ring-buffer: export symbols
[safe/jmp/linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/init.h>
17 #include <linux/hash.h>
18 #include <linux/list.h>
19 #include <linux/cpu.h>
20 #include <linux/fs.h>
21
22 #include "trace.h"
23
24 /*
25  * The ring buffer header is special. We must manually up keep it.
26  */
27 int ring_buffer_print_entry_header(struct trace_seq *s)
28 {
29         int ret;
30
31         ret = trace_seq_printf(s, "# compressed entry header\n");
32         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
33         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
34         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
35         ret = trace_seq_printf(s, "\n");
36         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
37                                RINGBUF_TYPE_PADDING);
38         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
39                                RINGBUF_TYPE_TIME_EXTEND);
40         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
41                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
42
43         return ret;
44 }
45
46 /*
47  * The ring buffer is made up of a list of pages. A separate list of pages is
48  * allocated for each CPU. A writer may only write to a buffer that is
49  * associated with the CPU it is currently executing on.  A reader may read
50  * from any per cpu buffer.
51  *
52  * The reader is special. For each per cpu buffer, the reader has its own
53  * reader page. When a reader has read the entire reader page, this reader
54  * page is swapped with another page in the ring buffer.
55  *
56  * Now, as long as the writer is off the reader page, the reader can do what
57  * ever it wants with that page. The writer will never write to that page
58  * again (as long as it is out of the ring buffer).
59  *
60  * Here's some silly ASCII art.
61  *
62  *   +------+
63  *   |reader|          RING BUFFER
64  *   |page  |
65  *   +------+        +---+   +---+   +---+
66  *                   |   |-->|   |-->|   |
67  *                   +---+   +---+   +---+
68  *                     ^               |
69  *                     |               |
70  *                     +---------------+
71  *
72  *
73  *   +------+
74  *   |reader|          RING BUFFER
75  *   |page  |------------------v
76  *   +------+        +---+   +---+   +---+
77  *                   |   |-->|   |-->|   |
78  *                   +---+   +---+   +---+
79  *                     ^               |
80  *                     |               |
81  *                     +---------------+
82  *
83  *
84  *   +------+
85  *   |reader|          RING BUFFER
86  *   |page  |------------------v
87  *   +------+        +---+   +---+   +---+
88  *      ^            |   |-->|   |-->|   |
89  *      |            +---+   +---+   +---+
90  *      |                              |
91  *      |                              |
92  *      +------------------------------+
93  *
94  *
95  *   +------+
96  *   |buffer|          RING BUFFER
97  *   |page  |------------------v
98  *   +------+        +---+   +---+   +---+
99  *      ^            |   |   |   |-->|   |
100  *      |   New      +---+   +---+   +---+
101  *      |  Reader------^               |
102  *      |   page                       |
103  *      +------------------------------+
104  *
105  *
106  * After we make this swap, the reader can hand this page off to the splice
107  * code and be done with it. It can even allocate a new page if it needs to
108  * and swap that into the ring buffer.
109  *
110  * We will be using cmpxchg soon to make all this lockless.
111  *
112  */
113
114 /*
115  * A fast way to enable or disable all ring buffers is to
116  * call tracing_on or tracing_off. Turning off the ring buffers
117  * prevents all ring buffers from being recorded to.
118  * Turning this switch on, makes it OK to write to the
119  * ring buffer, if the ring buffer is enabled itself.
120  *
121  * There's three layers that must be on in order to write
122  * to the ring buffer.
123  *
124  * 1) This global flag must be set.
125  * 2) The ring buffer must be enabled for recording.
126  * 3) The per cpu buffer must be enabled for recording.
127  *
128  * In case of an anomaly, this global flag has a bit set that
129  * will permantly disable all ring buffers.
130  */
131
132 /*
133  * Global flag to disable all recording to ring buffers
134  *  This has two bits: ON, DISABLED
135  *
136  *  ON   DISABLED
137  * ---- ----------
138  *   0      0        : ring buffers are off
139  *   1      0        : ring buffers are on
140  *   X      1        : ring buffers are permanently disabled
141  */
142
143 enum {
144         RB_BUFFERS_ON_BIT       = 0,
145         RB_BUFFERS_DISABLED_BIT = 1,
146 };
147
148 enum {
149         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
150         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
151 };
152
153 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
154
155 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156
157 /**
158  * tracing_on - enable all tracing buffers
159  *
160  * This function enables all tracing buffers that may have been
161  * disabled with tracing_off.
162  */
163 void tracing_on(void)
164 {
165         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
166 }
167 EXPORT_SYMBOL_GPL(tracing_on);
168
169 /**
170  * tracing_off - turn off all tracing buffers
171  *
172  * This function stops all tracing buffers from recording data.
173  * It does not disable any overhead the tracers themselves may
174  * be causing. This function simply causes all recording to
175  * the ring buffers to fail.
176  */
177 void tracing_off(void)
178 {
179         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
180 }
181 EXPORT_SYMBOL_GPL(tracing_off);
182
183 /**
184  * tracing_off_permanent - permanently disable ring buffers
185  *
186  * This function, once called, will disable all ring buffers
187  * permanently.
188  */
189 void tracing_off_permanent(void)
190 {
191         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
192 }
193
194 /**
195  * tracing_is_on - show state of ring buffers enabled
196  */
197 int tracing_is_on(void)
198 {
199         return ring_buffer_flags == RB_BUFFERS_ON;
200 }
201 EXPORT_SYMBOL_GPL(tracing_is_on);
202
203 #include "trace.h"
204
205 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
206 #define RB_ALIGNMENT            4U
207 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
208
209 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
210 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
211
212 enum {
213         RB_LEN_TIME_EXTEND = 8,
214         RB_LEN_TIME_STAMP = 16,
215 };
216
217 static inline int rb_null_event(struct ring_buffer_event *event)
218 {
219         return event->type_len == RINGBUF_TYPE_PADDING
220                         && event->time_delta == 0;
221 }
222
223 static inline int rb_discarded_event(struct ring_buffer_event *event)
224 {
225         return event->type_len == RINGBUF_TYPE_PADDING && event->time_delta;
226 }
227
228 static void rb_event_set_padding(struct ring_buffer_event *event)
229 {
230         event->type_len = RINGBUF_TYPE_PADDING;
231         event->time_delta = 0;
232 }
233
234 static unsigned
235 rb_event_data_length(struct ring_buffer_event *event)
236 {
237         unsigned length;
238
239         if (event->type_len)
240                 length = event->type_len * RB_ALIGNMENT;
241         else
242                 length = event->array[0];
243         return length + RB_EVNT_HDR_SIZE;
244 }
245
246 /* inline for ring buffer fast paths */
247 static unsigned
248 rb_event_length(struct ring_buffer_event *event)
249 {
250         switch (event->type_len) {
251         case RINGBUF_TYPE_PADDING:
252                 if (rb_null_event(event))
253                         /* undefined */
254                         return -1;
255                 return  event->array[0] + RB_EVNT_HDR_SIZE;
256
257         case RINGBUF_TYPE_TIME_EXTEND:
258                 return RB_LEN_TIME_EXTEND;
259
260         case RINGBUF_TYPE_TIME_STAMP:
261                 return RB_LEN_TIME_STAMP;
262
263         case RINGBUF_TYPE_DATA:
264                 return rb_event_data_length(event);
265         default:
266                 BUG();
267         }
268         /* not hit */
269         return 0;
270 }
271
272 /**
273  * ring_buffer_event_length - return the length of the event
274  * @event: the event to get the length of
275  */
276 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
277 {
278         unsigned length = rb_event_length(event);
279         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
280                 return length;
281         length -= RB_EVNT_HDR_SIZE;
282         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
283                 length -= sizeof(event->array[0]);
284         return length;
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
287
288 /* inline for ring buffer fast paths */
289 static void *
290 rb_event_data(struct ring_buffer_event *event)
291 {
292         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
293         /* If length is in len field, then array[0] has the data */
294         if (event->type_len)
295                 return (void *)&event->array[0];
296         /* Otherwise length is in array[0] and array[1] has the data */
297         return (void *)&event->array[1];
298 }
299
300 /**
301  * ring_buffer_event_data - return the data of the event
302  * @event: the event to get the data from
303  */
304 void *ring_buffer_event_data(struct ring_buffer_event *event)
305 {
306         return rb_event_data(event);
307 }
308 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
309
310 #define for_each_buffer_cpu(buffer, cpu)                \
311         for_each_cpu(cpu, buffer->cpumask)
312
313 #define TS_SHIFT        27
314 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
315 #define TS_DELTA_TEST   (~TS_MASK)
316
317 struct buffer_data_page {
318         u64              time_stamp;    /* page time stamp */
319         local_t          commit;        /* write committed index */
320         unsigned char    data[];        /* data of buffer page */
321 };
322
323 struct buffer_page {
324         local_t          write;         /* index for next write */
325         unsigned         read;          /* index for next read */
326         struct list_head list;          /* list of free pages */
327         struct buffer_data_page *page;  /* Actual data page */
328 };
329
330 static void rb_init_page(struct buffer_data_page *bpage)
331 {
332         local_set(&bpage->commit, 0);
333 }
334
335 /**
336  * ring_buffer_page_len - the size of data on the page.
337  * @page: The page to read
338  *
339  * Returns the amount of data on the page, including buffer page header.
340  */
341 size_t ring_buffer_page_len(void *page)
342 {
343         return local_read(&((struct buffer_data_page *)page)->commit)
344                 + BUF_PAGE_HDR_SIZE;
345 }
346
347 /*
348  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
349  * this issue out.
350  */
351 static void free_buffer_page(struct buffer_page *bpage)
352 {
353         free_page((unsigned long)bpage->page);
354         kfree(bpage);
355 }
356
357 /*
358  * We need to fit the time_stamp delta into 27 bits.
359  */
360 static inline int test_time_stamp(u64 delta)
361 {
362         if (delta & TS_DELTA_TEST)
363                 return 1;
364         return 0;
365 }
366
367 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
368
369 int ring_buffer_print_page_header(struct trace_seq *s)
370 {
371         struct buffer_data_page field;
372         int ret;
373
374         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
375                                "offset:0;\tsize:%u;\n",
376                                (unsigned int)sizeof(field.time_stamp));
377
378         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
379                                "offset:%u;\tsize:%u;\n",
380                                (unsigned int)offsetof(typeof(field), commit),
381                                (unsigned int)sizeof(field.commit));
382
383         ret = trace_seq_printf(s, "\tfield: char data;\t"
384                                "offset:%u;\tsize:%u;\n",
385                                (unsigned int)offsetof(typeof(field), data),
386                                (unsigned int)BUF_PAGE_SIZE);
387
388         return ret;
389 }
390
391 /*
392  * head_page == tail_page && head == tail then buffer is empty.
