = arg;
135         struct wait_bit_queue *wait_bit
136                 = container_of(wait, struct wait_bit_queue, wait);
137
138         if (wait_bit->key.flags != key->flags ||
139                         wait_bit->key.bit_nr != key->bit_nr ||
140                         test_bit(key->bit_nr, key->flags))
141                 return 0;
142         else
143                 return autoremove_wake_function(wait, mode, sync, key);
144 }
145 EXPORT_SYMBOL(wake_bit_function);
146
147 /*
148  * To allow interruptible waiting and asynchronous (i.e. nonblocking)
149  * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
150  * permitted return codes. Nonzero return codes halt waiting and return.
151  */
152 int __sched fastcall
153 __wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q,
154                         int (*action)(void *), unsigned mode)
155 {
156         int ret = 0;
157
158         do {
159                 prepare_to_wait(wq, &q->wait, mode);
160                 if (test_bit(q->key.bit_nr, q->key.flags))
161                         ret = (*action)(q->key.flags);
162         } while (test_bit(q->key.bit_nr, q->key.flags) && !ret);
163         finish_wait(wq, &q->wait);
164         return ret;
165 }
166 EXPORT_SYMBOL(__wait_on_bit);
167
168 int __sched fastcall out_of_line_wait_on_bit(void *word, int bit,
169                                         int (*action)(void *), unsigned mode)
170 {
171         wait_queue_head_t *wq = bit_waitqueue(word, bit);
172         DEFINE_WAIT_BIT(wait, word, bit);
173
174         return __wait_on_bit(wq, &wait, action, mode);
175 }
176 EXPORT_SYMBOL(out_of_line_wait_on_bit);
177
178 int __sched fastcall
179 __wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q,
180                         int (*action)(void *), unsigned mode)
181 {
182         int ret = 0;
183
184         do {
185                 prepare_to_wait_exclusive(wq, &q->wait, mode);
186                 if (test_bit(q->key.bit_nr, q->key.flags)) {
187                         if ((ret = (*action)(q->key.flags)))
188                                 break;
189                 }
190         } while (test_and_set_bit(q->key.bit_nr, q->key.flags));
191         finish_wait(wq, &q->wait);
192         return ret;
193 }
194 EXPORT_SYMBOL(__wait_on_bit_lock);
195
196 int __sched fastcall out_of_line_wait_on_bit_lock(void *word, int bit,
197                                         int (*action)(void *), unsigned mode)
198 {
199         wait_queue_head_t *wq = bit_waitqueue(word, bit);
200         DEFINE_WAIT_BIT(wait, word, bit);
201
202         return __wait_on_bit_lock(wq, &wait, action, mode);
203 }
204 EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
205
206 void fastcall __wake_up_bit(wait_queue_head_t *wq, void *word, int bit)
207 {
208         struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
209         if (waitqueue_active(wq))
210                 __wake_up(wq, TASK_INTERRUPTIBLE|TASK_UNINTERRUPTIBLE, 1, &key);
211 }
212 EXPORT_SYMBOL(__wake_up_bit);
213
214 /**
215  * wake_up_bit - wake up a waiter on a bit
216  * @word: the word being waited on, a kernel virtual address
217  * @bit: the bit of the word being waited on
218  *
219  * There is a standard hashed waitqueue table for generic use. This
220  * is the part of the hashtable's accessor API that wakes up waiters
221  * on a bit. For instance, if one were to have waiters on a bitflag,
222  * one would call wake_up_bit() after clearing the bit.
223  *
224  * In order for this to function properly, as it uses waitqueue_active()
225  * internally, some kind of memory barrier must be done prior to calling
226  * this. Typically, this will be smp_mb__after_clear_bit(), but in some
227  * cases where bitflags are manipulated non-atomically under a lock, one
228  * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
229  * because spin_unlock() does not guarantee a memory barrier.
230  */
231 void fastcall wake_up_bit(void *word, int bit)
232 {
233         __wake_up_bit(bit_waitqueue(word, bit), word, bit);
234 }
235 EXPORT_SYMBOL(wake_up_bit);
236
237 fastcall wait_queue_head_t *bit_waitqueue(void *word, int bit)
238 {
239         const int shift = BITS_PER_LONG == 32 ? 5 : 6;
240         const struct zone *zone = page_zone(virt_to_page(word));
241         unsigned long val = (unsigned long)word << shift | bit;
242
243         return &zone->wait_table[hash_long(val, zone->wait_table_bits)];
244 }
245 EXPORT_SYMBOL(bit_waitqueue);