Merge branch 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[safe/jmp/linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22
23 #include "trace.h"
24
25 /*
26  * The ring buffer header is special. We must manually up keep it.
27  */
28 int ring_buffer_print_entry_header(struct trace_seq *s)
29 {
30         int ret;
31
32         ret = trace_seq_printf(s, "# compressed entry header\n");
33         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
34         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
35         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
36         ret = trace_seq_printf(s, "\n");
37         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
38                                RINGBUF_TYPE_PADDING);
39         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
40                                RINGBUF_TYPE_TIME_EXTEND);
41         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
42                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
43
44         return ret;
45 }
46
47 /*
48  * The ring buffer is made up of a list of pages. A separate list of pages is
49  * allocated for each CPU. A writer may only write to a buffer that is
50  * associated with the CPU it is currently executing on.  A reader may read
51  * from any per cpu buffer.
52  *
53  * The reader is special. For each per cpu buffer, the reader has its own
54  * reader page. When a reader has read the entire reader page, this reader
55  * page is swapped with another page in the ring buffer.
56  *
57  * Now, as long as the writer is off the reader page, the reader can do what
58  * ever it wants with that page. The writer will never write to that page
59  * again (as long as it is out of the ring buffer).
60  *
61  * Here's some silly ASCII art.
62  *
63  *   +------+
64  *   |reader|          RING BUFFER
65  *   |page  |
66  *   +------+        +---+   +---+   +---+
67  *                   |   |-->|   |-->|   |
68  *                   +---+   +---+   +---+
69  *                     ^               |
70  *                     |               |
71  *                     +---------------+
72  *
73  *
74  *   +------+
75  *   |reader|          RING BUFFER
76  *   |page  |------------------v
77  *   +------+        +---+   +---+   +---+
78  *                   |   |-->|   |-->|   |
79  *                   +---+   +---+   +---+
80  *                     ^               |
81  *                     |               |
82  *                     +---------------+
83  *
84  *
85  *   +------+
86  *   |reader|          RING BUFFER
87  *   |page  |------------------v
88  *   +------+        +---+   +---+   +---+
89  *      ^            |   |-->|   |-->|   |
90  *      |            +---+   +---+   +---+
91  *      |                              |
92  *      |                              |
93  *      +------------------------------+
94  *
95  *
96  *   +------+
97  *   |buffer|          RING BUFFER
98  *   |page  |------------------v
99  *   +------+        +---+   +---+   +---+
100  *      ^            |   |   |   |-->|   |
101  *      |   New      +---+   +---+   +---+
102  *      |  Reader------^               |
103  *      |   page                       |
104  *      +------------------------------+
105  *
106  *
107  * After we make this swap, the reader can hand this page off to the splice
108  * code and be done with it. It can even allocate a new page if it needs to
109  * and swap that into the ring buffer.
110  *
111  * We will be using cmpxchg soon to make all this lockless.
112  *
113  */
114
115 /*
116  * A fast way to enable or disable all ring buffers is to
117  * call tracing_on or tracing_off. Turning off the ring buffers
118  * prevents all ring buffers from being recorded to.
119  * Turning this switch on, makes it OK to write to the
120  * ring buffer, if the ring buffer is enabled itself.
121  *
122  * There's three layers that must be on in order to write
123  * to the ring buffer.
124  *
125  * 1) This global flag must be set.
126  * 2) The ring buffer must be enabled for recording.
127  * 3) The per cpu buffer must be enabled for recording.
128  *
129  * In case of an anomaly, this global flag has a bit set that
130  * will permantly disable all ring buffers.
131  */
132
133 /*
134  * Global flag to disable all recording to ring buffers
135  *  This has two bits: ON, DISABLED
136  *
137  *  ON   DISABLED
138  * ---- ----------
139  *   0      0        : ring buffers are off
140  *   1      0        : ring buffers are on
141  *   X      1        : ring buffers are permanently disabled
142  */
143
144 enum {
145         RB_BUFFERS_ON_BIT       = 0,
146         RB_BUFFERS_DISABLED_BIT = 1,
147 };
148
149 enum {
150         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
151         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
152 };
153
154 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
155
156 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
157
158 /**
159  * tracing_on - enable all tracing buffers
160  *
161  * This function enables all tracing buffers that may have been
162  * disabled with tracing_off.
163  */
164 void tracing_on(void)
165 {
166         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
167 }
168 EXPORT_SYMBOL_GPL(tracing_on);
169
170 /**
171  * tracing_off - turn off all tracing buffers
172  *
173  * This function stops all tracing buffers from recording data.
174  * It does not disable any overhead the tracers themselves may
175  * be causing. This function simply causes all recording to
176  * the ring buffers to fail.
177  */
178 void tracing_off(void)
179 {
180         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
181 }
182 EXPORT_SYMBOL_GPL(tracing_off);
183
184 /**
185  * tracing_off_permanent - permanently disable ring buffers
186  *
187  * This function, once called, will disable all ring buffers
188  * permanently.
189  */
190 void tracing_off_permanent(void)
191 {
192         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
193 }
194
195 /**
196  * tracing_is_on - show state of ring buffers enabled
197  */
198 int tracing_is_on(void)
199 {
200         return ring_buffer_flags == RB_BUFFERS_ON;
201 }
202 EXPORT_SYMBOL_GPL(tracing_is_on);
203
204 #include "trace.h"
205
206 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
207 #define RB_ALIGNMENT            4U
208 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
209
210 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
211 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
212
213 enum {
214         RB_LEN_TIME_EXTEND = 8,
215         RB_LEN_TIME_STAMP = 16,
216 };
217
218 static inline int rb_null_event(struct ring_buffer_event *event)
219 {
220         return event->type_len == RINGBUF_TYPE_PADDING
221                         && event->time_delta == 0;
222 }
223
224 static inline int rb_discarded_event(struct ring_buffer_event *event)
225 {
226         return event->type_len == RINGBUF_TYPE_PADDING && event->time_delta;
227 }
228
229 static void rb_event_set_padding(struct ring_buffer_event *event)
230 {
231         event->type_len = RINGBUF_TYPE_PADDING;
232         event->time_delta = 0;
233 }
234
235 static unsigned
236 rb_event_data_length(struct ring_buffer_event *event)
237 {
238         unsigned length;
239
240         if (event->type_len)
241                 length = event->type_len * RB_ALIGNMENT;
242         else
243                 length = event->array[0];
244         return length + RB_EVNT_HDR_SIZE;
245 }
246
247 /* inline for ring buffer fast paths */
248 static unsigned
249 rb_event_length(struct ring_buffer_event *event)
250 {
251         switch (event->type_len) {
252         case RINGBUF_TYPE_PADDING:
253                 if (rb_null_event(event))
254                         /* undefined */
255                         return -1;
256                 return  event->array[0] + RB_EVNT_HDR_SIZE;
257
258         case RINGBUF_TYPE_TIME_EXTEND:
259                 return RB_LEN_TIME_EXTEND;
260
261         case RINGBUF_TYPE_TIME_STAMP:
262                 return RB_LEN_TIME_STAMP;
263
264         case RINGBUF_TYPE_DATA:
265                 return rb_event_data_length(event);
266         default:
267                 BUG();
268         }
269         /* not hit */
270         return 0;
271 }
272
273 /**
274  * ring_buffer_event_length - return the length of the event
275  * @event: the event to get the length of
276  */
277 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
278 {
279         unsigned length = rb_event_length(event);
280         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
281                 return length;
282         length -= RB_EVNT_HDR_SIZE;
283         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
284                 length -= sizeof(event->array[0]);
285         return length;
286 }
287 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
288
289 /* inline for ring buffer fast paths */
290 static void *
291 rb_event_data(struct ring_buffer_event *event)
292 {
293         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
294         /* If length is in len field, then array[0] has the data */
295         if (event->type_len)
296                 return (void *)&event->array[0];
297         /* Otherwise length is in array[0] and array[1] has the data */
298         return (void *)&event->array[1];
299 }
300
301 /**
302  * ring_buffer_event_data - return the data of the event
303  * @event: the event to get the data from
304  */
305 void *ring_buffer_event_data(struct ring_buffer_event *event)
306 {
307         return rb_event_data(event);
308 }
309 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
310
311 #define for_each_buffer_cpu(buffer, cpu)                \
312         for_each_cpu(cpu, buffer->cpumask)
313
314 #define TS_SHIFT        27
315 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
316 #define TS_DELTA_TEST   (~TS_MASK)
317
318 struct buffer_data_page {
319         u64              time_stamp;    /* page time stamp */
320         local_t          commit;        /* write committed index */
321         unsigned char    data[];        /* data of buffer page */
322 };
323
324 struct buffer_page {
325         struct list_head list;          /* list of buffer pages */
326         local_t          write;         /* index for next write */
327         unsigned         read;          /* index for next read */
328         local_t          entries;       /* entries on this page */
329         struct buffer_data_page *page;  /* Actual data page */
330 };
331
332 static void rb_init_page(struct buffer_data_page *bpage)
333 {
334         local_set(&bpage->commit, 0);
335 }
336
337 /**
338  * ring_buffer_page_len - the size of data on the page.
339  * @page: The page to read
340  *
341  * Returns the amount of data on the page, including buffer page header.
342  */
343 size_t ring_buffer_page_len(void *page)
344 {
345         return local_read(&((struct buffer_data_page *)page)->commit)
346                 + BUF_PAGE_HDR_SIZE;
347 }
348
349 /*
350  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
351  * this issue out.
352  */
353 static void free_buffer_page(struct buffer_page *bpage)
354 {
355         free_page((unsigned long)bpage->page);
356         kfree(bpage);
357 }
358
359 /*
360  * We need to fit the time_stamp delta into 27 bits.
361  */
362 static inline int test_time_stamp(u64 delta)
363 {
364         if (delta & TS_DELTA_TEST)
365                 return 1;
366         return 0;
367 }
368
369 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
370
371 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
372 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
373
374 /* Max number of timestamps that can fit on a page */
375 #define RB_TIMESTAMPS_PER_PAGE  (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
376
377 int ring_buffer_print_page_header(struct trace_seq *s)
378 {
379         struct buffer_data_page field;
380         int ret;
381
382         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
383                                "offset:0;\tsize:%u;\n",
384                                (unsigned int)sizeof(field.time_stamp));
385
386         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
387                                "offset:%u;\tsize:%u;\n",
388                                (unsigned int)offsetof(typeof(field), commit),
389                                (unsigned int)sizeof(field.commit));
390
391         ret = trace_seq_printf(s, "\tfield: char data;\t"
392                                "offset:%u;\tsize:%u;\n",
393                                (unsigned int)offsetof(typeof(field), data),
394                                (unsigned int)BUF_PAGE_SIZE);
395
396         return ret;
397 }
398
399 /*
400  * head_page == tail_page && head == tail then buffer is empty.
