nfsd: track last inode only in use_wgather case
[safe/jmp/linux-2.6] / kernel / trace / trace_workqueue.c
1 /*
2  * Workqueue statistical tracer.
3  *
4  * Copyright (C) 2008 Frederic Weisbecker <fweisbec@gmail.com>
5  *
6  */
7
8
9 #include <trace/workqueue.h>
10 #include <linux/list.h>
11 #include <linux/percpu.h>
12 #include "trace_stat.h"
13 #include "trace.h"
14
15
16 /* A cpu workqueue thread */
17 struct cpu_workqueue_stats {
18         struct list_head            list;
19 /* Useful to know if we print the cpu headers */
20         bool                        first_entry;
21         int                         cpu;
22         pid_t                       pid;
23 /* Can be inserted from interrupt or user context, need to be atomic */
24         atomic_t                    inserted;
25 /*
26  *  Don't need to be atomic, works are serialized in a single workqueue thread
27  *  on a single CPU.
28  */
29         unsigned int                executed;
30 };
31
32 /* List of workqueue threads on one cpu */
33 struct workqueue_global_stats {
34         struct list_head        list;
35         spinlock_t              lock;
36 };
37
38 /* Don't need a global lock because allocated before the workqueues, and
39  * never freed.
40  */
41 static DEFINE_PER_CPU(struct workqueue_global_stats, all_workqueue_stat);
42 #define workqueue_cpu_stat(cpu) (&per_cpu(all_workqueue_stat, cpu))
43
44 /* Insertion of a work */
45 static void
46 probe_workqueue_insertion(struct task_struct *wq_thread,
47                           struct work_struct *work)
48 {
49         int cpu = cpumask_first(&wq_thread->cpus_allowed);
50         struct cpu_workqueue_stats *node, *next;
51         unsigned long flags;
52
53         spin_lock_irqsave(&workqueue_cpu_stat(cpu)->lock, flags);
54         list_for_each_entry_safe(node, next, &workqueue_cpu_stat(cpu)->list,
55                                                         list) {
56                 if (node->pid == wq_thread->pid) {
57                         atomic_inc(&node->inserted);
58                         goto found;
59                 }
60         }
61         pr_debug("trace_workqueue: entry not found\n");
62 found:
63         spin_unlock_irqrestore(&workqueue_cpu_stat(cpu)->lock, flags);
64 }
65
66 /* Execution of a work */
67 static void
68 probe_workqueue_execution(struct task_struct *wq_thread,
69                           struct work_struct *work)
70 {
71         int cpu = cpumask_first(&wq_thread->cpus_allowed);
72         struct cpu_workqueue_stats *node, *next;
73         unsigned long flags;
74
75         spin_lock_irqsave(&workqueue_cpu_stat(cpu)->lock, flags);
76         list_for_each_entry_safe(node, next, &workqueue_cpu_stat(cpu)->list,
77                                                         list) {
78                 if (node->pid == wq_thread->pid) {
79                         node->executed++;
80                         goto found;
81                 }
82         }
83         pr_debug("trace_workqueue: entry not found\n");
84 found:
85         spin_unlock_irqrestore(&workqueue_cpu_stat(cpu)->lock, flags);
86 }
87
88 /* Creation of a cpu workqueue thread */
89 static void probe_workqueue_creation(struct task_struct *wq_thread, int cpu)
90 {
91         struct cpu_workqueue_stats *cws;
92         unsigned long flags;
93
94         WARN_ON(cpu < 0);
95
96         /* Workqueues are sometimes created in atomic context */
97         cws = kzalloc(sizeof(struct cpu_workqueue_stats), GFP_ATOMIC);
98         if (!cws) {
99                 pr_warning("trace_workqueue: not enough memory\n");
100                 return;
101         }
102         INIT_LIST_HEAD(&cws->list);
103         cws->cpu = cpu;
104
105         cws->pid = wq_thread->pid;
106
107         spin_lock_irqsave(&workqueue_cpu_stat(cpu)->lock, flags);
108         if (list_empty(&workqueue_cpu_stat(cpu)->list))
109                 cws->first_entry = true;
110         list_add_tail(&cws->list, &workqueue_cpu_stat(cpu)->list);
111         spin_unlock_irqrestore(&workqueue_cpu_stat(cpu)->lock, flags);
112 }
113
114 /* Destruction of a cpu workqueue thread */
115 static void probe_workqueue_destruction(struct task_struct *wq_thread)
116 {
117         /* Workqueue only execute on one cpu */
118         int cpu = cpumask_first(&wq_thread->cpus_allowed);
119         struct cpu_workqueue_stats *node, *next;
120         unsigned long flags;
121
122         spin_lock_irqsave(&workqueue_cpu_stat(cpu)->lock, flags);
123         list_for_each_entry_safe(node, next, &workqueue_cpu_stat(cpu)->list,
124                                                         list) {
125                 if (node->pid == wq_thread->pid) {
126                         list_del(&node->list);
127                         kfree(node);
128                         goto found;
129                 }
130         }
131
132         pr_debug("trace_workqueue: don't find workqueue to destroy\n");
133 found:
134         spin_unlock_irqrestore(&workqueue_cpu_stat(cpu)->lock, flags);
135
136 }
137
138 static struct cpu_workqueue_stats *workqueue_stat_start_cpu(int cpu)
139 {
