includecheck fix: kernel/trace, ring_buffer.c
[safe/jmp/linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22
23 #include "trace.h"
24
25 /*
26  * The ring buffer header is special. We must manually up keep it.
27  */
28 int ring_buffer_print_entry_header(struct trace_seq *s)
29 {
30         int ret;
31
32         ret = trace_seq_printf(s, "# compressed entry header\n");
33         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
34         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
35         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
36         ret = trace_seq_printf(s, "\n");
37         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
38                                RINGBUF_TYPE_PADDING);
39         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
40                                RINGBUF_TYPE_TIME_EXTEND);
41         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
42                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
43
44         return ret;
45 }
46
47 /*
48  * The ring buffer is made up of a list of pages. A separate list of pages is
49  * allocated for each CPU. A writer may only write to a buffer that is
50  * associated with the CPU it is currently executing on.  A reader may read
51  * from any per cpu buffer.
52  *
53  * The reader is special. For each per cpu buffer, the reader has its own
54  * reader page. When a reader has read the entire reader page, this reader
55  * page is swapped with another page in the ring buffer.
56  *
57  * Now, as long as the writer is off the reader page, the reader can do what
58  * ever it wants with that page. The writer will never write to that page
59  * again (as long as it is out of the ring buffer).
60  *
61  * Here's some silly ASCII art.
62  *
63  *   +------+
64  *   |reader|          RING BUFFER
65  *   |page  |
66  *   +------+        +---+   +---+   +---+
67  *                   |   |-->|   |-->|   |
68  *                   +---+   +---+   +---+
69  *                     ^               |
70  *                     |               |
71  *                     +---------------+
72  *
73  *
74  *   +------+
75  *   |reader|          RING BUFFER
76  *   |page  |------------------v
77  *   +------+        +---+   +---+   +---+
78  *                   |   |-->|   |-->|   |
79  *                   +---+   +---+   +---+
80  *                     ^               |
81  *                     |               |
82  *                     +---------------+
83  *
84  *
85  *   +------+
86  *   |reader|          RING BUFFER
87  *   |page  |------------------v
88  *   +------+        +---+   +---+   +---+
89  *      ^            |   |-->|   |-->|   |
90  *      |            +---+   +---+   +---+
91  *      |                              |
92  *      |                              |
93  *      +------------------------------+
94  *
95  *
96  *   +------+
97  *   |buffer|          RING BUFFER
98  *   |page  |------------------v
99  *   +------+        +---+   +---+   +---+
100  *      ^            |   |   |   |-->|   |
101  *      |   New      +---+   +---+   +---+
102  *      |  Reader------^               |
103  *      |   page                       |
104  *      +------------------------------+
105  *
106  *
107  * After we make this swap, the reader can hand this page off to the splice
108  * code and be done with it. It can even allocate a new page if it needs to
109  * and swap that into the ring buffer.
110  *
111  * We will be using cmpxchg soon to make all this lockless.
112  *
113  */
114
115 /*
116  * A fast way to enable or disable all ring buffers is to
117  * call tracing_on or tracing_off. Turning off the ring buffers
118  * prevents all ring buffers from being recorded to.
119  * Turning this switch on, makes it OK to write to the
120  * ring buffer, if the ring buffer is enabled itself.
121  *
122  * There's three layers that must be on in order to write
123  * to the ring buffer.
124  *
125  * 1) This global flag must be set.
126  * 2) The ring buffer must be enabled for recording.
127  * 3) The per cpu buffer must be enabled for recording.
128  *
129  * In case of an anomaly, this global flag has a bit set that
130  * will permantly disable all ring buffers.
131  */
132
133 /*
134  * Global flag to disable all recording to ring buffers
135  *  This has two bits: ON, DISABLED
136  *
137  *  ON   DISABLED
138  * ---- ----------
139  *   0      0        : ring buffers are off
140  *   1      0        : ring buffers are on
141  *   X      1        : ring buffers are permanently disabled
142  */
143
144 enum {
145         RB_BUFFERS_ON_BIT       = 0,
146         RB_BUFFERS_DISABLED_BIT = 1,
147 };
148
149 enum {
150         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
151         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
152 };
153
154 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
155
156 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
157
158 /**
159  * tracing_on - enable all tracing buffers
160  *
161  * This function enables all tracing buffers that may have been
162  * disabled with tracing_off.
163  */
164 void tracing_on(void)
165 {
166         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
167 }
168 EXPORT_SYMBOL_GPL(tracing_on);
169
170 /**
171  * tracing_off - turn off all tracing buffers
172  *
173  * This function stops all tracing buffers from recording data.
174  * It does not disable any overhead the tracers themselves may
175  * be causing. This function simply causes all recording to
176  * the ring buffers to fail.
177  */
178 void tracing_off(void)
179 {
180         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
181 }
182 EXPORT_SYMBOL_GPL(tracing_off);
183
184 /**
185  * tracing_off_permanent - permanently disable ring buffers
186  *
187  * This function, once called, will disable all ring buffers
188  * permanently.
189  */
190 void tracing_off_permanent(void)
191 {
192         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
193 }
194
195 /**
196  * tracing_is_on - show state of ring buffers enabled
197  */
198 int tracing_is_on(void)
199 {
200         return ring_buffer_flags == RB_BUFFERS_ON;
201 }
202 EXPORT_SYMBOL_GPL(tracing_is_on);
203
204 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
205 #define RB_ALIGNMENT            4U
206 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
207 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
208
209 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
210 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
211
212 enum {
213         RB_LEN_TIME_EXTEND = 8,
214         RB_LEN_TIME_STAMP = 16,
215 };
216
217 static inline int rb_null_event(struct ring_buffer_event *event)
218 {
219         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
220 }
221
222 static void rb_event_set_padding(struct ring_buffer_event *event)
223 {
224         /* padding has a NULL time_delta */
225         event->type_len = RINGBUF_TYPE_PADDING;
226         event->time_delta = 0;
227 }
228
229 static unsigned
230 rb_event_data_length(struct ring_buffer_event *event)
231 {
232         unsigned length;
233
234         if (event->type_len)
235                 length = event->type_len * RB_ALIGNMENT;
236         else
237                 length = event->array[0];
238         return length + RB_EVNT_HDR_SIZE;
239 }
240
241 /* inline for ring buffer fast paths */
242 static unsigned
243 rb_event_length(struct ring_buffer_event *event)
244 {
245         switch (event->type_len) {
246         case RINGBUF_TYPE_PADDING:
247                 if (rb_null_event(event))
248                         /* undefined */
249                         return -1;
250                 return  event->array[0] + RB_EVNT_HDR_SIZE;
251
252         case RINGBUF_TYPE_TIME_EXTEND:
253                 return RB_LEN_TIME_EXTEND;
254
255         case RINGBUF_TYPE_TIME_STAMP:
256                 return RB_LEN_TIME_STAMP;
257
258         case RINGBUF_TYPE_DATA:
259                 return rb_event_data_length(event);
260         default:
261                 BUG();
262         }
263         /* not hit */
264         return 0;
265 }
266
267 /**
268  * ring_buffer_event_length - return the length of the event
269  * @event: the event to get the length of
270  */
271 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
272 {
273         unsigned length = rb_event_length(event);
274         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
275                 return length;
276         length -= RB_EVNT_HDR_SIZE;
277         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
278                 length -= sizeof(event->array[0]);
279         return length;
280 }
281 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
282
283 /* inline for ring buffer fast paths */
284 static void *
285 rb_event_data(struct ring_buffer_event *event)
286 {
287         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
288         /* If length is in len field, then array[0] has the data */
289         if (event->type_len)
290                 return (void *)&event->array[0];
291         /* Otherwise length is in array[0] and array[1] has the data */
292         return (void *)&event->array[1];
293 }
294
295 /**
296  * ring_buffer_event_data - return the data of the event
297  * @event: the event to get the data from
298  */
299 void *ring_buffer_event_data(struct ring_buffer_event *event)
300 {
301         return rb_event_data(event);
302 }
303 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
304
305 #define for_each_buffer_cpu(buffer, cpu)                \
306         for_each_cpu(cpu, buffer->cpumask)
307
308 #define TS_SHIFT        27
309 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
310 #define TS_DELTA_TEST   (~TS_MASK)
311
312 struct buffer_data_page {
313         u64              time_stamp;    /* page time stamp */
314         local_t          commit;        /* write committed index */
315         unsigned char    data[];        /* data of buffer page */
316 };
317
318 /*
319  * Note, the buffer_page list must be first. The buffer pages
320  * are allocated in cache lines, which means that each buffer
321  * page will be at the beginning of a cache line, and thus
322  * the least significant bits will be zero. We use this to
323  * add flags in the list struct pointers, to make the ring buffer
324  * lockless.
325  */
326 struct buffer_page {
327         struct list_head list;          /* list of buffer pages */
328         local_t          write;         /* index for next write */
329         unsigned         read;          /* index for next read */
330         local_t          entries;       /* entries on this page */
331         struct buffer_data_page *page;  /* Actual data page */
332 };
333
334 /*
335  * The buffer page counters, write and entries, must be reset
336  * atomically when crossing page boundaries. To synchronize this
337  * update, two counters are inserted into the number. One is
338  * the actual counter for the write position or count on the page.
339  *
340  * The other is a counter of updaters. Before an update happens
341  * the update partition of the counter is incremented. This will
342  * allow the updater to update the counter atomically.
343  *
344  * The counter is 20 bits, and the state data is 12.
345  */
346 #define RB_WRITE_MASK           0xfffff
347 #define RB_WRITE_INTCNT         (1 << 20)
348
349 static void rb_init_page(struct buffer_data_page *bpage)
350 {
351         local_set(&bpage->commit, 0);
352 }
353
354 /**
355  * ring_buffer_page_len - the size of data on the page.
356  * @page: The page to read
357  *
358  * Returns the amount of data on the page, including buffer page header.
359  */
360 size_t ring_buffer_page_len(void *page)
361 {
362         return local_read(&((struct buffer_data_page *)page)->commit)
363                 + BUF_PAGE_HDR_SIZE;
364 }
365
366 /*
367  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
368  * this issue out.
369  */
370 static void free_buffer_page(struct buffer_page *bpage)
371 {
372         free_page((unsigned long)bpage->page);
373         kfree(bpage);
374 }
375
376 /*
377  * We need to fit the time_stamp delta into 27 bits.
378  */
379 static inline int test_time_stamp(u64 delta)
380 {
381         if (delta & TS_DELTA_TEST)
382                 return 1;
383         return 0;
384 }
385
386 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
387
388 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
389 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
390
391 /* Max number of timestamps that can fit on a page */
392 #define RB_TIMESTAMPS_PER_PAGE  (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
393
394 int ring_buffer_print_page_header(struct trace_seq *s)
395 {
396         struct buffer_data_page field;
397         int ret;
398
399         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
400                                "offset:0;\tsize:%u;\n",
401                                (unsigned int)sizeof(field.time_stamp));
402
403         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
404                                "offset:%u;\tsize:%u;\n",
405                                (unsigned int)offsetof(typeof(field), commit),
406                                (unsigned int)sizeof(field.commit));
407
408         ret = trace_seq_printf(s, "\tfield: char data;\t"
409                                "offset:%u;\tsize:%u;\n",
410                                (unsigned int)offsetof(typeof(field), data),
411                                (unsigned int)BUF_PAGE_SIZE);
412
413         return ret;
414 }
415
416 /*
417  * head_page == tail_page && head == tail then buffer is empty.
418  */
419 struct ring_buffer_per_cpu {
420         int                             cpu;
421         struct ring_buffer              *buffer;
422         spinlock_t                      reader_lock;    /* serialize readers */
423         raw_spinlock_t                  lock;
424         struct lock_class_key           lock_key;
425         struct list_head                *pages;
426         struct buffer_page              *head_page;     /* read from head */
427         struct buffer_page              *tail_page;     /* write to tail */
428         struct buffer_page              *commit_page;   /* committed pages */
429         struct buffer_page              *reader_page;
430         local_t                         commit_overrun;
431         local_t                         overrun;
432         local_t                         entries;
433         local_t                         committing;
434         local_t                         commits;
435         unsigned long                   read;
436         u64                             write_stamp;
437         u64                             read_stamp;
438         atomic_t                        record_disabled;
439 };
440
441 struct ring_buffer {
442         unsigned                        pages;
443         unsigned                        flags;
444         int                             cpus;
445         atomic_t                        record_disabled;
446         cpumask_var_t                   cpumask;
447
448         struct lock_class_key           *reader_lock_key;
449
450         struct mutex                    mutex;
451
452         struct ring_buffer_per_cpu      **buffers;
453
454 #ifdef CONFIG_HOTPLUG_CPU
455         struct notifier_block           cpu_notify;
456 #endif
457         u64                             (*clock)(void);
458 };
459
460 struct ring_buffer_iter {
461         struct ring_buffer_per_cpu      *cpu_buffer;
462         unsigned long                   head;
463         struct buffer_page              *head_page;
464         u64                             read_stamp;
465 };
466
467 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
468 #define RB_WARN_ON(b, cond)                                             \
469         ({                                                              \
470                 int _____ret = unlikely(cond);                          \
471                 if (_____ret) {                                         \
472                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
473                                 struct ring_buffer_per_cpu *__b =       \
474                                         (void *)b;                      \
475                                 atomic_inc(&__b->buffer->record_disabled); \
476                         } else                                          \
477                                 atomic_inc(&b->record_disabled);        \
478                         WARN_ON(1);                                     \
479                 }                                                       \
480                 _____ret;                                               \
481         })
482
483 /* Up this if you want to test the TIME_EXTENTS and normalization */
484 #define DEBUG_SHIFT 0
485
486 static inline u64 rb_time_stamp(struct ring_buffer *buffer, int cpu)
487 {
488         /* shift to debug/test normalization and TIME_EXTENTS */
489         return buffer->clock() << DEBUG_SHIFT;
490 }
491
492 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
493 {
494         u64 time;
495
496         preempt_disable_notrace();
497         time = rb_time_stamp(buffer, cpu);
498         preempt_enable_no_resched_notrace();
499
500         return time;
501 }
502 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
503
504 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
505                                       int cpu, u64 *ts)
506 {
507         /* Just stupid testing the normalize function and deltas */
508         *ts >>= DEBUG_SHIFT;
509 }
510 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
511
512 /*
513  * Making the ring buffer lockless makes things tricky.
