Merge branch 'tip/tracing/urgent-1' of git://git.kernel.org/pub/scm/linux/kernel...
[safe/jmp/linux-2.6] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/init.h>
17 #include <linux/hash.h>
18 #include <linux/list.h>
19 #include <linux/cpu.h>
20 #include <linux/fs.h>
21
22 #include "trace.h"
23
24 /*
25  * The ring buffer header is special. We must manually up keep it.
26  */
27 int ring_buffer_print_entry_header(struct trace_seq *s)
28 {
29         int ret;
30
31         ret = trace_seq_printf(s, "# compressed entry header\n");
32         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
33         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
34         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
35         ret = trace_seq_printf(s, "\n");
36         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
37                                RINGBUF_TYPE_PADDING);
38         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
39                                RINGBUF_TYPE_TIME_EXTEND);
40         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
41                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
42
43         return ret;
44 }
45
46 /*
47  * The ring buffer is made up of a list of pages. A separate list of pages is
48  * allocated for each CPU. A writer may only write to a buffer that is
49  * associated with the CPU it is currently executing on.  A reader may read
50  * from any per cpu buffer.
51  *
52  * The reader is special. For each per cpu buffer, the reader has its own
53  * reader page. When a reader has read the entire reader page, this reader
54  * page is swapped with another page in the ring buffer.
55  *
56  * Now, as long as the writer is off the reader page, the reader can do what
57  * ever it wants with that page. The writer will never write to that page
58  * again (as long as it is out of the ring buffer).
59  *
60  * Here's some silly ASCII art.
61  *
62  *   +------+
63  *   |reader|          RING BUFFER
64  *   |page  |
65  *   +------+        +---+   +---+   +---+
66  *                   |   |-->|   |-->|   |
67  *                   +---+   +---+   +---+
68  *                     ^               |
69  *                     |               |
70  *                     +---------------+
71  *
72  *
73  *   +------+
74  *   |reader|          RING BUFFER
75  *   |page  |------------------v
76  *   +------+        +---+   +---+   +---+
77  *                   |   |-->|   |-->|   |
78  *                   +---+   +---+   +---+
79  *                     ^               |
80  *                     |               |
81  *                     +---------------+
82  *
83  *
84  *   +------+
85  *   |reader|          RING BUFFER
86  *   |page  |------------------v
87  *   +------+        +---+   +---+   +---+
88  *      ^            |   |-->|   |-->|   |
89  *      |            +---+   +---+   +---+
90  *      |                              |
91  *      |                              |
92  *      +------------------------------+
93  *
94  *
95  *   +------+
96  *   |buffer|          RING BUFFER
97  *   |page  |------------------v
98  *   +------+        +---+   +---+   +---+
99  *      ^            |   |   |   |-->|   |
100  *      |   New      +---+   +---+   +---+
101  *      |  Reader------^               |
102  *      |   page                       |
103  *      +------------------------------+
104  *
105  *
106  * After we make this swap, the reader can hand this page off to the splice
107  * code and be done with it. It can even allocate a new page if it needs to
108  * and swap that into the ring buffer.
109  *
110  * We will be using cmpxchg soon to make all this lockless.
111  *
112  */
113
114 /*
115  * A fast way to enable or disable all ring buffers is to
116  * call tracing_on or tracing_off. Turning off the ring buffers
117  * prevents all ring buffers from being recorded to.
118  * Turning this switch on, makes it OK to write to the
119  * ring buffer, if the ring buffer is enabled itself.
120  *
121  * There's three layers that must be on in order to write
122  * to the ring buffer.
123  *
124  * 1) This global flag must be set.
125  * 2) The ring buffer must be enabled for recording.
126  * 3) The per cpu buffer must be enabled for recording.
127  *
128  * In case of an anomaly, this global flag has a bit set that
129  * will permantly disable all ring buffers.
130  */
131
132 /*
133  * Global flag to disable all recording to ring buffers
134  *  This has two bits: ON, DISABLED
135  *
136  *  ON   DISABLED
137  * ---- ----------
138  *   0      0        : ring buffers are off
139  *   1      0        : ring buffers are on
140  *   X      1        : ring buffers are permanently disabled
141  */
142
143 enum {
144         RB_BUFFERS_ON_BIT       = 0,
145         RB_BUFFERS_DISABLED_BIT = 1,
146 };
147
148 enum {
149         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
150         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
151 };
152
153 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
154
155 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156
157 /**
158  * tracing_on - enable all tracing buffers
159  *
160  * This function enables all tracing buffers that may have been
161  * disabled with tracing_off.
162  */
163 void tracing_on(void)
164 {
165         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
166 }
167 EXPORT_SYMBOL_GPL(tracing_on);
168
169 /**
170  * tracing_off - turn off all tracing buffers
171  *
172  * This function stops all tracing buffers from recording data.
173  * It does not disable any overhead the tracers themselves may
174  * be causing. This function simply causes all recording to
175  * the ring buffers to fail.
176  */
177 void tracing_off(void)
178 {
179         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
180 }
181 EXPORT_SYMBOL_GPL(tracing_off);
182
183 /**
184  * tracing_off_permanent - permanently disable ring buffers
185  *
186  * This function, once called, will disable all ring buffers
187  * permanently.