393  */
394 struct ring_buffer_per_cpu {
395         int                             cpu;
396         struct ring_buffer              *buffer;
397         spinlock_t                      reader_lock; /* serialize readers */
398         raw_spinlock_t                  lock;
399         struct lock_class_key           lock_key;
400         struct list_head                pages;
401         struct buffer_page              *head_page;     /* read from head */
402         struct buffer_page              *tail_page;     /* write to tail */
403         struct buffer_page              *commit_page;   /* committed pages */
404         struct buffer_page              *reader_page;
405         unsigned long                   overrun;
406         unsigned long                   entries;
407         u64                             write_stamp;
408         u64                             read_stamp;
409         atomic_t                        record_disabled;
410 };
411
412 struct ring_buffer {
413         unsigned                        pages;
414         unsigned                        flags;
415         int                             cpus;
416         atomic_t                        record_disabled;
417         cpumask_var_t                   cpumask;
418
419         struct mutex                    mutex;
420
421         struct ring_buffer_per_cpu      **buffers;
422
423 #ifdef CONFIG_HOTPLUG_CPU
424         struct notifier_block           cpu_notify;
425 #endif
426         u64                             (*clock)(void);
427 };
428
429 struct ring_buffer_iter {
430         struct ring_buffer_per_cpu      *cpu_buffer;
431         unsigned long                   head;
432         struct buffer_page              *head_page;
433         u64                             read_stamp;
434 };
435
436 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
437 #define RB_WARN_ON(buffer, cond)                                \
438         ({                                                      \
439                 int _____ret = unlikely(cond);                  \
440                 if (_____ret) {                                 \
441                         atomic_inc(&buffer->record_disabled);   \
442                         WARN_ON(1);                             \
443                 }                                               \
444                 _____ret;                                       \
445         })
446
447 /* Up this if you want to test the TIME_EXTENTS and normalization */
448 #define DEBUG_SHIFT 0
449
450 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
451 {
452         u64 time;
453
454         preempt_disable_notrace();
455         /* shift to debug/test normalization and TIME_EXTENTS */
456         time = buffer->clock() << DEBUG_SHIFT;
457         preempt_enable_no_resched_notrace();
458
459         return time;
460 }
461 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
462
463 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
464                                       int cpu, u64 *ts)
465 {
466         /* Just stupid testing the normalize function and deltas */
467         *ts >>= DEBUG_SHIFT;
468 }
469 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
470
471 /**
472  * check_pages - integrity check of buffer pages
473  * @cpu_buffer: CPU buffer with pages to test
474  *
475  * As a safety measure we check to make sure the data pages have not
476  * been corrupted.
477  */
478 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
479 {
480         struct list_head *head = &cpu_buffer->pages;
481         struct buffer_page *bpage, *tmp;
482
483         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
484                 return -1;
485         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
486                 return -1;
487
488         list_for_each_entry_safe(bpage, tmp, head, list) {
489                 if (RB_WARN_ON(cpu_buffer,
490                                bpage->list.next->prev != &bpage->list))
491                         return -1;
492                 if (RB_WARN_ON(cpu_buffer,
493                                bpage->list.prev->next != &bpage->list))
494                         return -1;
495         }
496
497         return 0;
498 }
499
500 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
501                              unsigned nr_pages)
502 {
503         struct list_head *head = &cpu_buffer->pages;
504         struct buffer_page *bpage, *tmp;
505         unsigned long addr;
506         LIST_HEAD(pages);
507         unsigned i;
508
509         for (i = 0; i < nr_pages; i++) {
510                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
511                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
512                 if (!bpage)
513                         goto free_pages;
514                 list_add(&bpage->list, &pages);
515
516                 addr = __get_free_page(GFP_KERNEL);
517                 if (!addr)
518                         goto free_pages;
519                 bpage->page = (void *)addr;
520                 rb_init_page(bpage->page);
521         }
522
523         list_splice(&pages, head);
524
525         rb_check_pages(cpu_buffer);
526
527         return 0;
528
529  free_pages:
530         list_for_each_entry_safe(bpage, tmp, &pages, list) {
531                 list_del_init(&bpage->list);
532                 free_buffer_page(bpage);
533         }
534         return -ENOMEM;
535 }
536
537 static struct ring_buffer_per_cpu *
538 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
539 {
540         struct ring_buffer_per_cpu *cpu_buffer;
541         struct buffer_page *bpage;
542         unsigned long addr;
543         int ret;
544
545         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
546                                   GFP_KERNEL, cpu_to_node(cpu));
547         if (!cpu_buffer)
548                 return NULL;
549
550         cpu_buffer->cpu = cpu;
551         cpu_buffer->buffer = buffer;
552         spin_lock_init(&cpu_buffer->reader_lock);
553         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
554         INIT_LIST_HEAD(&cpu_buffer->pages);
555
556         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
557                             GFP_KERNEL, cpu_to_node(cpu));
558         if (!bpage)
559                 goto fail_free_buffer;
560
561         cpu_buffer->reader_page = bpage;
562         addr = __get_free_page(GFP_KERNEL);
563         if (!addr)
564                 goto fail_free_reader;
565         bpage->page = (void *)addr;
566         rb_init_page(bpage->page);
567
568         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
569
570         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
571         if (ret < 0)
572                 goto fail_free_reader;
573
574         cpu_buffer->head_page
575                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
576         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
577
578         return cpu_buffer;
579
580  fail_free_reader:
581         free_buffer_page(cpu_buffer->reader_page);
582
583  fail_free_buffer:
584         kfree(cpu_buffer);
585         return NULL;
586 }
587
588 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
589 {
590         struct list_head *head = &cpu_buffer->pages;
591         struct buffer_page *bpage, *tmp;
592
593         free_buffer_page(cpu_buffer->reader_page);
594
595         list_for_each_entry_safe(bpage, tmp, head, list) {
596                 list_del_init(&bpage->list);
597                 free_buffer_page(bpage);
598         }
599         kfree(cpu_buffer);
600 }
601
602 /*
603  * Causes compile errors if the struct buffer_page gets bigger
604  * than the struct page.
605  */
606 extern int ring_buffer_page_too_big(void);
607
608 #ifdef CONFIG_HOTPLUG_CPU
609 static int rb_cpu_notify(struct notifier_block *self,
610                          unsigned long action, void *hcpu);
611 #endif
612
613 /**
614  * ring_buffer_alloc - allocate a new ring_buffer
615  * @size: the size in bytes per cpu that is needed.
616  * @flags: attributes to set for the ring buffer.
617  *
618  * Currently the only flag that is available is the RB_FL_OVERWRITE
619  * flag. This flag means that the buffer will overwrite old data
620  * when the buffer wraps. If this flag is not set, the buffer will
621  * drop data when the tail hits the head.
622  */
623 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
624 {
625         struct ring_buffer *buffer;
626         int bsize;
627         int cpu;
628
629         /* Paranoid! Optimizes out when all is well */
630         if (sizeof(struct buffer_page) > sizeof(struct page))
631                 ring_buffer_page_too_big();
632
633
634         /* keep it in its own cache line */
635         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
636                          GFP_KERNEL);
637         if (!buffer)
638                 return NULL;
639
640         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
641                 goto fail_free_buffer;
642
643         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
644         buffer->flags = flags;
645         buffer->clock = trace_clock_local;
646
647         /* need at least two pages */
648         if (buffer->pages == 1)
649                 buffer->pages++;
650
651         /*
652          * In case of non-hotplug cpu, if the ring-buffer is allocated
653          * in early initcall, it will not be notified of secondary cpus.
654          * In that off case, we need to allocate for all possible cpus.
655          */
656 #ifdef CONFIG_HOTPLUG_CPU
657         get_online_cpus();
658         cpumask_copy(buffer->cpumask, cpu_online_mask);
659 #else
660         cpumask_copy(buffer->cpumask, cpu_possible_mask);
661 #endif
662         buffer->cpus = nr_cpu_ids;
663
664         bsize = sizeof(void *) * nr_cpu_ids;
665         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
666                                   GFP_KERNEL);
667         if (!buffer->buffers)
668                 goto fail_free_cpumask;
669
670         for_each_buffer_cpu(buffer, cpu) {
671                 buffer->buffers[cpu] =
672                         rb_allocate_cpu_buffer(buffer, cpu);
673                 if (!buffer->buffers[cpu])
674                         goto fail_free_buffers;
675         }
676
677 #ifdef CONFIG_HOTPLUG_CPU
678         buffer->cpu_notify.notifier_call = rb_cpu_notify;
679         buffer->cpu_notify.priority = 0;
680         register_cpu_notifier(&buffer->cpu_notify);
681 #endif
682
683         put_online_cpus();
684         mutex_init(&buffer->mutex);
685
686         return buffer;
687
688  fail_free_buffers:
689         for_each_buffer_cpu(buffer, cpu) {
690                 if (buffer->buffers[cpu])
691                         rb_free_cpu_buffer(buffer->buffers[cpu]);
692         }
693         kfree(buffer->buffers);
694
695  fail_free_cpumask:
696         free_cpumask_var(buffer->cpumask);
697         put_online_cpus();
698
699  fail_free_buffer:
700         kfree(buffer);
701         return NULL;
702 }
703 EXPORT_SYMBOL_GPL(ring_buffer_alloc);
704
705 /**
706  * ring_buffer_free - free a ring buffer.
707  * @buffer: the buffer to free.
708  */
709 void
710 ring_buffer_free(struct ring_buffer *buffer)
711 {
712         int cpu;
713
714         get_online_cpus();
715
716 #ifdef CONFIG_HOTPLUG_CPU
717         unregister_cpu_notifier(&buffer->cpu_notify);
718 #endif
719
720         for_each_buffer_cpu(buffer, cpu)
721                 rb_free_cpu_buffer(buffer->buffers[cpu]);
722
723         put_online_cpus();
724
725         free_cpumask_var(buffer->cpumask);
726
727         kfree(buffer);
728 }
729 EXPORT_SYMBOL_GPL(ring_buffer_free);
730
731 void ring_buffer_set_clock(struct ring_buffer *buffer,
732                            u64 (*clock)(void))
733 {
734         buffer->clock = clock;
735 }
736
737 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
738
739 static void
740 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
741 {
742         struct buffer_page *bpage;
743         struct list_head *p;
744         unsigned i;
745
746         atomic_inc(&cpu_buffer->record_disabled);
747         synchronize_sched();
748
749         for (i = 0; i < nr_pages; i++) {
750                 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
751                         return;
752                 p = cpu_buffer->pages.next;
753                 bpage = list_entry(p, struct buffer_page, list);
754                 list_del_init(&bpage->list);
755                 free_buffer_page(bpage);
756         }
757         if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
758                 return;
759
760         rb_reset_cpu(cpu_buffer);
761
762         rb_check_pages(cpu_buffer);
763
764         atomic_dec(&cpu_buffer->record_disabled);
765
766 }
767
768 static void
769 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
770                 struct list_head *pages, unsigned nr_pages)
771 {
772         struct buffer_page *bpage;
773         struct list_head *p;
774         unsigned i;
775
776         atomic_inc(&cpu_buffer->record_disabled);
777         synchronize_sched();
778
779         for (i = 0; i < nr_pages; i++) {
780                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
781                         return;
782                 p = pages->next;
783                 bpage = list_entry(p, struct buffer_page, list);
784                 list_del_init(&bpage->list);
785                 list_add_tail(&bpage->list, &cpu_buffer->pages);
786         }
787         rb_reset_cpu(cpu_buffer);
788
789         rb_check_pages(cpu_buffer);
790
791         atomic_dec(&cpu_buffer->record_disabled);
792 }
793
794 /**
795  * ring_buffer_resize - resize the ring buffer
796  * @buffer: the buffer to resize.
797  * @size: the new size.
798  *
799  * The tracer is responsible for making sure that the buffer is
800  * not being used while changing the size.
801  * Note: We may be able to change the above requirement by using
802  *  RCU synchronizations.
803  *
804  * Minimum size is 2 * BUF_PAGE_SIZE.
805  *
806  * Returns -1 on failure.