514  * Although writes only happen on the CPU that they are on,
515  * and they only need to worry about interrupts. Reads can
516  * happen on any CPU.
517  *
518  * The reader page is always off the ring buffer, but when the
519  * reader finishes with a page, it needs to swap its page with
520  * a new one from the buffer. The reader needs to take from
521  * the head (writes go to the tail). But if a writer is in overwrite
522  * mode and wraps, it must push the head page forward.
523  *
524  * Here lies the problem.
525  *
526  * The reader must be careful to replace only the head page, and
527  * not another one. As described at the top of the file in the
528  * ASCII art, the reader sets its old page to point to the next
529  * page after head. It then sets the page after head to point to
530  * the old reader page. But if the writer moves the head page
531  * during this operation, the reader could end up with the tail.
532  *
533  * We use cmpxchg to help prevent this race. We also do something
534  * special with the page before head. We set the LSB to 1.
535  *
536  * When the writer must push the page forward, it will clear the
537  * bit that points to the head page, move the head, and then set
538  * the bit that points to the new head page.
539  *
540  * We also don't want an interrupt coming in and moving the head
541  * page on another writer. Thus we use the second LSB to catch
542  * that too. Thus:
543  *
544  * head->list->prev->next        bit 1          bit 0
545  *                              -------        -------
546  * Normal page                     0              0
547  * Points to head page             0              1
548  * New head page                   1              0
549  *
550  * Note we can not trust the prev pointer of the head page, because:
551  *
552  * +----+       +-----+        +-----+
553  * |    |------>|  T  |---X--->|  N  |
554  * |    |<------|     |        |     |
555  * +----+       +-----+        +-----+
556  *   ^                           ^ |
557  *   |          +-----+          | |
558  *   +----------|  R  |----------+ |
559  *              |     |<-----------+
560  *              +-----+
561  *
562  * Key:  ---X-->  HEAD flag set in pointer
563  *         T      Tail page
564  *         R      Reader page
565  *         N      Next page
566  *
567  * (see __rb_reserve_next() to see where this happens)
568  *
569  *  What the above shows is that the reader just swapped out
570  *  the reader page with a page in the buffer, but before it
571  *  could make the new header point back to the new page added
572  *  it was preempted by a writer. The writer moved forward onto
573  *  the new page added by the reader and is about to move forward
574  *  again.
575  *
576  *  You can see, it is legitimate for the previous pointer of
577  *  the head (or any page) not to point back to itself. But only
578  *  temporarially.
579  */
580
581 #define RB_PAGE_NORMAL          0UL
582 #define RB_PAGE_HEAD            1UL
583 #define RB_PAGE_UPDATE          2UL
584
585
586 #define RB_FLAG_MASK            3UL
587
588 /* PAGE_MOVED is not part of the mask */
589 #define RB_PAGE_MOVED           4UL
590
591 /*
592  * rb_list_head - remove any bit
593  */
594 static struct list_head *rb_list_head(struct list_head *list)
595 {
596         unsigned long val = (unsigned long)list;
597
598         return (struct list_head *)(val & ~RB_FLAG_MASK);
599 }
600
601 /*
602  * rb_is_head_page - test if the give page is the head page
603  *
604  * Because the reader may move the head_page pointer, we can
605  * not trust what the head page is (it may be pointing to
606  * the reader page). But if the next page is a header page,
607  * its flags will be non zero.
608  */
609 static int inline
610 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
611                 struct buffer_page *page, struct list_head *list)
612 {
613         unsigned long val;
614
615         val = (unsigned long)list->next;
616
617         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
618                 return RB_PAGE_MOVED;
619
620         return val & RB_FLAG_MASK;
621 }
622
623 /*
624  * rb_is_reader_page
625  *
626  * The unique thing about the reader page, is that, if the
627  * writer is ever on it, the previous pointer never points
628  * back to the reader page.
629  */
630 static int rb_is_reader_page(struct buffer_page *page)
631 {
632         struct list_head *list = page->list.prev;
633
634         return rb_list_head(list->next) != &page->list;
635 }
636
637 /*
638  * rb_set_list_to_head - set a list_head to be pointing to head.
639  */
640 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
641                                 struct list_head *list)
642 {
643         unsigned long *ptr;
644
645         ptr = (unsigned long *)&list->next;
646         *ptr |= RB_PAGE_HEAD;
647         *ptr &= ~RB_PAGE_UPDATE;
648 }
649
650 /*
651  * rb_head_page_activate - sets up head page
652  */
653 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
654 {
655         struct buffer_page *head;
656
657         head = cpu_buffer->head_page;
658         if (!head)
659                 return;
660
661         /*
662          * Set the previous list pointer to have the HEAD flag.
663          */
664         rb_set_list_to_head(cpu_buffer, head->list.prev);
665 }
666
667 static void rb_list_head_clear(struct list_head *list)
668 {
669         unsigned long *ptr = (unsigned long *)&list->next;
670
671         *ptr &= ~RB_FLAG_MASK;
672 }
673
674 /*
675  * rb_head_page_dactivate - clears head page ptr (for free list)
676  */
677 static void
678 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
679 {
680         struct list_head *hd;
681
682         /* Go through the whole list and clear any pointers found. */
683         rb_list_head_clear(cpu_buffer->pages);
684
685         list_for_each(hd, cpu_buffer->pages)
686                 rb_list_head_clear(hd);
687 }
688
689 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
690                             struct buffer_page *head,
691                             struct buffer_page *prev,
692                             int old_flag, int new_flag)
693 {
694         struct list_head *list;
695         unsigned long val = (unsigned long)&head->list;
696         unsigned long ret;
697
698         list = &prev->list;
699
700         val &= ~RB_FLAG_MASK;
701
702         ret = cmpxchg((unsigned long *)&list->next,
703                       val | old_flag, val | new_flag);
704
705         /* check if the reader took the page */
706         if ((ret & ~RB_FLAG_MASK) != val)
707                 return RB_PAGE_MOVED;
708
709         return ret & RB_FLAG_MASK;
710 }
711
712 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
713                                    struct buffer_page *head,
714                                    struct buffer_page *prev,
715                                    int old_flag)
716 {
717         return rb_head_page_set(cpu_buffer, head, prev,
718                                 old_flag, RB_PAGE_UPDATE);
719 }
720
721 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
722                                  struct buffer_page *head,
723                                  struct buffer_page *prev,
724                                  int old_flag)
725 {
726         return rb_head_page_set(cpu_buffer, head, prev,
727                                 old_flag, RB_PAGE_HEAD);
728 }
729
730 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
731                                    struct buffer_page *head,
732                                    struct buffer_page *prev,
733                                    int old_flag)
734 {
735         return rb_head_page_set(cpu_buffer, head, prev,
736                                 old_flag, RB_PAGE_NORMAL);
737 }
738
739 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
740                                struct buffer_page **bpage)
741 {
742         struct list_head *p = rb_list_head((*bpage)->list.next);
743
744         *bpage = list_entry(p, struct buffer_page, list);
745 }
746
747 static struct buffer_page *
748 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
749 {
750         struct buffer_page *head;
751         struct buffer_page *page;
752         struct list_head *list;
753         int i;
754
755         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
756                 return NULL;
757
758         /* sanity check */
759         list = cpu_buffer->pages;
760         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
761                 return NULL;
762
763         page = head = cpu_buffer->head_page;
764         /*
765          * It is possible that the writer moves the header behind
766          * where we started, and we miss in one loop.
767          * A second loop should grab the header, but we'll do
768          * three loops just because I'm paranoid.
769          */
770         for (i = 0; i < 3; i++) {
771                 do {
772                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
773                                 cpu_buffer->head_page = page;
774                                 return page;
775                         }
776                         rb_inc_page(cpu_buffer, &page);
777                 } while (page != head);
778         }
779
780         RB_WARN_ON(cpu_buffer, 1);
781
782         return NULL;
783 }
784
785 static int rb_head_page_replace(struct buffer_page *old,
786                                 struct buffer_page *new)
787 {
788         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
789         unsigned long val;
790         unsigned long ret;
791
792         val = *ptr & ~RB_FLAG_MASK;
793         val |= RB_PAGE_HEAD;
794
795         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
796
797         return ret == val;
798 }
799
800 /*
801  * rb_tail_page_update - move the tail page forward
802  *
803  * Returns 1 if moved tail page, 0 if someone else did.
804  */
805 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
806                                struct buffer_page *tail_page,
807                                struct buffer_page *next_page)
808 {
809         struct buffer_page *old_tail;
810         unsigned long old_entries;
811         unsigned long old_write;
812         int ret = 0;
813
814         /*
815          * The tail page now needs to be moved forward.
816          *
817          * We need to reset the tail page, but without messing
818          * with possible erasing of data brought in by interrupts
819          * that have moved the tail page and are currently on it.
820          *
821          * We add a counter to the write field to denote this.
822          */
823         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
824         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
825
826         /*
827          * Just make sure we have seen our old_write and synchronize
828          * with any interrupts that come in.
829          */
830         barrier();
831
832         /*
833          * If the tail page is still the same as what we think
834          * it is, then it is up to us to update the tail
835          * pointer.
836          */
837         if (tail_page == cpu_buffer->tail_page) {
838                 /* Zero the write counter */
839                 unsigned long val = old_write & ~RB_WRITE_MASK;
840                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
841
842                 /*
843                  * This will only succeed if an interrupt did
844                  * not come in and change it. In which case, we
845                  * do not want to modify it.
846                  *
847                  * We add (void) to let the compiler know that we do not care
848                  * about the return value of these functions. We use the
849                  * cmpxchg to only update if an interrupt did not already
850                  * do it for us. If the cmpxchg fails, we don't care.
851                  */
852                 (void)local_cmpxchg(&next_page->write, old_write, val);
853                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
854
855                 /*
856                  * No need to worry about races with clearing out the commit.
857                  * it only can increment when a commit takes place. But that
858                  * only happens in the outer most nested commit.
859                  */
860                 local_set(&next_page->page->commit, 0);
861
862                 old_tail = cmpxchg(&cpu_buffer->tail_page,
863                                    tail_page, next_page);
864
865                 if (old_tail == tail_page)
866                         ret = 1;
867         }
868
869         return ret;
870 }
871
872 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
873                           struct buffer_page *bpage)
874 {
875         unsigned long val = (unsigned long)bpage;
876
877         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
878                 return 1;
879
880         return 0;
881 }
882
883 /**
884  * rb_check_list - make sure a pointer to a list has the last bits zero
885  */
886 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
887                          struct list_head *list)
888 {
889         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
890                 return 1;
891         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
892                 return 1;
893         return 0;
894 }
895
896 /**
897  * check_pages - integrity check of buffer pages
898  * @cpu_buffer: CPU buffer with pages to test
899  *
900  * As a safety measure we check to make sure the data pages have not
901  * been corrupted.
902  */
903 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
904 {
905         struct list_head *head = cpu_buffer->pages;
906         struct buffer_page *bpage, *tmp;
907
908         rb_head_page_deactivate(cpu_buffer);
909
910         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
911                 return -1;
912         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
913                 return -1;
914
915         if (rb_check_list(cpu_buffer, head))
916                 return -1;
917
918         list_for_each_entry_safe(bpage, tmp, head, list) {
919                 if (RB_WARN_ON(cpu_buffer,
920                                bpage->list.next->prev != &bpage->list))
921                         return -1;
922                 if (RB_WARN_ON(cpu_buffer,
923                                bpage->list.prev->next != &bpage->list))
924                         return -1;
925                 if (rb_check_list(cpu_buffer, &bpage->list))
926                         return -1;
927         }
928
929         rb_head_page_activate(cpu_buffer);
930
931         return 0;
932 }
933
934 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
935                              unsigned nr_pages)
936 {
937         struct buffer_page *bpage, *tmp;
938         unsigned long addr;
939         LIST_HEAD(pages);
940         unsigned i;
941
942         WARN_ON(!nr_pages);
943
944         for (i = 0; i < nr_pages; i++) {
945                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
946                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
947                 if (!bpage)
948                         goto free_pages;
949
950                 rb_check_bpage(cpu_buffer, bpage);
951
952                 list_add(&bpage->list, &pages);
953
954                 addr = __get_free_page(GFP_KERNEL);
955                 if (!addr)
956                         goto free_pages;
957                 bpage->page = (void *)addr;
958                 rb_init_page(bpage->page);
959         }
960
961         /*
962          * The ring buffer page list is a circular list that does not
963          * start and end with a list head. All page list items point to
964          * other pages.
965          */
966         cpu_buffer->pages = pages.next;
967         list_del(&pages);
968
969         rb_check_pages(cpu_buffer);
970
971         return 0;
972
973  free_pages:
974         list_for_each_entry_safe(bpage, tmp, &pages, list) {
975                 list_del_init(&bpage->list);
976                 free_buffer_page(bpage);
977         }
978         return -ENOMEM;
979 }
980
981 static struct ring_buffer_per_cpu *
982 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
983 {
984         struct ring_buffer_per_cpu *cpu_buffer;
985         struct buffer_page *bpage;
986         unsigned long addr;
987         int ret;
988
989         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
990                                   GFP_KERNEL, cpu_to_node(cpu));
991         if (!cpu_buffer)
992                 return NULL;
993
994         cpu_buffer->cpu = cpu;
995         cpu_buffer->buffer = buffer;
996         spin_lock_init(&cpu_buffer->reader_lock);
997         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
998         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
999
1000         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1001                             GFP_KERNEL, cpu_to_node(cpu));
1002         if (!bpage)
1003                 goto fail_free_buffer;
1004
1005         rb_check_bpage(cpu_buffer, bpage);
1006
1007         cpu_buffer->reader_page = bpage;
1008         addr = __get_free_page(GFP_KERNEL);
1009         if (!addr)
1010                 goto fail_free_reader;
1011         bpage->page = (void *)addr;
1012         rb_init_page(bpage->page);
1013
1014         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1015
1016         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1017         if (ret < 0)
1018                 goto fail_free_reader;
1019
1020         cpu_buffer->head_page
1021                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1022         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1023
1024         rb_head_page_activate(cpu_buffer);
1025
1026         return cpu_buffer;
1027
1028  fail_free_reader:
1029         free_buffer_page(cpu_buffer->reader_page);
1030
1031  fail_free_buffer:
1032         kfree(cpu_buffer);
1033         return NULL;
1034 }
1035
1036 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1037 {
1038         struct list_head *head = cpu_buffer->pages;
1039         struct buffer_page *bpage, *tmp;
1040
1041         free_buffer_page(cpu_buffer->reader_page);
1042
1043         rb_head_page_deactivate(cpu_buffer);
1044
1045         if (head) {
1046                 list_for_each_entry_safe(bpage, tmp, head, list) {
1047                         list_del_init(&bpage->list);
1048                         free_buffer_page(bpage);
1049                 }
1050                 bpage = list_entry(head, struct buffer_page, list);
1051                 free_buffer_page(bpage);
1052         }
1053
1054         kfree(cpu_buffer);
1055 }
1056
1057 #ifdef CONFIG_HOTPLUG_CPU
1058 static int rb_cpu_notify(struct notifier_block *self,
1059                          unsigned long action, void *hcpu);
1060 #endif
1061
1062 /**
1063  * ring_buffer_alloc - allocate a new ring_buffer
1064  * @size: the size in bytes per cpu that is needed.