188  */
189 void tracing_off_permanent(void)
190 {
191         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
192 }
193
194 /**
195  * tracing_is_on - show state of ring buffers enabled
196  */
197 int tracing_is_on(void)
198 {
199         return ring_buffer_flags == RB_BUFFERS_ON;
200 }
201 EXPORT_SYMBOL_GPL(tracing_is_on);
202
203 #include "trace.h"
204
205 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
206 #define RB_ALIGNMENT            4U
207 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
208 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
209
210 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
211 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
212
213 enum {
214         RB_LEN_TIME_EXTEND = 8,
215         RB_LEN_TIME_STAMP = 16,
216 };
217
218 static inline int rb_null_event(struct ring_buffer_event *event)
219 {
220         return event->type_len == RINGBUF_TYPE_PADDING
221                         && event->time_delta == 0;
222 }
223
224 static inline int rb_discarded_event(struct ring_buffer_event *event)
225 {
226         return event->type_len == RINGBUF_TYPE_PADDING && event->time_delta;
227 }
228
229 static void rb_event_set_padding(struct ring_buffer_event *event)
230 {
231         event->type_len = RINGBUF_TYPE_PADDING;
232         event->time_delta = 0;
233 }
234
235 static unsigned
236 rb_event_data_length(struct ring_buffer_event *event)
237 {
238         unsigned length;
239
240         if (event->type_len)
241                 length = event->type_len * RB_ALIGNMENT;
242         else
243                 length = event->array[0];
244         return length + RB_EVNT_HDR_SIZE;
245 }
246
247 /* inline for ring buffer fast paths */
248 static unsigned
249 rb_event_length(struct ring_buffer_event *event)
250 {
251         switch (event->type_len) {
252         case RINGBUF_TYPE_PADDING:
253                 if (rb_null_event(event))
254                         /* undefined */
255                         return -1;
256                 return  event->array[0] + RB_EVNT_HDR_SIZE;
257
258         case RINGBUF_TYPE_TIME_EXTEND:
259                 return RB_LEN_TIME_EXTEND;
260
261         case RINGBUF_TYPE_TIME_STAMP:
262                 return RB_LEN_TIME_STAMP;
263
264         case RINGBUF_TYPE_DATA:
265                 return rb_event_data_length(event);
266         default:
267                 BUG();
268         }
269         /* not hit */
270         return 0;
271 }
272
273 /**
274  * ring_buffer_event_length - return the length of the event
275  * @event: the event to get the length of
276  */
277 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
278 {
279         unsigned length = rb_event_length(event);
280         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
281                 return length;
282         length -= RB_EVNT_HDR_SIZE;
283         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
284                 length -= sizeof(event->array[0]);
285         return length;
286 }
287 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
288
289 /* inline for ring buffer fast paths */
290 static void *
291 rb_event_data(struct ring_buffer_event *event)
292 {
293         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
294         /* If length is in len field, then array[0] has the data */
295         if (event->type_len)
296                 return (void *)&event->array[0];
297         /* Otherwise length is in array[0] and array[1] has the data */
298         return (void *)&event->array[1];
299 }
300
301 /**
302  * ring_buffer_event_data - return the data of the event
303  * @event: the event to get the data from
304  */
305 void *ring_buffer_event_data(struct ring_buffer_event *event)
306 {
307         return rb_event_data(event);
308 }
309 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
310
311 #define for_each_buffer_cpu(buffer, cpu)                \
312         for_each_cpu(cpu, buffer->cpumask)
313
314 #define TS_SHIFT        27
315 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
316 #define TS_DELTA_TEST   (~TS_MASK)
317
318 struct buffer_data_page {
319         u64              time_stamp;    /* page time stamp */
320         local_t          commit;        /* write committed index */
321         unsigned char    data[];        /* data of buffer page */
322 };
323
324 struct buffer_page {
325         struct list_head list;          /* list of buffer pages */
326         local_t          write;         /* index for next write */
327         unsigned         read;          /* index for next read */
328         local_t          entries;       /* entries on this page */
329         struct buffer_data_page *page;  /* Actual data page */
330 };
331
332 static void rb_init_page(struct buffer_data_page *bpage)
333 {
334         local_set(&bpage->commit, 0);
335 }
336
337 /**
338  * ring_buffer_page_len - the size of data on the page.
339  * @page: The page to read
340  *
341  * Returns the amount of data on the page, including buffer page header.
342  */
343 size_t ring_buffer_page_len(void *page)
344 {
345         return local_read(&((struct buffer_data_page *)page)->commit)
346                 + BUF_PAGE_HDR_SIZE;
347 }
348
349 /*
350  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
351  * this issue out.
352  */
353 static void free_buffer_page(struct buffer_page *bpage)
354 {
355         free_page((unsigned long)bpage->page);
356         kfree(bpage);
357 }
358
359 /*
360  * We need to fit the time_stamp delta into 27 bits.
361  */
362 static inline int test_time_stamp(u64 delta)
363 {
364         if (delta & TS_DELTA_TEST)
365                 return 1;
366         return 0;
367 }
368
369 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
370
371 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
372 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
373
374 /* Max number of timestamps that can fit on a page */
375 #define RB_TIMESTAMPS_PER_PAGE  (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
376
377 int ring_buffer_print_page_header(struct trace_seq *s)
378 {
379         struct buffer_data_page field;
380         int ret;
381
382         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
383                                "offset:0;\tsize:%u;\n",
384                                (unsigned int)sizeof(field.time_stamp));
385
386         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
387                                "offset:%u;\tsize:%u;\n",
388                                (unsigned int)offsetof(typeof(field), commit),
389                                (unsigned int)sizeof(field.commit));
390
391         ret = trace_seq_printf(s, "\tfield: char data;\t"
392                                "offset:%u;\tsize:%u;\n",
393                                (unsigned int)offsetof(typeof(field), data),
394                                (unsigned int)BUF_PAGE_SIZE);
395
396         return ret;
397 }
398
399 /*
400  * head_page == tail_page && head == tail then buffer is empty.
401  */
402 struct ring_buffer_per_cpu {
403         int                             cpu;
404         struct ring_buffer              *buffer;
405         spinlock_t                      reader_lock; /* serialize readers */
406         raw_spinlock_t                  lock;
407         struct lock_class_key           lock_key;
408         struct list_head                pages;
409         struct buffer_page              *head_page;     /* read from head */
410         struct buffer_page              *tail_page;     /* write to tail */
411         struct buffer_page              *commit_page;   /* committed pages */
412         struct buffer_page              *reader_page;
413         unsigned long                   nmi_dropped;
414         unsigned long                   commit_overrun;
415         unsigned long                   overrun;
416         unsigned long                   read;
417         local_t                         entries;
418         local_t                         committing;
419         local_t                         commits;
420         u64                             write_stamp;
421         u64                             read_stamp;
422         atomic_t                        record_disabled;
423 };
424
425 struct ring_buffer {
426         unsigned                        pages;
427         unsigned                        flags;
428         int                             cpus;
429         atomic_t                        record_disabled;
430         cpumask_var_t                   cpumask;
431
432         struct lock_class_key           *reader_lock_key;
433
434         struct mutex                    mutex;
435
436         struct ring_buffer_per_cpu      **buffers;
437
438 #ifdef CONFIG_HOTPLUG_CPU
439         struct notifier_block           cpu_notify;
440 #endif
441         u64                             (*clock)(void);
442 };
443
444 struct ring_buffer_iter {
445         struct ring_buffer_per_cpu      *cpu_buffer;
446         unsigned long                   head;
447         struct buffer_page              *head_page;
448         u64                             read_stamp;
449 };
450
451 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
452 #define RB_WARN_ON(buffer, cond)                                \
453         ({                                                      \
454                 int _____ret = unlikely(cond);                  \
455                 if (_____ret) {                                 \
456                         atomic_inc(&buffer->record_disabled);   \
457                         WARN_ON(1);                             \
458                 }                                               \
459                 _____ret;                                       \
460         })
461
462 /* Up this if you want to test the TIME_EXTENTS and normalization */
463 #define DEBUG_SHIFT 0
464
465 static inline u64 rb_time_stamp(struct ring_buffer *buffer, int cpu)
466 {
467         /* shift to debug/test normalization and TIME_EXTENTS */
468         return buffer->clock() << DEBUG_SHIFT;
469 }
470
471 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
472 {
473         u64 time;
474
475         preempt_disable_notrace();
476         time = rb_time_stamp(buffer, cpu);
477         preempt_enable_no_resched_notrace();
478
479         return time;
480 }
481 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
482
483 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
484                                       int cpu, u64 *ts)
485 {
486         /* Just stupid testing the normalize function and deltas */
487         *ts >>= DEBUG_SHIFT;
488 }
489 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
490
491 /**
492  * check_pages - integrity check of buffer pages
493  * @cpu_buffer: CPU buffer with pages to test
494  *
495  * As a safety measure we check to make sure the data pages have not
496  * been corrupted.