807  */
808 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
809 {
810         struct ring_buffer_per_cpu *cpu_buffer;
811         unsigned nr_pages, rm_pages, new_pages;
812         struct buffer_page *bpage, *tmp;
813         unsigned long buffer_size;
814         unsigned long addr;
815         LIST_HEAD(pages);
816         int i, cpu;
817
818         /*
819          * Always succeed at resizing a non-existent buffer:
820          */
821         if (!buffer)
822                 return size;
823
824         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
825         size *= BUF_PAGE_SIZE;
826         buffer_size = buffer->pages * BUF_PAGE_SIZE;
827
828         /* we need a minimum of two pages */
829         if (size < BUF_PAGE_SIZE * 2)
830                 size = BUF_PAGE_SIZE * 2;
831
832         if (size == buffer_size)
833                 return size;
834
835         mutex_lock(&buffer->mutex);
836         get_online_cpus();
837
838         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
839
840         if (size < buffer_size) {
841
842                 /* easy case, just free pages */
843                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
844                         goto out_fail;
845
846                 rm_pages = buffer->pages - nr_pages;
847
848                 for_each_buffer_cpu(buffer, cpu) {
849                         cpu_buffer = buffer->buffers[cpu];
850                         rb_remove_pages(cpu_buffer, rm_pages);
851                 }
852                 goto out;
853         }
854
855         /*
856          * This is a bit more difficult. We only want to add pages
857          * when we can allocate enough for all CPUs. We do this
858          * by allocating all the pages and storing them on a local
859          * link list. If we succeed in our allocation, then we
860          * add these pages to the cpu_buffers. Otherwise we just free
861          * them all and return -ENOMEM;
862          */
863         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
864                 goto out_fail;
865
866         new_pages = nr_pages - buffer->pages;
867
868         for_each_buffer_cpu(buffer, cpu) {
869                 for (i = 0; i < new_pages; i++) {
870                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
871                                                   cache_line_size()),
872                                             GFP_KERNEL, cpu_to_node(cpu));
873                         if (!bpage)
874                                 goto free_pages;
875                         list_add(&bpage->list, &pages);
876                         addr = __get_free_page(GFP_KERNEL);
877                         if (!addr)
878                                 goto free_pages;
879                         bpage->page = (void *)addr;
880                         rb_init_page(bpage->page);
881                 }
882         }
883
884         for_each_buffer_cpu(buffer, cpu) {
885                 cpu_buffer = buffer->buffers[cpu];
886                 rb_insert_pages(cpu_buffer, &pages, new_pages);
887         }
888
889         if (RB_WARN_ON(buffer, !list_empty(&pages)))
890                 goto out_fail;
891
892  out:
893         buffer->pages = nr_pages;
894         put_online_cpus();
895         mutex_unlock(&buffer->mutex);
896
897         return size;
898
899  free_pages:
900         list_for_each_entry_safe(bpage, tmp, &pages, list) {
901                 list_del_init(&bpage->list);
902                 free_buffer_page(bpage);
903         }
904         put_online_cpus();
905         mutex_unlock(&buffer->mutex);
906         return -ENOMEM;
907
908         /*
909          * Something went totally wrong, and we are too paranoid
910          * to even clean up the mess.
911          */
912  out_fail:
913         put_online_cpus();
914         mutex_unlock(&buffer->mutex);
915         return -1;
916 }
917 EXPORT_SYMBOL_GPL(ring_buffer_resize);
918
919 static inline void *
920 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
921 {
922         return bpage->data + index;
923 }
924
925 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
926 {
927         return bpage->page->data + index;
928 }
929
930 static inline struct ring_buffer_event *
931 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
932 {
933         return __rb_page_index(cpu_buffer->reader_page,
934                                cpu_buffer->reader_page->read);
935 }
936
937 static inline struct ring_buffer_event *
938 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
939 {
940         return __rb_page_index(cpu_buffer->head_page,
941                                cpu_buffer->head_page->read);
942 }
943
944 static inline struct ring_buffer_event *
945 rb_iter_head_event(struct ring_buffer_iter *iter)
946 {
947         return __rb_page_index(iter->head_page, iter->head);
948 }
949
950 static inline unsigned rb_page_write(struct buffer_page *bpage)
951 {
952         return local_read(&bpage->write);
953 }
954
955 static inline unsigned rb_page_commit(struct buffer_page *bpage)
956 {
957         return local_read(&bpage->page->commit);
958 }
959
960 /* Size is determined by what has been commited */
961 static inline unsigned rb_page_size(struct buffer_page *bpage)
962 {
963         return rb_page_commit(bpage);
964 }
965
966 static inline unsigned
967 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
968 {
969         return rb_page_commit(cpu_buffer->commit_page);
970 }
971
972 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
973 {
974         return rb_page_commit(cpu_buffer->head_page);
975 }
976
977 /*
978  * When the tail hits the head and the buffer is in overwrite mode,
979  * the head jumps to the next page and all content on the previous
980  * page is discarded. But before doing so, we update the overrun
981  * variable of the buffer.
982  */
983 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
984 {
985         struct ring_buffer_event *event;
986         unsigned long head;
987
988         for (head = 0; head < rb_head_size(cpu_buffer);
989              head += rb_event_length(event)) {
990
991                 event = __rb_page_index(cpu_buffer->head_page, head);
992                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
993                         return;
994                 /* Only count data entries */
995                 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
996                         continue;
997                 cpu_buffer->overrun++;
998                 cpu_buffer->entries--;
999         }
1000 }
1001
1002 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1003                                struct buffer_page **bpage)
1004 {
1005         struct list_head *p = (*bpage)->list.next;
1006
1007         if (p == &cpu_buffer->pages)
1008                 p = p->next;
1009
1010         *bpage = list_entry(p, struct buffer_page, list);
1011 }
1012
1013 static inline unsigned
1014 rb_event_index(struct ring_buffer_event *event)
1015 {
1016         unsigned long addr = (unsigned long)event;
1017
1018         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
1019 }
1020
1021 static int
1022 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1023              struct ring_buffer_event *event)
1024 {
1025         unsigned long addr = (unsigned long)event;
1026         unsigned long index;
1027
1028         index = rb_event_index(event);
1029         addr &= PAGE_MASK;
1030
1031         return cpu_buffer->commit_page->page == (void *)addr &&
1032                 rb_commit_index(cpu_buffer) == index;
1033 }
1034
1035 static void
1036 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
1037                     struct ring_buffer_event *event)
1038 {
1039         unsigned long addr = (unsigned long)event;
1040         unsigned long index;
1041
1042         index = rb_event_index(event);
1043         addr &= PAGE_MASK;
1044
1045         while (cpu_buffer->commit_page->page != (void *)addr) {
1046                 if (RB_WARN_ON(cpu_buffer,
1047                           cpu_buffer->commit_page == cpu_buffer->tail_page))
1048                         return;
1049                 cpu_buffer->commit_page->page->commit =
1050                         cpu_buffer->commit_page->write;
1051                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1052                 cpu_buffer->write_stamp =
1053                         cpu_buffer->commit_page->page->time_stamp;
1054         }
1055
1056         /* Now set the commit to the event's index */
1057         local_set(&cpu_buffer->commit_page->page->commit, index);
1058 }
1059
1060 static void
1061 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1062 {
1063         /*
1064          * We only race with interrupts and NMIs on this CPU.
1065          * If we own the commit event, then we can commit
1066          * all others that interrupted us, since the interruptions
1067          * are in stack format (they finish before they come
1068          * back to us). This allows us to do a simple loop to
1069          * assign the commit to the tail.
1070          */
1071  again:
1072         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1073                 cpu_buffer->commit_page->page->commit =
1074                         cpu_buffer->commit_page->write;
1075                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1076                 cpu_buffer->write_stamp =
1077                         cpu_buffer->commit_page->page->time_stamp;
1078                 /* add barrier to keep gcc from optimizing too much */
1079                 barrier();
1080         }
1081         while (rb_commit_index(cpu_buffer) !=
1082                rb_page_write(cpu_buffer->commit_page)) {
1083                 cpu_buffer->commit_page->page->commit =
1084                         cpu_buffer->commit_page->write;
1085                 barrier();
1086         }
1087
1088         /* again, keep gcc from optimizing */
1089         barrier();
1090
1091         /*
1092          * If an interrupt came in just after the first while loop
1093          * and pushed the tail page forward, we will be left with
1094          * a dangling commit that will never go forward.
1095          */
1096         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1097                 goto again;
1098 }
1099
1100 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1101 {
1102         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1103         cpu_buffer->reader_page->read = 0;
1104 }
1105
1106 static void rb_inc_iter(struct ring_buffer_iter *iter)
1107 {
1108         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1109
1110         /*
1111          * The iterator could be on the reader page (it starts there).
1112          * But the head could have moved, since the reader was
1113          * found. Check for this case and assign the iterator
1114          * to the head page instead of next.
1115          */
1116         if (iter->head_page == cpu_buffer->reader_page)
1117                 iter->head_page = cpu_buffer->head_page;
1118         else
1119                 rb_inc_page(cpu_buffer, &iter->head_page);
1120
1121         iter->read_stamp = iter->head_page->page->time_stamp;
1122         iter->head = 0;
1123 }
1124
1125 /**
1126  * ring_buffer_update_event - update event type and data
1127  * @event: the even to update
1128  * @type: the type of event
1129  * @length: the size of the event field in the ring buffer
1130  *
1131  * Update the type and data fields of the event. The length
1132  * is the actual size that is written to the ring buffer,
1133  * and with this, we can determine what to place into the
1134  * data field.
1135  */
1136 static void
1137 rb_update_event(struct ring_buffer_event *event,
1138                          unsigned type, unsigned length)
1139 {
1140         event->type_len = type;
1141
1142         switch (type) {
1143
1144         case RINGBUF_TYPE_PADDING:
1145         case RINGBUF_TYPE_TIME_EXTEND:
1146         case RINGBUF_TYPE_TIME_STAMP:
1147                 break;
1148
1149         case 0:
1150                 length -= RB_EVNT_HDR_SIZE;
1151                 if (length > RB_MAX_SMALL_DATA)
1152                         event->array[0] = length;
1153                 else
1154                         event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1155                 break;
1156         default:
1157                 BUG();
1158         }
1159 }
1160
1161 static unsigned rb_calculate_event_length(unsigned length)
1162 {
1163         struct ring_buffer_event event; /* Used only for sizeof array */
1164
1165         /* zero length can cause confusions */
1166         if (!length)
1167                 length = 1;
1168
1169         if (length > RB_MAX_SMALL_DATA)
1170                 length += sizeof(event.array[0]);
1171
1172         length += RB_EVNT_HDR_SIZE;
1173         length = ALIGN(length, RB_ALIGNMENT);
1174
1175         return length;
1176 }
1177
1178 static struct ring_buffer_event *
1179 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1180                   unsigned type, unsigned long length, u64 *ts)
1181 {
1182         struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
1183         unsigned long tail, write;
1184         struct ring_buffer *buffer = cpu_buffer->buffer;
1185         struct ring_buffer_event *event;
1186         unsigned long flags;
1187         bool lock_taken = false;
1188
1189         commit_page = cpu_buffer->commit_page;
1190         /* we just need to protect against interrupts */
1191         barrier();
1192         tail_page = cpu_buffer->tail_page;
1193         write = local_add_return(length, &tail_page->write);
1194         tail = write - length;
1195
1196         /* See if we shot pass the end of this buffer page */
1197         if (write > BUF_PAGE_SIZE) {
1198                 struct buffer_page *next_page = tail_page;
1199
1200                 local_irq_save(flags);
1201                 /*
1202                  * Since the write to the buffer is still not
1203                  * fully lockless, we must be careful with NMIs.