1065  * @flags: attributes to set for the ring buffer.
1066  *
1067  * Currently the only flag that is available is the RB_FL_OVERWRITE
1068  * flag. This flag means that the buffer will overwrite old data
1069  * when the buffer wraps. If this flag is not set, the buffer will
1070  * drop data when the tail hits the head.
1071  */
1072 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1073                                         struct lock_class_key *key)
1074 {
1075         struct ring_buffer *buffer;
1076         int bsize;
1077         int cpu;
1078
1079         /* keep it in its own cache line */
1080         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1081                          GFP_KERNEL);
1082         if (!buffer)
1083                 return NULL;
1084
1085         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1086                 goto fail_free_buffer;
1087
1088         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1089         buffer->flags = flags;
1090         buffer->clock = trace_clock_local;
1091         buffer->reader_lock_key = key;
1092
1093         /* need at least two pages */
1094         if (buffer->pages < 2)
1095                 buffer->pages = 2;
1096
1097         /*
1098          * In case of non-hotplug cpu, if the ring-buffer is allocated
1099          * in early initcall, it will not be notified of secondary cpus.
1100          * In that off case, we need to allocate for all possible cpus.
1101          */
1102 #ifdef CONFIG_HOTPLUG_CPU
1103         get_online_cpus();
1104         cpumask_copy(buffer->cpumask, cpu_online_mask);
1105 #else
1106         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1107 #endif
1108         buffer->cpus = nr_cpu_ids;
1109
1110         bsize = sizeof(void *) * nr_cpu_ids;
1111         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1112                                   GFP_KERNEL);
1113         if (!buffer->buffers)
1114                 goto fail_free_cpumask;
1115
1116         for_each_buffer_cpu(buffer, cpu) {
1117                 buffer->buffers[cpu] =
1118                         rb_allocate_cpu_buffer(buffer, cpu);
1119                 if (!buffer->buffers[cpu])
1120                         goto fail_free_buffers;
1121         }
1122
1123 #ifdef CONFIG_HOTPLUG_CPU
1124         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1125         buffer->cpu_notify.priority = 0;
1126         register_cpu_notifier(&buffer->cpu_notify);
1127 #endif
1128
1129         put_online_cpus();
1130         mutex_init(&buffer->mutex);
1131
1132         return buffer;
1133
1134  fail_free_buffers:
1135         for_each_buffer_cpu(buffer, cpu) {
1136                 if (buffer->buffers[cpu])
1137                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1138         }
1139         kfree(buffer->buffers);
1140
1141  fail_free_cpumask:
1142         free_cpumask_var(buffer->cpumask);
1143         put_online_cpus();
1144
1145  fail_free_buffer:
1146         kfree(buffer);
1147         return NULL;
1148 }
1149 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1150
1151 /**
1152  * ring_buffer_free - free a ring buffer.
1153  * @buffer: the buffer to free.
1154  */
1155 void
1156 ring_buffer_free(struct ring_buffer *buffer)
1157 {
1158         int cpu;
1159
1160         get_online_cpus();
1161
1162 #ifdef CONFIG_HOTPLUG_CPU
1163         unregister_cpu_notifier(&buffer->cpu_notify);
1164 #endif
1165
1166         for_each_buffer_cpu(buffer, cpu)
1167                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1168
1169         put_online_cpus();
1170
1171         kfree(buffer->buffers);
1172         free_cpumask_var(buffer->cpumask);
1173
1174         kfree(buffer);
1175 }
1176 EXPORT_SYMBOL_GPL(ring_buffer_free);
1177
1178 void ring_buffer_set_clock(struct ring_buffer *buffer,
1179                            u64 (*clock)(void))
1180 {
1181         buffer->clock = clock;
1182 }
1183
1184 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1185
1186 static void
1187 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1188 {
1189         struct buffer_page *bpage;
1190         struct list_head *p;
1191         unsigned i;
1192
1193         atomic_inc(&cpu_buffer->record_disabled);
1194         synchronize_sched();
1195
1196         rb_head_page_deactivate(cpu_buffer);
1197
1198         for (i = 0; i < nr_pages; i++) {
1199                 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1200                         return;
1201                 p = cpu_buffer->pages->next;
1202                 bpage = list_entry(p, struct buffer_page, list);
1203                 list_del_init(&bpage->list);
1204                 free_buffer_page(bpage);
1205         }
1206         if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1207                 return;
1208
1209         rb_reset_cpu(cpu_buffer);
1210
1211         rb_check_pages(cpu_buffer);
1212
1213         atomic_dec(&cpu_buffer->record_disabled);
1214
1215 }
1216
1217 static void
1218 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1219                 struct list_head *pages, unsigned nr_pages)
1220 {
1221         struct buffer_page *bpage;
1222         struct list_head *p;
1223         unsigned i;
1224
1225         atomic_inc(&cpu_buffer->record_disabled);
1226         synchronize_sched();
1227
1228         spin_lock_irq(&cpu_buffer->reader_lock);
1229         rb_head_page_deactivate(cpu_buffer);
1230
1231         for (i = 0; i < nr_pages; i++) {
1232                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1233                         return;
1234                 p = pages->next;
1235                 bpage = list_entry(p, struct buffer_page, list);
1236                 list_del_init(&bpage->list);
1237                 list_add_tail(&bpage->list, cpu_buffer->pages);
1238         }
1239         rb_reset_cpu(cpu_buffer);
1240         spin_unlock_irq(&cpu_buffer->reader_lock);
1241
1242         rb_check_pages(cpu_buffer);
1243
1244         atomic_dec(&cpu_buffer->record_disabled);
1245 }
1246
1247 /**
1248  * ring_buffer_resize - resize the ring buffer
1249  * @buffer: the buffer to resize.
1250  * @size: the new size.
1251  *
1252  * The tracer is responsible for making sure that the buffer is
1253  * not being used while changing the size.
1254  * Note: We may be able to change the above requirement by using
1255  *  RCU synchronizations.
1256  *
1257  * Minimum size is 2 * BUF_PAGE_SIZE.
1258  *
1259  * Returns -1 on failure.
1260  */
1261 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1262 {
1263         struct ring_buffer_per_cpu *cpu_buffer;
1264         unsigned nr_pages, rm_pages, new_pages;
1265         struct buffer_page *bpage, *tmp;
1266         unsigned long buffer_size;
1267         unsigned long addr;
1268         LIST_HEAD(pages);
1269         int i, cpu;
1270
1271         /*
1272          * Always succeed at resizing a non-existent buffer:
1273          */
1274         if (!buffer)
1275                 return size;
1276
1277         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1278         size *= BUF_PAGE_SIZE;
1279         buffer_size = buffer->pages * BUF_PAGE_SIZE;
1280
1281         /* we need a minimum of two pages */
1282         if (size < BUF_PAGE_SIZE * 2)
1283                 size = BUF_PAGE_SIZE * 2;
1284
1285         if (size == buffer_size)
1286                 return size;
1287
1288         mutex_lock(&buffer->mutex);
1289         get_online_cpus();
1290
1291         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1292
1293         if (size < buffer_size) {
1294
1295                 /* easy case, just free pages */
1296                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1297                         goto out_fail;
1298
1299                 rm_pages = buffer->pages - nr_pages;
1300
1301                 for_each_buffer_cpu(buffer, cpu) {
1302                         cpu_buffer = buffer->buffers[cpu];
1303                         rb_remove_pages(cpu_buffer, rm_pages);
1304                 }
1305                 goto out;
1306         }
1307
1308         /*
1309          * This is a bit more difficult. We only want to add pages
1310          * when we can allocate enough for all CPUs. We do this
1311          * by allocating all the pages and storing them on a local
1312          * link list. If we succeed in our allocation, then we
1313          * add these pages to the cpu_buffers. Otherwise we just free
1314          * them all and return -ENOMEM;
1315          */
1316         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1317                 goto out_fail;
1318
1319         new_pages = nr_pages - buffer->pages;
1320
1321         for_each_buffer_cpu(buffer, cpu) {
1322                 for (i = 0; i < new_pages; i++) {
1323                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1324                                                   cache_line_size()),
1325                                             GFP_KERNEL, cpu_to_node(cpu));
1326                         if (!bpage)
1327                                 goto free_pages;
1328                         list_add(&bpage->list, &pages);
1329                         addr = __get_free_page(GFP_KERNEL);
1330                         if (!addr)
1331                                 goto free_pages;
1332                         bpage->page = (void *)addr;
1333                         rb_init_page(bpage->page);
1334                 }
1335         }
1336
1337         for_each_buffer_cpu(buffer, cpu) {
1338                 cpu_buffer = buffer->buffers[cpu];
1339                 rb_insert_pages(cpu_buffer, &pages, new_pages);
1340         }
1341
1342         if (RB_WARN_ON(buffer, !list_empty(&pages)))
1343                 goto out_fail;
1344
1345  out:
1346         buffer->pages = nr_pages;
1347         put_online_cpus();
1348         mutex_unlock(&buffer->mutex);
1349
1350         return size;
1351
1352  free_pages:
1353         list_for_each_entry_safe(bpage, tmp, &pages, list) {
1354                 list_del_init(&bpage->list);
1355                 free_buffer_page(bpage);
1356         }
1357         put_online_cpus();
1358         mutex_unlock(&buffer->mutex);
1359         return -ENOMEM;
1360
1361         /*
1362          * Something went totally wrong, and we are too paranoid
1363          * to even clean up the mess.
1364          */
1365  out_fail:
1366         put_online_cpus();
1367         mutex_unlock(&buffer->mutex);
1368         return -1;
1369 }
1370 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1371
1372 static inline void *
1373 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1374 {
1375         return bpage->data + index;
1376 }
1377
1378 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1379 {
1380         return bpage->page->data + index;
1381 }
1382
1383 static inline struct ring_buffer_event *
1384 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1385 {
1386         return __rb_page_index(cpu_buffer->reader_page,
1387                                cpu_buffer->reader_page->read);
1388 }
1389
1390 static inline struct ring_buffer_event *
1391 rb_iter_head_event(struct ring_buffer_iter *iter)
1392 {
1393         return __rb_page_index(iter->head_page, iter->head);
1394 }
1395
1396 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1397 {
1398         return local_read(&bpage->write) & RB_WRITE_MASK;
1399 }
1400
1401 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1402 {
1403         return local_read(&bpage->page->commit);
1404 }
1405
1406 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1407 {
1408         return local_read(&bpage->entries) & RB_WRITE_MASK;
1409 }
1410
1411 /* Size is determined by what has been commited */
1412 static inline unsigned rb_page_size(struct buffer_page *bpage)
1413 {
1414         return rb_page_commit(bpage);
1415 }
1416
1417 static inline unsigned
1418 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1419 {
1420         return rb_page_commit(cpu_buffer->commit_page);
1421 }
1422
1423 static inline unsigned
1424 rb_event_index(struct ring_buffer_event *event)
1425 {
1426         unsigned long addr = (unsigned long)event;
1427
1428         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1429 }
1430
1431 static inline int
1432 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1433                    struct ring_buffer_event *event)
1434 {
1435         unsigned long addr = (unsigned long)event;
1436         unsigned long index;
1437
1438         index = rb_event_index(event);
1439         addr &= PAGE_MASK;
1440
1441         return cpu_buffer->commit_page->page == (void *)addr &&
1442                 rb_commit_index(cpu_buffer) == index;
1443 }
1444
1445 static void
1446 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1447 {
1448         unsigned long max_count;
1449
1450         /*
1451          * We only race with interrupts and NMIs on this CPU.
1452          * If we own the commit event, then we can commit
1453          * all others that interrupted us, since the interruptions
1454          * are in stack format (they finish before they come
1455          * back to us). This allows us to do a simple loop to
1456          * assign the commit to the tail.
1457          */
1458  again:
1459         max_count = cpu_buffer->buffer->pages * 100;
1460
1461         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1462                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1463                         return;
1464                 if (RB_WARN_ON(cpu_buffer,
1465                                rb_is_reader_page(cpu_buffer->tail_page)))
1466                         return;
1467                 local_set(&cpu_buffer->commit_page->page->commit,
1468                           rb_page_write(cpu_buffer->commit_page));
1469                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1470                 cpu_buffer->write_stamp =
1471                         cpu_buffer->commit_page->page->time_stamp;
1472                 /* add barrier to keep gcc from optimizing too much */
1473                 barrier();
1474         }
1475         while (rb_commit_index(cpu_buffer) !=
1476                rb_page_write(cpu_buffer->commit_page)) {
1477
1478                 local_set(&cpu_buffer->commit_page->page->commit,
1479                           rb_page_write(cpu_buffer->commit_page));
1480                 RB_WARN_ON(cpu_buffer,
1481                            local_read(&cpu_buffer->commit_page->page->commit) &
1482                            ~RB_WRITE_MASK);
1483                 barrier();
1484         }
1485
1486         /* again, keep gcc from optimizing */
1487         barrier();
1488
1489         /*
1490          * If an interrupt came in just after the first while loop
1491          * and pushed the tail page forward, we will be left with
1492          * a dangling commit that will never go forward.