497  */
498 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
499 {
500         struct list_head *head = &cpu_buffer->pages;
501         struct buffer_page *bpage, *tmp;
502
503         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
504                 return -1;
505         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
506                 return -1;
507
508         list_for_each_entry_safe(bpage, tmp, head, list) {
509                 if (RB_WARN_ON(cpu_buffer,
510                                bpage->list.next->prev != &bpage->list))
511                         return -1;
512                 if (RB_WARN_ON(cpu_buffer,
513                                bpage->list.prev->next != &bpage->list))
514                         return -1;
515         }
516
517         return 0;
518 }
519
520 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
521                              unsigned nr_pages)
522 {
523         struct list_head *head = &cpu_buffer->pages;
524         struct buffer_page *bpage, *tmp;
525         unsigned long addr;
526         LIST_HEAD(pages);
527         unsigned i;
528
529         for (i = 0; i < nr_pages; i++) {
530                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
531                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
532                 if (!bpage)
533                         goto free_pages;
534                 list_add(&bpage->list, &pages);
535
536                 addr = __get_free_page(GFP_KERNEL);
537                 if (!addr)
538                         goto free_pages;
539                 bpage->page = (void *)addr;
540                 rb_init_page(bpage->page);
541         }
542
543         list_splice(&pages, head);
544
545         rb_check_pages(cpu_buffer);
546
547         return 0;
548
549  free_pages:
550         list_for_each_entry_safe(bpage, tmp, &pages, list) {
551                 list_del_init(&bpage->list);
552                 free_buffer_page(bpage);
553         }
554         return -ENOMEM;
555 }
556
557 static struct ring_buffer_per_cpu *
558 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
559 {
560         struct ring_buffer_per_cpu *cpu_buffer;
561         struct buffer_page *bpage;
562         unsigned long addr;
563         int ret;
564
565         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
566                                   GFP_KERNEL, cpu_to_node(cpu));
567         if (!cpu_buffer)
568                 return NULL;
569
570         cpu_buffer->cpu = cpu;
571         cpu_buffer->buffer = buffer;
572         spin_lock_init(&cpu_buffer->reader_lock);
573         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
574         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
575         INIT_LIST_HEAD(&cpu_buffer->pages);
576
577         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
578                             GFP_KERNEL, cpu_to_node(cpu));
579         if (!bpage)
580                 goto fail_free_buffer;
581
582         cpu_buffer->reader_page = bpage;
583         addr = __get_free_page(GFP_KERNEL);
584         if (!addr)
585                 goto fail_free_reader;
586         bpage->page = (void *)addr;
587         rb_init_page(bpage->page);
588
589         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
590
591         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
592         if (ret < 0)
593                 goto fail_free_reader;
594
595         cpu_buffer->head_page
596                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
597         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
598
599         return cpu_buffer;
600
601  fail_free_reader:
602         free_buffer_page(cpu_buffer->reader_page);
603
604  fail_free_buffer:
605         kfree(cpu_buffer);
606         return NULL;
607 }
608
609 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
610 {
611         struct list_head *head = &cpu_buffer->pages;
612         struct buffer_page *bpage, *tmp;
613
614         free_buffer_page(cpu_buffer->reader_page);
615
616         list_for_each_entry_safe(bpage, tmp, head, list) {
617                 list_del_init(&bpage->list);
618                 free_buffer_page(bpage);
619         }
620         kfree(cpu_buffer);
621 }
622
623 #ifdef CONFIG_HOTPLUG_CPU
624 static int rb_cpu_notify(struct notifier_block *self,
625                          unsigned long action, void *hcpu);
626 #endif
627
628 /**
629  * ring_buffer_alloc - allocate a new ring_buffer
630  * @size: the size in bytes per cpu that is needed.
631  * @flags: attributes to set for the ring buffer.
632  *
633  * Currently the only flag that is available is the RB_FL_OVERWRITE
634  * flag. This flag means that the buffer will overwrite old data
635  * when the buffer wraps. If this flag is not set, the buffer will
636  * drop data when the tail hits the head.
637  */
638 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
639                                         struct lock_class_key *key)
640 {
641         struct ring_buffer *buffer;
642         int bsize;
643         int cpu;
644
645         /* keep it in its own cache line */
646         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
647                          GFP_KERNEL);
648         if (!buffer)
649                 return NULL;
650
651         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
652                 goto fail_free_buffer;
653
654         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
655         buffer->flags = flags;
656         buffer->clock = trace_clock_local;
657         buffer->reader_lock_key = key;
658
659         /* need at least two pages */
660         if (buffer->pages < 2)
661                 buffer->pages = 2;
662
663         /*
664          * In case of non-hotplug cpu, if the ring-buffer is allocated
665          * in early initcall, it will not be notified of secondary cpus.
666          * In that off case, we need to allocate for all possible cpus.
667          */
668 #ifdef CONFIG_HOTPLUG_CPU
669         get_online_cpus();
670         cpumask_copy(buffer->cpumask, cpu_online_mask);
671 #else
672         cpumask_copy(buffer->cpumask, cpu_possible_mask);
673 #endif
674         buffer->cpus = nr_cpu_ids;
675
676         bsize = sizeof(void *) * nr_cpu_ids;
677         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
678                                   GFP_KERNEL);
679         if (!buffer->buffers)
680                 goto fail_free_cpumask;
681
682         for_each_buffer_cpu(buffer, cpu) {
683                 buffer->buffers[cpu] =
684                         rb_allocate_cpu_buffer(buffer, cpu);
685                 if (!buffer->buffers[cpu])
686                         goto fail_free_buffers;
687         }
688
689 #ifdef CONFIG_HOTPLUG_CPU
690         buffer->cpu_notify.notifier_call = rb_cpu_notify;
691         buffer->cpu_notify.priority = 0;
692         register_cpu_notifier(&buffer->cpu_notify);
693 #endif
694
695         put_online_cpus();
696         mutex_init(&buffer->mutex);
697
698         return buffer;
699
700  fail_free_buffers:
701         for_each_buffer_cpu(buffer, cpu) {
702                 if (buffer->buffers[cpu])
703                         rb_free_cpu_buffer(buffer->buffers[cpu]);
704         }
705         kfree(buffer->buffers);
706
707  fail_free_cpumask:
708         free_cpumask_var(buffer->cpumask);
709         put_online_cpus();
710
711  fail_free_buffer:
712         kfree(buffer);
713         return NULL;
714 }
715 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
716
717 /**
718  * ring_buffer_free - free a ring buffer.
719  * @buffer: the buffer to free.