401  */
402 struct ring_buffer_per_cpu {
403         int                             cpu;
404         struct ring_buffer              *buffer;
405         spinlock_t                      reader_lock; /* serialize readers */
406         raw_spinlock_t                  lock;
407         struct lock_class_key           lock_key;
408         struct list_head                pages;
409         struct buffer_page              *head_page;     /* read from head */
410         struct buffer_page              *tail_page;     /* write to tail */
411         struct buffer_page              *commit_page;   /* committed pages */
412         struct buffer_page              *reader_page;
413         unsigned long                   nmi_dropped;
414         unsigned long                   commit_overrun;
415         unsigned long                   overrun;
416         unsigned long                   read;
417         local_t                         entries;
418         u64                             write_stamp;
419         u64                             read_stamp;
420         atomic_t                        record_disabled;
421 };
422
423 struct ring_buffer {
424         unsigned                        pages;
425         unsigned                        flags;
426         int                             cpus;
427         atomic_t                        record_disabled;
428         cpumask_var_t                   cpumask;
429
430         struct lock_class_key           *reader_lock_key;
431
432         struct mutex                    mutex;
433
434         struct ring_buffer_per_cpu      **buffers;
435
436 #ifdef CONFIG_HOTPLUG_CPU
437         struct notifier_block           cpu_notify;
438 #endif
439         u64                             (*clock)(void);
440 };
441
442 struct ring_buffer_iter {
443         struct ring_buffer_per_cpu      *cpu_buffer;
444         unsigned long                   head;
445         struct buffer_page              *head_page;
446         u64                             read_stamp;
447 };
448
449 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
450 #define RB_WARN_ON(buffer, cond)                                \
451         ({                                                      \
452                 int _____ret = unlikely(cond);                  \
453                 if (_____ret) {                                 \
454                         atomic_inc(&buffer->record_disabled);   \
455                         WARN_ON(1);                             \
456                 }                                               \
457                 _____ret;                                       \
458         })
459
460 /* Up this if you want to test the TIME_EXTENTS and normalization */
461 #define DEBUG_SHIFT 0
462
463 static inline u64 rb_time_stamp(struct ring_buffer *buffer, int cpu)
464 {
465         /* shift to debug/test normalization and TIME_EXTENTS */
466         return buffer->clock() << DEBUG_SHIFT;
467 }
468
469 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
470 {
471         u64 time;
472
473         preempt_disable_notrace();
474         time = rb_time_stamp(buffer, cpu);
475         preempt_enable_no_resched_notrace();
476
477         return time;
478 }
479 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
480
481 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
482                                       int cpu, u64 *ts)
483 {
484         /* Just stupid testing the normalize function and deltas */
485         *ts >>= DEBUG_SHIFT;
486 }
487 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
488
489 /**
490  * check_pages - integrity check of buffer pages
491  * @cpu_buffer: CPU buffer with pages to test
492  *
493  * As a safety measure we check to make sure the data pages have not
494  * been corrupted.
495  */
496 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
497 {
498         struct list_head *head = &cpu_buffer->pages;
499         struct buffer_page *bpage, *tmp;
500
501         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
502                 return -1;
503         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
504                 return -1;
505
506         list_for_each_entry_safe(bpage, tmp, head, list) {
507                 if (RB_WARN_ON(cpu_buffer,
508                                bpage->list.next->prev != &bpage->list))
509                         return -1;
510                 if (RB_WARN_ON(cpu_buffer,
511                                bpage->list.prev->next != &bpage->list))
512                         return -1;
513         }
514
515         return 0;
516 }
517
518 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
519                              unsigned nr_pages)
520 {
521         struct list_head *head = &cpu_buffer->pages;
522         struct buffer_page *bpage, *tmp;
523         unsigned long addr;
524         LIST_HEAD(pages);
525         unsigned i;
526
527         for (i = 0; i < nr_pages; i++) {
528                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
529                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
530                 if (!bpage)
531                         goto free_pages;
532                 list_add(&bpage->list, &pages);
533
534                 addr = __get_free_page(GFP_KERNEL);
535                 if (!addr)
536                         goto free_pages;
537                 bpage->page = (void *)addr;
538                 rb_init_page(bpage->page);
539         }
540
541         list_splice(&pages, head);
542
543         rb_check_pages(cpu_buffer);
544
545         return 0;
546
547  free_pages:
548         list_for_each_entry_safe(bpage, tmp, &pages, list) {
549                 list_del_init(&bpage->list);
550                 free_buffer_page(bpage);
551         }
552         return -ENOMEM;
553 }
554
555 static struct ring_buffer_per_cpu *
556 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
557 {
558         struct ring_buffer_per_cpu *cpu_buffer;
559         struct buffer_page *bpage;
560         unsigned long addr;
561         int ret;
562
563         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
564                                   GFP_KERNEL, cpu_to_node(cpu));
565         if (!cpu_buffer)
566                 return NULL;
567
568         cpu_buffer->cpu = cpu;
569         cpu_buffer->buffer = buffer;
570         spin_lock_init(&cpu_buffer->reader_lock);
571         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
572         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
573         INIT_LIST_HEAD(&cpu_buffer->pages);
574
575         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
576                             GFP_KERNEL, cpu_to_node(cpu));
577         if (!bpage)
578                 goto fail_free_buffer;
579
580         cpu_buffer->reader_page = bpage;
581         addr = __get_free_page(GFP_KERNEL);
582         if (!addr)
583                 goto fail_free_reader;
584         bpage->page = (void *)addr;
585         rb_init_page(bpage->page);
586
587         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
588
589         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
590         if (ret < 0)
591                 goto fail_free_reader;
592
593         cpu_buffer->head_page
594                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
595         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
596
597         return cpu_buffer;
598
599  fail_free_reader:
600         free_buffer_page(cpu_buffer->reader_page);
601
602  fail_free_buffer:
603         kfree(cpu_buffer);
604         return NULL;
605 }
606
607 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
608 {
609         struct list_head *head = &cpu_buffer->pages;
610         struct buffer_page *bpage, *tmp;
611
612         free_buffer_page(cpu_buffer->reader_page);
613
614         list_for_each_entry_safe(bpage, tmp, head, list) {
615                 list_del_init(&bpage->list);
616                 free_buffer_page(bpage);
617         }
618         kfree(cpu_buffer);
619 }
620
621 /*
622  * Causes compile errors if the struct buffer_page gets bigger
623  * than the struct page.
624  */
625 extern int ring_buffer_page_too_big(void);
626
627 #ifdef CONFIG_HOTPLUG_CPU
628 static int rb_cpu_notify(struct notifier_block *self,
629                          unsigned long action, void *hcpu);
630 #endif
631
632 /**
633  * ring_buffer_alloc - allocate a new ring_buffer
634  * @size: the size in bytes per cpu that is needed.
635  * @flags: attributes to set for the ring buffer.
636  *
637  * Currently the only flag that is available is the RB_FL_OVERWRITE
638  * flag. This flag means that the buffer will overwrite old data
639  * when the buffer wraps. If this flag is not set, the buffer will
640  * drop data when the tail hits the head.
641  */
642 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
643                                         struct lock_class_key *key)
644 {
645         struct ring_buffer *buffer;
646         int bsize;
647         int cpu;
648
649         /* Paranoid! Optimizes out when all is well */
650         if (sizeof(struct buffer_page) > sizeof(struct page))
651                 ring_buffer_page_too_big();
652
653
654         /* keep it in its own cache line */
655         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
656                          GFP_KERNEL);
657         if (!buffer)
658                 return NULL;
659
660         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
661                 goto fail_free_buffer;
662
663         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
664         buffer->flags = flags;
665         buffer->clock = trace_clock_local;
666         buffer->reader_lock_key = key;
667
668         /* need at least two pages */
669         if (buffer->pages == 1)
670                 buffer->pages++;
671
672         /*
673          * In case of non-hotplug cpu, if the ring-buffer is allocated
674          * in early initcall, it will not be notified of secondary cpus.
675          * In that off case, we need to allocate for all possible cpus.
676          */
677 #ifdef CONFIG_HOTPLUG_CPU
678         get_online_cpus();
679         cpumask_copy(buffer->cpumask, cpu_online_mask);
680 #else
681         cpumask_copy(buffer->cpumask, cpu_possible_mask);
682 #endif
683         buffer->cpus = nr_cpu_ids;
684
685         bsize = sizeof(void *) * nr_cpu_ids;
686         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
687                                   GFP_KERNEL);
688         if (!buffer->buffers)
689                 goto fail_free_cpumask;
690
691         for_each_buffer_cpu(buffer, cpu) {
692                 buffer->buffers[cpu] =
693                         rb_allocate_cpu_buffer(buffer, cpu);
694                 if (!buffer->buffers[cpu])
695                         goto fail_free_buffers;
696         }
697
698 #ifdef CONFIG_HOTPLUG_CPU
699         buffer->cpu_notify.notifier_call = rb_cpu_notify;
700         buffer->cpu_notify.priority = 0;
701         register_cpu_notifier(&buffer->cpu_notify);
702 #endif
703
704         put_online_cpus();
705         mutex_init(&buffer->mutex);
706
707         return buffer;
708
709  fail_free_buffers:
710         for_each_buffer_cpu(buffer, cpu) {
711                 if (buffer->buffers[cpu])
712                         rb_free_cpu_buffer(buffer->buffers[cpu]);
713         }
714         kfree(buffer->buffers);
715
716  fail_free_cpumask:
717         free_cpumask_var(buffer->cpumask);
718         put_online_cpus();
719
720  fail_free_buffer:
721         kfree(buffer);
722         return NULL;
723 }
724 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
725
726 /**
727  * ring_buffer_free - free a ring buffer.
728  * @buffer: the buffer to free.
729  */
730 void
731 ring_buffer_free(struct ring_buffer *buffer)
732 {
733         int cpu;
734
735         get_online_cpus();
736
737 #ifdef CONFIG_HOTPLUG_CPU
738         unregister_cpu_notifier(&buffer->cpu_notify);
739 #endif
740
741         for_each_buffer_cpu(buffer, cpu)
742                 rb_free_cpu_buffer(buffer->buffers[cpu]);
743
744         put_online_cpus();
745
746         free_cpumask_var(buffer->cpumask);
747
748         kfree(buffer);
749 }
750 EXPORT_SYMBOL_GPL(ring_buffer_free);
751
752 void ring_buffer_set_clock(struct ring_buffer *buffer,
753                            u64 (*clock)(void))
754 {
755         buffer->clock = clock;
756 }
757
758 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
759
760 static void
761 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
762 {
763         struct buffer_page *bpage;
764         struct list_head *p;
765         unsigned i;
766
767         atomic_inc(&cpu_buffer->record_disabled);
768         synchronize_sched();
769
770         for (i = 0; i < nr_pages; i++) {
771                 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
772                         return;
773                 p = cpu_buffer->pages.next;
774                 bpage = list_entry(p, struct buffer_page, list);
775                 list_del_init(&bpage->list);
776                 free_buffer_page(bpage);
777         }
778         if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
779                 return;
780
781         rb_reset_cpu(cpu_buffer);
782
783         rb_check_pages(cpu_buffer);
784
785         atomic_dec(&cpu_buffer->record_disabled);
786
787 }
788
789 static void
790 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
791                 struct list_head *pages, unsigned nr_pages)
792 {
793         struct buffer_page *bpage;
794         struct list_head *p;
795         unsigned i;
796
797         atomic_inc(&cpu_buffer->record_disabled);
798         synchronize_sched();
799
800         for (i = 0; i < nr_pages; i++) {
801                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
802                         return;
803                 p = pages->next;
804                 bpage = list_entry(p, struct buffer_page, list);
805                 list_del_init(&bpage->list);
806                 list_add_tail(&bpage->list, &cpu_buffer->pages);
807         }
808         rb_reset_cpu(cpu_buffer);
809
810         rb_check_pages(cpu_buffer);
811
812         atomic_dec(&cpu_buffer->record_disabled);
813 }
814
815 /**
816  * ring_buffer_resize - resize the ring buffer
817  * @buffer: the buffer to resize.
818  * @size: the new size.
819  *
820  * The tracer is responsible for making sure that the buffer is
821  * not being used while changing the size.
822  * Note: We may be able to change the above requirement by using
823  *  RCU synchronizations.
824  *
825  * Minimum size is 2 * BUF_PAGE_SIZE.
826  *
827  * Returns -1 on failure.