1493          */
1494         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1495                 goto again;
1496 }
1497
1498 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1499 {
1500         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1501         cpu_buffer->reader_page->read = 0;
1502 }
1503
1504 static void rb_inc_iter(struct ring_buffer_iter *iter)
1505 {
1506         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1507
1508         /*
1509          * The iterator could be on the reader page (it starts there).
1510          * But the head could have moved, since the reader was
1511          * found. Check for this case and assign the iterator
1512          * to the head page instead of next.
1513          */
1514         if (iter->head_page == cpu_buffer->reader_page)
1515                 iter->head_page = rb_set_head_page(cpu_buffer);
1516         else
1517                 rb_inc_page(cpu_buffer, &iter->head_page);
1518
1519         iter->read_stamp = iter->head_page->page->time_stamp;
1520         iter->head = 0;
1521 }
1522
1523 /**
1524  * ring_buffer_update_event - update event type and data
1525  * @event: the even to update
1526  * @type: the type of event
1527  * @length: the size of the event field in the ring buffer
1528  *
1529  * Update the type and data fields of the event. The length
1530  * is the actual size that is written to the ring buffer,
1531  * and with this, we can determine what to place into the
1532  * data field.
1533  */
1534 static void
1535 rb_update_event(struct ring_buffer_event *event,
1536                          unsigned type, unsigned length)
1537 {
1538         event->type_len = type;
1539
1540         switch (type) {
1541
1542         case RINGBUF_TYPE_PADDING:
1543         case RINGBUF_TYPE_TIME_EXTEND:
1544         case RINGBUF_TYPE_TIME_STAMP:
1545                 break;
1546
1547         case 0:
1548                 length -= RB_EVNT_HDR_SIZE;
1549                 if (length > RB_MAX_SMALL_DATA)
1550                         event->array[0] = length;
1551                 else
1552                         event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1553                 break;
1554         default:
1555                 BUG();
1556         }
1557 }
1558
1559 /*
1560  * rb_handle_head_page - writer hit the head page
1561  *
1562  * Returns: +1 to retry page
1563  *           0 to continue
1564  *          -1 on error
1565  */
1566 static int
1567 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1568                     struct buffer_page *tail_page,
1569                     struct buffer_page *next_page)
1570 {
1571         struct buffer_page *new_head;
1572         int entries;
1573         int type;
1574         int ret;
1575
1576         entries = rb_page_entries(next_page);
1577
1578         /*
1579          * The hard part is here. We need to move the head
1580          * forward, and protect against both readers on
1581          * other CPUs and writers coming in via interrupts.
1582          */
1583         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1584                                        RB_PAGE_HEAD);
1585
1586         /*
1587          * type can be one of four:
1588          *  NORMAL - an interrupt already moved it for us
1589          *  HEAD   - we are the first to get here.
1590          *  UPDATE - we are the interrupt interrupting
1591          *           a current move.
1592          *  MOVED  - a reader on another CPU moved the next
1593          *           pointer to its reader page. Give up
1594          *           and try again.
1595          */
1596
1597         switch (type) {
1598         case RB_PAGE_HEAD:
1599                 /*
1600                  * We changed the head to UPDATE, thus
1601                  * it is our responsibility to update
1602                  * the counters.
1603                  */
1604                 local_add(entries, &cpu_buffer->overrun);
1605
1606                 /*
1607                  * The entries will be zeroed out when we move the
1608                  * tail page.
1609                  */
1610
1611                 /* still more to do */
1612                 break;
1613
1614         case RB_PAGE_UPDATE:
1615                 /*
1616                  * This is an interrupt that interrupt the
1617                  * previous update. Still more to do.
1618                  */
1619                 break;
1620         case RB_PAGE_NORMAL:
1621                 /*
1622                  * An interrupt came in before the update
1623                  * and processed this for us.
1624                  * Nothing left to do.
1625                  */
1626                 return 1;
1627         case RB_PAGE_MOVED:
1628                 /*
1629                  * The reader is on another CPU and just did
1630                  * a swap with our next_page.
1631                  * Try again.
1632                  */
1633                 return 1;
1634         default:
1635                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1636                 return -1;
1637         }
1638
1639         /*
1640          * Now that we are here, the old head pointer is
1641          * set to UPDATE. This will keep the reader from
1642          * swapping the head page with the reader page.
1643          * The reader (on another CPU) will spin till
1644          * we are finished.
1645          *
1646          * We just need to protect against interrupts
1647          * doing the job. We will set the next pointer
1648          * to HEAD. After that, we set the old pointer
1649          * to NORMAL, but only if it was HEAD before.
1650          * otherwise we are an interrupt, and only
1651          * want the outer most commit to reset it.
1652          */
1653         new_head = next_page;
1654         rb_inc_page(cpu_buffer, &new_head);
1655
1656         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1657                                     RB_PAGE_NORMAL);
1658
1659         /*
1660          * Valid returns are:
1661          *  HEAD   - an interrupt came in and already set it.
1662          *  NORMAL - One of two things:
1663          *            1) We really set it.
1664          *            2) A bunch of interrupts came in and moved
1665          *               the page forward again.
1666          */
1667         switch (ret) {
1668         case RB_PAGE_HEAD:
1669         case RB_PAGE_NORMAL:
1670                 /* OK */
1671                 break;
1672         default:
1673                 RB_WARN_ON(cpu_buffer, 1);
1674                 return -1;
1675         }
1676
1677         /*
1678          * It is possible that an interrupt came in,
1679          * set the head up, then more interrupts came in
1680          * and moved it again. When we get back here,
1681          * the page would have been set to NORMAL but we
1682          * just set it back to HEAD.
1683          *
1684          * How do you detect this? Well, if that happened
1685          * the tail page would have moved.
1686          */
1687         if (ret == RB_PAGE_NORMAL) {
1688                 /*
1689                  * If the tail had moved passed next, then we need
1690                  * to reset the pointer.
1691                  */
1692                 if (cpu_buffer->tail_page != tail_page &&
1693                     cpu_buffer->tail_page != next_page)
1694                         rb_head_page_set_normal(cpu_buffer, new_head,
1695                                                 next_page,
1696                                                 RB_PAGE_HEAD);
1697         }
1698
1699         /*
1700          * If this was the outer most commit (the one that
1701          * changed the original pointer from HEAD to UPDATE),
1702          * then it is up to us to reset it to NORMAL.
1703          */
1704         if (type == RB_PAGE_HEAD) {
1705                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1706                                               tail_page,
1707                                               RB_PAGE_UPDATE);
1708                 if (RB_WARN_ON(cpu_buffer,
1709                                ret != RB_PAGE_UPDATE))
1710                         return -1;
1711         }
1712
1713         return 0;
1714 }
1715
1716 static unsigned rb_calculate_event_length(unsigned length)
1717 {
1718         struct ring_buffer_event event; /* Used only for sizeof array */
1719
1720         /* zero length can cause confusions */
1721         if (!length)
1722                 length = 1;
1723
1724         if (length > RB_MAX_SMALL_DATA)
1725                 length += sizeof(event.array[0]);
1726
1727         length += RB_EVNT_HDR_SIZE;
1728         length = ALIGN(length, RB_ALIGNMENT);
1729
1730         return length;
1731 }
1732
1733 static inline void
1734 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1735               struct buffer_page *tail_page,
1736               unsigned long tail, unsigned long length)
1737 {
1738         struct ring_buffer_event *event;
1739
1740         /*
1741          * Only the event that crossed the page boundary
1742          * must fill the old tail_page with padding.
1743          */
1744         if (tail >= BUF_PAGE_SIZE) {
1745                 local_sub(length, &tail_page->write);
1746                 return;
1747         }
1748
1749         event = __rb_page_index(tail_page, tail);
1750         kmemcheck_annotate_bitfield(event, bitfield);
1751
1752         /*
1753          * If this event is bigger than the minimum size, then
1754          * we need to be careful that we don't subtract the
1755          * write counter enough to allow another writer to slip
1756          * in on this page.
1757          * We put in a discarded commit instead, to make sure
1758          * that this space is not used again.
1759          *
1760          * If we are less than the minimum size, we don't need to
1761          * worry about it.
1762          */
1763         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1764                 /* No room for any events */
1765
1766                 /* Mark the rest of the page with padding */
1767                 rb_event_set_padding(event);
1768
1769                 /* Set the write back to the previous setting */
1770                 local_sub(length, &tail_page->write);
1771                 return;
1772         }
1773
1774         /* Put in a discarded event */
1775         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1776         event->type_len = RINGBUF_TYPE_PADDING;
1777         /* time delta must be non zero */
1778         event->time_delta = 1;
1779
1780         /* Set write to end of buffer */
1781         length = (tail + length) - BUF_PAGE_SIZE;
1782         local_sub(length, &tail_page->write);
1783 }
1784
1785 static struct ring_buffer_event *
1786 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1787              unsigned long length, unsigned long tail,
1788              struct buffer_page *commit_page,
1789              struct buffer_page *tail_page, u64 *ts)
1790 {
1791         struct ring_buffer *buffer = cpu_buffer->buffer;
1792         struct buffer_page *next_page;
1793         int ret;
1794
1795         next_page = tail_page;
1796
1797         rb_inc_page(cpu_buffer, &next_page);
1798
1799         /*
1800          * If for some reason, we had an interrupt storm that made
1801          * it all the way around the buffer, bail, and warn
1802          * about it.
1803          */
1804         if (unlikely(next_page == commit_page)) {
1805                 local_inc(&cpu_buffer->commit_overrun);
1806                 goto out_reset;
1807         }
1808
1809         /*
1810          * This is where the fun begins!
1811          *
1812          * We are fighting against races between a reader that
1813          * could be on another CPU trying to swap its reader
1814          * page with the buffer head.
1815          *
1816          * We are also fighting against interrupts coming in and
1817          * moving the head or tail on us as well.
1818          *
1819          * If the next page is the head page then we have filled
1820          * the buffer, unless the commit page is still on the
1821          * reader page.
1822          */
1823         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1824
1825                 /*
1826                  * If the commit is not on the reader page, then
1827                  * move the header page.
1828                  */
1829                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1830                         /*
1831                          * If we are not in overwrite mode,
1832                          * this is easy, just stop here.
1833                          */
1834                         if (!(buffer->flags & RB_FL_OVERWRITE))
1835                                 goto out_reset;
1836
1837                         ret = rb_handle_head_page(cpu_buffer,
1838                                                   tail_page,
1839                                                   next_page);
1840                         if (ret < 0)
1841                                 goto out_reset;
1842                         if (ret)
1843                                 goto out_again;
1844                 } else {
1845                         /*
1846                          * We need to be careful here too. The
1847                          * commit page could still be on the reader
1848                          * page. We could have a small buffer, and
1849                          * have filled up the buffer with events
1850                          * from interrupts and such, and wrapped.
1851                          *
1852                          * Note, if the tail page is also the on the
1853                          * reader_page, we let it move out.
1854                          */
1855                         if (unlikely((cpu_buffer->commit_page !=
1856                                       cpu_buffer->tail_page) &&
1857                                      (cpu_buffer->commit_page ==
1858                                       cpu_buffer->reader_page))) {
1859                                 local_inc(&cpu_buffer->commit_overrun);
1860                                 goto out_reset;
1861                         }
1862                 }
1863         }
1864
1865         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1866         if (ret) {
1867                 /*
1868                  * Nested commits always have zero deltas, so
1869                  * just reread the time stamp
1870                  */
1871                 *ts = rb_time_stamp(buffer, cpu_buffer->cpu);
1872                 next_page->page->time_stamp = *ts;
1873         }
1874
1875  out_again:
1876
1877         rb_reset_tail(cpu_buffer, tail_page, tail, length);
1878
1879         /* fail and let the caller try again */
1880         return ERR_PTR(-EAGAIN);
1881
1882  out_reset:
1883         /* reset write */
1884         rb_reset_tail(cpu_buffer, tail_page, tail, length);
1885
1886         return NULL;
1887 }
1888
1889 static struct ring_buffer_event *
1890 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1891                   unsigned type, unsigned long length, u64 *ts)
1892 {
1893         struct buffer_page *tail_page, *commit_page;
1894         struct ring_buffer_event *event;
1895         unsigned long tail, write;
1896
1897         commit_page = cpu_buffer->commit_page;
1898         /* we just need to protect against interrupts */
1899         barrier();
1900         tail_page = cpu_buffer->tail_page;
1901         write = local_add_return(length, &tail_page->write);
1902
1903         /* set write to only the index of the write */
1904         write &= RB_WRITE_MASK;
1905         tail = write - length;
1906
1907         /* See if we shot pass the end of this buffer page */
1908         if (write > BUF_PAGE_SIZE)
1909                 return rb_move_tail(cpu_buffer, length, tail,
1910                                     commit_page, tail_page, ts);
1911
1912         /* We reserved something on the buffer */
1913
1914         event = __rb_page_index(tail_page, tail);
1915         kmemcheck_annotate_bitfield(event, bitfield);
1916         rb_update_event(event, type, length);
1917
1918         /* The passed in type is zero for DATA */
1919         if (likely(!type))
1920                 local_inc(&tail_page->entries);
1921
1922         /*
1923          * If this is the first commit on the page, then update
1924          * its timestamp.
1925          */
1926         if (!tail)
1927                 tail_page->page->time_stamp = *ts;
1928
1929         return event;
1930 }
1931
1932 static inline int
1933 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1934                   struct ring_buffer_event *event)
1935 {
1936         unsigned long new_index, old_index;
1937         struct buffer_page *bpage;
1938         unsigned long index;
1939         unsigned long addr;
1940
1941         new_index = rb_event_index(event);
1942         old_index = new_index + rb_event_length(event);
1943         addr = (unsigned long)event;
1944         addr &= PAGE_MASK;
1945
1946         bpage = cpu_buffer->tail_page;
1947
1948         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1949                 unsigned long write_mask =
1950                         local_read(&bpage->write) & ~RB_WRITE_MASK;
1951                 /*
1952                  * This is on the tail page. It is possible that
1953                  * a write could come in and move the tail page
1954                  * and write to the next page. That is fine
1955                  * because we just shorten what is on this page.