720  */
721 void
722 ring_buffer_free(struct ring_buffer *buffer)
723 {
724         int cpu;
725
726         get_online_cpus();
727
728 #ifdef CONFIG_HOTPLUG_CPU
729         unregister_cpu_notifier(&buffer->cpu_notify);
730 #endif
731
732         for_each_buffer_cpu(buffer, cpu)
733                 rb_free_cpu_buffer(buffer->buffers[cpu]);
734
735         put_online_cpus();
736
737         free_cpumask_var(buffer->cpumask);
738
739         kfree(buffer);
740 }
741 EXPORT_SYMBOL_GPL(ring_buffer_free);
742
743 void ring_buffer_set_clock(struct ring_buffer *buffer,
744                            u64 (*clock)(void))
745 {
746         buffer->clock = clock;
747 }
748
749 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
750
751 static void
752 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
753 {
754         struct buffer_page *bpage;
755         struct list_head *p;
756         unsigned i;
757
758         atomic_inc(&cpu_buffer->record_disabled);
759         synchronize_sched();
760
761         for (i = 0; i < nr_pages; i++) {
762                 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
763                         return;
764                 p = cpu_buffer->pages.next;
765                 bpage = list_entry(p, struct buffer_page, list);
766                 list_del_init(&bpage->list);
767                 free_buffer_page(bpage);
768         }
769         if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
770                 return;
771
772         rb_reset_cpu(cpu_buffer);
773
774         rb_check_pages(cpu_buffer);
775
776         atomic_dec(&cpu_buffer->record_disabled);
777
778 }
779
780 static void
781 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
782                 struct list_head *pages, unsigned nr_pages)
783 {
784         struct buffer_page *bpage;
785         struct list_head *p;
786         unsigned i;
787
788         atomic_inc(&cpu_buffer->record_disabled);
789         synchronize_sched();
790
791         for (i = 0; i < nr_pages; i++) {
792                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
793                         return;
794                 p = pages->next;
795                 bpage = list_entry(p, struct buffer_page, list);
796                 list_del_init(&bpage->list);
797                 list_add_tail(&bpage->list, &cpu_buffer->pages);
798         }
799         rb_reset_cpu(cpu_buffer);
800
801         rb_check_pages(cpu_buffer);
802
803         atomic_dec(&cpu_buffer->record_disabled);
804 }
805
806 /**
807  * ring_buffer_resize - resize the ring buffer
808  * @buffer: the buffer to resize.
809  * @size: the new size.
810  *
811  * The tracer is responsible for making sure that the buffer is
812  * not being used while changing the size.
813  * Note: We may be able to change the above requirement by using
814  *  RCU synchronizations.
815  *
816  * Minimum size is 2 * BUF_PAGE_SIZE.
817  *
818  * Returns -1 on failure.
819  */
820 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
821 {
822         struct ring_buffer_per_cpu *cpu_buffer;
823         unsigned nr_pages, rm_pages, new_pages;
824         struct buffer_page *bpage, *tmp;
825         unsigned long buffer_size;
826         unsigned long addr;
827         LIST_HEAD(pages);
828         int i, cpu;
829
830         /*
831          * Always succeed at resizing a non-existent buffer:
832          */
833         if (!buffer)
834                 return size;
835
836         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
837         size *= BUF_PAGE_SIZE;
838         buffer_size = buffer->pages * BUF_PAGE_SIZE;
839
840         /* we need a minimum of two pages */
841         if (size < BUF_PAGE_SIZE * 2)
842                 size = BUF_PAGE_SIZE * 2;
843
844         if (size == buffer_size)
845                 return size;
846
847         mutex_lock(&buffer->mutex);
848         get_online_cpus();
849
850         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
851
852         if (size < buffer_size) {
853
854                 /* easy case, just free pages */
855                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
856                         goto out_fail;
857
858                 rm_pages = buffer->pages - nr_pages;
859
860                 for_each_buffer_cpu(buffer, cpu) {
861                         cpu_buffer = buffer->buffers[cpu];
862                         rb_remove_pages(cpu_buffer, rm_pages);
863                 }
864                 goto out;
865         }
866
867         /*
868          * This is a bit more difficult. We only want to add pages
869          * when we can allocate enough for all CPUs. We do this
870          * by allocating all the pages and storing them on a local
871          * link list. If we succeed in our allocation, then we
872          * add these pages to the cpu_buffers. Otherwise we just free
873          * them all and return -ENOMEM;
874          */
875         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
876                 goto out_fail;
877
878         new_pages = nr_pages - buffer->pages;
879
880         for_each_buffer_cpu(buffer, cpu) {
881                 for (i = 0; i < new_pages; i++) {
882                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
883                                                   cache_line_size()),
884                                             GFP_KERNEL, cpu_to_node(cpu));
885                         if (!bpage)
886                                 goto free_pages;
887                         list_add(&bpage->list, &pages);
888                         addr = __get_free_page(GFP_KERNEL);
889                         if (!addr)
890                                 goto free_pages;
891                         bpage->page = (void *)addr;
892                         rb_init_page(bpage->page);
893                 }
894         }
895
896         for_each_buffer_cpu(buffer, cpu) {
897                 cpu_buffer = buffer->buffers[cpu];
898                 rb_insert_pages(cpu_buffer, &pages, new_pages);
899         }
900
901         if (RB_WARN_ON(buffer, !list_empty(&pages)))
902                 goto out_fail;
903
904  out:
905         buffer->pages = nr_pages;
906         put_online_cpus();
907         mutex_unlock(&buffer->mutex);
908
909         return size;
910
911  free_pages:
912         list_for_each_entry_safe(bpage, tmp, &pages, list) {
913                 list_del_init(&bpage->list);
914                 free_buffer_page(bpage);
915         }
916         put_online_cpus();
917         mutex_unlock(&buffer->mutex);
918         return -ENOMEM;
919
920         /*
921          * Something went totally wrong, and we are too paranoid
922          * to even clean up the mess.
923          */
924  out_fail:
925         put_online_cpus();
926         mutex_unlock(&buffer->mutex);
927         return -1;
928 }
929 EXPORT_SYMBOL_GPL(ring_buffer_resize);
930
931 static inline void *
932 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
933 {
934         return bpage->data + index;
935 }
936
937 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
938 {
939         return bpage->page->data + index;
940 }
941
942 static inline struct ring_buffer_event *
943 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
944 {
945         return __rb_page_index(cpu_buffer->reader_page,
946                                cpu_buffer->reader_page->read);
947 }
948
949 static inline struct ring_buffer_event *
950 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
951 {
952         return __rb_page_index(cpu_buffer->head_page,
953                                cpu_buffer->head_page->read);
954 }
955
956 static inline struct ring_buffer_event *
957 rb_iter_head_event(struct ring_buffer_iter *iter)
958 {
959         return __rb_page_index(iter->head_page, iter->head);
960 }
961
962 static inline unsigned rb_page_write(struct buffer_page *bpage)
963 {
964         return local_read(&bpage->write);
965 }
966
967 static inline unsigned rb_page_commit(struct buffer_page *bpage)
968 {
969         return local_read(&bpage->page->commit);
970 }
971
972 /* Size is determined by what has been commited */
973 static inline unsigned rb_page_size(struct buffer_page *bpage)
974 {
975         return rb_page_commit(bpage);
976 }
977
978 static inline unsigned
979 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
980 {
981         return rb_page_commit(cpu_buffer->commit_page);
982 }
983
984 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
985 {
986         return rb_page_commit(cpu_buffer->head_page);
987 }
988
989 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
990                                struct buffer_page **bpage)
991 {
992         struct list_head *p = (*bpage)->list.next;
993
994         if (p == &cpu_buffer->pages)
995                 p = p->next;
996
997         *bpage = list_entry(p, struct buffer_page, list);
998 }
999
1000 static inline unsigned
1001 rb_event_index(struct ring_buffer_event *event)
1002 {
1003         unsigned long addr = (unsigned long)event;
1004
1005         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1006 }
1007
1008 static inline int
1009 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1010                    struct ring_buffer_event *event)
1011 {
1012         unsigned long addr = (unsigned long)event;
1013         unsigned long index;
1014
1015         index = rb_event_index(event);
1016         addr &= PAGE_MASK;
1017
1018         return cpu_buffer->commit_page->page == (void *)addr &&
1019                 rb_commit_index(cpu_buffer) == index;
1020 }
1021
1022 static void
1023 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1024 {
1025         /*
1026          * We only race with interrupts and NMIs on this CPU.