828  */
829 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
830 {
831         struct ring_buffer_per_cpu *cpu_buffer;
832         unsigned nr_pages, rm_pages, new_pages;
833         struct buffer_page *bpage, *tmp;
834         unsigned long buffer_size;
835         unsigned long addr;
836         LIST_HEAD(pages);
837         int i, cpu;
838
839         /*
840          * Always succeed at resizing a non-existent buffer:
841          */
842         if (!buffer)
843                 return size;
844
845         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
846         size *= BUF_PAGE_SIZE;
847         buffer_size = buffer->pages * BUF_PAGE_SIZE;
848
849         /* we need a minimum of two pages */
850         if (size < BUF_PAGE_SIZE * 2)
851                 size = BUF_PAGE_SIZE * 2;
852
853         if (size == buffer_size)
854                 return size;
855
856         mutex_lock(&buffer->mutex);
857         get_online_cpus();
858
859         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
860
861         if (size < buffer_size) {
862
863                 /* easy case, just free pages */
864                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
865                         goto out_fail;
866
867                 rm_pages = buffer->pages - nr_pages;
868
869                 for_each_buffer_cpu(buffer, cpu) {
870                         cpu_buffer = buffer->buffers[cpu];
871                         rb_remove_pages(cpu_buffer, rm_pages);
872                 }
873                 goto out;
874         }
875
876         /*
877          * This is a bit more difficult. We only want to add pages
878          * when we can allocate enough for all CPUs. We do this
879          * by allocating all the pages and storing them on a local
880          * link list. If we succeed in our allocation, then we
881          * add these pages to the cpu_buffers. Otherwise we just free
882          * them all and return -ENOMEM;
883          */
884         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
885                 goto out_fail;
886
887         new_pages = nr_pages - buffer->pages;
888
889         for_each_buffer_cpu(buffer, cpu) {
890                 for (i = 0; i < new_pages; i++) {
891                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
892                                                   cache_line_size()),
893                                             GFP_KERNEL, cpu_to_node(cpu));
894                         if (!bpage)
895                                 goto free_pages;
896                         list_add(&bpage->list, &pages);
897                         addr = __get_free_page(GFP_KERNEL);
898                         if (!addr)
899                                 goto free_pages;
900                         bpage->page = (void *)addr;
901                         rb_init_page(bpage->page);
902                 }
903         }
904
905         for_each_buffer_cpu(buffer, cpu) {
906                 cpu_buffer = buffer->buffers[cpu];
907                 rb_insert_pages(cpu_buffer, &pages, new_pages);
908         }
909
910         if (RB_WARN_ON(buffer, !list_empty(&pages)))
911                 goto out_fail;
912
913  out:
914         buffer->pages = nr_pages;
915         put_online_cpus();
916         mutex_unlock(&buffer->mutex);
917
918         return size;
919
920  free_pages:
921         list_for_each_entry_safe(bpage, tmp, &pages, list) {
922                 list_del_init(&bpage->list);
923                 free_buffer_page(bpage);
924         }
925         put_online_cpus();
926         mutex_unlock(&buffer->mutex);
927         return -ENOMEM;
928
929         /*
930          * Something went totally wrong, and we are too paranoid
931          * to even clean up the mess.
932          */
933  out_fail:
934         put_online_cpus();
935         mutex_unlock(&buffer->mutex);
936         return -1;
937 }
938 EXPORT_SYMBOL_GPL(ring_buffer_resize);
939
940 static inline void *
941 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
942 {
943         return bpage->data + index;
944 }
945
946 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
947 {
948         return bpage->page->data + index;
949 }
950
951 static inline struct ring_buffer_event *
952 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
953 {
954         return __rb_page_index(cpu_buffer->reader_page,
955                                cpu_buffer->reader_page->read);
956 }
957
958 static inline struct ring_buffer_event *
959 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
960 {
961         return __rb_page_index(cpu_buffer->head_page,
962                                cpu_buffer->head_page->read);
963 }
964
965 static inline struct ring_buffer_event *
966 rb_iter_head_event(struct ring_buffer_iter *iter)
967 {
968         return __rb_page_index(iter->head_page, iter->head);
969 }
970
971 static inline unsigned rb_page_write(struct buffer_page *bpage)
972 {
973         return local_read(&bpage->write);
974 }
975
976 static inline unsigned rb_page_commit(struct buffer_page *bpage)
977 {
978         return local_read(&bpage->page->commit);
979 }
980
981 /* Size is determined by what has been commited */
982 static inline unsigned rb_page_size(struct buffer_page *bpage)
983 {
984         return rb_page_commit(bpage);
985 }
986
987 static inline unsigned
988 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
989 {
990         return rb_page_commit(cpu_buffer->commit_page);
991 }
992
993 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
994 {
995         return rb_page_commit(cpu_buffer->head_page);
996 }
997
998 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
999                                struct buffer_page **bpage)
1000 {
1001         struct list_head *p = (*bpage)->list.next;
1002
1003         if (p == &cpu_buffer->pages)
1004                 p = p->next;
1005
1006         *bpage = list_entry(p, struct buffer_page, list);
1007 }
1008
1009 static inline unsigned
1010 rb_event_index(struct ring_buffer_event *event)
1011 {
1012         unsigned long addr = (unsigned long)event;
1013
1014         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
1015 }
1016
1017 static inline int
1018 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1019              struct ring_buffer_event *event)
1020 {
1021         unsigned long addr = (unsigned long)event;
1022         unsigned long index;
1023
1024         index = rb_event_index(event);
1025         addr &= PAGE_MASK;
1026
1027         return cpu_buffer->commit_page->page == (void *)addr &&
1028                 rb_commit_index(cpu_buffer) == index;
1029 }
1030
1031 static void
1032 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
1033                     struct ring_buffer_event *event)
1034 {
1035         unsigned long addr = (unsigned long)event;
1036         unsigned long index;
1037
1038         index = rb_event_index(event);
1039         addr &= PAGE_MASK;
1040
1041         while (cpu_buffer->commit_page->page != (void *)addr) {
1042                 if (RB_WARN_ON(cpu_buffer,
1043                           cpu_buffer->commit_page == cpu_buffer->tail_page))
1044                         return;
1045                 cpu_buffer->commit_page->page->commit =
1046                         cpu_buffer->commit_page->write;
1047                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1048                 cpu_buffer->write_stamp =
1049                         cpu_buffer->commit_page->page->time_stamp;
1050         }
1051
1052         /* Now set the commit to the event's index */
1053         local_set(&cpu_buffer->commit_page->page->commit, index);
1054 }
1055
1056 static void
1057 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1058 {
1059         /*
1060          * We only race with interrupts and NMIs on this CPU.
1061          * If we own the commit event, then we can commit
1062          * all others that interrupted us, since the interruptions
1063          * are in stack format (they finish before they come
1064          * back to us). This allows us to do a simple loop to
1065          * assign the commit to the tail.
1066          */
1067  again:
1068         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1069                 cpu_buffer->commit_page->page->commit =
1070                         cpu_buffer->commit_page->write;
1071                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1072                 cpu_buffer->write_stamp =
1073                         cpu_buffer->commit_page->page->time_stamp;
1074                 /* add barrier to keep gcc from optimizing too much */
1075                 barrier();
1076         }
1077         while (rb_commit_index(cpu_buffer) !=
1078                rb_page_write(cpu_buffer->commit_page)) {
1079                 cpu_buffer->commit_page->page->commit =
1080                         cpu_buffer->commit_page->write;
1081                 barrier();
1082         }
1083
1084         /* again, keep gcc from optimizing */
1085         barrier();
1086
1087         /*
1088          * If an interrupt came in just after the first while loop
1089          * and pushed the tail page forward, we will be left with
1090          * a dangling commit that will never go forward.
1091          */
1092         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1093                 goto again;
1094 }
1095
1096 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1097 {
1098         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1099         cpu_buffer->reader_page->read = 0;
1100 }
1101
1102 static void rb_inc_iter(struct ring_buffer_iter *iter)
1103 {
1104         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1105
1106         /*
1107          * The iterator could be on the reader page (it starts there).
1108          * But the head could have moved, since the reader was
1109          * found. Check for this case and assign the iterator
1110          * to the head page instead of next.
1111          */
1112         if (iter->head_page == cpu_buffer->reader_page)
1113                 iter->head_page = cpu_buffer->head_page;
1114         else
1115                 rb_inc_page(cpu_buffer, &iter->head_page);
1116
1117         iter->read_stamp = iter->head_page->page->time_stamp;
1118         iter->head = 0;
1119 }
1120
1121 /**
1122  * ring_buffer_update_event - update event type and data
1123  * @event: the even to update
1124  * @type: the type of event
1125  * @length: the size of the event field in the ring buffer
1126  *
1127  * Update the type and data fields of the event. The length
1128  * is the actual size that is written to the ring buffer,
1129  * and with this, we can determine what to place into the
1130  * data field.
1131  */
1132 static void
1133 rb_update_event(struct ring_buffer_event *event,
1134                          unsigned type, unsigned length)
1135 {
1136         event->type_len = type;
1137
1138         switch (type) {
1139
1140         case RINGBUF_TYPE_PADDING:
1141         case RINGBUF_TYPE_TIME_EXTEND:
1142         case RINGBUF_TYPE_TIME_STAMP:
1143                 break;
1144
1145         case 0:
1146                 length -= RB_EVNT_HDR_SIZE;
1147                 if (length > RB_MAX_SMALL_DATA)
1148                         event->array[0] = length;
1149                 else
1150                         event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1151                 break;
1152         default:
1153                 BUG();
1154         }
1155 }
1156
1157 static unsigned rb_calculate_event_length(unsigned length)
1158 {
1159         struct ring_buffer_event event; /* Used only for sizeof array */
1160
1161         /* zero length can cause confusions */
1162         if (!length)
1163                 length = 1;
1164
1165         if (length > RB_MAX_SMALL_DATA)
1166                 length += sizeof(event.array[0]);
1167
1168         length += RB_EVNT_HDR_SIZE;
1169         length = ALIGN(length, RB_ALIGNMENT);
1170
1171         return length;
1172 }
1173
1174
1175 static struct ring_buffer_event *
1176 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1177              unsigned long length, unsigned long tail,
1178              struct buffer_page *commit_page,
1179              struct buffer_page *tail_page, u64 *ts)
1180 {
1181         struct buffer_page *next_page, *head_page, *reader_page;
1182         struct ring_buffer *buffer = cpu_buffer->buffer;
1183         struct ring_buffer_event *event;
1184         bool lock_taken = false;
1185         unsigned long flags;
1186
1187         next_page = tail_page;
1188
1189         local_irq_save(flags);
1190         /*
1191          * Since the write to the buffer is still not
1192          * fully lockless, we must be careful with NMIs.
1193          * The locks in the writers are taken when a write
1194          * crosses to a new page. The locks protect against
1195          * races with the readers (this will soon be fixed
1196          * with a lockless solution).
1197          *
1198          * Because we can not protect against NMIs, and we
1199          * want to keep traces reentrant, we need to manage
1200          * what happens when we are in an NMI.
1201          *
1202          * NMIs can happen after we take the lock.
1203          * If we are in an NMI, only take the lock
1204          * if it is not already taken. Otherwise
1205          * simply fail.
1206          */
1207         if (unlikely(in_nmi())) {
1208                 if (!__raw_spin_trylock(&cpu_buffer->lock)) {
1209                         cpu_buffer->nmi_dropped++;
1210                         goto out_reset;
1211                 }
1212         } else
1213                 __raw_spin_lock(&cpu_buffer->lock);
1214
1215         lock_taken = true;
1216
1217         rb_inc_page(cpu_buffer, &next_page);
1218
1219         head_page = cpu_buffer->head_page;
1220         reader_page = cpu_buffer->reader_page;
1221
1222         /* we grabbed the lock before incrementing */
1223         if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1224                 goto out_reset;
1225
1226         /*
1227          * If for some reason, we had an interrupt storm that made
1228          * it all the way around the buffer, bail, and warn
1229          * about it.