1956                  */
1957                 old_index += write_mask;
1958                 new_index += write_mask;
1959                 index = local_cmpxchg(&bpage->write, old_index, new_index);
1960                 if (index == old_index)
1961                         return 1;
1962         }
1963
1964         /* could not discard */
1965         return 0;
1966 }
1967
1968 static int
1969 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1970                   u64 *ts, u64 *delta)
1971 {
1972         struct ring_buffer_event *event;
1973         static int once;
1974         int ret;
1975
1976         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1977                 printk(KERN_WARNING "Delta way too big! %llu"
1978                        " ts=%llu write stamp = %llu\n",
1979                        (unsigned long long)*delta,
1980                        (unsigned long long)*ts,
1981                        (unsigned long long)cpu_buffer->write_stamp);
1982                 WARN_ON(1);
1983         }
1984
1985         /*
1986          * The delta is too big, we to add a
1987          * new timestamp.
1988          */
1989         event = __rb_reserve_next(cpu_buffer,
1990                                   RINGBUF_TYPE_TIME_EXTEND,
1991                                   RB_LEN_TIME_EXTEND,
1992                                   ts);
1993         if (!event)
1994                 return -EBUSY;
1995
1996         if (PTR_ERR(event) == -EAGAIN)
1997                 return -EAGAIN;
1998
1999         /* Only a commited time event can update the write stamp */
2000         if (rb_event_is_commit(cpu_buffer, event)) {
2001                 /*
2002                  * If this is the first on the page, then it was
2003                  * updated with the page itself. Try to discard it
2004                  * and if we can't just make it zero.
2005                  */
2006                 if (rb_event_index(event)) {
2007                         event->time_delta = *delta & TS_MASK;
2008                         event->array[0] = *delta >> TS_SHIFT;
2009                 } else {
2010                         /* try to discard, since we do not need this */
2011                         if (!rb_try_to_discard(cpu_buffer, event)) {
2012                                 /* nope, just zero it */
2013                                 event->time_delta = 0;
2014                                 event->array[0] = 0;
2015                         }
2016                 }
2017                 cpu_buffer->write_stamp = *ts;
2018                 /* let the caller know this was the commit */
2019                 ret = 1;
2020         } else {
2021                 /* Try to discard the event */
2022                 if (!rb_try_to_discard(cpu_buffer, event)) {
2023                         /* Darn, this is just wasted space */
2024                         event->time_delta = 0;
2025                         event->array[0] = 0;
2026                 }
2027                 ret = 0;
2028         }
2029
2030         *delta = 0;
2031
2032         return ret;
2033 }
2034
2035 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2036 {
2037         local_inc(&cpu_buffer->committing);
2038         local_inc(&cpu_buffer->commits);
2039 }
2040
2041 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2042 {
2043         unsigned long commits;
2044
2045         if (RB_WARN_ON(cpu_buffer,
2046                        !local_read(&cpu_buffer->committing)))
2047                 return;
2048
2049  again:
2050         commits = local_read(&cpu_buffer->commits);
2051         /* synchronize with interrupts */
2052         barrier();
2053         if (local_read(&cpu_buffer->committing) == 1)
2054                 rb_set_commit_to_write(cpu_buffer);
2055
2056         local_dec(&cpu_buffer->committing);
2057
2058         /* synchronize with interrupts */
2059         barrier();
2060
2061         /*
2062          * Need to account for interrupts coming in between the
2063          * updating of the commit page and the clearing of the
2064          * committing counter.
2065          */
2066         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2067             !local_read(&cpu_buffer->committing)) {
2068                 local_inc(&cpu_buffer->committing);
2069                 goto again;
2070         }
2071 }
2072
2073 static struct ring_buffer_event *
2074 rb_reserve_next_event(struct ring_buffer *buffer,
2075                       struct ring_buffer_per_cpu *cpu_buffer,
2076                       unsigned long length)
2077 {
2078         struct ring_buffer_event *event;
2079         u64 ts, delta = 0;
2080         int commit = 0;
2081         int nr_loops = 0;
2082
2083         rb_start_commit(cpu_buffer);
2084
2085 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2086         /*
2087          * Due to the ability to swap a cpu buffer from a buffer
2088          * it is possible it was swapped before we committed.
2089          * (committing stops a swap). We check for it here and
2090          * if it happened, we have to fail the write.
2091          */
2092         barrier();
2093         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2094                 local_dec(&cpu_buffer->committing);
2095                 local_dec(&cpu_buffer->commits);
2096                 return NULL;
2097         }
2098 #endif
2099
2100         length = rb_calculate_event_length(length);
2101  again:
2102         /*
2103          * We allow for interrupts to reenter here and do a trace.
2104          * If one does, it will cause this original code to loop
2105          * back here. Even with heavy interrupts happening, this
2106          * should only happen a few times in a row. If this happens
2107          * 1000 times in a row, there must be either an interrupt
2108          * storm or we have something buggy.
2109          * Bail!
2110          */
2111         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2112                 goto out_fail;
2113
2114         ts = rb_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
2115
2116         /*
2117          * Only the first commit can update the timestamp.
2118          * Yes there is a race here. If an interrupt comes in
2119          * just after the conditional and it traces too, then it
2120          * will also check the deltas. More than one timestamp may
2121          * also be made. But only the entry that did the actual
2122          * commit will be something other than zero.
2123          */
2124         if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2125                    rb_page_write(cpu_buffer->tail_page) ==
2126                    rb_commit_index(cpu_buffer))) {
2127                 u64 diff;
2128
2129                 diff = ts - cpu_buffer->write_stamp;
2130
2131                 /* make sure this diff is calculated here */
2132                 barrier();
2133
2134                 /* Did the write stamp get updated already? */
2135                 if (unlikely(ts < cpu_buffer->write_stamp))
2136                         goto get_event;
2137
2138                 delta = diff;
2139                 if (unlikely(test_time_stamp(delta))) {
2140
2141                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
2142                         if (commit == -EBUSY)
2143                                 goto out_fail;
2144
2145                         if (commit == -EAGAIN)
2146                                 goto again;
2147
2148                         RB_WARN_ON(cpu_buffer, commit < 0);
2149                 }
2150         }
2151
2152  get_event:
2153         event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
2154         if (unlikely(PTR_ERR(event) == -EAGAIN))
2155                 goto again;
2156
2157         if (!event)
2158                 goto out_fail;
2159
2160         if (!rb_event_is_commit(cpu_buffer, event))
2161                 delta = 0;
2162
2163         event->time_delta = delta;
2164
2165         return event;
2166
2167  out_fail:
2168         rb_end_commit(cpu_buffer);
2169         return NULL;
2170 }
2171
2172 #ifdef CONFIG_TRACING
2173
2174 #define TRACE_RECURSIVE_DEPTH 16
2175
2176 static int trace_recursive_lock(void)
2177 {
2178         current->trace_recursion++;
2179
2180         if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2181                 return 0;
2182
2183         /* Disable all tracing before we do anything else */
2184         tracing_off_permanent();
2185
2186         printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2187                     "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2188                     current->trace_recursion,
2189                     hardirq_count() >> HARDIRQ_SHIFT,
2190                     softirq_count() >> SOFTIRQ_SHIFT,
2191                     in_nmi());
2192
2193         WARN_ON_ONCE(1);
2194         return -1;
2195 }
2196
2197 static void trace_recursive_unlock(void)
2198 {
2199         WARN_ON_ONCE(!current->trace_recursion);
2200
2201         current->trace_recursion--;
2202 }
2203
2204 #else
2205
2206 #define trace_recursive_lock()          (0)
2207 #define trace_recursive_unlock()        do { } while (0)
2208
2209 #endif
2210
2211 static DEFINE_PER_CPU(int, rb_need_resched);
2212
2213 /**
2214  * ring_buffer_lock_reserve - reserve a part of the buffer
2215  * @buffer: the ring buffer to reserve from
2216  * @length: the length of the data to reserve (excluding event header)
2217  *
2218  * Returns a reseverd event on the ring buffer to copy directly to.
2219  * The user of this interface will need to get the body to write into
2220  * and can use the ring_buffer_event_data() interface.
2221  *
2222  * The length is the length of the data needed, not the event length
2223  * which also includes the event header.
2224  *
2225  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2226  * If NULL is returned, then nothing has been allocated or locked.
2227  */
2228 struct ring_buffer_event *
2229 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2230 {
2231         struct ring_buffer_per_cpu *cpu_buffer;
2232         struct ring_buffer_event *event;
2233         int cpu, resched;
2234
2235         if (ring_buffer_flags != RB_BUFFERS_ON)
2236                 return NULL;
2237
2238         if (atomic_read(&buffer->record_disabled))
2239                 return NULL;
2240
2241         /* If we are tracing schedule, we don't want to recurse */
2242         resched = ftrace_preempt_disable();
2243
2244         if (trace_recursive_lock())
2245                 goto out_nocheck;
2246
2247         cpu = raw_smp_processor_id();
2248
2249         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2250                 goto out;
2251
2252         cpu_buffer = buffer->buffers[cpu];
2253
2254         if (atomic_read(&cpu_buffer->record_disabled))
2255                 goto out;
2256
2257         if (length > BUF_MAX_DATA_SIZE)
2258                 goto out;
2259
2260         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2261         if (!event)
2262                 goto out;
2263
2264         /*
2265          * Need to store resched state on this cpu.
2266          * Only the first needs to.
2267          */
2268
2269         if (preempt_count() == 1)
2270                 per_cpu(rb_need_resched, cpu) = resched;
2271
2272         return event;
2273
2274  out:
2275         trace_recursive_unlock();
2276
2277  out_nocheck:
2278         ftrace_preempt_enable(resched);
2279         return NULL;
2280 }
2281 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2282
2283 static void
2284 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2285                       struct ring_buffer_event *event)
2286 {
2287         /*
2288          * The event first in the commit queue updates the
2289          * time stamp.
2290          */
2291         if (rb_event_is_commit(cpu_buffer, event))
2292                 cpu_buffer->write_stamp += event->time_delta;
2293 }
2294
2295 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2296                       struct ring_buffer_event *event)
2297 {
2298         local_inc(&cpu_buffer->entries);
2299         rb_update_write_stamp(cpu_buffer, event);
2300         rb_end_commit(cpu_buffer);
2301 }
2302
2303 /**
2304  * ring_buffer_unlock_commit - commit a reserved
2305  * @buffer: The buffer to commit to
2306  * @event: The event pointer to commit.
2307  *
2308  * This commits the data to the ring buffer, and releases any locks held.
2309  *
2310  * Must be paired with ring_buffer_lock_reserve.
2311  */
2312 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2313                               struct ring_buffer_event *event)
2314 {
2315         struct ring_buffer_per_cpu *cpu_buffer;
2316         int cpu = raw_smp_processor_id();
2317
2318         cpu_buffer = buffer->buffers[cpu];
2319
2320         rb_commit(cpu_buffer, event);
2321
2322         trace_recursive_unlock();
2323
2324         /*
2325          * Only the last preempt count needs to restore preemption.
2326          */
2327         if (preempt_count() == 1)
2328                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2329         else
2330                 preempt_enable_no_resched_notrace();
2331
2332         return 0;
2333 }
2334 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2335
2336 static inline void rb_event_discard(struct ring_buffer_event *event)
2337 {
2338         /* array[0] holds the actual length for the discarded event */
2339         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2340         event->type_len = RINGBUF_TYPE_PADDING;
2341         /* time delta must be non zero */
2342         if (!event->time_delta)
2343                 event->time_delta = 1;
2344 }
2345
2346 /*
2347  * Decrement the entries to the page that an event is on.
2348  * The event does not even need to exist, only the pointer
2349  * to the page it is on. This may only be called before the commit
2350  * takes place.
2351  */
2352 static inline void
2353 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2354                    struct ring_buffer_event *event)
2355 {
2356         unsigned long addr = (unsigned long)event;
2357         struct buffer_page *bpage = cpu_buffer->commit_page;
2358         struct buffer_page *start;
2359
2360         addr &= PAGE_MASK;
2361
2362         /* Do the likely case first */
2363         if (likely(bpage->page == (void *)addr)) {
2364                 local_dec(&bpage->entries);
2365                 return;
2366         }
2367
2368         /*
2369          * Because the commit page may be on the reader page we
2370          * start with the next page and check the end loop there.
2371          */
2372         rb_inc_page(cpu_buffer, &bpage);
2373         start = bpage;
2374         do {
2375                 if (bpage->page == (void *)addr) {
2376                         local_dec(&bpage->entries);
2377                         return;
2378                 }
2379                 rb_inc_page(cpu_buffer, &bpage);
2380         } while (bpage != start);
2381
2382         /* commit not part of this buffer?? */
2383         RB_WARN_ON(cpu_buffer, 1);
2384 }
2385
2386 /**
2387  * ring_buffer_commit_discard - discard an event that has not been committed
2388  * @buffer: the ring buffer
2389  * @event: non committed event to discard
2390  *
2391  * Sometimes an event that is in the ring buffer needs to be ignored.
2392  * This function lets the user discard an event in the ring buffer
2393  * and then that event will not be read later.
2394  *
2395  * This function only works if it is called before the the item has been
2396  * committed. It will try to free the event from the ring buffer
2397  * if another event has not been added behind it.
2398  *
2399  * If another event has been added behind it, it will set the event
2400  * up as discarded, and perform the commit.
2401  *
2402  * If this function is called, do not call ring_buffer_unlock_commit on
2403  * the event.
2404  */
2405 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2406                                 struct ring_buffer_event *event)
2407 {
2408         struct ring_buffer_per_cpu *cpu_buffer;
2409         int cpu;
2410
2411         /* The event is discarded regardless */
2412         rb_event_discard(event);
2413
2414         cpu = smp_processor_id();
2415         cpu_buffer = buffer->buffers[cpu];
2416
2417         /*
2418          * This must only be called if the event has not been
2419          * committed yet. Thus we can assume that preemption
2420          * is still disabled.
2421          */
2422         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2423
2424         rb_decrement_entry(cpu_buffer, event);
2425         if (rb_try_to_discard(cpu_buffer, event))
2426                 goto out;
2427
2428         /*
2429          * The commit is still visible by the reader, so we
2430          * must still update the timestamp.
2431          */
2432         rb_update_write_stamp(cpu_buffer, event);
2433  out:
2434         rb_end_commit(cpu_buffer);
2435
2436         trace_recursive_unlock();
2437
2438         /*
2439          * Only the last preempt count needs to restore preemption.