1204                  * The locks in the writers are taken when a write
1205                  * crosses to a new page. The locks protect against
1206                  * races with the readers (this will soon be fixed
1207                  * with a lockless solution).
1208                  *
1209                  * Because we can not protect against NMIs, and we
1210                  * want to keep traces reentrant, we need to manage
1211                  * what happens when we are in an NMI.
1212                  *
1213                  * NMIs can happen after we take the lock.
1214                  * If we are in an NMI, only take the lock
1215                  * if it is not already taken. Otherwise
1216                  * simply fail.
1217                  */
1218                 if (unlikely(in_nmi())) {
1219                         if (!__raw_spin_trylock(&cpu_buffer->lock))
1220                                 goto out_reset;
1221                 } else
1222                         __raw_spin_lock(&cpu_buffer->lock);
1223
1224                 lock_taken = true;
1225
1226                 rb_inc_page(cpu_buffer, &next_page);
1227
1228                 head_page = cpu_buffer->head_page;
1229                 reader_page = cpu_buffer->reader_page;
1230
1231                 /* we grabbed the lock before incrementing */
1232                 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1233                         goto out_reset;
1234
1235                 /*
1236                  * If for some reason, we had an interrupt storm that made
1237                  * it all the way around the buffer, bail, and warn
1238                  * about it.
1239                  */
1240                 if (unlikely(next_page == commit_page)) {
1241                         /* This can easily happen on small ring buffers */
1242                         WARN_ON_ONCE(buffer->pages > 2);
1243                         goto out_reset;
1244                 }
1245
1246                 if (next_page == head_page) {
1247                         if (!(buffer->flags & RB_FL_OVERWRITE))
1248                                 goto out_reset;
1249
1250                         /* tail_page has not moved yet? */
1251                         if (tail_page == cpu_buffer->tail_page) {
1252                                 /* count overflows */
1253                                 rb_update_overflow(cpu_buffer);
1254
1255                                 rb_inc_page(cpu_buffer, &head_page);
1256                                 cpu_buffer->head_page = head_page;
1257                                 cpu_buffer->head_page->read = 0;
1258                         }
1259                 }
1260
1261                 /*
1262                  * If the tail page is still the same as what we think
1263                  * it is, then it is up to us to update the tail
1264                  * pointer.
1265                  */
1266                 if (tail_page == cpu_buffer->tail_page) {
1267                         local_set(&next_page->write, 0);
1268                         local_set(&next_page->page->commit, 0);
1269                         cpu_buffer->tail_page = next_page;
1270
1271                         /* reread the time stamp */
1272                         *ts = ring_buffer_time_stamp(buffer, cpu_buffer->cpu);
1273                         cpu_buffer->tail_page->page->time_stamp = *ts;
1274                 }
1275
1276                 /*
1277                  * The actual tail page has moved forward.
1278                  */
1279                 if (tail < BUF_PAGE_SIZE) {
1280                         /* Mark the rest of the page with padding */
1281                         event = __rb_page_index(tail_page, tail);
1282                         rb_event_set_padding(event);
1283                 }
1284
1285                 if (tail <= BUF_PAGE_SIZE)
1286                         /* Set the write back to the previous setting */
1287                         local_set(&tail_page->write, tail);
1288
1289                 /*
1290                  * If this was a commit entry that failed,
1291                  * increment that too
1292                  */
1293                 if (tail_page == cpu_buffer->commit_page &&
1294                     tail == rb_commit_index(cpu_buffer)) {
1295                         rb_set_commit_to_write(cpu_buffer);
1296                 }
1297
1298                 __raw_spin_unlock(&cpu_buffer->lock);
1299                 local_irq_restore(flags);
1300
1301                 /* fail and let the caller try again */
1302                 return ERR_PTR(-EAGAIN);
1303         }
1304
1305         /* We reserved something on the buffer */
1306
1307         if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1308                 return NULL;
1309
1310         event = __rb_page_index(tail_page, tail);
1311         rb_update_event(event, type, length);
1312
1313         /*
1314          * If this is a commit and the tail is zero, then update
1315          * this page's time stamp.
1316          */
1317         if (!tail && rb_is_commit(cpu_buffer, event))
1318                 cpu_buffer->commit_page->page->time_stamp = *ts;
1319
1320         return event;
1321
1322  out_reset:
1323         /* reset write */
1324         if (tail <= BUF_PAGE_SIZE)
1325                 local_set(&tail_page->write, tail);
1326
1327         if (likely(lock_taken))
1328                 __raw_spin_unlock(&cpu_buffer->lock);
1329         local_irq_restore(flags);
1330         return NULL;
1331 }
1332
1333 static int
1334 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1335                   u64 *ts, u64 *delta)
1336 {
1337         struct ring_buffer_event *event;
1338         static int once;
1339         int ret;
1340
1341         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1342                 printk(KERN_WARNING "Delta way too big! %llu"
1343                        " ts=%llu write stamp = %llu\n",
1344                        (unsigned long long)*delta,
1345                        (unsigned long long)*ts,
1346                        (unsigned long long)cpu_buffer->write_stamp);
1347                 WARN_ON(1);
1348         }
1349
1350         /*
1351          * The delta is too big, we to add a
1352          * new timestamp.
1353          */
1354         event = __rb_reserve_next(cpu_buffer,
1355                                   RINGBUF_TYPE_TIME_EXTEND,
1356                                   RB_LEN_TIME_EXTEND,
1357                                   ts);
1358         if (!event)
1359                 return -EBUSY;
1360
1361         if (PTR_ERR(event) == -EAGAIN)
1362                 return -EAGAIN;
1363
1364         /* Only a commited time event can update the write stamp */
1365         if (rb_is_commit(cpu_buffer, event)) {
1366                 /*
1367                  * If this is the first on the page, then we need to
1368                  * update the page itself, and just put in a zero.
1369                  */
1370                 if (rb_event_index(event)) {
1371                         event->time_delta = *delta & TS_MASK;
1372                         event->array[0] = *delta >> TS_SHIFT;
1373                 } else {
1374                         cpu_buffer->commit_page->page->time_stamp = *ts;
1375                         event->time_delta = 0;
1376                         event->array[0] = 0;
1377                 }
1378                 cpu_buffer->write_stamp = *ts;
1379                 /* let the caller know this was the commit */
1380                 ret = 1;
1381         } else {
1382                 /* Darn, this is just wasted space */
1383                 event->time_delta = 0;
1384                 event->array[0] = 0;
1385                 ret = 0;
1386         }
1387
1388         *delta = 0;
1389
1390         return ret;
1391 }
1392
1393 static struct ring_buffer_event *
1394 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1395                       unsigned type, unsigned long length)
1396 {
1397         struct ring_buffer_event *event;
1398         u64 ts, delta;
1399         int commit = 0;
1400         int nr_loops = 0;
1401
1402  again:
1403         /*
1404          * We allow for interrupts to reenter here and do a trace.
1405          * If one does, it will cause this original code to loop
1406          * back here. Even with heavy interrupts happening, this
1407          * should only happen a few times in a row. If this happens
1408          * 1000 times in a row, there must be either an interrupt
1409          * storm or we have something buggy.
1410          * Bail!
1411          */
1412         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1413                 return NULL;
1414
1415         ts = ring_buffer_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
1416
1417         /*
1418          * Only the first commit can update the timestamp.
1419          * Yes there is a race here. If an interrupt comes in
1420          * just after the conditional and it traces too, then it
1421          * will also check the deltas. More than one timestamp may
1422          * also be made. But only the entry that did the actual
1423          * commit will be something other than zero.
1424          */
1425         if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1426             rb_page_write(cpu_buffer->tail_page) ==
1427             rb_commit_index(cpu_buffer)) {
1428
1429                 delta = ts - cpu_buffer->write_stamp;
1430
1431                 /* make sure this delta is calculated here */
1432                 barrier();
1433
1434                 /* Did the write stamp get updated already? */
1435                 if (unlikely(ts < cpu_buffer->write_stamp))
1436                         delta = 0;
1437
1438                 if (test_time_stamp(delta)) {
1439
1440                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1441
1442                         if (commit == -EBUSY)
1443                                 return NULL;
1444
1445                         if (commit == -EAGAIN)
1446                                 goto again;
1447
1448                         RB_WARN_ON(cpu_buffer, commit < 0);
1449                 }
1450         } else
1451                 /* Non commits have zero deltas */
1452                 delta = 0;
1453
1454         event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1455         if (PTR_ERR(event) == -EAGAIN)
1456                 goto again;
1457
1458         if (!event) {
1459                 if (unlikely(commit))
1460                         /*
1461                          * Ouch! We needed a timestamp and it was commited. But
1462                          * we didn't get our event reserved.
1463                          */
1464                         rb_set_commit_to_write(cpu_buffer);
1465                 return NULL;
1466         }
1467
1468         /*
1469          * If the timestamp was commited, make the commit our entry
1470          * now so that we will update it when needed.
1471          */
1472         if (commit)
1473                 rb_set_commit_event(cpu_buffer, event);
1474         else if (!rb_is_commit(cpu_buffer, event))
1475                 delta = 0;
1476
1477         event->time_delta = delta;
1478
1479         return event;
1480 }
1481
1482 #define TRACE_RECURSIVE_DEPTH 16
1483
1484 static int trace_recursive_lock(void)
1485 {
1486         current->trace_recursion++;
1487
1488         if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
1489                 return 0;
1490
1491         /* Disable all tracing before we do anything else */
1492         tracing_off_permanent();
1493
1494         printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
1495                     "HC[%lu]:SC[%lu]:NMI[%lu]\n",
1496                     current->trace_recursion,
1497                     hardirq_count() >> HARDIRQ_SHIFT,
1498                     softirq_count() >> SOFTIRQ_SHIFT,
1499                     in_nmi());
1500
1501         WARN_ON_ONCE(1);
1502         return -1;
1503 }
1504
1505 static void trace_recursive_unlock(void)
1506 {
1507         WARN_ON_ONCE(!current->trace_recursion);
1508
1509         current->trace_recursion--;
1510 }
1511
1512 static DEFINE_PER_CPU(int, rb_need_resched);
1513
1514 /**
1515  * ring_buffer_lock_reserve - reserve a part of the buffer
1516  * @buffer: the ring buffer to reserve from
1517  * @length: the length of the data to reserve (excluding event header)
1518  *
1519  * Returns a reseverd event on the ring buffer to copy directly to.
1520  * The user of this interface will need to get the body to write into
1521  * and can use the ring_buffer_event_data() interface.
1522  *
1523  * The length is the length of the data needed, not the event length
1524  * which also includes the event header.
1525  *
1526  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1527  * If NULL is returned, then nothing has been allocated or locked.