1230          */
1231         if (unlikely(next_page == commit_page)) {
1232                 cpu_buffer->commit_overrun++;
1233                 goto out_reset;
1234         }
1235
1236         if (next_page == head_page) {
1237                 if (!(buffer->flags & RB_FL_OVERWRITE))
1238                         goto out_reset;
1239
1240                 /* tail_page has not moved yet? */
1241                 if (tail_page == cpu_buffer->tail_page) {
1242                         /* count overflows */
1243                         cpu_buffer->overrun +=
1244                                 local_read(&head_page->entries);
1245
1246                         rb_inc_page(cpu_buffer, &head_page);
1247                         cpu_buffer->head_page = head_page;
1248                         cpu_buffer->head_page->read = 0;
1249                 }
1250         }
1251
1252         /*
1253          * If the tail page is still the same as what we think
1254          * it is, then it is up to us to update the tail
1255          * pointer.
1256          */
1257         if (tail_page == cpu_buffer->tail_page) {
1258                 local_set(&next_page->write, 0);
1259                 local_set(&next_page->entries, 0);
1260                 local_set(&next_page->page->commit, 0);
1261                 cpu_buffer->tail_page = next_page;
1262
1263                 /* reread the time stamp */
1264                 *ts = rb_time_stamp(buffer, cpu_buffer->cpu);
1265                 cpu_buffer->tail_page->page->time_stamp = *ts;
1266         }
1267
1268         /*
1269          * The actual tail page has moved forward.
1270          */
1271         if (tail < BUF_PAGE_SIZE) {
1272                 /* Mark the rest of the page with padding */
1273                 event = __rb_page_index(tail_page, tail);
1274                 kmemcheck_annotate_bitfield(event, bitfield);
1275                 rb_event_set_padding(event);
1276         }
1277
1278         /* Set the write back to the previous setting */
1279         local_sub(length, &tail_page->write);
1280
1281         /*
1282          * If this was a commit entry that failed,
1283          * increment that too
1284          */
1285         if (tail_page == cpu_buffer->commit_page &&
1286             tail == rb_commit_index(cpu_buffer)) {
1287                 rb_set_commit_to_write(cpu_buffer);
1288         }
1289
1290         __raw_spin_unlock(&cpu_buffer->lock);
1291         local_irq_restore(flags);
1292
1293         /* fail and let the caller try again */
1294         return ERR_PTR(-EAGAIN);
1295
1296  out_reset:
1297         /* reset write */
1298         local_sub(length, &tail_page->write);
1299
1300         if (likely(lock_taken))
1301                 __raw_spin_unlock(&cpu_buffer->lock);
1302         local_irq_restore(flags);
1303         return NULL;
1304 }
1305
1306 static struct ring_buffer_event *
1307 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1308                   unsigned type, unsigned long length, u64 *ts)
1309 {
1310         struct buffer_page *tail_page, *commit_page;
1311         struct ring_buffer_event *event;
1312         unsigned long tail, write;
1313
1314         commit_page = cpu_buffer->commit_page;
1315         /* we just need to protect against interrupts */
1316         barrier();
1317         tail_page = cpu_buffer->tail_page;
1318         write = local_add_return(length, &tail_page->write);
1319         tail = write - length;
1320
1321         /* See if we shot pass the end of this buffer page */
1322         if (write > BUF_PAGE_SIZE)
1323                 return rb_move_tail(cpu_buffer, length, tail,
1324                                     commit_page, tail_page, ts);
1325
1326         /* We reserved something on the buffer */
1327
1328         if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1329                 return NULL;
1330
1331         event = __rb_page_index(tail_page, tail);
1332         kmemcheck_annotate_bitfield(event, bitfield);
1333         rb_update_event(event, type, length);
1334
1335         /* The passed in type is zero for DATA */
1336         if (likely(!type))
1337                 local_inc(&tail_page->entries);
1338
1339         /*
1340          * If this is a commit and the tail is zero, then update
1341          * this page's time stamp.
1342          */
1343         if (!tail && rb_is_commit(cpu_buffer, event))
1344                 cpu_buffer->commit_page->page->time_stamp = *ts;
1345
1346         return event;
1347 }
1348
1349 static inline int
1350 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1351                   struct ring_buffer_event *event)
1352 {
1353         unsigned long new_index, old_index;
1354         struct buffer_page *bpage;
1355         unsigned long index;
1356         unsigned long addr;
1357
1358         new_index = rb_event_index(event);
1359         old_index = new_index + rb_event_length(event);
1360         addr = (unsigned long)event;
1361         addr &= PAGE_MASK;
1362
1363         bpage = cpu_buffer->tail_page;
1364
1365         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1366                 /*
1367                  * This is on the tail page. It is possible that
1368                  * a write could come in and move the tail page
1369                  * and write to the next page. That is fine
1370                  * because we just shorten what is on this page.
1371                  */
1372                 index = local_cmpxchg(&bpage->write, old_index, new_index);
1373                 if (index == old_index)
1374                         return 1;
1375         }
1376
1377         /* could not discard */
1378         return 0;
1379 }
1380
1381 static int
1382 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1383                   u64 *ts, u64 *delta)
1384 {
1385         struct ring_buffer_event *event;
1386         static int once;
1387         int ret;
1388
1389         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1390                 printk(KERN_WARNING "Delta way too big! %llu"
1391                        " ts=%llu write stamp = %llu\n",
1392                        (unsigned long long)*delta,
1393                        (unsigned long long)*ts,
1394                        (unsigned long long)cpu_buffer->write_stamp);
1395                 WARN_ON(1);
1396         }
1397
1398         /*
1399          * The delta is too big, we to add a
1400          * new timestamp.
1401          */
1402         event = __rb_reserve_next(cpu_buffer,
1403                                   RINGBUF_TYPE_TIME_EXTEND,
1404                                   RB_LEN_TIME_EXTEND,
1405                                   ts);
1406         if (!event)
1407                 return -EBUSY;
1408
1409         if (PTR_ERR(event) == -EAGAIN)
1410                 return -EAGAIN;
1411
1412         /* Only a commited time event can update the write stamp */
1413         if (rb_is_commit(cpu_buffer, event)) {
1414                 /*
1415                  * If this is the first on the page, then we need to
1416                  * update the page itself, and just put in a zero.
1417                  */
1418                 if (rb_event_index(event)) {
1419                         event->time_delta = *delta & TS_MASK;
1420                         event->array[0] = *delta >> TS_SHIFT;
1421                 } else {
1422                         cpu_buffer->commit_page->page->time_stamp = *ts;
1423                         /* try to discard, since we do not need this */
1424                         if (!rb_try_to_discard(cpu_buffer, event)) {
1425                                 /* nope, just zero it */
1426                                 event->time_delta = 0;
1427                                 event->array[0] = 0;
1428                         }
1429                 }
1430                 cpu_buffer->write_stamp = *ts;
1431                 /* let the caller know this was the commit */
1432                 ret = 1;
1433         } else {
1434                 /* Try to discard the event */
1435                 if (!rb_try_to_discard(cpu_buffer, event)) {
1436                         /* Darn, this is just wasted space */
1437                         event->time_delta = 0;
1438                         event->array[0] = 0;
1439                 }
1440                 ret = 0;
1441         }
1442
1443         *delta = 0;
1444
1445         return ret;
1446 }
1447
1448 static struct ring_buffer_event *
1449 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1450                       unsigned long length)
1451 {
1452         struct ring_buffer_event *event;
1453         u64 ts, delta = 0;
1454         int commit = 0;
1455         int nr_loops = 0;
1456
1457         length = rb_calculate_event_length(length);
1458  again:
1459         /*
1460          * We allow for interrupts to reenter here and do a trace.
1461          * If one does, it will cause this original code to loop
1462          * back here. Even with heavy interrupts happening, this
1463          * should only happen a few times in a row. If this happens
1464          * 1000 times in a row, there must be either an interrupt
1465          * storm or we have something buggy.
1466          * Bail!
1467          */
1468         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1469                 return NULL;
1470
1471         ts = rb_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
1472
1473         /*
1474          * Only the first commit can update the timestamp.
1475          * Yes there is a race here. If an interrupt comes in
1476          * just after the conditional and it traces too, then it
1477          * will also check the deltas. More than one timestamp may
1478          * also be made. But only the entry that did the actual
1479          * commit will be something other than zero.
1480          */
1481         if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
1482                    rb_page_write(cpu_buffer->tail_page) ==
1483                    rb_commit_index(cpu_buffer))) {
1484                 u64 diff;
1485
1486                 diff = ts - cpu_buffer->write_stamp;
1487
1488                 /* make sure this diff is calculated here */
1489                 barrier();
1490
1491                 /* Did the write stamp get updated already? */
1492                 if (unlikely(ts < cpu_buffer->write_stamp))
1493                         goto get_event;
1494
1495                 delta = diff;
1496                 if (unlikely(test_time_stamp(delta))) {
1497
1498                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1499                         if (commit == -EBUSY)
1500                                 return NULL;
1501
1502                         if (commit == -EAGAIN)
1503                                 goto again;
1504
1505                         RB_WARN_ON(cpu_buffer, commit < 0);
1506                 }
1507         }
1508
1509  get_event:
1510         event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
1511         if (unlikely(PTR_ERR(event) == -EAGAIN))
1512                 goto again;
1513
1514         if (!event) {
1515                 if (unlikely(commit))
1516                         /*
1517                          * Ouch! We needed a timestamp and it was commited. But
1518                          * we didn't get our event reserved.
1519                          */
1520                         rb_set_commit_to_write(cpu_buffer);
1521                 return NULL;
1522         }
1523
1524         /*
1525          * If the timestamp was commited, make the commit our entry
1526          * now so that we will update it when needed.
1527          */
1528         if (unlikely(commit))
1529                 rb_set_commit_event(cpu_buffer, event);
1530         else if (!rb_is_commit(cpu_buffer, event))
1531                 delta = 0;
1532
1533         event->time_delta = delta;
1534
1535         return event;
1536 }
1537
1538 #define TRACE_RECURSIVE_DEPTH 16
1539
1540 static int trace_recursive_lock(void)
1541 {
1542         current->trace_recursion++;
1543
1544         if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
1545                 return 0;
1546
1547         /* Disable all tracing before we do anything else */
1548         tracing_off_permanent();
1549
1550         printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
1551                     "HC[%lu]:SC[%lu]:NMI[%lu]\n",
1552                     current->trace_recursion,
1553                     hardirq_count() >> HARDIRQ_SHIFT,
1554                     softirq_count() >> SOFTIRQ_SHIFT,
1555                     in_nmi());
1556
1557         WARN_ON_ONCE(1);
1558         return -1;
1559 }
1560
1561 static void trace_recursive_unlock(void)
1562 {
1563         WARN_ON_ONCE(!current->trace_recursion);
1564
1565         current->trace_recursion--;
1566 }
1567
1568 static DEFINE_PER_CPU(int, rb_need_resched);
1569
1570 /**
1571  * ring_buffer_lock_reserve - reserve a part of the buffer
1572  * @buffer: the ring buffer to reserve from
1573  * @length: the length of the data to reserve (excluding event header)
1574  *
1575  * Returns a reseverd event on the ring buffer to copy directly to.
1576  * The user of this interface will need to get the body to write into
1577  * and can use the ring_buffer_event_data() interface.
1578  *
1579  * The length is the length of the data needed, not the event length
1580  * which also includes the event header.