140         unsigned long flags;
141         struct cpu_workqueue_stats *ret = NULL;
142
143
144         spin_lock_irqsave(&workqueue_cpu_stat(cpu)->lock, flags);
145
146         if (!list_empty(&workqueue_cpu_stat(cpu)->list))
147                 ret = list_entry(workqueue_cpu_stat(cpu)->list.next,
148                                  struct cpu_workqueue_stats, list);
149
150         spin_unlock_irqrestore(&workqueue_cpu_stat(cpu)->lock, flags);
151
152         return ret;
153 }
154
155 static void *workqueue_stat_start(void)
156 {
157         int cpu;
158         void *ret = NULL;
159
160         for_each_possible_cpu(cpu) {
161                 ret = workqueue_stat_start_cpu(cpu);
162                 if (ret)
163                         return ret;
164         }
165         return NULL;
166 }
167
168 static void *workqueue_stat_next(void *prev, int idx)
169 {
170         struct cpu_workqueue_stats *prev_cws = prev;
171         int cpu = prev_cws->cpu;
172         unsigned long flags;
173         void *ret = NULL;
174
175         spin_lock_irqsave(&workqueue_cpu_stat(cpu)->lock, flags);
176         if (list_is_last(&prev_cws->list, &workqueue_cpu_stat(cpu)->list)) {
177                 spin_unlock_irqrestore(&workqueue_cpu_stat(cpu)->lock, flags);
178                 do {
179                         cpu = cpumask_next(cpu, cpu_possible_mask);
180                         if (cpu >= nr_cpu_ids)
181                                 return NULL;
182                 } while (!(ret = workqueue_stat_start_cpu(cpu)));
183                 return ret;
184         }
185         spin_unlock_irqrestore(&workqueue_cpu_stat(cpu)->lock, flags);
186
187         return list_entry(prev_cws->list.next, struct cpu_workqueue_stats,
188                           list);
189 }
190
191 static int workqueue_stat_show(struct seq_file *s, void *p)
192 {
193         struct cpu_workqueue_stats *cws = p;
194         unsigned long flags;
195         int cpu = cws->cpu;
196         struct pid *pid;
197         struct task_struct *tsk;
198
199         spin_lock_irqsave(&workqueue_cpu_stat(cpu)->lock, flags);
200         if (&cws->list == workqueue_cpu_stat(cpu)->list.next)
201                 seq_printf(s, "\n");
202         spin_unlock_irqrestore(&workqueue_cpu_stat(cpu)->lock, flags);
203
204         pid = find_get_pid(cws->pid);
205         if (pid) {
206                 tsk = get_pid_task(pid, PIDTYPE_PID);
207                 if (tsk) {
208                         seq_printf(s, "%3d %6d     %6u       %s\n", cws->cpu,
209                                    atomic_read(&cws->inserted), cws->executed,
210                                    tsk->comm);
211                         put_task_struct(tsk);
212                 }
213                 put_pid(pid);
214         }
215
216         return 0;
217 }
218
219 static int workqueue_stat_headers(struct seq_file *s)
220 {
221         seq_printf(s, "# CPU  INSERTED  EXECUTED   NAME\n");
222         seq_printf(s, "# |      |         |          |\n");
223         return 0;
224 }
225
226 struct tracer_stat workqueue_stats __read_mostly = {
227         .name = "workqueues",
228         .stat_start = workqueue_stat_start,
229         .stat_next = workqueue_stat_next,
230         .stat_show = workqueue_stat_show,
231         .stat_headers = workqueue_stat_headers
232 };
233
234
235 int __init stat_workqueue_init(void)
236 {
237         if (register_stat_tracer(&workqueue_stats)) {
238                 pr_warning("Unable to register workqueue stat tracer\n");
239                 return 1;
240         }
241
242         return 0;
243 }
244 fs_initcall(stat_workqueue_init);
245
246 /*
247  * Workqueues are created very early, just after pre-smp initcalls.
248  * So we must register our tracepoints at this stage.
249  */
250 int __init trace_workqueue_early_init(void)
251 {
252         int ret, cpu;
253
254         ret = register_trace_workqueue_insertion(probe_workqueue_insertion);
255         if (ret)
256                 goto out;
257
258         ret = register_trace_workqueue_execution(probe_workqueue_execution);
259         if (ret)
260                 goto no_insertion;
261
262         ret = register_trace_workqueue_creation(probe_workqueue_creation);
263         if (ret)
264                 goto no_execution;
265
266         ret = register_trace_workqueue_destruction(probe_workqueue_destruction);
267         if (ret)
268                 goto no_creation;
269
270         for_each_possible_cpu(cpu) {
271                 spin_lock_init(&workqueue_cpu_stat(cpu)->lock);
272                 INIT_LIST_HEAD(&workqueue_cpu_stat(cpu)->list);
273         }
274
275         return 0;
276
277 no_creation:
278         unregister_trace_workqueue_creation(probe_workqueue_creation);
279 no_execution:
280         unregister_trace_workqueue_execution(probe_workqueue_execution);
281 no_insertion:
282         unregister_trace_workqueue_insertion(probe_workqueue_insertion);
283 out:
284         pr_warning("trace_workqueue: unable to trace workqueues\n");
285
286         return 1;
287 }
288 early_initcall(trace_workqueue_early_init);