1528  */
1529 struct ring_buffer_event *
1530 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1531 {
1532         struct ring_buffer_per_cpu *cpu_buffer;
1533         struct ring_buffer_event *event;
1534         int cpu, resched;
1535
1536         if (ring_buffer_flags != RB_BUFFERS_ON)
1537                 return NULL;
1538
1539         if (atomic_read(&buffer->record_disabled))
1540                 return NULL;
1541
1542         /* If we are tracing schedule, we don't want to recurse */
1543         resched = ftrace_preempt_disable();
1544
1545         if (trace_recursive_lock())
1546                 goto out_nocheck;
1547
1548         cpu = raw_smp_processor_id();
1549
1550         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1551                 goto out;
1552
1553         cpu_buffer = buffer->buffers[cpu];
1554
1555         if (atomic_read(&cpu_buffer->record_disabled))
1556                 goto out;
1557
1558         length = rb_calculate_event_length(length);
1559         if (length > BUF_PAGE_SIZE)
1560                 goto out;
1561
1562         event = rb_reserve_next_event(cpu_buffer, 0, length);
1563         if (!event)
1564                 goto out;
1565
1566         /*
1567          * Need to store resched state on this cpu.
1568          * Only the first needs to.
1569          */
1570
1571         if (preempt_count() == 1)
1572                 per_cpu(rb_need_resched, cpu) = resched;
1573
1574         return event;
1575
1576  out:
1577         trace_recursive_unlock();
1578
1579  out_nocheck:
1580         ftrace_preempt_enable(resched);
1581         return NULL;
1582 }
1583 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1584
1585 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1586                       struct ring_buffer_event *event)
1587 {
1588         cpu_buffer->entries++;
1589
1590         /* Only process further if we own the commit */
1591         if (!rb_is_commit(cpu_buffer, event))
1592                 return;
1593
1594         cpu_buffer->write_stamp += event->time_delta;
1595
1596         rb_set_commit_to_write(cpu_buffer);
1597 }
1598
1599 /**
1600  * ring_buffer_unlock_commit - commit a reserved
1601  * @buffer: The buffer to commit to
1602  * @event: The event pointer to commit.
1603  *
1604  * This commits the data to the ring buffer, and releases any locks held.
1605  *
1606  * Must be paired with ring_buffer_lock_reserve.
1607  */
1608 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1609                               struct ring_buffer_event *event)
1610 {
1611         struct ring_buffer_per_cpu *cpu_buffer;
1612         int cpu = raw_smp_processor_id();
1613
1614         cpu_buffer = buffer->buffers[cpu];
1615
1616         rb_commit(cpu_buffer, event);
1617
1618         trace_recursive_unlock();
1619
1620         /*
1621          * Only the last preempt count needs to restore preemption.
1622          */
1623         if (preempt_count() == 1)
1624                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1625         else
1626                 preempt_enable_no_resched_notrace();
1627
1628         return 0;
1629 }
1630 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1631
1632 static inline void rb_event_discard(struct ring_buffer_event *event)
1633 {
1634         /* array[0] holds the actual length for the discarded event */
1635         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
1636         event->type_len = RINGBUF_TYPE_PADDING;
1637         /* time delta must be non zero */
1638         if (!event->time_delta)
1639                 event->time_delta = 1;
1640 }
1641
1642 /**
1643  * ring_buffer_event_discard - discard any event in the ring buffer
1644  * @event: the event to discard
1645  *
1646  * Sometimes a event that is in the ring buffer needs to be ignored.
1647  * This function lets the user discard an event in the ring buffer
1648  * and then that event will not be read later.
1649  *
1650  * Note, it is up to the user to be careful with this, and protect
1651  * against races. If the user discards an event that has been consumed
1652  * it is possible that it could corrupt the ring buffer.
1653  */
1654 void ring_buffer_event_discard(struct ring_buffer_event *event)
1655 {
1656         rb_event_discard(event);
1657 }
1658 EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
1659
1660 /**
1661  * ring_buffer_commit_discard - discard an event that has not been committed
1662  * @buffer: the ring buffer
1663  * @event: non committed event to discard
1664  *
1665  * This is similar to ring_buffer_event_discard but must only be
1666  * performed on an event that has not been committed yet. The difference
1667  * is that this will also try to free the event from the ring buffer
1668  * if another event has not been added behind it.
1669  *
1670  * If another event has been added behind it, it will set the event
1671  * up as discarded, and perform the commit.
1672  *
1673  * If this function is called, do not call ring_buffer_unlock_commit on
1674  * the event.
1675  */
1676 void ring_buffer_discard_commit(struct ring_buffer *buffer,
1677                                 struct ring_buffer_event *event)
1678 {
1679         struct ring_buffer_per_cpu *cpu_buffer;
1680         unsigned long new_index, old_index;
1681         struct buffer_page *bpage;
1682         unsigned long index;
1683         unsigned long addr;
1684         int cpu;
1685
1686         /* The event is discarded regardless */
1687         rb_event_discard(event);
1688
1689         /*
1690          * This must only be called if the event has not been
1691          * committed yet. Thus we can assume that preemption
1692          * is still disabled.
1693          */
1694         RB_WARN_ON(buffer, !preempt_count());
1695
1696         cpu = smp_processor_id();
1697         cpu_buffer = buffer->buffers[cpu];
1698
1699         new_index = rb_event_index(event);
1700         old_index = new_index + rb_event_length(event);
1701         addr = (unsigned long)event;
1702         addr &= PAGE_MASK;
1703
1704         bpage = cpu_buffer->tail_page;
1705
1706         if (bpage == (void *)addr && rb_page_write(bpage) == old_index) {
1707                 /*
1708                  * This is on the tail page. It is possible that
1709                  * a write could come in and move the tail page
1710                  * and write to the next page. That is fine
1711                  * because we just shorten what is on this page.
1712                  */
1713                 index = local_cmpxchg(&bpage->write, old_index, new_index);
1714                 if (index == old_index)
1715                         goto out;
1716         }
1717
1718         /*
1719          * The commit is still visible by the reader, so we
1720          * must increment entries.
1721          */
1722         cpu_buffer->entries++;
1723  out:
1724         /*
1725          * If a write came in and pushed the tail page
1726          * we still need to update the commit pointer
1727          * if we were the commit.
1728          */
1729         if (rb_is_commit(cpu_buffer, event))
1730                 rb_set_commit_to_write(cpu_buffer);
1731
1732         trace_recursive_unlock();
1733
1734         /*
1735          * Only the last preempt count needs to restore preemption.
1736          */
1737         if (preempt_count() == 1)
1738                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1739         else
1740                 preempt_enable_no_resched_notrace();
1741
1742 }
1743 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
1744
1745 /**
1746  * ring_buffer_write - write data to the buffer without reserving
1747  * @buffer: The ring buffer to write to.
1748  * @length: The length of the data being written (excluding the event header)
1749  * @data: The data to write to the buffer.
1750  *
1751  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1752  * one function. If you already have the data to write to the buffer, it
1753  * may be easier to simply call this function.
1754  *
1755  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1756  * and not the length of the event which would hold the header.
1757  */
1758 int ring_buffer_write(struct ring_buffer *buffer,
1759                         unsigned long length,
1760                         void *data)
1761 {
1762         struct ring_buffer_per_cpu *cpu_buffer;
1763         struct ring_buffer_event *event;
1764         unsigned long event_length;
1765         void *body;
1766         int ret = -EBUSY;
1767         int cpu, resched;
1768
1769         if (ring_buffer_flags != RB_BUFFERS_ON)
1770                 return -EBUSY;
1771
1772         if (atomic_read(&buffer->record_disabled))
1773                 return -EBUSY;
1774
1775         resched = ftrace_preempt_disable();
1776
1777         cpu = raw_smp_processor_id();
1778
1779         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1780                 goto out;
1781
1782         cpu_buffer = buffer->buffers[cpu];
1783
1784         if (atomic_read(&cpu_buffer->record_disabled))
1785                 goto out;
1786
1787         event_length = rb_calculate_event_length(length);
1788         event = rb_reserve_next_event(cpu_buffer, 0, event_length);
1789         if (!event)
1790                 goto out;
1791
1792         body = rb_event_data(event);
1793
1794         memcpy(body, data, length);
1795
1796         rb_commit(cpu_buffer, event);
1797
1798         ret = 0;
1799  out:
1800         ftrace_preempt_enable(resched);
1801
1802         return ret;
1803 }
1804 EXPORT_SYMBOL_GPL(ring_buffer_write);
1805
1806 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1807 {
1808         struct buffer_page *reader = cpu_buffer->reader_page;
1809         struct buffer_page *head = cpu_buffer->head_page;
1810         struct buffer_page *commit = cpu_buffer->commit_page;
1811
1812         return reader->read == rb_page_commit(reader) &&
1813                 (commit == reader ||
1814                  (commit == head &&
1815                   head->read == rb_page_commit(commit)));
1816 }
1817
1818 /**
1819  * ring_buffer_record_disable - stop all writes into the buffer
1820  * @buffer: The ring buffer to stop writes to.
1821  *
1822  * This prevents all writes to the buffer. Any attempt to write
1823  * to the buffer after this will fail and return NULL.
1824  *
1825  * The caller should call synchronize_sched() after this.
1826  */
1827 void ring_buffer_record_disable(struct ring_buffer *buffer)
1828 {
1829         atomic_inc(&buffer->record_disabled);
1830 }
1831 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1832
1833 /**
1834  * ring_buffer_record_enable - enable writes to the buffer
1835  * @buffer: The ring buffer to enable writes
1836  *
1837  * Note, multiple disables will need the same number of enables
1838  * to truely enable the writing (much like preempt_disable).
1839  */
1840 void ring_buffer_record_enable(struct ring_buffer *buffer)
1841 {
1842         atomic_dec(&buffer->record_disabled);
1843 }
1844 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1845
1846 /**
1847  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1848  * @buffer: The ring buffer to stop writes to.
1849  * @cpu: The CPU buffer to stop
1850  *
1851  * This prevents all writes to the buffer. Any attempt to write
1852  * to the buffer after this will fail and return NULL.
1853  *
1854  * The caller should call synchronize_sched() after this.
1855  */
1856 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1857 {
1858         struct ring_buffer_per_cpu *cpu_buffer;
1859
1860         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1861                 return;
1862
1863         cpu_buffer = buffer->buffers[cpu];
1864         atomic_inc(&cpu_buffer->record_disabled);
1865 }
1866 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1867
1868 /**
1869  * ring_buffer_record_enable_cpu - enable writes to the buffer
1870  * @buffer: The ring buffer to enable writes
1871  * @cpu: The CPU to enable.
1872  *
1873  * Note, multiple disables will need the same number of enables
1874  * to truely enable the writing (much like preempt_disable).
1875  */
1876 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1877 {
1878         struct ring_buffer_per_cpu *cpu_buffer;
1879
1880         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1881                 return;
1882
1883         cpu_buffer = buffer->buffers[cpu];
1884         atomic_dec(&cpu_buffer->record_disabled);
1885 }
1886 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1887
1888 /**
1889  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1890  * @buffer: The ring buffer
1891  * @cpu: The per CPU buffer to get the entries from.