2440          */
2441         if (preempt_count() == 1)
2442                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2443         else
2444                 preempt_enable_no_resched_notrace();
2445
2446 }
2447 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2448
2449 /**
2450  * ring_buffer_write - write data to the buffer without reserving
2451  * @buffer: The ring buffer to write to.
2452  * @length: The length of the data being written (excluding the event header)
2453  * @data: The data to write to the buffer.
2454  *
2455  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2456  * one function. If you already have the data to write to the buffer, it
2457  * may be easier to simply call this function.
2458  *
2459  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2460  * and not the length of the event which would hold the header.
2461  */
2462 int ring_buffer_write(struct ring_buffer *buffer,
2463                         unsigned long length,
2464                         void *data)
2465 {
2466         struct ring_buffer_per_cpu *cpu_buffer;
2467         struct ring_buffer_event *event;
2468         void *body;
2469         int ret = -EBUSY;
2470         int cpu, resched;
2471
2472         if (ring_buffer_flags != RB_BUFFERS_ON)
2473                 return -EBUSY;
2474
2475         if (atomic_read(&buffer->record_disabled))
2476                 return -EBUSY;
2477
2478         resched = ftrace_preempt_disable();
2479
2480         cpu = raw_smp_processor_id();
2481
2482         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2483                 goto out;
2484
2485         cpu_buffer = buffer->buffers[cpu];
2486
2487         if (atomic_read(&cpu_buffer->record_disabled))
2488                 goto out;
2489
2490         if (length > BUF_MAX_DATA_SIZE)
2491                 goto out;
2492
2493         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2494         if (!event)
2495                 goto out;
2496
2497         body = rb_event_data(event);
2498
2499         memcpy(body, data, length);
2500
2501         rb_commit(cpu_buffer, event);
2502
2503         ret = 0;
2504  out:
2505         ftrace_preempt_enable(resched);
2506
2507         return ret;
2508 }
2509 EXPORT_SYMBOL_GPL(ring_buffer_write);
2510
2511 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2512 {
2513         struct buffer_page *reader = cpu_buffer->reader_page;
2514         struct buffer_page *head = rb_set_head_page(cpu_buffer);
2515         struct buffer_page *commit = cpu_buffer->commit_page;
2516
2517         /* In case of error, head will be NULL */
2518         if (unlikely(!head))
2519                 return 1;
2520
2521         return reader->read == rb_page_commit(reader) &&
2522                 (commit == reader ||
2523                  (commit == head &&
2524                   head->read == rb_page_commit(commit)));
2525 }
2526
2527 /**
2528  * ring_buffer_record_disable - stop all writes into the buffer
2529  * @buffer: The ring buffer to stop writes to.
2530  *
2531  * This prevents all writes to the buffer. Any attempt to write
2532  * to the buffer after this will fail and return NULL.
2533  *
2534  * The caller should call synchronize_sched() after this.
2535  */
2536 void ring_buffer_record_disable(struct ring_buffer *buffer)
2537 {
2538         atomic_inc(&buffer->record_disabled);
2539 }
2540 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2541
2542 /**
2543  * ring_buffer_record_enable - enable writes to the buffer
2544  * @buffer: The ring buffer to enable writes
2545  *
2546  * Note, multiple disables will need the same number of enables
2547  * to truely enable the writing (much like preempt_disable).
2548  */
2549 void ring_buffer_record_enable(struct ring_buffer *buffer)
2550 {
2551         atomic_dec(&buffer->record_disabled);
2552 }
2553 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2554
2555 /**
2556  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2557  * @buffer: The ring buffer to stop writes to.
2558  * @cpu: The CPU buffer to stop
2559  *
2560  * This prevents all writes to the buffer. Any attempt to write
2561  * to the buffer after this will fail and return NULL.
2562  *
2563  * The caller should call synchronize_sched() after this.
2564  */
2565 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2566 {
2567         struct ring_buffer_per_cpu *cpu_buffer;
2568
2569         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2570                 return;
2571
2572         cpu_buffer = buffer->buffers[cpu];
2573         atomic_inc(&cpu_buffer->record_disabled);
2574 }
2575 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2576
2577 /**
2578  * ring_buffer_record_enable_cpu - enable writes to the buffer
2579  * @buffer: The ring buffer to enable writes
2580  * @cpu: The CPU to enable.
2581  *
2582  * Note, multiple disables will need the same number of enables
2583  * to truely enable the writing (much like preempt_disable).
2584  */
2585 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2586 {
2587         struct ring_buffer_per_cpu *cpu_buffer;
2588
2589         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2590                 return;
2591
2592         cpu_buffer = buffer->buffers[cpu];
2593         atomic_dec(&cpu_buffer->record_disabled);
2594 }
2595 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2596
2597 /**
2598  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2599  * @buffer: The ring buffer
2600  * @cpu: The per CPU buffer to get the entries from.
2601  */
2602 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2603 {
2604         struct ring_buffer_per_cpu *cpu_buffer;
2605         unsigned long ret;
2606
2607         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2608                 return 0;
2609
2610         cpu_buffer = buffer->buffers[cpu];
2611         ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
2612                 - cpu_buffer->read;
2613
2614         return ret;
2615 }
2616 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2617
2618 /**
2619  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2620  * @buffer: The ring buffer
2621  * @cpu: The per CPU buffer to get the number of overruns from
2622  */
2623 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2624 {
2625         struct ring_buffer_per_cpu *cpu_buffer;
2626         unsigned long ret;
2627
2628         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2629                 return 0;
2630
2631         cpu_buffer = buffer->buffers[cpu];
2632         ret = local_read(&cpu_buffer->overrun);
2633
2634         return ret;
2635 }
2636 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2637
2638 /**
2639  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2640  * @buffer: The ring buffer
2641  * @cpu: The per CPU buffer to get the number of overruns from
2642  */
2643 unsigned long
2644 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2645 {
2646         struct ring_buffer_per_cpu *cpu_buffer;
2647         unsigned long ret;
2648
2649         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2650                 return 0;
2651
2652         cpu_buffer = buffer->buffers[cpu];
2653         ret = local_read(&cpu_buffer->commit_overrun);
2654
2655         return ret;
2656 }
2657 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2658
2659 /**
2660  * ring_buffer_entries - get the number of entries in a buffer
2661  * @buffer: The ring buffer
2662  *
2663  * Returns the total number of entries in the ring buffer
2664  * (all CPU entries)
2665  */
2666 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2667 {
2668         struct ring_buffer_per_cpu *cpu_buffer;
2669         unsigned long entries = 0;
2670         int cpu;
2671
2672         /* if you care about this being correct, lock the buffer */
2673         for_each_buffer_cpu(buffer, cpu) {
2674                 cpu_buffer = buffer->buffers[cpu];
2675                 entries += (local_read(&cpu_buffer->entries) -
2676                             local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
2677         }
2678
2679         return entries;
2680 }
2681 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2682
2683 /**
2684  * ring_buffer_overrun_cpu - get the number of overruns in buffer
2685  * @buffer: The ring buffer
2686  *
2687  * Returns the total number of overruns in the ring buffer
2688  * (all CPU entries)
2689  */
2690 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2691 {
2692         struct ring_buffer_per_cpu *cpu_buffer;
2693         unsigned long overruns = 0;
2694         int cpu;
2695
2696         /* if you care about this being correct, lock the buffer */
2697         for_each_buffer_cpu(buffer, cpu) {
2698                 cpu_buffer = buffer->buffers[cpu];
2699                 overruns += local_read(&cpu_buffer->overrun);
2700         }
2701
2702         return overruns;
2703 }
2704 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2705
2706 static void rb_iter_reset(struct ring_buffer_iter *iter)
2707 {
2708         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2709
2710         /* Iterator usage is expected to have record disabled */
2711         if (list_empty(&cpu_buffer->reader_page->list)) {
2712                 iter->head_page = rb_set_head_page(cpu_buffer);
2713                 if (unlikely(!iter->head_page))
2714                         return;
2715                 iter->head = iter->head_page->read;
2716         } else {
2717                 iter->head_page = cpu_buffer->reader_page;
2718                 iter->head = cpu_buffer->reader_page->read;
2719         }
2720         if (iter->head)
2721                 iter->read_stamp = cpu_buffer->read_stamp;
2722         else
2723                 iter->read_stamp = iter->head_page->page->time_stamp;
2724 }
2725
2726 /**
2727  * ring_buffer_iter_reset - reset an iterator
2728  * @iter: The iterator to reset
2729  *
2730  * Resets the iterator, so that it will start from the beginning
2731  * again.
2732  */
2733 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2734 {
2735         struct ring_buffer_per_cpu *cpu_buffer;
2736         unsigned long flags;
2737
2738         if (!iter)
2739                 return;
2740
2741         cpu_buffer = iter->cpu_buffer;
2742
2743         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2744         rb_iter_reset(iter);
2745         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2746 }
2747 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2748
2749 /**
2750  * ring_buffer_iter_empty - check if an iterator has no more to read
2751  * @iter: The iterator to check
2752  */
2753 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2754 {
2755         struct ring_buffer_per_cpu *cpu_buffer;
2756
2757         cpu_buffer = iter->cpu_buffer;
2758
2759         return iter->head_page == cpu_buffer->commit_page &&
2760                 iter->head == rb_commit_index(cpu_buffer);
2761 }
2762 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2763
2764 static void
2765 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2766                      struct ring_buffer_event *event)
2767 {
2768         u64 delta;
2769
2770         switch (event->type_len) {
2771         case RINGBUF_TYPE_PADDING:
2772                 return;
2773
2774         case RINGBUF_TYPE_TIME_EXTEND:
2775                 delta = event->array[0];
2776                 delta <<= TS_SHIFT;
2777                 delta += event->time_delta;
2778                 cpu_buffer->read_stamp += delta;
2779                 return;
2780
2781         case RINGBUF_TYPE_TIME_STAMP:
2782                 /* FIXME: not implemented */
2783                 return;
2784
2785         case RINGBUF_TYPE_DATA:
2786                 cpu_buffer->read_stamp += event->time_delta;
2787                 return;
2788
2789         default:
2790                 BUG();
2791         }
2792         return;
2793 }
2794
2795 static void
2796 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2797                           struct ring_buffer_event *event)
2798 {
2799         u64 delta;
2800
2801         switch (event->type_len) {
2802         case RINGBUF_TYPE_PADDING:
2803                 return;
2804
2805         case RINGBUF_TYPE_TIME_EXTEND:
2806                 delta = event->array[0];
2807                 delta <<= TS_SHIFT;
2808                 delta += event->time_delta;
2809                 iter->read_stamp += delta;
2810                 return;
2811
2812         case RINGBUF_TYPE_TIME_STAMP:
2813                 /* FIXME: not implemented */
2814                 return;
2815
2816         case RINGBUF_TYPE_DATA:
2817                 iter->read_stamp += event->time_delta;
2818                 return;
2819
2820         default:
2821                 BUG();
2822         }
2823         return;
2824 }
2825
2826 static struct buffer_page *
2827 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2828 {
2829         struct buffer_page *reader = NULL;
2830         unsigned long flags;
2831         int nr_loops = 0;
2832         int ret;
2833
2834         local_irq_save(flags);
2835         __raw_spin_lock(&cpu_buffer->lock);
2836
2837  again:
2838         /*
2839          * This should normally only loop twice. But because the
2840          * start of the reader inserts an empty page, it causes
2841          * a case where we will loop three times. There should be no
2842          * reason to loop four times (that I know of).
2843          */
2844         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2845                 reader = NULL;
2846                 goto out;
2847         }
2848
2849         reader = cpu_buffer->reader_page;
2850
2851         /* If there's more to read, return this page */
2852         if (cpu_buffer->reader_page->read < rb_page_size(reader))
2853                 goto out;
2854
2855         /* Never should we have an index greater than the size */
2856         if (RB_WARN_ON(cpu_buffer,
2857                        cpu_buffer->reader_page->read > rb_page_size(reader)))
2858                 goto out;
2859
2860         /* check if we caught up to the tail */
2861         reader = NULL;
2862         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2863                 goto out;
2864
2865         /*
2866          * Reset the reader page to size zero.
2867          */
2868         local_set(&cpu_buffer->reader_page->write, 0);
2869         local_set(&cpu_buffer->reader_page->entries, 0);
2870         local_set(&cpu_buffer->reader_page->page->commit, 0);
2871
2872  spin:
2873         /*
2874          * Splice the empty reader page into the list around the head.
2875          */
2876         reader = rb_set_head_page(cpu_buffer);
2877         cpu_buffer->reader_page->list.next = reader->list.next;
2878         cpu_buffer->reader_page->list.prev = reader->list.prev;
2879
2880         /*
2881          * cpu_buffer->pages just needs to point to the buffer, it
2882          *  has no specific buffer page to point to. Lets move it out
2883          *  of our way so we don't accidently swap it.
2884          */
2885         cpu_buffer->pages = reader->list.prev;
2886
2887         /* The reader page will be pointing to the new head */
2888         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2889
2890         /*
2891          * Here's the tricky part.
2892          *
2893          * We need to move the pointer past the header page.
2894          * But we can only do that if a writer is not currently
2895          * moving it. The page before the header page has the
2896          * flag bit '1' set if it is pointing to the page we want.
2897          * but if the writer is in the process of moving it
2898          * than it will be '2' or already moved '0'.
2899          */
2900
2901         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2902
2903         /*
2904          * If we did not convert it, then we must try again.
2905          */
2906         if (!ret)
2907                 goto spin;
2908
2909         /*
2910          * Yeah! We succeeded in replacing the page.
2911          *
2912          * Now make the new head point back to the reader page.