1581  *
1582  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1583  * If NULL is returned, then nothing has been allocated or locked.
1584  */
1585 struct ring_buffer_event *
1586 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1587 {
1588         struct ring_buffer_per_cpu *cpu_buffer;
1589         struct ring_buffer_event *event;
1590         int cpu, resched;
1591
1592         if (ring_buffer_flags != RB_BUFFERS_ON)
1593                 return NULL;
1594
1595         if (atomic_read(&buffer->record_disabled))
1596                 return NULL;
1597
1598         /* If we are tracing schedule, we don't want to recurse */
1599         resched = ftrace_preempt_disable();
1600
1601         if (trace_recursive_lock())
1602                 goto out_nocheck;
1603
1604         cpu = raw_smp_processor_id();
1605
1606         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1607                 goto out;
1608
1609         cpu_buffer = buffer->buffers[cpu];
1610
1611         if (atomic_read(&cpu_buffer->record_disabled))
1612                 goto out;
1613
1614         if (length > BUF_MAX_DATA_SIZE)
1615                 goto out;
1616
1617         event = rb_reserve_next_event(cpu_buffer, length);
1618         if (!event)
1619                 goto out;
1620
1621         /*
1622          * Need to store resched state on this cpu.
1623          * Only the first needs to.
1624          */
1625
1626         if (preempt_count() == 1)
1627                 per_cpu(rb_need_resched, cpu) = resched;
1628
1629         return event;
1630
1631  out:
1632         trace_recursive_unlock();
1633
1634  out_nocheck:
1635         ftrace_preempt_enable(resched);
1636         return NULL;
1637 }
1638 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1639
1640 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1641                       struct ring_buffer_event *event)
1642 {
1643         local_inc(&cpu_buffer->entries);
1644
1645         /* Only process further if we own the commit */
1646         if (!rb_is_commit(cpu_buffer, event))
1647                 return;
1648
1649         cpu_buffer->write_stamp += event->time_delta;
1650
1651         rb_set_commit_to_write(cpu_buffer);
1652 }
1653
1654 /**
1655  * ring_buffer_unlock_commit - commit a reserved
1656  * @buffer: The buffer to commit to
1657  * @event: The event pointer to commit.
1658  *
1659  * This commits the data to the ring buffer, and releases any locks held.
1660  *
1661  * Must be paired with ring_buffer_lock_reserve.
1662  */
1663 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1664                               struct ring_buffer_event *event)
1665 {
1666         struct ring_buffer_per_cpu *cpu_buffer;
1667         int cpu = raw_smp_processor_id();
1668
1669         cpu_buffer = buffer->buffers[cpu];
1670
1671         rb_commit(cpu_buffer, event);
1672
1673         trace_recursive_unlock();
1674
1675         /*
1676          * Only the last preempt count needs to restore preemption.
1677          */
1678         if (preempt_count() == 1)
1679                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1680         else
1681                 preempt_enable_no_resched_notrace();
1682
1683         return 0;
1684 }
1685 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1686
1687 static inline void rb_event_discard(struct ring_buffer_event *event)
1688 {
1689         /* array[0] holds the actual length for the discarded event */
1690         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
1691         event->type_len = RINGBUF_TYPE_PADDING;
1692         /* time delta must be non zero */
1693         if (!event->time_delta)
1694                 event->time_delta = 1;
1695 }
1696
1697 /**
1698  * ring_buffer_event_discard - discard any event in the ring buffer
1699  * @event: the event to discard
1700  *
1701  * Sometimes a event that is in the ring buffer needs to be ignored.
1702  * This function lets the user discard an event in the ring buffer
1703  * and then that event will not be read later.
1704  *
1705  * Note, it is up to the user to be careful with this, and protect
1706  * against races. If the user discards an event that has been consumed
1707  * it is possible that it could corrupt the ring buffer.
1708  */
1709 void ring_buffer_event_discard(struct ring_buffer_event *event)
1710 {
1711         rb_event_discard(event);
1712 }
1713 EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
1714
1715 /**
1716  * ring_buffer_commit_discard - discard an event that has not been committed
1717  * @buffer: the ring buffer
1718  * @event: non committed event to discard
1719  *
1720  * This is similar to ring_buffer_event_discard but must only be
1721  * performed on an event that has not been committed yet. The difference
1722  * is that this will also try to free the event from the ring buffer
1723  * if another event has not been added behind it.
1724  *
1725  * If another event has been added behind it, it will set the event
1726  * up as discarded, and perform the commit.
1727  *
1728  * If this function is called, do not call ring_buffer_unlock_commit on
1729  * the event.
1730  */
1731 void ring_buffer_discard_commit(struct ring_buffer *buffer,
1732                                 struct ring_buffer_event *event)
1733 {
1734         struct ring_buffer_per_cpu *cpu_buffer;
1735         int cpu;
1736
1737         /* The event is discarded regardless */
1738         rb_event_discard(event);
1739
1740         /*
1741          * This must only be called if the event has not been
1742          * committed yet. Thus we can assume that preemption
1743          * is still disabled.
1744          */
1745         RB_WARN_ON(buffer, preemptible());
1746
1747         cpu = smp_processor_id();
1748         cpu_buffer = buffer->buffers[cpu];
1749
1750         if (!rb_try_to_discard(cpu_buffer, event))
1751                 goto out;
1752
1753         /*
1754          * The commit is still visible by the reader, so we
1755          * must increment entries.
1756          */
1757         local_inc(&cpu_buffer->entries);
1758  out:
1759         /*
1760          * If a write came in and pushed the tail page
1761          * we still need to update the commit pointer
1762          * if we were the commit.
1763          */
1764         if (rb_is_commit(cpu_buffer, event))
1765                 rb_set_commit_to_write(cpu_buffer);
1766
1767         trace_recursive_unlock();
1768
1769         /*
1770          * Only the last preempt count needs to restore preemption.
1771          */
1772         if (preempt_count() == 1)
1773                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1774         else
1775                 preempt_enable_no_resched_notrace();
1776
1777 }
1778 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
1779
1780 /**
1781  * ring_buffer_write - write data to the buffer without reserving
1782  * @buffer: The ring buffer to write to.
1783  * @length: The length of the data being written (excluding the event header)
1784  * @data: The data to write to the buffer.
1785  *
1786  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1787  * one function. If you already have the data to write to the buffer, it
1788  * may be easier to simply call this function.
1789  *
1790  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1791  * and not the length of the event which would hold the header.
1792  */
1793 int ring_buffer_write(struct ring_buffer *buffer,
1794                         unsigned long length,
1795                         void *data)
1796 {
1797         struct ring_buffer_per_cpu *cpu_buffer;
1798         struct ring_buffer_event *event;
1799         void *body;
1800         int ret = -EBUSY;
1801         int cpu, resched;
1802
1803         if (ring_buffer_flags != RB_BUFFERS_ON)
1804                 return -EBUSY;
1805
1806         if (atomic_read(&buffer->record_disabled))
1807                 return -EBUSY;
1808
1809         resched = ftrace_preempt_disable();
1810
1811         cpu = raw_smp_processor_id();
1812
1813         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1814                 goto out;
1815
1816         cpu_buffer = buffer->buffers[cpu];
1817
1818         if (atomic_read(&cpu_buffer->record_disabled))
1819                 goto out;
1820
1821         if (length > BUF_MAX_DATA_SIZE)
1822                 goto out;
1823
1824         event = rb_reserve_next_event(cpu_buffer, length);
1825         if (!event)
1826                 goto out;
1827
1828         body = rb_event_data(event);
1829
1830         memcpy(body, data, length);
1831
1832         rb_commit(cpu_buffer, event);
1833
1834         ret = 0;
1835  out:
1836         ftrace_preempt_enable(resched);
1837
1838         return ret;
1839 }
1840 EXPORT_SYMBOL_GPL(ring_buffer_write);
1841
1842 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1843 {
1844         struct buffer_page *reader = cpu_buffer->reader_page;
1845         struct buffer_page *head = cpu_buffer->head_page;
1846         struct buffer_page *commit = cpu_buffer->commit_page;
1847
1848         return reader->read == rb_page_commit(reader) &&
1849                 (commit == reader ||
1850                  (commit == head &&
1851                   head->read == rb_page_commit(commit)));
1852 }
1853
1854 /**
1855  * ring_buffer_record_disable - stop all writes into the buffer
1856  * @buffer: The ring buffer to stop writes to.
1857  *
1858  * This prevents all writes to the buffer. Any attempt to write
1859  * to the buffer after this will fail and return NULL.
1860  *
1861  * The caller should call synchronize_sched() after this.
1862  */
1863 void ring_buffer_record_disable(struct ring_buffer *buffer)
1864 {
1865         atomic_inc(&buffer->record_disabled);
1866 }
1867 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1868
1869 /**
1870  * ring_buffer_record_enable - enable writes to the buffer
1871  * @buffer: The ring buffer to enable writes
1872  *
1873  * Note, multiple disables will need the same number of enables
1874  * to truely enable the writing (much like preempt_disable).
1875  */
1876 void ring_buffer_record_enable(struct ring_buffer *buffer)
1877 {
1878         atomic_dec(&buffer->record_disabled);
1879 }
1880 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1881
1882 /**
1883  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1884  * @buffer: The ring buffer to stop writes to.
1885  * @cpu: The CPU buffer to stop
1886  *
1887  * This prevents all writes to the buffer. Any attempt to write
1888  * to the buffer after this will fail and return NULL.
1889  *
1890  * The caller should call synchronize_sched() after this.
1891  */
1892 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1893 {
1894         struct ring_buffer_per_cpu *cpu_buffer;
1895
1896         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1897                 return;
1898
1899         cpu_buffer = buffer->buffers[cpu];
1900         atomic_inc(&cpu_buffer->record_disabled);
1901 }
1902 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1903
1904 /**
1905  * ring_buffer_record_enable_cpu - enable writes to the buffer
1906  * @buffer: The ring buffer to enable writes
1907  * @cpu: The CPU to enable.
1908  *
1909  * Note, multiple disables will need the same number of enables
1910  * to truely enable the writing (much like preempt_disable).
1911  */
1912 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1913 {
1914         struct ring_buffer_per_cpu *cpu_buffer;
1915
1916         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1917                 return;
1918
1919         cpu_buffer = buffer->buffers[cpu];
1920         atomic_dec(&cpu_buffer->record_disabled);
1921 }
1922 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1923
1924 /**
1925  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1926  * @buffer: The ring buffer
1927  * @cpu: The per CPU buffer to get the entries from.