1892  */
1893 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1894 {
1895         struct ring_buffer_per_cpu *cpu_buffer;
1896         unsigned long ret;
1897
1898         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1899                 return 0;
1900
1901         cpu_buffer = buffer->buffers[cpu];
1902         ret = cpu_buffer->entries;
1903
1904         return ret;
1905 }
1906 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1907
1908 /**
1909  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1910  * @buffer: The ring buffer
1911  * @cpu: The per CPU buffer to get the number of overruns from
1912  */
1913 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1914 {
1915         struct ring_buffer_per_cpu *cpu_buffer;
1916         unsigned long ret;
1917
1918         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1919                 return 0;
1920
1921         cpu_buffer = buffer->buffers[cpu];
1922         ret = cpu_buffer->overrun;
1923
1924         return ret;
1925 }
1926 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1927
1928 /**
1929  * ring_buffer_entries - get the number of entries in a buffer
1930  * @buffer: The ring buffer
1931  *
1932  * Returns the total number of entries in the ring buffer
1933  * (all CPU entries)
1934  */
1935 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1936 {
1937         struct ring_buffer_per_cpu *cpu_buffer;
1938         unsigned long entries = 0;
1939         int cpu;
1940
1941         /* if you care about this being correct, lock the buffer */
1942         for_each_buffer_cpu(buffer, cpu) {
1943                 cpu_buffer = buffer->buffers[cpu];
1944                 entries += cpu_buffer->entries;
1945         }
1946
1947         return entries;
1948 }
1949 EXPORT_SYMBOL_GPL(ring_buffer_entries);
1950
1951 /**
1952  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1953  * @buffer: The ring buffer
1954  *
1955  * Returns the total number of overruns in the ring buffer
1956  * (all CPU entries)
1957  */
1958 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1959 {
1960         struct ring_buffer_per_cpu *cpu_buffer;
1961         unsigned long overruns = 0;
1962         int cpu;
1963
1964         /* if you care about this being correct, lock the buffer */
1965         for_each_buffer_cpu(buffer, cpu) {
1966                 cpu_buffer = buffer->buffers[cpu];
1967                 overruns += cpu_buffer->overrun;
1968         }
1969
1970         return overruns;
1971 }
1972 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
1973
1974 static void rb_iter_reset(struct ring_buffer_iter *iter)
1975 {
1976         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1977
1978         /* Iterator usage is expected to have record disabled */
1979         if (list_empty(&cpu_buffer->reader_page->list)) {
1980                 iter->head_page = cpu_buffer->head_page;
1981                 iter->head = cpu_buffer->head_page->read;
1982         } else {
1983                 iter->head_page = cpu_buffer->reader_page;
1984                 iter->head = cpu_buffer->reader_page->read;
1985         }
1986         if (iter->head)
1987                 iter->read_stamp = cpu_buffer->read_stamp;
1988         else
1989                 iter->read_stamp = iter->head_page->page->time_stamp;
1990 }
1991
1992 /**
1993  * ring_buffer_iter_reset - reset an iterator
1994  * @iter: The iterator to reset
1995  *
1996  * Resets the iterator, so that it will start from the beginning
1997  * again.
1998  */
1999 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2000 {
2001         struct ring_buffer_per_cpu *cpu_buffer;
2002         unsigned long flags;
2003
2004         if (!iter)
2005                 return;
2006
2007         cpu_buffer = iter->cpu_buffer;
2008
2009         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2010         rb_iter_reset(iter);
2011         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2012 }
2013 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2014
2015 /**
2016  * ring_buffer_iter_empty - check if an iterator has no more to read
2017  * @iter: The iterator to check
2018  */
2019 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2020 {
2021         struct ring_buffer_per_cpu *cpu_buffer;
2022
2023         cpu_buffer = iter->cpu_buffer;
2024
2025         return iter->head_page == cpu_buffer->commit_page &&
2026                 iter->head == rb_commit_index(cpu_buffer);
2027 }
2028 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2029
2030 static void
2031 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2032                      struct ring_buffer_event *event)
2033 {
2034         u64 delta;
2035
2036         switch (event->type_len) {
2037         case RINGBUF_TYPE_PADDING:
2038                 return;
2039
2040         case RINGBUF_TYPE_TIME_EXTEND:
2041                 delta = event->array[0];
2042                 delta <<= TS_SHIFT;
2043                 delta += event->time_delta;
2044                 cpu_buffer->read_stamp += delta;
2045                 return;
2046
2047         case RINGBUF_TYPE_TIME_STAMP:
2048                 /* FIXME: not implemented */
2049                 return;
2050
2051         case RINGBUF_TYPE_DATA:
2052                 cpu_buffer->read_stamp += event->time_delta;
2053                 return;
2054
2055         default:
2056                 BUG();
2057         }
2058         return;
2059 }
2060
2061 static void
2062 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2063                           struct ring_buffer_event *event)
2064 {
2065         u64 delta;
2066
2067         switch (event->type_len) {
2068         case RINGBUF_TYPE_PADDING:
2069                 return;
2070
2071         case RINGBUF_TYPE_TIME_EXTEND:
2072                 delta = event->array[0];
2073                 delta <<= TS_SHIFT;
2074                 delta += event->time_delta;
2075                 iter->read_stamp += delta;
2076                 return;
2077
2078         case RINGBUF_TYPE_TIME_STAMP:
2079                 /* FIXME: not implemented */
2080                 return;
2081
2082         case RINGBUF_TYPE_DATA:
2083                 iter->read_stamp += event->time_delta;
2084                 return;
2085
2086         default:
2087                 BUG();
2088         }
2089         return;
2090 }
2091
2092 static struct buffer_page *
2093 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2094 {
2095         struct buffer_page *reader = NULL;
2096         unsigned long flags;
2097         int nr_loops = 0;
2098
2099         local_irq_save(flags);
2100         __raw_spin_lock(&cpu_buffer->lock);
2101
2102  again:
2103         /*
2104          * This should normally only loop twice. But because the
2105          * start of the reader inserts an empty page, it causes
2106          * a case where we will loop three times. There should be no
2107          * reason to loop four times (that I know of).
2108          */
2109         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2110                 reader = NULL;
2111                 goto out;
2112         }
2113
2114         reader = cpu_buffer->reader_page;
2115
2116         /* If there's more to read, return this page */
2117         if (cpu_buffer->reader_page->read < rb_page_size(reader))
2118                 goto out;
2119
2120         /* Never should we have an index greater than the size */
2121         if (RB_WARN_ON(cpu_buffer,
2122                        cpu_buffer->reader_page->read > rb_page_size(reader)))
2123                 goto out;
2124
2125         /* check if we caught up to the tail */
2126         reader = NULL;
2127         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2128                 goto out;
2129
2130         /*
2131          * Splice the empty reader page into the list around the head.
2132          * Reset the reader page to size zero.
2133          */
2134
2135         reader = cpu_buffer->head_page;
2136         cpu_buffer->reader_page->list.next = reader->list.next;
2137         cpu_buffer->reader_page->list.prev = reader->list.prev;
2138
2139         local_set(&cpu_buffer->reader_page->write, 0);
2140         local_set(&cpu_buffer->reader_page->page->commit, 0);
2141
2142         /* Make the reader page now replace the head */
2143         reader->list.prev->next = &cpu_buffer->reader_page->list;
2144         reader->list.next->prev = &cpu_buffer->reader_page->list;
2145
2146         /*
2147          * If the tail is on the reader, then we must set the head
2148          * to the inserted page, otherwise we set it one before.
2149          */
2150         cpu_buffer->head_page = cpu_buffer->reader_page;
2151
2152         if (cpu_buffer->commit_page != reader)
2153                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2154
2155         /* Finally update the reader page to the new head */
2156         cpu_buffer->reader_page = reader;
2157         rb_reset_reader_page(cpu_buffer);
2158
2159         goto again;
2160
2161  out:
2162         __raw_spin_unlock(&cpu_buffer->lock);
2163         local_irq_restore(flags);
2164
2165         return reader;
2166 }
2167
2168 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2169 {
2170         struct ring_buffer_event *event;
2171         struct buffer_page *reader;
2172         unsigned length;
2173
2174         reader = rb_get_reader_page(cpu_buffer);
2175
2176         /* This function should not be called when buffer is empty */
2177         if (RB_WARN_ON(cpu_buffer, !reader))
2178                 return;
2179
2180         event = rb_reader_event(cpu_buffer);
2181
2182         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
2183                         || rb_discarded_event(event))
2184                 cpu_buffer->entries--;
2185
2186         rb_update_read_stamp(cpu_buffer, event);
2187
2188         length = rb_event_length(event);
2189         cpu_buffer->reader_page->read += length;
2190 }
2191
2192 static void rb_advance_iter(struct ring_buffer_iter *iter)
2193 {
2194         struct ring_buffer *buffer;
2195         struct ring_buffer_per_cpu *cpu_buffer;
2196         struct ring_buffer_event *event;
2197         unsigned length;
2198
2199         cpu_buffer = iter->cpu_buffer;
2200         buffer = cpu_buffer->buffer;
2201
2202         /*
2203          * Check if we are at the end of the buffer.
2204          */
2205         if (iter->head >= rb_page_size(iter->head_page)) {
2206                 if (RB_WARN_ON(buffer,
2207                                iter->head_page == cpu_buffer->commit_page))
2208                         return;
2209                 rb_inc_iter(iter);
2210                 return;
2211         }
2212
2213         event = rb_iter_head_event(iter);
2214
2215         length = rb_event_length(event);
2216
2217         /*
2218          * This should not be called to advance the header if we are
2219          * at the tail of the buffer.
2220          */
2221         if (RB_WARN_ON(cpu_buffer,
2222                        (iter->head_page == cpu_buffer->commit_page) &&
2223                        (iter->head + length > rb_commit_index(cpu_buffer))))
2224                 return;
2225
2226         rb_update_iter_read_stamp(iter, event);
2227
2228         iter->head += length;
2229
2230         /* check for end of page padding */
2231         if ((iter->head >= rb_page_size(iter->head_page)) &&
2232             (iter->head_page != cpu_buffer->commit_page))
2233                 rb_advance_iter(iter);
2234 }
2235
2236 static struct ring_buffer_event *
2237 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2238 {
2239         struct ring_buffer_per_cpu *cpu_buffer;
2240         struct ring_buffer_event *event;
2241         struct buffer_page *reader;
2242         int nr_loops = 0;
2243
2244         cpu_buffer = buffer->buffers[cpu];
2245
2246  again:
2247         /*
2248          * We repeat when a timestamp is encountered. It is possible
2249          * to get multiple timestamps from an interrupt entering just
2250          * as one timestamp is about to be written. The max times
2251          * that this can happen is the number of nested interrupts we
2252          * can have.  Nesting 10 deep of interrupts is clearly
2253          * an anomaly.
2254          */
2255         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
2256                 return NULL;
2257
2258         reader = rb_get_reader_page(cpu_buffer);
2259         if (!reader)
2260                 return NULL;
2261
2262         event = rb_reader_event(cpu_buffer);
2263
2264         switch (event->type_len) {
2265         case RINGBUF_TYPE_PADDING:
2266                 if (rb_null_event(event))
2267                         RB_WARN_ON(cpu_buffer, 1);
2268                 /*
2269                  * Because the writer could be discarding every
2270                  * event it creates (which would probably be bad)
2271                  * if we were to go back to "again" then we may never
2272                  * catch up, and will trigger the warn on, or lock
2273                  * the box. Return the padding, and we will release
2274                  * the current locks, and try again.