1027          * If we own the commit event, then we can commit
1028          * all others that interrupted us, since the interruptions
1029          * are in stack format (they finish before they come
1030          * back to us). This allows us to do a simple loop to
1031          * assign the commit to the tail.
1032          */
1033  again:
1034         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1035                 cpu_buffer->commit_page->page->commit =
1036                         cpu_buffer->commit_page->write;
1037                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1038                 cpu_buffer->write_stamp =
1039                         cpu_buffer->commit_page->page->time_stamp;
1040                 /* add barrier to keep gcc from optimizing too much */
1041                 barrier();
1042         }
1043         while (rb_commit_index(cpu_buffer) !=
1044                rb_page_write(cpu_buffer->commit_page)) {
1045                 cpu_buffer->commit_page->page->commit =
1046                         cpu_buffer->commit_page->write;
1047                 barrier();
1048         }
1049
1050         /* again, keep gcc from optimizing */
1051         barrier();
1052
1053         /*
1054          * If an interrupt came in just after the first while loop
1055          * and pushed the tail page forward, we will be left with
1056          * a dangling commit that will never go forward.
1057          */
1058         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1059                 goto again;
1060 }
1061
1062 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1063 {
1064         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1065         cpu_buffer->reader_page->read = 0;
1066 }
1067
1068 static void rb_inc_iter(struct ring_buffer_iter *iter)
1069 {
1070         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1071
1072         /*
1073          * The iterator could be on the reader page (it starts there).
1074          * But the head could have moved, since the reader was
1075          * found. Check for this case and assign the iterator
1076          * to the head page instead of next.
1077          */
1078         if (iter->head_page == cpu_buffer->reader_page)
1079                 iter->head_page = cpu_buffer->head_page;
1080         else
1081                 rb_inc_page(cpu_buffer, &iter->head_page);
1082
1083         iter->read_stamp = iter->head_page->page->time_stamp;
1084         iter->head = 0;
1085 }
1086
1087 /**
1088  * ring_buffer_update_event - update event type and data
1089  * @event: the even to update
1090  * @type: the type of event
1091  * @length: the size of the event field in the ring buffer
1092  *
1093  * Update the type and data fields of the event. The length
1094  * is the actual size that is written to the ring buffer,
1095  * and with this, we can determine what to place into the
1096  * data field.
1097  */
1098 static void
1099 rb_update_event(struct ring_buffer_event *event,
1100                          unsigned type, unsigned length)
1101 {
1102         event->type_len = type;
1103
1104         switch (type) {
1105
1106         case RINGBUF_TYPE_PADDING:
1107         case RINGBUF_TYPE_TIME_EXTEND:
1108         case RINGBUF_TYPE_TIME_STAMP:
1109                 break;
1110
1111         case 0:
1112                 length -= RB_EVNT_HDR_SIZE;
1113                 if (length > RB_MAX_SMALL_DATA)
1114                         event->array[0] = length;
1115                 else
1116                         event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1117                 break;
1118         default:
1119                 BUG();
1120         }
1121 }
1122
1123 static unsigned rb_calculate_event_length(unsigned length)
1124 {
1125         struct ring_buffer_event event; /* Used only for sizeof array */
1126
1127         /* zero length can cause confusions */
1128         if (!length)
1129                 length = 1;
1130
1131         if (length > RB_MAX_SMALL_DATA)
1132                 length += sizeof(event.array[0]);
1133
1134         length += RB_EVNT_HDR_SIZE;
1135         length = ALIGN(length, RB_ALIGNMENT);
1136
1137         return length;
1138 }
1139
1140 static inline void
1141 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1142               struct buffer_page *tail_page,
1143               unsigned long tail, unsigned long length)
1144 {
1145         struct ring_buffer_event *event;
1146
1147         /*
1148          * Only the event that crossed the page boundary
1149          * must fill the old tail_page with padding.
1150          */
1151         if (tail >= BUF_PAGE_SIZE) {
1152                 local_sub(length, &tail_page->write);
1153                 return;
1154         }
1155
1156         event = __rb_page_index(tail_page, tail);
1157
1158         /*
1159          * If this event is bigger than the minimum size, then
1160          * we need to be careful that we don't subtract the
1161          * write counter enough to allow another writer to slip
1162          * in on this page.
1163          * We put in a discarded commit instead, to make sure
1164          * that this space is not used again.
1165          *
1166          * If we are less than the minimum size, we don't need to
1167          * worry about it.
1168          */
1169         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1170                 /* No room for any events */
1171
1172                 /* Mark the rest of the page with padding */
1173                 rb_event_set_padding(event);
1174
1175                 /* Set the write back to the previous setting */
1176                 local_sub(length, &tail_page->write);
1177                 return;
1178         }
1179
1180         /* Put in a discarded event */
1181         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1182         event->type_len = RINGBUF_TYPE_PADDING;
1183         /* time delta must be non zero */
1184         event->time_delta = 1;
1185         /* Account for this as an entry */
1186         local_inc(&tail_page->entries);
1187         local_inc(&cpu_buffer->entries);
1188
1189         /* Set write to end of buffer */
1190         length = (tail + length) - BUF_PAGE_SIZE;
1191         local_sub(length, &tail_page->write);
1192 }
1193
1194 static struct ring_buffer_event *
1195 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1196              unsigned long length, unsigned long tail,
1197              struct buffer_page *commit_page,
1198              struct buffer_page *tail_page, u64 *ts)
1199 {
1200         struct buffer_page *next_page, *head_page, *reader_page;
1201         struct ring_buffer *buffer = cpu_buffer->buffer;
1202         bool lock_taken = false;
1203         unsigned long flags;
1204
1205         next_page = tail_page;
1206
1207         local_irq_save(flags);
1208         /*
1209          * Since the write to the buffer is still not
1210          * fully lockless, we must be careful with NMIs.
1211          * The locks in the writers are taken when a write
1212          * crosses to a new page. The locks protect against
1213          * races with the readers (this will soon be fixed
1214          * with a lockless solution).
1215          *
1216          * Because we can not protect against NMIs, and we
1217          * want to keep traces reentrant, we need to manage
1218          * what happens when we are in an NMI.
1219          *
1220          * NMIs can happen after we take the lock.
1221          * If we are in an NMI, only take the lock
1222          * if it is not already taken. Otherwise
1223          * simply fail.