1928  */
1929 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1930 {
1931         struct ring_buffer_per_cpu *cpu_buffer;
1932         unsigned long ret;
1933
1934         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1935                 return 0;
1936
1937         cpu_buffer = buffer->buffers[cpu];
1938         ret = (local_read(&cpu_buffer->entries) - cpu_buffer->overrun)
1939                 - cpu_buffer->read;
1940
1941         return ret;
1942 }
1943 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1944
1945 /**
1946  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1947  * @buffer: The ring buffer
1948  * @cpu: The per CPU buffer to get the number of overruns from
1949  */
1950 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1951 {
1952         struct ring_buffer_per_cpu *cpu_buffer;
1953         unsigned long ret;
1954
1955         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1956                 return 0;
1957
1958         cpu_buffer = buffer->buffers[cpu];
1959         ret = cpu_buffer->overrun;
1960
1961         return ret;
1962 }
1963 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1964
1965 /**
1966  * ring_buffer_nmi_dropped_cpu - get the number of nmis that were dropped
1967  * @buffer: The ring buffer
1968  * @cpu: The per CPU buffer to get the number of overruns from
1969  */
1970 unsigned long ring_buffer_nmi_dropped_cpu(struct ring_buffer *buffer, int cpu)
1971 {
1972         struct ring_buffer_per_cpu *cpu_buffer;
1973         unsigned long ret;
1974
1975         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1976                 return 0;
1977
1978         cpu_buffer = buffer->buffers[cpu];
1979         ret = cpu_buffer->nmi_dropped;
1980
1981         return ret;
1982 }
1983 EXPORT_SYMBOL_GPL(ring_buffer_nmi_dropped_cpu);
1984
1985 /**
1986  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
1987  * @buffer: The ring buffer
1988  * @cpu: The per CPU buffer to get the number of overruns from
1989  */
1990 unsigned long
1991 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
1992 {
1993         struct ring_buffer_per_cpu *cpu_buffer;
1994         unsigned long ret;
1995
1996         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1997                 return 0;
1998
1999         cpu_buffer = buffer->buffers[cpu];
2000         ret = cpu_buffer->commit_overrun;
2001
2002         return ret;
2003 }
2004 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2005
2006 /**
2007  * ring_buffer_entries - get the number of entries in a buffer
2008  * @buffer: The ring buffer
2009  *
2010  * Returns the total number of entries in the ring buffer
2011  * (all CPU entries)
2012  */
2013 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2014 {
2015         struct ring_buffer_per_cpu *cpu_buffer;
2016         unsigned long entries = 0;
2017         int cpu;
2018
2019         /* if you care about this being correct, lock the buffer */
2020         for_each_buffer_cpu(buffer, cpu) {
2021                 cpu_buffer = buffer->buffers[cpu];
2022                 entries += (local_read(&cpu_buffer->entries) -
2023                             cpu_buffer->overrun) - cpu_buffer->read;
2024         }
2025
2026         return entries;
2027 }
2028 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2029
2030 /**
2031  * ring_buffer_overrun_cpu - get the number of overruns in buffer
2032  * @buffer: The ring buffer
2033  *
2034  * Returns the total number of overruns in the ring buffer
2035  * (all CPU entries)
2036  */
2037 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2038 {
2039         struct ring_buffer_per_cpu *cpu_buffer;
2040         unsigned long overruns = 0;
2041         int cpu;
2042
2043         /* if you care about this being correct, lock the buffer */
2044         for_each_buffer_cpu(buffer, cpu) {
2045                 cpu_buffer = buffer->buffers[cpu];
2046                 overruns += cpu_buffer->overrun;
2047         }
2048
2049         return overruns;
2050 }
2051 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2052
2053 static void rb_iter_reset(struct ring_buffer_iter *iter)
2054 {
2055         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2056
2057         /* Iterator usage is expected to have record disabled */
2058         if (list_empty(&cpu_buffer->reader_page->list)) {
2059                 iter->head_page = cpu_buffer->head_page;
2060                 iter->head = cpu_buffer->head_page->read;
2061         } else {
2062                 iter->head_page = cpu_buffer->reader_page;
2063                 iter->head = cpu_buffer->reader_page->read;
2064         }
2065         if (iter->head)
2066                 iter->read_stamp = cpu_buffer->read_stamp;
2067         else
2068                 iter->read_stamp = iter->head_page->page->time_stamp;
2069 }
2070
2071 /**
2072  * ring_buffer_iter_reset - reset an iterator
2073  * @iter: The iterator to reset
2074  *
2075  * Resets the iterator, so that it will start from the beginning
2076  * again.
2077  */
2078 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2079 {
2080         struct ring_buffer_per_cpu *cpu_buffer;
2081         unsigned long flags;
2082
2083         if (!iter)
2084                 return;
2085
2086         cpu_buffer = iter->cpu_buffer;
2087
2088         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2089         rb_iter_reset(iter);
2090         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2091 }
2092 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2093
2094 /**
2095  * ring_buffer_iter_empty - check if an iterator has no more to read
2096  * @iter: The iterator to check
2097  */
2098 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2099 {
2100         struct ring_buffer_per_cpu *cpu_buffer;
2101
2102         cpu_buffer = iter->cpu_buffer;
2103
2104         return iter->head_page == cpu_buffer->commit_page &&
2105                 iter->head == rb_commit_index(cpu_buffer);
2106 }
2107 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2108
2109 static void
2110 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2111                      struct ring_buffer_event *event)
2112 {
2113         u64 delta;
2114
2115         switch (event->type_len) {
2116         case RINGBUF_TYPE_PADDING:
2117                 return;
2118
2119         case RINGBUF_TYPE_TIME_EXTEND:
2120                 delta = event->array[0];
2121                 delta <<= TS_SHIFT;
2122                 delta += event->time_delta;
2123                 cpu_buffer->read_stamp += delta;
2124                 return;
2125
2126         case RINGBUF_TYPE_TIME_STAMP:
2127                 /* FIXME: not implemented */
2128                 return;
2129
2130         case RINGBUF_TYPE_DATA:
2131                 cpu_buffer->read_stamp += event->time_delta;
2132                 return;
2133
2134         default:
2135                 BUG();
2136         }
2137         return;
2138 }
2139
2140 static void
2141 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2142                           struct ring_buffer_event *event)
2143 {
2144         u64 delta;
2145
2146         switch (event->type_len) {
2147         case RINGBUF_TYPE_PADDING:
2148                 return;
2149
2150         case RINGBUF_TYPE_TIME_EXTEND:
2151                 delta = event->array[0];
2152                 delta <<= TS_SHIFT;
2153                 delta += event->time_delta;
2154                 iter->read_stamp += delta;
2155                 return;
2156
2157         case RINGBUF_TYPE_TIME_STAMP:
2158                 /* FIXME: not implemented */
2159                 return;
2160
2161         case RINGBUF_TYPE_DATA:
2162                 iter->read_stamp += event->time_delta;
2163                 return;
2164
2165         default:
2166                 BUG();
2167         }
2168         return;
2169 }
2170
2171 static struct buffer_page *
2172 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2173 {
2174         struct buffer_page *reader = NULL;
2175         unsigned long flags;
2176         int nr_loops = 0;
2177
2178         local_irq_save(flags);
2179         __raw_spin_lock(&cpu_buffer->lock);
2180
2181  again:
2182         /*
2183          * This should normally only loop twice. But because the
2184          * start of the reader inserts an empty page, it causes
2185          * a case where we will loop three times. There should be no
2186          * reason to loop four times (that I know of).
2187          */
2188         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2189                 reader = NULL;
2190                 goto out;
2191         }
2192
2193         reader = cpu_buffer->reader_page;
2194
2195         /* If there's more to read, return this page */
2196         if (cpu_buffer->reader_page->read < rb_page_size(reader))
2197                 goto out;
2198
2199         /* Never should we have an index greater than the size */
2200         if (RB_WARN_ON(cpu_buffer,
2201                        cpu_buffer->reader_page->read > rb_page_size(reader)))
2202                 goto out;
2203
2204         /* check if we caught up to the tail */
2205         reader = NULL;
2206         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2207                 goto out;
2208
2209         /*
2210          * Splice the empty reader page into the list around the head.
2211          * Reset the reader page to size zero.
2212          */
2213
2214         reader = cpu_buffer->head_page;
2215         cpu_buffer->reader_page->list.next = reader->list.next;
2216         cpu_buffer->reader_page->list.prev = reader->list.prev;
2217
2218         local_set(&cpu_buffer->reader_page->write, 0);
2219         local_set(&cpu_buffer->reader_page->entries, 0);
2220         local_set(&cpu_buffer->reader_page->page->commit, 0);
2221
2222         /* Make the reader page now replace the head */
2223         reader->list.prev->next = &cpu_buffer->reader_page->list;
2224         reader->list.next->prev = &cpu_buffer->reader_page->list;
2225
2226         /*
2227          * If the tail is on the reader, then we must set the head
2228          * to the inserted page, otherwise we set it one before.
2229          */
2230         cpu_buffer->head_page = cpu_buffer->reader_page;
2231
2232         if (cpu_buffer->commit_page != reader)
2233                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2234
2235         /* Finally update the reader page to the new head */
2236         cpu_buffer->reader_page = reader;
2237         rb_reset_reader_page(cpu_buffer);
2238
2239         goto again;
2240
2241  out:
2242         __raw_spin_unlock(&cpu_buffer->lock);
2243         local_irq_restore(flags);
2244
2245         return reader;
2246 }
2247
2248 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2249 {
2250         struct ring_buffer_event *event;
2251         struct buffer_page *reader;
2252         unsigned length;
2253
2254         reader = rb_get_reader_page(cpu_buffer);
2255
2256         /* This function should not be called when buffer is empty */
2257         if (RB_WARN_ON(cpu_buffer, !reader))
2258                 return;
2259
2260         event = rb_reader_event(cpu_buffer);
2261
2262         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
2263                         || rb_discarded_event(event))
2264                 cpu_buffer->read++;
2265
2266         rb_update_read_stamp(cpu_buffer, event);
2267
2268         length = rb_event_length(event);
2269         cpu_buffer->reader_page->read += length;
2270 }
2271
2272 static void rb_advance_iter(struct ring_buffer_iter *iter)
2273 {
2274         struct ring_buffer *buffer;
2275         struct ring_buffer_per_cpu *cpu_buffer;
2276         struct ring_buffer_event *event;
2277         unsigned length;
2278
2279         cpu_buffer = iter->cpu_buffer;
2280         buffer = cpu_buffer->buffer;
2281
2282         /*
2283          * Check if we are at the end of the buffer.
2284          */
2285         if (iter->head >= rb_page_size(iter->head_page)) {
2286                 /* discarded commits can make the page empty */
2287                 if (iter->head_page == cpu_buffer->commit_page)
2288                         return;
2289                 rb_inc_iter(iter);
2290                 return;
2291         }
2292
2293         event = rb_iter_head_event(iter);
2294
2295         length = rb_event_length(event);
2296
2297         /*
2298          * This should not be called to advance the header if we are
2299          * at the tail of the buffer.
2300          */
2301         if (RB_WARN_ON(cpu_buffer,
2302                        (iter->head_page == cpu_buffer->commit_page) &&
2303                        (iter->head + length > rb_commit_index(cpu_buffer))))
2304                 return;
2305
2306         rb_update_iter_read_stamp(iter, event);
2307
2308         iter->head += length;
2309
2310         /* check for end of page padding */
2311         if ((iter->head >= rb_page_size(iter->head_page)) &&
2312             (iter->head_page != cpu_buffer->commit_page))
2313                 rb_advance_iter(iter);
2314 }
2315
2316 static struct ring_buffer_event *
2317 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2318 {
2319         struct ring_buffer_per_cpu *cpu_buffer;
2320         struct ring_buffer_event *event;
2321         struct buffer_page *reader;
2322         int nr_loops = 0;
2323
2324         cpu_buffer = buffer->buffers[cpu];
2325
2326  again:
2327         /*
2328          * We repeat when a timestamp is encountered. It is possible
2329          * to get multiple timestamps from an interrupt entering just
2330          * as one timestamp is about to be written, or from discarded
2331          * commits. The most that we can have is the number on a single page.
2332          */
2333         if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
2334                 return NULL;
2335
2336         reader = rb_get_reader_page(cpu_buffer);
2337         if (!reader)
2338                 return NULL;
2339
2340         event = rb_reader_event(cpu_buffer);
2341
2342         switch (event->type_len) {
2343         case RINGBUF_TYPE_PADDING:
2344                 if (rb_null_event(event))
2345                         RB_WARN_ON(cpu_buffer, 1);
2346                 /*
2347                  * Because the writer could be discarding every
2348                  * event it creates (which would probably be bad)
2349                  * if we were to go back to "again" then we may never
2350                  * catch up, and will trigger the warn on, or lock
2351                  * the box. Return the padding, and we will release
2352                  * the current locks, and try again.