2275                  */
2276                 rb_advance_reader(cpu_buffer);
2277                 return event;
2278
2279         case RINGBUF_TYPE_TIME_EXTEND:
2280                 /* Internal data, OK to advance */
2281                 rb_advance_reader(cpu_buffer);
2282                 goto again;
2283
2284         case RINGBUF_TYPE_TIME_STAMP:
2285                 /* FIXME: not implemented */
2286                 rb_advance_reader(cpu_buffer);
2287                 goto again;
2288
2289         case RINGBUF_TYPE_DATA:
2290                 if (ts) {
2291                         *ts = cpu_buffer->read_stamp + event->time_delta;
2292                         ring_buffer_normalize_time_stamp(buffer,
2293                                                          cpu_buffer->cpu, ts);
2294                 }
2295                 return event;
2296
2297         default:
2298                 BUG();
2299         }
2300
2301         return NULL;
2302 }
2303 EXPORT_SYMBOL_GPL(ring_buffer_peek);
2304
2305 static struct ring_buffer_event *
2306 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2307 {
2308         struct ring_buffer *buffer;
2309         struct ring_buffer_per_cpu *cpu_buffer;
2310         struct ring_buffer_event *event;
2311         int nr_loops = 0;
2312
2313         if (ring_buffer_iter_empty(iter))
2314                 return NULL;
2315
2316         cpu_buffer = iter->cpu_buffer;
2317         buffer = cpu_buffer->buffer;
2318
2319  again:
2320         /*
2321          * We repeat when a timestamp is encountered. It is possible
2322          * to get multiple timestamps from an interrupt entering just
2323          * as one timestamp is about to be written. The max times
2324          * that this can happen is the number of nested interrupts we
2325          * can have. Nesting 10 deep of interrupts is clearly
2326          * an anomaly.
2327          */
2328         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
2329                 return NULL;
2330
2331         if (rb_per_cpu_empty(cpu_buffer))
2332                 return NULL;
2333
2334         event = rb_iter_head_event(iter);
2335
2336         switch (event->type_len) {
2337         case RINGBUF_TYPE_PADDING:
2338                 if (rb_null_event(event)) {
2339                         rb_inc_iter(iter);
2340                         goto again;
2341                 }
2342                 rb_advance_iter(iter);
2343                 return event;
2344
2345         case RINGBUF_TYPE_TIME_EXTEND:
2346                 /* Internal data, OK to advance */
2347                 rb_advance_iter(iter);
2348                 goto again;
2349
2350         case RINGBUF_TYPE_TIME_STAMP:
2351                 /* FIXME: not implemented */
2352                 rb_advance_iter(iter);
2353                 goto again;
2354
2355         case RINGBUF_TYPE_DATA:
2356                 if (ts) {
2357                         *ts = iter->read_stamp + event->time_delta;
2358                         ring_buffer_normalize_time_stamp(buffer,
2359                                                          cpu_buffer->cpu, ts);
2360                 }
2361                 return event;
2362
2363         default:
2364                 BUG();
2365         }
2366
2367         return NULL;
2368 }
2369 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2370
2371 /**
2372  * ring_buffer_peek - peek at the next event to be read
2373  * @buffer: The ring buffer to read
2374  * @cpu: The cpu to peak at
2375  * @ts: The timestamp counter of this event.
2376  *
2377  * This will return the event that will be read next, but does
2378  * not consume the data.
2379  */
2380 struct ring_buffer_event *
2381 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2382 {
2383         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2384         struct ring_buffer_event *event;
2385         unsigned long flags;
2386
2387         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2388                 return NULL;
2389
2390  again:
2391         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2392         event = rb_buffer_peek(buffer, cpu, ts);
2393         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2394
2395         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2396                 cpu_relax();
2397                 goto again;
2398         }
2399
2400         return event;
2401 }
2402
2403 /**
2404  * ring_buffer_iter_peek - peek at the next event to be read
2405  * @iter: The ring buffer iterator
2406  * @ts: The timestamp counter of this event.
2407  *
2408  * This will return the event that will be read next, but does
2409  * not increment the iterator.
2410  */
2411 struct ring_buffer_event *
2412 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2413 {
2414         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2415         struct ring_buffer_event *event;
2416         unsigned long flags;
2417
2418  again:
2419         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2420         event = rb_iter_peek(iter, ts);
2421         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2422
2423         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2424                 cpu_relax();
2425                 goto again;
2426         }
2427
2428         return event;
2429 }
2430
2431 /**
2432  * ring_buffer_consume - return an event and consume it
2433  * @buffer: The ring buffer to get the next event from
2434  *
2435  * Returns the next event in the ring buffer, and that event is consumed.
2436  * Meaning, that sequential reads will keep returning a different event,
2437  * and eventually empty the ring buffer if the producer is slower.
2438  */
2439 struct ring_buffer_event *
2440 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2441 {
2442         struct ring_buffer_per_cpu *cpu_buffer;
2443         struct ring_buffer_event *event = NULL;
2444         unsigned long flags;
2445
2446  again:
2447         /* might be called in atomic */
2448         preempt_disable();
2449
2450         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2451                 goto out;
2452
2453         cpu_buffer = buffer->buffers[cpu];
2454         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2455
2456         event = rb_buffer_peek(buffer, cpu, ts);
2457         if (!event)
2458                 goto out_unlock;
2459
2460         rb_advance_reader(cpu_buffer);
2461
2462  out_unlock:
2463         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2464
2465  out:
2466         preempt_enable();
2467
2468         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2469                 cpu_relax();
2470                 goto again;
2471         }
2472
2473         return event;
2474 }
2475 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2476
2477 /**
2478  * ring_buffer_read_start - start a non consuming read of the buffer
2479  * @buffer: The ring buffer to read from
2480  * @cpu: The cpu buffer to iterate over
2481  *
2482  * This starts up an iteration through the buffer. It also disables
2483  * the recording to the buffer until the reading is finished.
2484  * This prevents the reading from being corrupted. This is not
2485  * a consuming read, so a producer is not expected.
2486  *
2487  * Must be paired with ring_buffer_finish.
2488  */
2489 struct ring_buffer_iter *
2490 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2491 {
2492         struct ring_buffer_per_cpu *cpu_buffer;
2493         struct ring_buffer_iter *iter;
2494         unsigned long flags;
2495
2496         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2497                 return NULL;
2498
2499         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2500         if (!iter)
2501                 return NULL;
2502
2503         cpu_buffer = buffer->buffers[cpu];
2504
2505         iter->cpu_buffer = cpu_buffer;
2506
2507         atomic_inc(&cpu_buffer->record_disabled);
2508         synchronize_sched();
2509
2510         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2511         __raw_spin_lock(&cpu_buffer->lock);
2512         rb_iter_reset(iter);
2513         __raw_spin_unlock(&cpu_buffer->lock);
2514         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2515
2516         return iter;
2517 }
2518 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2519
2520 /**
2521  * ring_buffer_finish - finish reading the iterator of the buffer
2522  * @iter: The iterator retrieved by ring_buffer_start
2523  *
2524  * This re-enables the recording to the buffer, and frees the
2525  * iterator.
2526  */
2527 void
2528 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2529 {
2530         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2531
2532         atomic_dec(&cpu_buffer->record_disabled);
2533         kfree(iter);
2534 }
2535 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2536
2537 /**
2538  * ring_buffer_read - read the next item in the ring buffer by the iterator
2539  * @iter: The ring buffer iterator
2540  * @ts: The time stamp of the event read.
2541  *
2542  * This reads the next event in the ring buffer and increments the iterator.
2543  */
2544 struct ring_buffer_event *
2545 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2546 {
2547         struct ring_buffer_event *event;
2548         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2549         unsigned long flags;
2550
2551  again:
2552         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2553         event = rb_iter_peek(iter, ts);
2554         if (!event)
2555                 goto out;
2556
2557         rb_advance_iter(iter);
2558  out:
2559         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2560
2561         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2562                 cpu_relax();
2563                 goto again;
2564         }
2565
2566         return event;
2567 }
2568 EXPORT_SYMBOL_GPL(ring_buffer_read);
2569
2570 /**
2571  * ring_buffer_size - return the size of the ring buffer (in bytes)
2572  * @buffer: The ring buffer.
2573  */
2574 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2575 {
2576         return BUF_PAGE_SIZE * buffer->pages;
2577 }
2578 EXPORT_SYMBOL_GPL(ring_buffer_size);
2579
2580 static void
2581 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2582 {
2583         cpu_buffer->head_page
2584                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2585         local_set(&cpu_buffer->head_page->write, 0);
2586         local_set(&cpu_buffer->head_page->page->commit, 0);
2587
2588         cpu_buffer->head_page->read = 0;
2589
2590         cpu_buffer->tail_page = cpu_buffer->head_page;
2591         cpu_buffer->commit_page = cpu_buffer->head_page;
2592
2593         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2594         local_set(&cpu_buffer->reader_page->write, 0);
2595         local_set(&cpu_buffer->reader_page->page->commit, 0);
2596         cpu_buffer->reader_page->read = 0;
2597
2598         cpu_buffer->overrun = 0;
2599         cpu_buffer->entries = 0;
2600
2601         cpu_buffer->write_stamp = 0;
2602         cpu_buffer->read_stamp = 0;
2603 }
2604
2605 /**
2606  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2607  * @buffer: The ring buffer to reset a per cpu buffer of
2608  * @cpu: The CPU buffer to be reset
2609  */
2610 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2611 {
2612         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2613         unsigned long flags;
2614
2615         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2616                 return;
2617
2618         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2619
2620         __raw_spin_lock(&cpu_buffer->lock);
2621
2622         rb_reset_cpu(cpu_buffer);
2623
2624         __raw_spin_unlock(&cpu_buffer->lock);
2625
2626         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2627 }
2628 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2629
2630 /**
2631  * ring_buffer_reset - reset a ring buffer
2632  * @buffer: The ring buffer to reset all cpu buffers
2633  */
2634 void ring_buffer_reset(struct ring_buffer *buffer)
2635 {
2636         int cpu;
2637
2638         for_each_buffer_cpu(buffer, cpu)
2639                 ring_buffer_reset_cpu(buffer, cpu);
2640 }
2641 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2642
2643 /**
2644  * rind_buffer_empty - is the ring buffer empty?
2645  * @buffer: The ring buffer to test
2646  */
2647 int ring_buffer_empty(struct ring_buffer *buffer)
2648 {
2649         struct ring_buffer_per_cpu *cpu_buffer;
2650         int cpu;
2651
2652         /* yes this is racy, but if you don't like the race, lock the buffer */
2653         for_each_buffer_cpu(buffer, cpu) {
2654                 cpu_buffer = buffer->buffers[cpu];
2655                 if (!rb_per_cpu_empty(cpu_buffer))
2656                         return 0;
2657         }
2658
2659         return 1;
2660 }
2661 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2662
2663 /**
2664  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2665  * @buffer: The ring buffer
2666  * @cpu: The CPU buffer to test
2667  */
2668 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2669 {
2670         struct ring_buffer_per_cpu *cpu_buffer;
2671         int ret;
2672
2673         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2674                 return 1;
2675
2676         cpu_buffer = buffer->buffers[cpu];
2677         ret = rb_per_cpu_empty(cpu_buffer);
2678
2679
2680         return ret;
2681 }
2682 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2683
2684 /**
2685  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2686  * @buffer_a: One buffer to swap with
2687  * @buffer_b: The other buffer to swap with
2688  *
2689  * This function is useful for tracers that want to take a "snapshot"
2690  * of a CPU buffer and has another back up buffer lying around.
2691  * it is expected that the tracer handles the cpu buffer not being
2692  * used at the moment.