1224          */
1225         if (unlikely(in_nmi())) {
1226                 if (!__raw_spin_trylock(&cpu_buffer->lock)) {
1227                         cpu_buffer->nmi_dropped++;
1228                         goto out_reset;
1229                 }
1230         } else
1231                 __raw_spin_lock(&cpu_buffer->lock);
1232
1233         lock_taken = true;
1234
1235         rb_inc_page(cpu_buffer, &next_page);
1236
1237         head_page = cpu_buffer->head_page;
1238         reader_page = cpu_buffer->reader_page;
1239
1240         /* we grabbed the lock before incrementing */
1241         if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1242                 goto out_reset;
1243
1244         /*
1245          * If for some reason, we had an interrupt storm that made
1246          * it all the way around the buffer, bail, and warn
1247          * about it.
1248          */
1249         if (unlikely(next_page == commit_page)) {
1250                 cpu_buffer->commit_overrun++;
1251                 goto out_reset;
1252         }
1253
1254         if (next_page == head_page) {
1255                 if (!(buffer->flags & RB_FL_OVERWRITE))
1256                         goto out_reset;
1257
1258                 /* tail_page has not moved yet? */
1259                 if (tail_page == cpu_buffer->tail_page) {
1260                         /* count overflows */
1261                         cpu_buffer->overrun +=
1262                                 local_read(&head_page->entries);
1263
1264                         rb_inc_page(cpu_buffer, &head_page);
1265                         cpu_buffer->head_page = head_page;
1266                         cpu_buffer->head_page->read = 0;
1267                 }
1268         }
1269
1270         /*
1271          * If the tail page is still the same as what we think
1272          * it is, then it is up to us to update the tail
1273          * pointer.
1274          */
1275         if (tail_page == cpu_buffer->tail_page) {
1276                 local_set(&next_page->write, 0);
1277                 local_set(&next_page->entries, 0);
1278                 local_set(&next_page->page->commit, 0);
1279                 cpu_buffer->tail_page = next_page;
1280
1281                 /* reread the time stamp */
1282                 *ts = rb_time_stamp(buffer, cpu_buffer->cpu);
1283                 cpu_buffer->tail_page->page->time_stamp = *ts;
1284         }
1285
1286         rb_reset_tail(cpu_buffer, tail_page, tail, length);
1287
1288         __raw_spin_unlock(&cpu_buffer->lock);
1289         local_irq_restore(flags);
1290
1291         /* fail and let the caller try again */
1292         return ERR_PTR(-EAGAIN);
1293
1294  out_reset:
1295         /* reset write */
1296         rb_reset_tail(cpu_buffer, tail_page, tail, length);
1297
1298         if (likely(lock_taken))
1299                 __raw_spin_unlock(&cpu_buffer->lock);
1300         local_irq_restore(flags);
1301         return NULL;
1302 }
1303
1304 static struct ring_buffer_event *
1305 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1306                   unsigned type, unsigned long length, u64 *ts)
1307 {
1308         struct buffer_page *tail_page, *commit_page;
1309         struct ring_buffer_event *event;
1310         unsigned long tail, write;
1311
1312         commit_page = cpu_buffer->commit_page;
1313         /* we just need to protect against interrupts */
1314         barrier();
1315         tail_page = cpu_buffer->tail_page;
1316         write = local_add_return(length, &tail_page->write);
1317         tail = write - length;
1318
1319         /* See if we shot pass the end of this buffer page */
1320         if (write > BUF_PAGE_SIZE)
1321                 return rb_move_tail(cpu_buffer, length, tail,
1322                                     commit_page, tail_page, ts);
1323
1324         /* We reserved something on the buffer */
1325
1326         event = __rb_page_index(tail_page, tail);
1327         rb_update_event(event, type, length);
1328
1329         /* The passed in type is zero for DATA */
1330         if (likely(!type))
1331                 local_inc(&tail_page->entries);
1332
1333         /*
1334          * If this is the first commit on the page, then update
1335          * its timestamp.
1336          */
1337         if (!tail)
1338                 tail_page->page->time_stamp = *ts;
1339
1340         return event;
1341 }
1342
1343 static inline int
1344 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1345                   struct ring_buffer_event *event)
1346 {
1347         unsigned long new_index, old_index;
1348         struct buffer_page *bpage;
1349         unsigned long index;
1350         unsigned long addr;
1351
1352         new_index = rb_event_index(event);
1353         old_index = new_index + rb_event_length(event);
1354         addr = (unsigned long)event;
1355         addr &= PAGE_MASK;
1356
1357         bpage = cpu_buffer->tail_page;
1358
1359         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1360                 /*
1361                  * This is on the tail page. It is possible that
1362                  * a write could come in and move the tail page
1363                  * and write to the next page. That is fine
1364                  * because we just shorten what is on this page.
1365                  */
1366                 index = local_cmpxchg(&bpage->write, old_index, new_index);
1367                 if (index == old_index)
1368                         return 1;
1369         }
1370
1371         /* could not discard */
1372         return 0;
1373 }
1374
1375 static int
1376 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1377                   u64 *ts, u64 *delta)
1378 {
1379         struct ring_buffer_event *event;
1380         static int once;
1381         int ret;
1382
1383         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1384                 printk(KERN_WARNING "Delta way too big! %llu"
1385                        " ts=%llu write stamp = %llu\n",
1386                        (unsigned long long)*delta,
1387                        (unsigned long long)*ts,
1388                        (unsigned long long)cpu_buffer->write_stamp);
1389                 WARN_ON(1);
1390         }
1391
1392         /*
1393          * The delta is too big, we to add a
1394          * new timestamp.
1395          */
1396         event = __rb_reserve_next(cpu_buffer,
1397                                   RINGBUF_TYPE_TIME_EXTEND,
1398                                   RB_LEN_TIME_EXTEND,
1399                                   ts);
1400         if (!event)
1401                 return -EBUSY;
1402
1403         if (PTR_ERR(event) == -EAGAIN)
1404                 return -EAGAIN;
1405
1406         /* Only a commited time event can update the write stamp */
1407         if (rb_event_is_commit(cpu_buffer, event)) {
1408                 /*
1409                  * If this is the first on the page, then it was
1410                  * updated with the page itself. Try to discard it
1411                  * and if we can't just make it zero.
1412                  */
1413                 if (rb_event_index(event)) {
1414                         event->time_delta = *delta & TS_MASK;
1415                         event->array[0] = *delta >> TS_SHIFT;
1416                 } else {
1417                         /* try to discard, since we do not need this */
1418                         if (!rb_try_to_discard(cpu_buffer, event)) {
1419                                 /* nope, just zero it */
1420                                 event->time_delta = 0;
1421                                 event->array[0] = 0;
1422                         }
1423                 }
1424                 cpu_buffer->write_stamp = *ts;
1425                 /* let the caller know this was the commit */
1426                 ret = 1;
1427         } else {
1428                 /* Try to discard the event */
1429                 if (!rb_try_to_discard(cpu_buffer, event)) {
1430                         /* Darn, this is just wasted space */
1431                         event->time_delta = 0;
1432                         event->array[0] = 0;
1433                 }
1434                 ret = 0;
1435         }
1436
1437         *delta = 0;
1438
1439         return ret;
1440 }
1441
1442 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
1443 {
1444         local_inc(&cpu_buffer->committing);
1445         local_inc(&cpu_buffer->commits);
1446 }
1447
1448 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
1449 {
1450         unsigned long commits;
1451
1452         if (RB_WARN_ON(cpu_buffer,
1453                        !local_read(&cpu_buffer->committing)))
1454                 return;
1455
1456  again:
1457         commits = local_read(&cpu_buffer->commits);
1458         /* synchronize with interrupts */
1459         barrier();
1460         if (local_read(&cpu_buffer->committing) == 1)
1461                 rb_set_commit_to_write(cpu_buffer);
1462
1463         local_dec(&cpu_buffer->committing);
1464
1465         /* synchronize with interrupts */
1466         barrier();
1467
1468         /*
1469          * Need to account for interrupts coming in between the
1470          * updating of the commit page and the clearing of the
1471          * committing counter.