2353                  */
2354                 rb_advance_reader(cpu_buffer);
2355                 return event;
2356
2357         case RINGBUF_TYPE_TIME_EXTEND:
2358                 /* Internal data, OK to advance */
2359                 rb_advance_reader(cpu_buffer);
2360                 goto again;
2361
2362         case RINGBUF_TYPE_TIME_STAMP:
2363                 /* FIXME: not implemented */
2364                 rb_advance_reader(cpu_buffer);
2365                 goto again;
2366
2367         case RINGBUF_TYPE_DATA:
2368                 if (ts) {
2369                         *ts = cpu_buffer->read_stamp + event->time_delta;
2370                         ring_buffer_normalize_time_stamp(buffer,
2371                                                          cpu_buffer->cpu, ts);
2372                 }
2373                 return event;
2374
2375         default:
2376                 BUG();
2377         }
2378
2379         return NULL;
2380 }
2381 EXPORT_SYMBOL_GPL(ring_buffer_peek);
2382
2383 static struct ring_buffer_event *
2384 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2385 {
2386         struct ring_buffer *buffer;
2387         struct ring_buffer_per_cpu *cpu_buffer;
2388         struct ring_buffer_event *event;
2389         int nr_loops = 0;
2390
2391         if (ring_buffer_iter_empty(iter))
2392                 return NULL;
2393
2394         cpu_buffer = iter->cpu_buffer;
2395         buffer = cpu_buffer->buffer;
2396
2397  again:
2398         /*
2399          * We repeat when a timestamp is encountered.
2400          * We can get multiple timestamps by nested interrupts or also
2401          * if filtering is on (discarding commits). Since discarding
2402          * commits can be frequent we can get a lot of timestamps.
2403          * But we limit them by not adding timestamps if they begin
2404          * at the start of a page.
2405          */
2406         if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
2407                 return NULL;
2408
2409         if (rb_per_cpu_empty(cpu_buffer))
2410                 return NULL;
2411
2412         event = rb_iter_head_event(iter);
2413
2414         switch (event->type_len) {
2415         case RINGBUF_TYPE_PADDING:
2416                 if (rb_null_event(event)) {
2417                         rb_inc_iter(iter);
2418                         goto again;
2419                 }
2420                 rb_advance_iter(iter);
2421                 return event;
2422
2423         case RINGBUF_TYPE_TIME_EXTEND:
2424                 /* Internal data, OK to advance */
2425                 rb_advance_iter(iter);
2426                 goto again;
2427
2428         case RINGBUF_TYPE_TIME_STAMP:
2429                 /* FIXME: not implemented */
2430                 rb_advance_iter(iter);
2431                 goto again;
2432
2433         case RINGBUF_TYPE_DATA:
2434                 if (ts) {
2435                         *ts = iter->read_stamp + event->time_delta;
2436                         ring_buffer_normalize_time_stamp(buffer,
2437                                                          cpu_buffer->cpu, ts);
2438                 }
2439                 return event;
2440
2441         default:
2442                 BUG();
2443         }
2444
2445         return NULL;
2446 }
2447 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2448
2449 /**
2450  * ring_buffer_peek - peek at the next event to be read
2451  * @buffer: The ring buffer to read
2452  * @cpu: The cpu to peak at
2453  * @ts: The timestamp counter of this event.
2454  *
2455  * This will return the event that will be read next, but does
2456  * not consume the data.
2457  */
2458 struct ring_buffer_event *
2459 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2460 {
2461         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2462         struct ring_buffer_event *event;
2463         unsigned long flags;
2464
2465         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2466                 return NULL;
2467
2468  again:
2469         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2470         event = rb_buffer_peek(buffer, cpu, ts);
2471         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2472
2473         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2474                 cpu_relax();
2475                 goto again;
2476         }
2477
2478         return event;
2479 }
2480
2481 /**
2482  * ring_buffer_iter_peek - peek at the next event to be read
2483  * @iter: The ring buffer iterator
2484  * @ts: The timestamp counter of this event.
2485  *
2486  * This will return the event that will be read next, but does
2487  * not increment the iterator.
2488  */
2489 struct ring_buffer_event *
2490 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2491 {
2492         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2493         struct ring_buffer_event *event;
2494         unsigned long flags;
2495
2496  again:
2497         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2498         event = rb_iter_peek(iter, ts);
2499         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2500
2501         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2502                 cpu_relax();
2503                 goto again;
2504         }
2505
2506         return event;
2507 }
2508
2509 /**
2510  * ring_buffer_consume - return an event and consume it
2511  * @buffer: The ring buffer to get the next event from
2512  *
2513  * Returns the next event in the ring buffer, and that event is consumed.
2514  * Meaning, that sequential reads will keep returning a different event,
2515  * and eventually empty the ring buffer if the producer is slower.
2516  */
2517 struct ring_buffer_event *
2518 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2519 {
2520         struct ring_buffer_per_cpu *cpu_buffer;
2521         struct ring_buffer_event *event = NULL;
2522         unsigned long flags;
2523
2524  again:
2525         /* might be called in atomic */
2526         preempt_disable();
2527
2528         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2529                 goto out;
2530
2531         cpu_buffer = buffer->buffers[cpu];
2532         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2533
2534         event = rb_buffer_peek(buffer, cpu, ts);
2535         if (!event)
2536                 goto out_unlock;
2537
2538         rb_advance_reader(cpu_buffer);
2539
2540  out_unlock:
2541         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2542
2543  out:
2544         preempt_enable();
2545
2546         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2547                 cpu_relax();
2548                 goto again;
2549         }
2550
2551         return event;
2552 }
2553 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2554
2555 /**
2556  * ring_buffer_read_start - start a non consuming read of the buffer
2557  * @buffer: The ring buffer to read from
2558  * @cpu: The cpu buffer to iterate over
2559  *
2560  * This starts up an iteration through the buffer. It also disables
2561  * the recording to the buffer until the reading is finished.
2562  * This prevents the reading from being corrupted. This is not
2563  * a consuming read, so a producer is not expected.
2564  *
2565  * Must be paired with ring_buffer_finish.
2566  */
2567 struct ring_buffer_iter *
2568 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2569 {
2570         struct ring_buffer_per_cpu *cpu_buffer;
2571         struct ring_buffer_iter *iter;
2572         unsigned long flags;
2573
2574         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2575                 return NULL;
2576
2577         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2578         if (!iter)
2579                 return NULL;
2580
2581         cpu_buffer = buffer->buffers[cpu];
2582
2583         iter->cpu_buffer = cpu_buffer;
2584
2585         atomic_inc(&cpu_buffer->record_disabled);
2586         synchronize_sched();
2587
2588         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2589         __raw_spin_lock(&cpu_buffer->lock);
2590         rb_iter_reset(iter);
2591         __raw_spin_unlock(&cpu_buffer->lock);
2592         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2593
2594         return iter;
2595 }
2596 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2597
2598 /**
2599  * ring_buffer_finish - finish reading the iterator of the buffer
2600  * @iter: The iterator retrieved by ring_buffer_start
2601  *
2602  * This re-enables the recording to the buffer, and frees the
2603  * iterator.
2604  */
2605 void
2606 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2607 {
2608         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2609
2610         atomic_dec(&cpu_buffer->record_disabled);
2611         kfree(iter);
2612 }
2613 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2614
2615 /**
2616  * ring_buffer_read - read the next item in the ring buffer by the iterator
2617  * @iter: The ring buffer iterator
2618  * @ts: The time stamp of the event read.
2619  *
2620  * This reads the next event in the ring buffer and increments the iterator.
2621  */
2622 struct ring_buffer_event *
2623 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2624 {
2625         struct ring_buffer_event *event;
2626         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2627         unsigned long flags;
2628
2629  again:
2630         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2631         event = rb_iter_peek(iter, ts);
2632         if (!event)
2633                 goto out;
2634
2635         rb_advance_iter(iter);
2636  out:
2637         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2638
2639         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2640                 cpu_relax();
2641                 goto again;
2642         }
2643
2644         return event;
2645 }
2646 EXPORT_SYMBOL_GPL(ring_buffer_read);
2647
2648 /**
2649  * ring_buffer_size - return the size of the ring buffer (in bytes)
2650  * @buffer: The ring buffer.
2651  */
2652 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2653 {
2654         return BUF_PAGE_SIZE * buffer->pages;
2655 }
2656 EXPORT_SYMBOL_GPL(ring_buffer_size);
2657
2658 static void
2659 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2660 {
2661         cpu_buffer->head_page
2662                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2663         local_set(&cpu_buffer->head_page->write, 0);
2664         local_set(&cpu_buffer->head_page->entries, 0);
2665         local_set(&cpu_buffer->head_page->page->commit, 0);
2666
2667         cpu_buffer->head_page->read = 0;
2668
2669         cpu_buffer->tail_page = cpu_buffer->head_page;
2670         cpu_buffer->commit_page = cpu_buffer->head_page;
2671
2672         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2673         local_set(&cpu_buffer->reader_page->write, 0);
2674         local_set(&cpu_buffer->reader_page->entries, 0);
2675         local_set(&cpu_buffer->reader_page->page->commit, 0);
2676         cpu_buffer->reader_page->read = 0;
2677
2678         cpu_buffer->nmi_dropped = 0;
2679         cpu_buffer->commit_overrun = 0;
2680         cpu_buffer->overrun = 0;
2681         cpu_buffer->read = 0;
2682         local_set(&cpu_buffer->entries, 0);
2683
2684         cpu_buffer->write_stamp = 0;
2685         cpu_buffer->read_stamp = 0;
2686 }
2687
2688 /**
2689  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2690  * @buffer: The ring buffer to reset a per cpu buffer of
2691  * @cpu: The CPU buffer to be reset
2692  */
2693 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2694 {
2695         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2696         unsigned long flags;
2697
2698         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2699                 return;
2700
2701         atomic_inc(&cpu_buffer->record_disabled);
2702
2703         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2704
2705         __raw_spin_lock(&cpu_buffer->lock);
2706
2707         rb_reset_cpu(cpu_buffer);
2708
2709         __raw_spin_unlock(&cpu_buffer->lock);
2710
2711         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2712
2713         atomic_dec(&cpu_buffer->record_disabled);
2714 }
2715 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2716
2717 /**
2718  * ring_buffer_reset - reset a ring buffer
2719  * @buffer: The ring buffer to reset all cpu buffers
2720  */
2721 void ring_buffer_reset(struct ring_buffer *buffer)
2722 {
2723         int cpu;
2724
2725         for_each_buffer_cpu(buffer, cpu)
2726                 ring_buffer_reset_cpu(buffer, cpu);
2727 }
2728 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2729
2730 /**
2731  * rind_buffer_empty - is the ring buffer empty?
2732  * @buffer: The ring buffer to test
2733  */
2734 int ring_buffer_empty(struct ring_buffer *buffer)
2735 {
2736         struct ring_buffer_per_cpu *cpu_buffer;
2737         int cpu;
2738
2739         /* yes this is racy, but if you don't like the race, lock the buffer */
2740         for_each_buffer_cpu(buffer, cpu) {
2741                 cpu_buffer = buffer->buffers[cpu];
2742                 if (!rb_per_cpu_empty(cpu_buffer))
2743                         return 0;
2744         }
2745
2746         return 1;
2747 }
2748 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2749
2750 /**
2751  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2752  * @buffer: The ring buffer
2753  * @cpu: The CPU buffer to test
2754  */
2755 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2756 {
2757         struct ring_buffer_per_cpu *cpu_buffer;
2758         int ret;
2759
2760         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2761                 return 1;
2762
2763         cpu_buffer = buffer->buffers[cpu];
2764         ret = rb_per_cpu_empty(cpu_buffer);
2765
2766
2767         return ret;
2768 }
2769 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2770
2771 /**
2772  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2773  * @buffer_a: One buffer to swap with
2774  * @buffer_b: The other buffer to swap with
2775  *
2776  * This function is useful for tracers that want to take a "snapshot"
2777  * of a CPU buffer and has another back up buffer lying around.