2693  */
2694 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2695                          struct ring_buffer *buffer_b, int cpu)
2696 {
2697         struct ring_buffer_per_cpu *cpu_buffer_a;
2698         struct ring_buffer_per_cpu *cpu_buffer_b;
2699         int ret = -EINVAL;
2700
2701         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2702             !cpumask_test_cpu(cpu, buffer_b->cpumask))
2703                 goto out;
2704
2705         /* At least make sure the two buffers are somewhat the same */
2706         if (buffer_a->pages != buffer_b->pages)
2707                 goto out;
2708
2709         ret = -EAGAIN;
2710
2711         if (ring_buffer_flags != RB_BUFFERS_ON)
2712                 goto out;
2713
2714         if (atomic_read(&buffer_a->record_disabled))
2715                 goto out;
2716
2717         if (atomic_read(&buffer_b->record_disabled))
2718                 goto out;
2719
2720         cpu_buffer_a = buffer_a->buffers[cpu];
2721         cpu_buffer_b = buffer_b->buffers[cpu];
2722
2723         if (atomic_read(&cpu_buffer_a->record_disabled))
2724                 goto out;
2725
2726         if (atomic_read(&cpu_buffer_b->record_disabled))
2727                 goto out;
2728
2729         /*
2730          * We can't do a synchronize_sched here because this
2731          * function can be called in atomic context.
2732          * Normally this will be called from the same CPU as cpu.
2733          * If not it's up to the caller to protect this.
2734          */
2735         atomic_inc(&cpu_buffer_a->record_disabled);
2736         atomic_inc(&cpu_buffer_b->record_disabled);
2737
2738         buffer_a->buffers[cpu] = cpu_buffer_b;
2739         buffer_b->buffers[cpu] = cpu_buffer_a;
2740
2741         cpu_buffer_b->buffer = buffer_a;
2742         cpu_buffer_a->buffer = buffer_b;
2743
2744         atomic_dec(&cpu_buffer_a->record_disabled);
2745         atomic_dec(&cpu_buffer_b->record_disabled);
2746
2747         ret = 0;
2748 out:
2749         return ret;
2750 }
2751 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2752
2753 static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
2754                               struct buffer_data_page *bpage,
2755                               unsigned int offset)
2756 {
2757         struct ring_buffer_event *event;
2758         unsigned long head;
2759
2760         __raw_spin_lock(&cpu_buffer->lock);
2761         for (head = offset; head < local_read(&bpage->commit);
2762              head += rb_event_length(event)) {
2763
2764                 event = __rb_data_page_index(bpage, head);
2765                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2766                         return;
2767                 /* Only count data entries */
2768                 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2769                         continue;
2770                 cpu_buffer->entries--;
2771         }
2772         __raw_spin_unlock(&cpu_buffer->lock);
2773 }
2774
2775 /**
2776  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2777  * @buffer: the buffer to allocate for.
2778  *
2779  * This function is used in conjunction with ring_buffer_read_page.
2780  * When reading a full page from the ring buffer, these functions
2781  * can be used to speed up the process. The calling function should
2782  * allocate a few pages first with this function. Then when it
2783  * needs to get pages from the ring buffer, it passes the result
2784  * of this function into ring_buffer_read_page, which will swap
2785  * the page that was allocated, with the read page of the buffer.
2786  *
2787  * Returns:
2788  *  The page allocated, or NULL on error.
2789  */
2790 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2791 {
2792         struct buffer_data_page *bpage;
2793         unsigned long addr;
2794
2795         addr = __get_free_page(GFP_KERNEL);
2796         if (!addr)
2797                 return NULL;
2798
2799         bpage = (void *)addr;
2800
2801         rb_init_page(bpage);
2802
2803         return bpage;
2804 }
2805 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
2806
2807 /**
2808  * ring_buffer_free_read_page - free an allocated read page
2809  * @buffer: the buffer the page was allocate for
2810  * @data: the page to free
2811  *
2812  * Free a page allocated from ring_buffer_alloc_read_page.
2813  */
2814 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2815 {
2816         free_page((unsigned long)data);
2817 }
2818 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
2819
2820 /**
2821  * ring_buffer_read_page - extract a page from the ring buffer
2822  * @buffer: buffer to extract from
2823  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2824  * @len: amount to extract
2825  * @cpu: the cpu of the buffer to extract
2826  * @full: should the extraction only happen when the page is full.
2827  *
2828  * This function will pull out a page from the ring buffer and consume it.
2829  * @data_page must be the address of the variable that was returned
2830  * from ring_buffer_alloc_read_page. This is because the page might be used
2831  * to swap with a page in the ring buffer.
2832  *
2833  * for example:
2834  *      rpage = ring_buffer_alloc_read_page(buffer);
2835  *      if (!rpage)
2836  *              return error;
2837  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
2838  *      if (ret >= 0)
2839  *              process_page(rpage, ret);
2840  *
2841  * When @full is set, the function will not return true unless
2842  * the writer is off the reader page.
2843  *
2844  * Note: it is up to the calling functions to handle sleeps and wakeups.
2845  *  The ring buffer can be used anywhere in the kernel and can not
2846  *  blindly call wake_up. The layer that uses the ring buffer must be
2847  *  responsible for that.
2848  *
2849  * Returns:
2850  *  >=0 if data has been transferred, returns the offset of consumed data.
2851  *  <0 if no data has been transferred.
2852  */
2853 int ring_buffer_read_page(struct ring_buffer *buffer,
2854                           void **data_page, size_t len, int cpu, int full)
2855 {
2856         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2857         struct ring_buffer_event *event;
2858         struct buffer_data_page *bpage;
2859         struct buffer_page *reader;
2860         unsigned long flags;
2861         unsigned int commit;
2862         unsigned int read;
2863         u64 save_timestamp;
2864         int ret = -1;
2865
2866         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2867                 goto out;
2868
2869         /*
2870          * If len is not big enough to hold the page header, then
2871          * we can not copy anything.
2872          */
2873         if (len <= BUF_PAGE_HDR_SIZE)
2874                 goto out;
2875
2876         len -= BUF_PAGE_HDR_SIZE;
2877
2878         if (!data_page)
2879                 goto out;
2880
2881         bpage = *data_page;
2882         if (!bpage)
2883                 goto out;
2884
2885         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2886
2887         reader = rb_get_reader_page(cpu_buffer);
2888         if (!reader)
2889                 goto out_unlock;
2890
2891         event = rb_reader_event(cpu_buffer);
2892
2893         read = reader->read;
2894         commit = rb_page_commit(reader);
2895
2896         /*
2897          * If this page has been partially read or
2898          * if len is not big enough to read the rest of the page or
2899          * a writer is still on the page, then
2900          * we must copy the data from the page to the buffer.
2901          * Otherwise, we can simply swap the page with the one passed in.
2902          */
2903         if (read || (len < (commit - read)) ||
2904             cpu_buffer->reader_page == cpu_buffer->commit_page) {
2905                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
2906                 unsigned int rpos = read;
2907                 unsigned int pos = 0;
2908                 unsigned int size;
2909
2910                 if (full)
2911                         goto out_unlock;
2912
2913                 if (len > (commit - read))
2914                         len = (commit - read);
2915
2916                 size = rb_event_length(event);
2917
2918                 if (len < size)
2919                         goto out_unlock;
2920
2921                 /* save the current timestamp, since the user will need it */
2922                 save_timestamp = cpu_buffer->read_stamp;
2923
2924                 /* Need to copy one event at a time */
2925                 do {
2926                         memcpy(bpage->data + pos, rpage->data + rpos, size);
2927
2928                         len -= size;
2929
2930                         rb_advance_reader(cpu_buffer);
2931                         rpos = reader->read;
2932                         pos += size;
2933
2934                         event = rb_reader_event(cpu_buffer);
2935                         size = rb_event_length(event);
2936                 } while (len > size);
2937
2938                 /* update bpage */
2939                 local_set(&bpage->commit, pos);
2940                 bpage->time_stamp = save_timestamp;
2941
2942                 /* we copied everything to the beginning */
2943                 read = 0;
2944         } else {
2945                 /* swap the pages */
2946                 rb_init_page(bpage);
2947                 bpage = reader->page;
2948                 reader->page = *data_page;
2949                 local_set(&reader->write, 0);
2950                 reader->read = 0;
2951                 *data_page = bpage;
2952
2953                 /* update the entry counter */
2954                 rb_remove_entries(cpu_buffer, bpage, read);
2955         }
2956         ret = read;
2957
2958  out_unlock:
2959         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2960
2961  out:
2962         return ret;
2963 }
2964 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
2965
2966 static ssize_t
2967 rb_simple_read(struct file *filp, char __user *ubuf,
2968                size_t cnt, loff_t *ppos)
2969 {
2970         unsigned long *p = filp->private_data;
2971         char buf[64];
2972         int r;
2973
2974         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2975                 r = sprintf(buf, "permanently disabled\n");
2976         else
2977                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
2978
2979         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2980 }
2981
2982 static ssize_t
2983 rb_simple_write(struct file *filp, const char __user *ubuf,
2984                 size_t cnt, loff_t *ppos)
2985 {
2986         unsigned long *p = filp->private_data;
2987         char buf[64];
2988         unsigned long val;
2989         int ret;
2990
2991         if (cnt >= sizeof(buf))
2992                 return -EINVAL;
2993
2994         if (copy_from_user(&buf, ubuf, cnt))
2995                 return -EFAULT;
2996
2997         buf[cnt] = 0;
2998
2999         ret = strict_strtoul(buf, 10, &val);
3000         if (ret < 0)
3001                 return ret;
3002
3003         if (val)
3004                 set_bit(RB_BUFFERS_ON_BIT, p);
3005         else
3006                 clear_bit(RB_BUFFERS_ON_BIT, p);
3007
3008         (*ppos)++;
3009
3010         return cnt;
3011 }
3012
3013 static const struct file_operations rb_simple_fops = {
3014         .open           = tracing_open_generic,
3015         .read           = rb_simple_read,
3016         .write          = rb_simple_write,
3017 };
3018
3019
3020 static __init int rb_init_debugfs(void)
3021 {
3022         struct dentry *d_tracer;
3023
3024         d_tracer = tracing_init_dentry();
3025
3026         trace_create_file("tracing_on", 0644, d_tracer,
3027                             &ring_buffer_flags, &rb_simple_fops);
3028
3029         return 0;
3030 }
3031
3032 fs_initcall(rb_init_debugfs);
3033
3034 #ifdef CONFIG_HOTPLUG_CPU
3035 static int rb_cpu_notify(struct notifier_block *self,
3036                          unsigned long action, void *hcpu)
3037 {
3038         struct ring_buffer *buffer =
3039                 container_of(self, struct ring_buffer, cpu_notify);
3040         long cpu = (long)hcpu;
3041
3042         switch (action) {
3043         case CPU_UP_PREPARE:
3044         case CPU_UP_PREPARE_FROZEN:
3045                 if (cpu_isset(cpu, *buffer->cpumask))
3046                         return NOTIFY_OK;
3047
3048                 buffer->buffers[cpu] =
3049                         rb_allocate_cpu_buffer(buffer, cpu);
3050                 if (!buffer->buffers[cpu]) {
3051                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3052                              cpu);
3053                         return NOTIFY_OK;
3054                 }
3055                 smp_wmb();
3056                 cpu_set(cpu, *buffer->cpumask);
3057                 break;
3058         case CPU_DOWN_PREPARE:
3059         case CPU_DOWN_PREPARE_FROZEN:
3060                 /*
3061                  * Do nothing.
3062                  *  If we were to free the buffer, then the user would
3063                  *  lose any trace that was in the buffer.
3064                  */
3065                 break;
3066         default:
3067                 break;
3068         }
3069         return NOTIFY_OK;
3070 }
3071 #endif