1472          */
1473         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
1474             !local_read(&cpu_buffer->committing)) {
1475                 local_inc(&cpu_buffer->committing);
1476                 goto again;
1477         }
1478 }
1479
1480 static struct ring_buffer_event *
1481 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1482                       unsigned long length)
1483 {
1484         struct ring_buffer_event *event;
1485         u64 ts, delta = 0;
1486         int commit = 0;
1487         int nr_loops = 0;
1488
1489         rb_start_commit(cpu_buffer);
1490
1491         length = rb_calculate_event_length(length);
1492  again:
1493         /*
1494          * We allow for interrupts to reenter here and do a trace.
1495          * If one does, it will cause this original code to loop
1496          * back here. Even with heavy interrupts happening, this
1497          * should only happen a few times in a row. If this happens
1498          * 1000 times in a row, there must be either an interrupt
1499          * storm or we have something buggy.
1500          * Bail!
1501          */
1502         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1503                 goto out_fail;
1504
1505         ts = rb_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
1506
1507         /*
1508          * Only the first commit can update the timestamp.
1509          * Yes there is a race here. If an interrupt comes in
1510          * just after the conditional and it traces too, then it
1511          * will also check the deltas. More than one timestamp may
1512          * also be made. But only the entry that did the actual
1513          * commit will be something other than zero.
1514          */
1515         if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
1516                    rb_page_write(cpu_buffer->tail_page) ==
1517                    rb_commit_index(cpu_buffer))) {
1518                 u64 diff;
1519
1520                 diff = ts - cpu_buffer->write_stamp;
1521
1522                 /* make sure this diff is calculated here */
1523                 barrier();
1524
1525                 /* Did the write stamp get updated already? */
1526                 if (unlikely(ts < cpu_buffer->write_stamp))
1527                         goto get_event;
1528
1529                 delta = diff;
1530                 if (unlikely(test_time_stamp(delta))) {
1531
1532                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1533                         if (commit == -EBUSY)
1534                                 goto out_fail;
1535
1536                         if (commit == -EAGAIN)
1537                                 goto again;
1538
1539                         RB_WARN_ON(cpu_buffer, commit < 0);
1540                 }
1541         }
1542
1543  get_event:
1544         event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
1545         if (unlikely(PTR_ERR(event) == -EAGAIN))
1546                 goto again;
1547
1548         if (!event)
1549                 goto out_fail;
1550
1551         if (!rb_event_is_commit(cpu_buffer, event))
1552                 delta = 0;
1553
1554         event->time_delta = delta;
1555
1556         return event;
1557
1558  out_fail:
1559         rb_end_commit(cpu_buffer);
1560         return NULL;
1561 }
1562
1563 #define TRACE_RECURSIVE_DEPTH 16
1564
1565 static int trace_recursive_lock(void)
1566 {
1567         current->trace_recursion++;
1568
1569         if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
1570                 return 0;
1571
1572         /* Disable all tracing before we do anything else */
1573         tracing_off_permanent();
1574
1575         printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
1576                     "HC[%lu]:SC[%lu]:NMI[%lu]\n",
1577                     current->trace_recursion,
1578                     hardirq_count() >> HARDIRQ_SHIFT,
1579                     softirq_count() >> SOFTIRQ_SHIFT,
1580                     in_nmi());
1581
1582         WARN_ON_ONCE(1);
1583         return -1;
1584 }
1585
1586 static void trace_recursive_unlock(void)
1587 {
1588         WARN_ON_ONCE(!current->trace_recursion);
1589
1590         current->trace_recursion--;
1591 }
1592
1593 static DEFINE_PER_CPU(int, rb_need_resched);
1594
1595 /**
1596  * ring_buffer_lock_reserve - reserve a part of the buffer
1597  * @buffer: the ring buffer to reserve from
1598  * @length: the length of the data to reserve (excluding event header)
1599  *
1600  * Returns a reseverd event on the ring buffer to copy directly to.
1601  * The user of this interface will need to get the body to write into
1602  * and can use the ring_buffer_event_data() interface.
1603  *
1604  * The length is the length of the data needed, not the event length
1605  * which also includes the event header.
1606  *
1607  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1608  * If NULL is returned, then nothing has been allocated or locked.
1609  */
1610 struct ring_buffer_event *
1611 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1612 {
1613         struct ring_buffer_per_cpu *cpu_buffer;
1614         struct ring_buffer_event *event;
1615         int cpu, resched;
1616
1617         if (ring_buffer_flags != RB_BUFFERS_ON)
1618                 return NULL;
1619
1620         if (atomic_read(&buffer->record_disabled))
1621                 return NULL;
1622
1623         /* If we are tracing schedule, we don't want to recurse */
1624         resched = ftrace_preempt_disable();
1625
1626         if (trace_recursive_lock())
1627                 goto out_nocheck;
1628
1629         cpu = raw_smp_processor_id();
1630
1631         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1632                 goto out;
1633
1634         cpu_buffer = buffer->buffers[cpu];
1635
1636         if (atomic_read(&cpu_buffer->record_disabled))
1637                 goto out;
1638
1639         if (length > BUF_MAX_DATA_SIZE)
1640                 goto out;
1641
1642         event = rb_reserve_next_event(cpu_buffer, length);
1643         if (!event)
1644                 goto out;
1645
1646         /*
1647          * Need to store resched state on this cpu.
1648          * Only the first needs to.
1649          */
1650
1651         if (preempt_count() == 1)
1652                 per_cpu(rb_need_resched, cpu) = resched;
1653
1654         return event;
1655
1656  out:
1657         trace_recursive_unlock();
1658
1659  out_nocheck:
1660         ftrace_preempt_enable(resched);
1661         return NULL;
1662 }
1663 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1664
1665 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1666                       struct ring_buffer_event *event)
1667 {
1668         local_inc(&cpu_buffer->entries);
1669
1670         /*
1671          * The event first in the commit queue updates the
1672          * time stamp.
1673          */
1674         if (rb_event_is_commit(cpu_buffer, event))
1675                 cpu_buffer->write_stamp += event->time_delta;
1676
1677         rb_end_commit(cpu_buffer);
1678 }
1679
1680 /**
1681  * ring_buffer_unlock_commit - commit a reserved
1682  * @buffer: The buffer to commit to
1683  * @event: The event pointer to commit.
1684  *
1685  * This commits the data to the ring buffer, and releases any locks held.