2913          */
2914         reader->list.next->prev = &cpu_buffer->reader_page->list;
2915         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2916
2917         /* Finally update the reader page to the new head */
2918         cpu_buffer->reader_page = reader;
2919         rb_reset_reader_page(cpu_buffer);
2920
2921         goto again;
2922
2923  out:
2924         __raw_spin_unlock(&cpu_buffer->lock);
2925         local_irq_restore(flags);
2926
2927         return reader;
2928 }
2929
2930 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2931 {
2932         struct ring_buffer_event *event;
2933         struct buffer_page *reader;
2934         unsigned length;
2935
2936         reader = rb_get_reader_page(cpu_buffer);
2937
2938         /* This function should not be called when buffer is empty */
2939         if (RB_WARN_ON(cpu_buffer, !reader))
2940                 return;
2941
2942         event = rb_reader_event(cpu_buffer);
2943
2944         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2945                 cpu_buffer->read++;
2946
2947         rb_update_read_stamp(cpu_buffer, event);
2948
2949         length = rb_event_length(event);
2950         cpu_buffer->reader_page->read += length;
2951 }
2952
2953 static void rb_advance_iter(struct ring_buffer_iter *iter)
2954 {
2955         struct ring_buffer *buffer;
2956         struct ring_buffer_per_cpu *cpu_buffer;
2957         struct ring_buffer_event *event;
2958         unsigned length;
2959
2960         cpu_buffer = iter->cpu_buffer;
2961         buffer = cpu_buffer->buffer;
2962
2963         /*
2964          * Check if we are at the end of the buffer.
2965          */
2966         if (iter->head >= rb_page_size(iter->head_page)) {
2967                 /* discarded commits can make the page empty */
2968                 if (iter->head_page == cpu_buffer->commit_page)
2969                         return;
2970                 rb_inc_iter(iter);
2971                 return;
2972         }
2973
2974         event = rb_iter_head_event(iter);
2975
2976         length = rb_event_length(event);
2977
2978         /*
2979          * This should not be called to advance the header if we are
2980          * at the tail of the buffer.
2981          */
2982         if (RB_WARN_ON(cpu_buffer,
2983                        (iter->head_page == cpu_buffer->commit_page) &&
2984                        (iter->head + length > rb_commit_index(cpu_buffer))))
2985                 return;
2986
2987         rb_update_iter_read_stamp(iter, event);
2988
2989         iter->head += length;
2990
2991         /* check for end of page padding */
2992         if ((iter->head >= rb_page_size(iter->head_page)) &&
2993             (iter->head_page != cpu_buffer->commit_page))
2994                 rb_advance_iter(iter);
2995 }
2996
2997 static struct ring_buffer_event *
2998 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
2999 {
3000         struct ring_buffer_event *event;
3001         struct buffer_page *reader;
3002         int nr_loops = 0;
3003
3004  again:
3005         /*
3006          * We repeat when a timestamp is encountered. It is possible
3007          * to get multiple timestamps from an interrupt entering just
3008          * as one timestamp is about to be written, or from discarded
3009          * commits. The most that we can have is the number on a single page.
3010          */
3011         if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3012                 return NULL;
3013
3014         reader = rb_get_reader_page(cpu_buffer);
3015         if (!reader)
3016                 return NULL;
3017
3018         event = rb_reader_event(cpu_buffer);
3019
3020         switch (event->type_len) {
3021         case RINGBUF_TYPE_PADDING:
3022                 if (rb_null_event(event))
3023                         RB_WARN_ON(cpu_buffer, 1);
3024                 /*
3025                  * Because the writer could be discarding every
3026                  * event it creates (which would probably be bad)
3027                  * if we were to go back to "again" then we may never
3028                  * catch up, and will trigger the warn on, or lock
3029                  * the box. Return the padding, and we will release
3030                  * the current locks, and try again.
3031                  */
3032                 return event;
3033
3034         case RINGBUF_TYPE_TIME_EXTEND:
3035                 /* Internal data, OK to advance */
3036                 rb_advance_reader(cpu_buffer);
3037                 goto again;
3038
3039         case RINGBUF_TYPE_TIME_STAMP:
3040                 /* FIXME: not implemented */
3041                 rb_advance_reader(cpu_buffer);
3042                 goto again;
3043
3044         case RINGBUF_TYPE_DATA:
3045                 if (ts) {
3046                         *ts = cpu_buffer->read_stamp + event->time_delta;
3047                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3048                                                          cpu_buffer->cpu, ts);
3049                 }
3050                 return event;
3051
3052         default:
3053                 BUG();
3054         }
3055
3056         return NULL;
3057 }
3058 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3059
3060 static struct ring_buffer_event *
3061 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3062 {
3063         struct ring_buffer *buffer;
3064         struct ring_buffer_per_cpu *cpu_buffer;
3065         struct ring_buffer_event *event;
3066         int nr_loops = 0;
3067
3068         if (ring_buffer_iter_empty(iter))
3069                 return NULL;
3070
3071         cpu_buffer = iter->cpu_buffer;
3072         buffer = cpu_buffer->buffer;
3073
3074  again:
3075         /*
3076          * We repeat when a timestamp is encountered.
3077          * We can get multiple timestamps by nested interrupts or also
3078          * if filtering is on (discarding commits). Since discarding
3079          * commits can be frequent we can get a lot of timestamps.
3080          * But we limit them by not adding timestamps if they begin
3081          * at the start of a page.
3082          */
3083         if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3084                 return NULL;
3085
3086         if (rb_per_cpu_empty(cpu_buffer))
3087                 return NULL;
3088
3089         event = rb_iter_head_event(iter);
3090
3091         switch (event->type_len) {
3092         case RINGBUF_TYPE_PADDING:
3093                 if (rb_null_event(event)) {
3094                         rb_inc_iter(iter);
3095                         goto again;
3096                 }
3097                 rb_advance_iter(iter);
3098                 return event;
3099
3100         case RINGBUF_TYPE_TIME_EXTEND:
3101                 /* Internal data, OK to advance */
3102                 rb_advance_iter(iter);
3103                 goto again;
3104
3105         case RINGBUF_TYPE_TIME_STAMP:
3106                 /* FIXME: not implemented */
3107                 rb_advance_iter(iter);
3108                 goto again;
3109
3110         case RINGBUF_TYPE_DATA:
3111                 if (ts) {
3112                         *ts = iter->read_stamp + event->time_delta;
3113                         ring_buffer_normalize_time_stamp(buffer,
3114                                                          cpu_buffer->cpu, ts);
3115                 }
3116                 return event;
3117
3118         default:
3119                 BUG();
3120         }
3121
3122         return NULL;
3123 }
3124 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3125
3126 static inline int rb_ok_to_lock(void)
3127 {
3128         /*
3129          * If an NMI die dumps out the content of the ring buffer
3130          * do not grab locks. We also permanently disable the ring
3131          * buffer too. A one time deal is all you get from reading
3132          * the ring buffer from an NMI.
3133          */
3134         if (likely(!in_nmi()))
3135                 return 1;
3136
3137         tracing_off_permanent();
3138         return 0;
3139 }
3140
3141 /**
3142  * ring_buffer_peek - peek at the next event to be read
3143  * @buffer: The ring buffer to read
3144  * @cpu: The cpu to peak at
3145  * @ts: The timestamp counter of this event.
3146  *
3147  * This will return the event that will be read next, but does
3148  * not consume the data.
3149  */
3150 struct ring_buffer_event *
3151 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3152 {
3153         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3154         struct ring_buffer_event *event;
3155         unsigned long flags;
3156         int dolock;
3157
3158         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3159                 return NULL;
3160
3161         dolock = rb_ok_to_lock();
3162  again:
3163         local_irq_save(flags);
3164         if (dolock)
3165                 spin_lock(&cpu_buffer->reader_lock);
3166         event = rb_buffer_peek(cpu_buffer, ts);
3167         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3168                 rb_advance_reader(cpu_buffer);
3169         if (dolock)
3170                 spin_unlock(&cpu_buffer->reader_lock);
3171         local_irq_restore(flags);
3172
3173         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3174                 goto again;
3175
3176         return event;
3177 }
3178
3179 /**
3180  * ring_buffer_iter_peek - peek at the next event to be read
3181  * @iter: The ring buffer iterator
3182  * @ts: The timestamp counter of this event.
3183  *
3184  * This will return the event that will be read next, but does
3185  * not increment the iterator.
3186  */
3187 struct ring_buffer_event *
3188 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3189 {
3190         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3191         struct ring_buffer_event *event;
3192         unsigned long flags;
3193
3194  again:
3195         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3196         event = rb_iter_peek(iter, ts);
3197         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3198
3199         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3200                 goto again;
3201
3202         return event;
3203 }
3204
3205 /**
3206  * ring_buffer_consume - return an event and consume it
3207  * @buffer: The ring buffer to get the next event from
3208  *
3209  * Returns the next event in the ring buffer, and that event is consumed.
3210  * Meaning, that sequential reads will keep returning a different event,
3211  * and eventually empty the ring buffer if the producer is slower.
3212  */
3213 struct ring_buffer_event *
3214 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
3215 {
3216         struct ring_buffer_per_cpu *cpu_buffer;
3217         struct ring_buffer_event *event = NULL;
3218         unsigned long flags;
3219         int dolock;
3220
3221         dolock = rb_ok_to_lock();
3222
3223  again:
3224         /* might be called in atomic */
3225         preempt_disable();
3226
3227         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3228                 goto out;
3229
3230         cpu_buffer = buffer->buffers[cpu];
3231         local_irq_save(flags);
3232         if (dolock)
3233                 spin_lock(&cpu_buffer->reader_lock);
3234
3235         event = rb_buffer_peek(cpu_buffer, ts);
3236         if (event)
3237                 rb_advance_reader(cpu_buffer);
3238
3239         if (dolock)
3240                 spin_unlock(&cpu_buffer->reader_lock);
3241         local_irq_restore(flags);
3242
3243  out:
3244         preempt_enable();
3245
3246         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3247                 goto again;
3248
3249         return event;
3250 }
3251 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3252
3253 /**
3254  * ring_buffer_read_start - start a non consuming read of the buffer
3255  * @buffer: The ring buffer to read from
3256  * @cpu: The cpu buffer to iterate over
3257  *
3258  * This starts up an iteration through the buffer. It also disables
3259  * the recording to the buffer until the reading is finished.
3260  * This prevents the reading from being corrupted. This is not
3261  * a consuming read, so a producer is not expected.
3262  *
3263  * Must be paired with ring_buffer_finish.
3264  */
3265 struct ring_buffer_iter *
3266 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
3267 {
3268         struct ring_buffer_per_cpu *cpu_buffer;
3269         struct ring_buffer_iter *iter;
3270         unsigned long flags;
3271
3272         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3273                 return NULL;
3274
3275         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3276         if (!iter)
3277                 return NULL;
3278
3279         cpu_buffer = buffer->buffers[cpu];
3280
3281         iter->cpu_buffer = cpu_buffer;
3282
3283         atomic_inc(&cpu_buffer->record_disabled);
3284         synchronize_sched();
3285
3286         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3287         __raw_spin_lock(&cpu_buffer->lock);
3288         rb_iter_reset(iter);
3289         __raw_spin_unlock(&cpu_buffer->lock);
3290         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3291
3292         return iter;
3293 }
3294 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3295
3296 /**
3297  * ring_buffer_finish - finish reading the iterator of the buffer
3298  * @iter: The iterator retrieved by ring_buffer_start
3299  *
3300  * This re-enables the recording to the buffer, and frees the
3301  * iterator.
3302  */
3303 void
3304 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3305 {
3306         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3307
3308         atomic_dec(&cpu_buffer->record_disabled);
3309         kfree(iter);
3310 }
3311 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3312
3313 /**
3314  * ring_buffer_read - read the next item in the ring buffer by the iterator
3315  * @iter: The ring buffer iterator
3316  * @ts: The time stamp of the event read.
3317  *
3318  * This reads the next event in the ring buffer and increments the iterator.
3319  */
3320 struct ring_buffer_event *
3321 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3322 {
3323         struct ring_buffer_event *event;
3324         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3325         unsigned long flags;
3326
3327         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3328  again:
3329         event = rb_iter_peek(iter, ts);
3330         if (!event)
3331                 goto out;
3332
3333         if (event->type_len == RINGBUF_TYPE_PADDING)
3334                 goto again;
3335
3336         rb_advance_iter(iter);
3337  out:
3338         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3339
3340         return event;
3341 }
3342 EXPORT_SYMBOL_GPL(ring_buffer_read);
3343
3344 /**
3345  * ring_buffer_size - return the size of the ring buffer (in bytes)
3346  * @buffer: The ring buffer.
3347  */
3348 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3349 {
3350         return BUF_PAGE_SIZE * buffer->pages;
3351 }
3352 EXPORT_SYMBOL_GPL(ring_buffer_size);
3353
3354 static void
3355 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3356 {
3357         rb_head_page_deactivate(cpu_buffer);
3358
3359         cpu_buffer->head_page
3360                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3361         local_set(&cpu_buffer->head_page->write, 0);
3362         local_set(&cpu_buffer->head_page->entries, 0);
3363         local_set(&cpu_buffer->head_page->page->commit, 0);
3364
3365         cpu_buffer->head_page->read = 0;
3366
3367         cpu_buffer->tail_page = cpu_buffer->head_page;
3368         cpu_buffer->commit_page = cpu_buffer->head_page;
3369
3370         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3371         local_set(&cpu_buffer->reader_page->write, 0);
3372         local_set(&cpu_buffer->reader_page->entries, 0);
3373         local_set(&cpu_buffer->reader_page->page->commit, 0);
3374         cpu_buffer->reader_page->read = 0;
3375
3376         local_set(&cpu_buffer->commit_overrun, 0);
3377         local_set(&cpu_buffer->overrun, 0);
3378         local_set(&cpu_buffer->entries, 0);
3379         local_set(&cpu_buffer->committing, 0);
3380         local_set(&cpu_buffer->commits, 0);
3381         cpu_buffer->read = 0;
3382
3383         cpu_buffer->write_stamp = 0;
3384         cpu_buffer->read_stamp = 0;
3385
3386         rb_head_page_activate(cpu_buffer);
3387 }
3388
3389 /**
3390  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3391  * @buffer: The ring buffer to reset a per cpu buffer of
3392  * @cpu: The CPU buffer to be reset
3393  */
3394 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3395 {
3396         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3397         unsigned long flags;
3398
3399         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3400                 return;
3401
3402         atomic_inc(&cpu_buffer->record_disabled);
3403
3404         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3405
3406         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3407                 goto out;
3408
3409         __raw_spin_lock(&cpu_buffer->lock);
3410
3411         rb_reset_cpu(cpu_buffer);
3412
3413         __raw_spin_unlock(&cpu_buffer->lock);
3414
3415  out:
3416         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3417
3418         atomic_dec(&cpu_buffer->record_disabled);
3419 }
3420 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3421
3422 /**
3423  * ring_buffer_reset - reset a ring buffer
3424  * @buffer: The ring buffer to reset all cpu buffers
3425  */
3426 void ring_buffer_reset(struct ring_buffer *buffer)
3427 {
3428         int cpu;
3429
3430         for_each_buffer_cpu(buffer, cpu)
3431                 ring_buffer_reset_cpu(buffer, cpu);
3432 }
3433 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3434
3435 /**
3436  * rind_buffer_empty - is the ring buffer empty?