2778  * it is expected that the tracer handles the cpu buffer not being
2779  * used at the moment.
2780  */
2781 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2782                          struct ring_buffer *buffer_b, int cpu)
2783 {
2784         struct ring_buffer_per_cpu *cpu_buffer_a;
2785         struct ring_buffer_per_cpu *cpu_buffer_b;
2786         int ret = -EINVAL;
2787
2788         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2789             !cpumask_test_cpu(cpu, buffer_b->cpumask))
2790                 goto out;
2791
2792         /* At least make sure the two buffers are somewhat the same */
2793         if (buffer_a->pages != buffer_b->pages)
2794                 goto out;
2795
2796         ret = -EAGAIN;
2797
2798         if (ring_buffer_flags != RB_BUFFERS_ON)
2799                 goto out;
2800
2801         if (atomic_read(&buffer_a->record_disabled))
2802                 goto out;
2803
2804         if (atomic_read(&buffer_b->record_disabled))
2805                 goto out;
2806
2807         cpu_buffer_a = buffer_a->buffers[cpu];
2808         cpu_buffer_b = buffer_b->buffers[cpu];
2809
2810         if (atomic_read(&cpu_buffer_a->record_disabled))
2811                 goto out;
2812
2813         if (atomic_read(&cpu_buffer_b->record_disabled))
2814                 goto out;
2815
2816         /*
2817          * We can't do a synchronize_sched here because this
2818          * function can be called in atomic context.
2819          * Normally this will be called from the same CPU as cpu.
2820          * If not it's up to the caller to protect this.
2821          */
2822         atomic_inc(&cpu_buffer_a->record_disabled);
2823         atomic_inc(&cpu_buffer_b->record_disabled);
2824
2825         buffer_a->buffers[cpu] = cpu_buffer_b;
2826         buffer_b->buffers[cpu] = cpu_buffer_a;
2827
2828         cpu_buffer_b->buffer = buffer_a;
2829         cpu_buffer_a->buffer = buffer_b;
2830
2831         atomic_dec(&cpu_buffer_a->record_disabled);
2832         atomic_dec(&cpu_buffer_b->record_disabled);
2833
2834         ret = 0;
2835 out:
2836         return ret;
2837 }
2838 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2839
2840 /**
2841  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2842  * @buffer: the buffer to allocate for.
2843  *
2844  * This function is used in conjunction with ring_buffer_read_page.
2845  * When reading a full page from the ring buffer, these functions
2846  * can be used to speed up the process. The calling function should
2847  * allocate a few pages first with this function. Then when it
2848  * needs to get pages from the ring buffer, it passes the result
2849  * of this function into ring_buffer_read_page, which will swap
2850  * the page that was allocated, with the read page of the buffer.
2851  *
2852  * Returns:
2853  *  The page allocated, or NULL on error.
2854  */
2855 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2856 {
2857         struct buffer_data_page *bpage;
2858         unsigned long addr;
2859
2860         addr = __get_free_page(GFP_KERNEL);
2861         if (!addr)
2862                 return NULL;
2863
2864         bpage = (void *)addr;
2865
2866         rb_init_page(bpage);
2867
2868         return bpage;
2869 }
2870 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
2871
2872 /**
2873  * ring_buffer_free_read_page - free an allocated read page
2874  * @buffer: the buffer the page was allocate for
2875  * @data: the page to free
2876  *
2877  * Free a page allocated from ring_buffer_alloc_read_page.
2878  */
2879 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2880 {
2881         free_page((unsigned long)data);
2882 }
2883 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
2884
2885 /**
2886  * ring_buffer_read_page - extract a page from the ring buffer
2887  * @buffer: buffer to extract from
2888  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2889  * @len: amount to extract
2890  * @cpu: the cpu of the buffer to extract
2891  * @full: should the extraction only happen when the page is full.
2892  *
2893  * This function will pull out a page from the ring buffer and consume it.
2894  * @data_page must be the address of the variable that was returned
2895  * from ring_buffer_alloc_read_page. This is because the page might be used
2896  * to swap with a page in the ring buffer.
2897  *
2898  * for example:
2899  *      rpage = ring_buffer_alloc_read_page(buffer);
2900  *      if (!rpage)
2901  *              return error;
2902  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
2903  *      if (ret >= 0)
2904  *              process_page(rpage, ret);
2905  *
2906  * When @full is set, the function will not return true unless
2907  * the writer is off the reader page.
2908  *
2909  * Note: it is up to the calling functions to handle sleeps and wakeups.
2910  *  The ring buffer can be used anywhere in the kernel and can not
2911  *  blindly call wake_up. The layer that uses the ring buffer must be
2912  *  responsible for that.
2913  *
2914  * Returns:
2915  *  >=0 if data has been transferred, returns the offset of consumed data.
2916  *  <0 if no data has been transferred.
2917  */
2918 int ring_buffer_read_page(struct ring_buffer *buffer,
2919                           void **data_page, size_t len, int cpu, int full)
2920 {
2921         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2922         struct ring_buffer_event *event;
2923         struct buffer_data_page *bpage;
2924         struct buffer_page *reader;
2925         unsigned long flags;
2926         unsigned int commit;
2927         unsigned int read;
2928         u64 save_timestamp;
2929         int ret = -1;
2930
2931         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2932                 goto out;
2933
2934         /*
2935          * If len is not big enough to hold the page header, then
2936          * we can not copy anything.
2937          */
2938         if (len <= BUF_PAGE_HDR_SIZE)
2939                 goto out;
2940
2941         len -= BUF_PAGE_HDR_SIZE;
2942
2943         if (!data_page)
2944                 goto out;
2945
2946         bpage = *data_page;
2947         if (!bpage)
2948                 goto out;
2949
2950         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2951
2952         reader = rb_get_reader_page(cpu_buffer);
2953         if (!reader)
2954                 goto out_unlock;
2955
2956         event = rb_reader_event(cpu_buffer);
2957
2958         read = reader->read;
2959         commit = rb_page_commit(reader);
2960
2961         /*
2962          * If this page has been partially read or
2963          * if len is not big enough to read the rest of the page or
2964          * a writer is still on the page, then
2965          * we must copy the data from the page to the buffer.
2966          * Otherwise, we can simply swap the page with the one passed in.
2967          */
2968         if (read || (len < (commit - read)) ||
2969             cpu_buffer->reader_page == cpu_buffer->commit_page) {
2970                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
2971                 unsigned int rpos = read;
2972                 unsigned int pos = 0;
2973                 unsigned int size;
2974
2975                 if (full)
2976                         goto out_unlock;
2977
2978                 if (len > (commit - read))
2979                         len = (commit - read);
2980
2981                 size = rb_event_length(event);
2982
2983                 if (len < size)
2984                         goto out_unlock;
2985
2986                 /* save the current timestamp, since the user will need it */
2987                 save_timestamp = cpu_buffer->read_stamp;
2988
2989                 /* Need to copy one event at a time */
2990                 do {
2991                         memcpy(bpage->data + pos, rpage->data + rpos, size);
2992
2993                         len -= size;
2994
2995                         rb_advance_reader(cpu_buffer);
2996                         rpos = reader->read;
2997                         pos += size;
2998
2999                         event = rb_reader_event(cpu_buffer);
3000                         size = rb_event_length(event);
3001                 } while (len > size);
3002
3003                 /* update bpage */
3004                 local_set(&bpage->commit, pos);
3005                 bpage->time_stamp = save_timestamp;
3006
3007                 /* we copied everything to the beginning */
3008                 read = 0;
3009         } else {
3010                 /* update the entry counter */
3011                 cpu_buffer->read += local_read(&reader->entries);
3012
3013                 /* swap the pages */
3014                 rb_init_page(bpage);
3015                 bpage = reader->page;
3016                 reader->page = *data_page;
3017                 local_set(&reader->write, 0);
3018                 local_set(&reader->entries, 0);
3019                 reader->read = 0;
3020                 *data_page = bpage;
3021         }
3022         ret = read;
3023
3024  out_unlock:
3025         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3026
3027  out:
3028         return ret;
3029 }
3030 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3031
3032 static ssize_t
3033 rb_simple_read(struct file *filp, char __user *ubuf,
3034                size_t cnt, loff_t *ppos)
3035 {
3036         unsigned long *p = filp->private_data;
3037         char buf[64];
3038         int r;
3039
3040         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3041                 r = sprintf(buf, "permanently disabled\n");
3042         else
3043                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3044
3045         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3046 }
3047
3048 static ssize_t
3049 rb_simple_write(struct file *filp, const char __user *ubuf,
3050                 size_t cnt, loff_t *ppos)
3051 {
3052         unsigned long *p = filp->private_data;
3053         char buf[64];
3054         unsigned long val;
3055         int ret;
3056
3057         if (cnt >= sizeof(buf))
3058                 return -EINVAL;
3059
3060         if (copy_from_user(&buf, ubuf, cnt))
3061                 return -EFAULT;
3062
3063         buf[cnt] = 0;
3064
3065         ret = strict_strtoul(buf, 10, &val);
3066         if (ret < 0)
3067                 return ret;
3068
3069         if (val)
3070                 set_bit(RB_BUFFERS_ON_BIT, p);
3071         else
3072                 clear_bit(RB_BUFFERS_ON_BIT, p);
3073
3074         (*ppos)++;
3075
3076         return cnt;
3077 }
3078
3079 static const struct file_operations rb_simple_fops = {
3080         .open           = tracing_open_generic,
3081         .read           = rb_simple_read,
3082         .write          = rb_simple_write,
3083 };
3084
3085
3086 static __init int rb_init_debugfs(void)
3087 {
3088         struct dentry *d_tracer;
3089
3090         d_tracer = tracing_init_dentry();
3091
3092         trace_create_file("tracing_on", 0644, d_tracer,
3093                             &ring_buffer_flags, &rb_simple_fops);
3094
3095         return 0;
3096 }
3097
3098 fs_initcall(rb_init_debugfs);
3099
3100 #ifdef CONFIG_HOTPLUG_CPU
3101 static int rb_cpu_notify(struct notifier_block *self,
3102                          unsigned long action, void *hcpu)
3103 {
3104         struct ring_buffer *buffer =
3105                 container_of(self, struct ring_buffer, cpu_notify);
3106         long cpu = (long)hcpu;
3107
3108         switch (action) {
3109         case CPU_UP_PREPARE:
3110         case CPU_UP_PREPARE_FROZEN:
3111                 if (cpu_isset(cpu, *buffer->cpumask))
3112                         return NOTIFY_OK;
3113
3114                 buffer->buffers[cpu] =
3115                         rb_allocate_cpu_buffer(buffer, cpu);
3116                 if (!buffer->buffers[cpu]) {
3117                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3118                              cpu);
3119                         return NOTIFY_OK;
3120                 }
3121                 smp_wmb();
3122                 cpu_set(cpu, *buffer->cpumask);
3123                 break;
3124         case CPU_DOWN_PREPARE:
3125         case CPU_DOWN_PREPARE_FROZEN:
3126                 /*
3127                  * Do nothing.
3128                  *  If we were to free the buffer, then the user would
3129                  *  lose any trace that was in the buffer.
3130                  */
3131                 break;
3132         default:
3133                 break;
3134         }
3135         return NOTIFY_OK;
3136 }
3137 #endif