3437  * @buffer: The ring buffer to test
3438  */
3439 int ring_buffer_empty(struct ring_buffer *buffer)
3440 {
3441         struct ring_buffer_per_cpu *cpu_buffer;
3442         unsigned long flags;
3443         int dolock;
3444         int cpu;
3445         int ret;
3446
3447         dolock = rb_ok_to_lock();
3448
3449         /* yes this is racy, but if you don't like the race, lock the buffer */
3450         for_each_buffer_cpu(buffer, cpu) {
3451                 cpu_buffer = buffer->buffers[cpu];
3452                 local_irq_save(flags);
3453                 if (dolock)
3454                         spin_lock(&cpu_buffer->reader_lock);
3455                 ret = rb_per_cpu_empty(cpu_buffer);
3456                 if (dolock)
3457                         spin_unlock(&cpu_buffer->reader_lock);
3458                 local_irq_restore(flags);
3459
3460                 if (!ret)
3461                         return 0;
3462         }
3463
3464         return 1;
3465 }
3466 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3467
3468 /**
3469  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3470  * @buffer: The ring buffer
3471  * @cpu: The CPU buffer to test
3472  */
3473 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3474 {
3475         struct ring_buffer_per_cpu *cpu_buffer;
3476         unsigned long flags;
3477         int dolock;
3478         int ret;
3479
3480         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3481                 return 1;
3482
3483         dolock = rb_ok_to_lock();
3484
3485         cpu_buffer = buffer->buffers[cpu];
3486         local_irq_save(flags);
3487         if (dolock)
3488                 spin_lock(&cpu_buffer->reader_lock);
3489         ret = rb_per_cpu_empty(cpu_buffer);
3490         if (dolock)
3491                 spin_unlock(&cpu_buffer->reader_lock);
3492         local_irq_restore(flags);
3493
3494         return ret;
3495 }
3496 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3497
3498 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3499 /**
3500  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3501  * @buffer_a: One buffer to swap with
3502  * @buffer_b: The other buffer to swap with
3503  *
3504  * This function is useful for tracers that want to take a "snapshot"
3505  * of a CPU buffer and has another back up buffer lying around.
3506  * it is expected that the tracer handles the cpu buffer not being
3507  * used at the moment.
3508  */
3509 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3510                          struct ring_buffer *buffer_b, int cpu)
3511 {
3512         struct ring_buffer_per_cpu *cpu_buffer_a;
3513         struct ring_buffer_per_cpu *cpu_buffer_b;
3514         int ret = -EINVAL;
3515
3516         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3517             !cpumask_test_cpu(cpu, buffer_b->cpumask))
3518                 goto out;
3519
3520         /* At least make sure the two buffers are somewhat the same */
3521         if (buffer_a->pages != buffer_b->pages)
3522                 goto out;
3523
3524         ret = -EAGAIN;
3525
3526         if (ring_buffer_flags != RB_BUFFERS_ON)
3527                 goto out;
3528
3529         if (atomic_read(&buffer_a->record_disabled))
3530                 goto out;
3531
3532         if (atomic_read(&buffer_b->record_disabled))
3533                 goto out;
3534
3535         cpu_buffer_a = buffer_a->buffers[cpu];
3536         cpu_buffer_b = buffer_b->buffers[cpu];
3537
3538         if (atomic_read(&cpu_buffer_a->record_disabled))
3539                 goto out;
3540
3541         if (atomic_read(&cpu_buffer_b->record_disabled))
3542                 goto out;
3543
3544         /*
3545          * We can't do a synchronize_sched here because this
3546          * function can be called in atomic context.
3547          * Normally this will be called from the same CPU as cpu.
3548          * If not it's up to the caller to protect this.
3549          */
3550         atomic_inc(&cpu_buffer_a->record_disabled);
3551         atomic_inc(&cpu_buffer_b->record_disabled);
3552
3553         ret = -EBUSY;
3554         if (local_read(&cpu_buffer_a->committing))
3555                 goto out_dec;
3556         if (local_read(&cpu_buffer_b->committing))
3557                 goto out_dec;
3558
3559         buffer_a->buffers[cpu] = cpu_buffer_b;
3560         buffer_b->buffers[cpu] = cpu_buffer_a;
3561
3562         cpu_buffer_b->buffer = buffer_a;
3563         cpu_buffer_a->buffer = buffer_b;
3564
3565         ret = 0;
3566
3567 out_dec:
3568         atomic_dec(&cpu_buffer_a->record_disabled);
3569         atomic_dec(&cpu_buffer_b->record_disabled);
3570 out:
3571         return ret;
3572 }
3573 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3574 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3575
3576 /**
3577  * ring_buffer_alloc_read_page - allocate a page to read from buffer
3578  * @buffer: the buffer to allocate for.
3579  *
3580  * This function is used in conjunction with ring_buffer_read_page.
3581  * When reading a full page from the ring buffer, these functions
3582  * can be used to speed up the process. The calling function should
3583  * allocate a few pages first with this function. Then when it
3584  * needs to get pages from the ring buffer, it passes the result
3585  * of this function into ring_buffer_read_page, which will swap
3586  * the page that was allocated, with the read page of the buffer.
3587  *
3588  * Returns:
3589  *  The page allocated, or NULL on error.
3590  */
3591 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3592 {
3593         struct buffer_data_page *bpage;
3594         unsigned long addr;
3595
3596         addr = __get_free_page(GFP_KERNEL);
3597         if (!addr)
3598                 return NULL;
3599
3600         bpage = (void *)addr;
3601
3602         rb_init_page(bpage);
3603
3604         return bpage;
3605 }
3606 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3607
3608 /**
3609  * ring_buffer_free_read_page - free an allocated read page
3610  * @buffer: the buffer the page was allocate for
3611  * @data: the page to free
3612  *
3613  * Free a page allocated from ring_buffer_alloc_read_page.
3614  */
3615 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3616 {
3617         free_page((unsigned long)data);
3618 }
3619 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3620
3621 /**
3622  * ring_buffer_read_page - extract a page from the ring buffer
3623  * @buffer: buffer to extract from
3624  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3625  * @len: amount to extract
3626  * @cpu: the cpu of the buffer to extract
3627  * @full: should the extraction only happen when the page is full.
3628  *
3629  * This function will pull out a page from the ring buffer and consume it.
3630  * @data_page must be the address of the variable that was returned
3631  * from ring_buffer_alloc_read_page. This is because the page might be used
3632  * to swap with a page in the ring buffer.
3633  *
3634  * for example:
3635  *      rpage = ring_buffer_alloc_read_page(buffer);
3636  *      if (!rpage)
3637  *              return error;
3638  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3639  *      if (ret >= 0)
3640  *              process_page(rpage, ret);
3641  *
3642  * When @full is set, the function will not return true unless
3643  * the writer is off the reader page.
3644  *
3645  * Note: it is up to the calling functions to handle sleeps and wakeups.
3646  *  The ring buffer can be used anywhere in the kernel and can not
3647  *  blindly call wake_up. The layer that uses the ring buffer must be
3648  *  responsible for that.
3649  *
3650  * Returns:
3651  *  >=0 if data has been transferred, returns the offset of consumed data.
3652  *  <0 if no data has been transferred.
3653  */
3654 int ring_buffer_read_page(struct ring_buffer *buffer,
3655                           void **data_page, size_t len, int cpu, int full)
3656 {
3657         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3658         struct ring_buffer_event *event;
3659         struct buffer_data_page *bpage;
3660         struct buffer_page *reader;
3661         unsigned long flags;
3662         unsigned int commit;
3663         unsigned int read;
3664         u64 save_timestamp;
3665         int ret = -1;
3666
3667         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3668                 goto out;
3669
3670         /*
3671          * If len is not big enough to hold the page header, then
3672          * we can not copy anything.
3673          */
3674         if (len <= BUF_PAGE_HDR_SIZE)
3675                 goto out;
3676
3677         len -= BUF_PAGE_HDR_SIZE;
3678
3679         if (!data_page)
3680                 goto out;
3681
3682         bpage = *data_page;
3683         if (!bpage)
3684                 goto out;
3685
3686         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3687
3688         reader = rb_get_reader_page(cpu_buffer);
3689         if (!reader)
3690                 goto out_unlock;
3691
3692         event = rb_reader_event(cpu_buffer);
3693
3694         read = reader->read;
3695         commit = rb_page_commit(reader);
3696
3697         /*
3698          * If this page has been partially read or
3699          * if len is not big enough to read the rest of the page or
3700          * a writer is still on the page, then
3701          * we must copy the data from the page to the buffer.
3702          * Otherwise, we can simply swap the page with the one passed in.
3703          */
3704         if (read || (len < (commit - read)) ||
3705             cpu_buffer->reader_page == cpu_buffer->commit_page) {
3706                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3707                 unsigned int rpos = read;
3708                 unsigned int pos = 0;
3709                 unsigned int size;
3710
3711                 if (full)
3712                         goto out_unlock;
3713
3714                 if (len > (commit - read))
3715                         len = (commit - read);
3716
3717                 size = rb_event_length(event);
3718
3719                 if (len < size)
3720                         goto out_unlock;
3721
3722                 /* save the current timestamp, since the user will need it */
3723                 save_timestamp = cpu_buffer->read_stamp;
3724
3725                 /* Need to copy one event at a time */
3726                 do {
3727                         memcpy(bpage->data + pos, rpage->data + rpos, size);
3728
3729                         len -= size;
3730
3731                         rb_advance_reader(cpu_buffer);
3732                         rpos = reader->read;
3733                         pos += size;
3734
3735                         event = rb_reader_event(cpu_buffer);
3736                         size = rb_event_length(event);
3737                 } while (len > size);
3738
3739                 /* update bpage */
3740                 local_set(&bpage->commit, pos);
3741                 bpage->time_stamp = save_timestamp;
3742
3743                 /* we copied everything to the beginning */
3744                 read = 0;
3745         } else {
3746                 /* update the entry counter */
3747                 cpu_buffer->read += rb_page_entries(reader);
3748
3749                 /* swap the pages */
3750                 rb_init_page(bpage);
3751                 bpage = reader->page;
3752                 reader->page = *data_page;
3753                 local_set(&reader->write, 0);
3754                 local_set(&reader->entries, 0);
3755                 reader->read = 0;
3756                 *data_page = bpage;
3757         }
3758         ret = read;
3759
3760  out_unlock:
3761         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3762
3763  out:
3764         return ret;
3765 }
3766 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3767
3768 #ifdef CONFIG_TRACING
3769 static ssize_t
3770 rb_simple_read(struct file *filp, char __user *ubuf,
3771                size_t cnt, loff_t *ppos)
3772 {
3773         unsigned long *p = filp->private_data;
3774         char buf[64];
3775         int r;
3776
3777         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3778                 r = sprintf(buf, "permanently disabled\n");
3779         else
3780                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3781
3782         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3783 }
3784
3785 static ssize_t
3786 rb_simple_write(struct file *filp, const char __user *ubuf,
3787                 size_t cnt, loff_t *ppos)
3788 {
3789         unsigned long *p = filp->private_data;
3790         char buf[64];
3791         unsigned long val;
3792         int ret;
3793
3794         if (cnt >= sizeof(buf))
3795                 return -EINVAL;
3796
3797         if (copy_from_user(&buf, ubuf, cnt))
3798                 return -EFAULT;
3799
3800         buf[cnt] = 0;
3801
3802         ret = strict_strtoul(buf, 10, &val);
3803         if (ret < 0)
3804                 return ret;
3805
3806         if (val)
3807                 set_bit(RB_BUFFERS_ON_BIT, p);
3808         else
3809                 clear_bit(RB_BUFFERS_ON_BIT, p);
3810
3811         (*ppos)++;
3812
3813         return cnt;
3814 }
3815
3816 static const struct file_operations rb_simple_fops = {
3817         .open           = tracing_open_generic,
3818         .read           = rb_simple_read,
3819         .write          = rb_simple_write,
3820 };
3821
3822
3823 static __init int rb_init_debugfs(void)
3824 {
3825         struct dentry *d_tracer;
3826
3827         d_tracer = tracing_init_dentry();
3828
3829         trace_create_file("tracing_on", 0644, d_tracer,
3830                             &ring_buffer_flags, &rb_simple_fops);
3831
3832         return 0;
3833 }
3834
3835 fs_initcall(rb_init_debugfs);
3836 #endif
3837
3838 #ifdef CONFIG_HOTPLUG_CPU
3839 static int rb_cpu_notify(struct notifier_block *self,
3840                          unsigned long action, void *hcpu)
3841 {
3842         struct ring_buffer *buffer =
3843                 container_of(self, struct ring_buffer, cpu_notify);
3844         long cpu = (long)hcpu;
3845
3846         switch (action) {
3847         case CPU_UP_PREPARE:
3848         case CPU_UP_PREPARE_FROZEN:
3849                 if (cpumask_test_cpu(cpu, buffer->cpumask))
3850                         return NOTIFY_OK;
3851
3852                 buffer->buffers[cpu] =
3853                         rb_allocate_cpu_buffer(buffer, cpu);
3854                 if (!buffer->buffers[cpu]) {
3855                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3856                              cpu);
3857                         return NOTIFY_OK;
3858                 }
3859                 smp_wmb();
3860                 cpumask_set_cpu(cpu, buffer->cpumask);
3861                 break;
3862         case CPU_DOWN_PREPARE:
3863         case CPU_DOWN_PREPARE_FROZEN:
3864                 /*
3865                  * Do nothing.
3866                  *  If we were to free the buffer, then the user would
3867                  *  lose any trace that was in the buffer.
3868                  */
3869                 break;
3870         default:
3871                 break;
3872         }
3873         return NOTIFY_OK;
3874 }
3875 #endif