1686  *
1687  * Must be paired with ring_buffer_lock_reserve.
1688  */
1689 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1690                               struct ring_buffer_event *event)
1691 {
1692         struct ring_buffer_per_cpu *cpu_buffer;
1693         int cpu = raw_smp_processor_id();
1694
1695         cpu_buffer = buffer->buffers[cpu];
1696
1697         rb_commit(cpu_buffer, event);
1698
1699         trace_recursive_unlock();
1700
1701         /*
1702          * Only the last preempt count needs to restore preemption.
1703          */
1704         if (preempt_count() == 1)
1705                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1706         else
1707                 preempt_enable_no_resched_notrace();
1708
1709         return 0;
1710 }
1711 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1712
1713 static inline void rb_event_discard(struct ring_buffer_event *event)
1714 {
1715         /* array[0] holds the actual length for the discarded event */
1716         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
1717         event->type_len = RINGBUF_TYPE_PADDING;
1718         /* time delta must be non zero */
1719         if (!event->time_delta)
1720                 event->time_delta = 1;
1721 }
1722
1723 /**
1724  * ring_buffer_event_discard - discard any event in the ring buffer
1725  * @event: the event to discard
1726  *
1727  * Sometimes a event that is in the ring buffer needs to be ignored.
1728  * This function lets the user discard an event in the ring buffer
1729  * and then that event will not be read later.
1730  *
1731  * Note, it is up to the user to be careful with this, and protect
1732  * against races. If the user discards an event that has been consumed
1733  * it is possible that it could corrupt the ring buffer.
1734  */
1735 void ring_buffer_event_discard(struct ring_buffer_event *event)
1736 {
1737         rb_event_discard(event);
1738 }
1739 EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
1740
1741 /**
1742  * ring_buffer_commit_discard - discard an event that has not been committed
1743  * @buffer: the ring buffer
1744  * @event: non committed event to discard
1745  *
1746  * This is similar to ring_buffer_event_discard but must only be
1747  * performed on an event that has not been committed yet. The difference
1748  * is that this will also try to free the event from the ring buffer
1749  * if another event has not been added behind it.
1750  *
1751  * If another event has been added behind it, it will set the event
1752  * up as discarded, and perform the commit.
1753  *
1754  * If this function is called, do not call ring_buffer_unlock_commit on
1755  * the event.
1756  */
1757 void ring_buffer_discard_commit(struct ring_buffer *buffer,
1758                                 struct ring_buffer_event *event)
1759 {
1760         struct ring_buffer_per_cpu *cpu_buffer;
1761         int cpu;
1762
1763         /* The event is discarded regardless */
1764         rb_event_discard(event);
1765
1766         cpu = smp_processor_id();
1767         cpu_buffer = buffer->buffers[cpu];
1768
1769         /*
1770          * This must only be called if the event has not been
1771          * committed yet. Thus we can assume that preemption
1772          * is still disabled.
1773          */
1774         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
1775
1776         if (!rb_try_to_discard(cpu_buffer, event))
1777                 goto out;
1778
1779         /*
1780          * The commit is still visible by the reader, so we
1781          * must increment entries.
1782          */
1783         local_inc(&cpu_buffer->entries);
1784  out:
1785         rb_end_commit(cpu_buffer);
1786
1787         trace_recursive_unlock();
1788
1789         /*
1790          * Only the last preempt count needs to restore preemption.
1791          */
1792         if (preempt_count() == 1)
1793                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1794         else
1795                 preempt_enable_no_resched_notrace();
1796
1797 }
1798 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
1799
1800 /**
1801  * ring_buffer_write - write data to the buffer without reserving
1802  * @buffer: The ring buffer to write to.
1803  * @length: The length of the data being written (excluding the event header)
1804  * @data: The data to write to the buffer.
1805  *
1806  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1807  * one function. If you already have the data to write to the buffer, it
1808  * may be easier to simply call this function.
1809  *
1810  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1811  * and not the length of the event which would hold the header.
1812  */
1813 int ring_buffer_write(struct ring_buffer *buffer,
1814                         unsigned long length,
1815                         void *data)
1816 {
1817         struct ring_buffer_per_cpu *cpu_buffer;
1818         struct ring_buffer_event *event;
1819         void *body;
1820         int ret = -EBUSY;
1821         int cpu, resched;
1822
1823         if (ring_buffer_flags != RB_BUFFERS_ON)
1824                 return -EBUSY;
1825
1826         if (atomic_read(&buffer->record_disabled))
1827                 return -EBUSY;
1828
1829         resched = ftrace_preempt_disable();
1830
1831         cpu = raw_smp_processor_id();
1832
1833         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1834                 goto out;
1835
1836         cpu_buffer = buffer->buffers[cpu];
1837
1838         if (atomic_read(&cpu_buffer->record_disabled))
1839                 goto out;
1840
1841         if (length > BUF_MAX_DATA_SIZE)
1842                 goto out;
1843
1844         event = rb_reserve_next_event(cpu_buffer, length);
1845         if (!event)
1846                 goto out;
1847
1848         body = rb_event_data(event);
1849
1850         memcpy(body, data, length);
1851
1852         rb_commit(cpu_buffer, event);
1853
1854         ret = 0;
1855  out:
1856         ftrace_preempt_enable(resched);
1857
1858         return ret;
1859 }
1860 EXPORT_SYMBOL_GPL(ring_buffer_write);
1861
1862 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1863 {
1864         struct buffer_page *reader = cpu_buffer->reader_page;
1865         struct buffer_page *head = cpu_buffer->head_page;
1866         struct buffer_page *commit = cpu_buffer->commit_page;
1867
1868         return reader->read == rb_page_commit(reader) &&
1869                 (commit == reader ||
1870                  (commit == head &&
1871                   head->read == rb_page_commit(commit)));
1872 }
1873
1874 /**
1875  * ring_buffer_record_disable - stop all writes into the buffer
1876  * @buffer: The ring buffer to stop writes to.
1877  *
1878  * This prevents all writes to the buffer. Any attempt to write
1879  * to the buffer after this will fail and return NULL.
1880  *
1881  * The caller should call synchronize_sched() after this.
1882  */
1883 void ring_buffer_record_disable(struct ring_buffer *buffer)
1884 {
1885         atomic_inc(&buffer->record_disabled);
1886 }
1887 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1888
1889 /**
1890  * ring_buffer_record_enable - enable writes to the buffer
1891  * @buffer: The ring buffer to enable writes
1892  *
1893  * Note, multiple disables will need the same number of enables
1894  * to truely enable the writing (much like preempt_disable).
1895  */
1896 void ring_buffer_record_enable(struct ring_buffer *buffer)
1897 {
1898         atomic_dec(&buffer->record_disabled);
1899 }
1900 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1901
1902 /**
1903  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1904  * @buffer: The ring buffer to stop writes to.
1905  * @cpu: The CPU buffer to stop
1906  *
1907  * This prevents all writes to the buffer. Any attempt to write
1908  * to the buffer after this will fail and return NULL.
1909  *
1910  * The caller should call synchronize_sched() after this.
1911  */
1912 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1913 {
1914         struct ring_buffer_per_cpu *cpu_buffer;
1915
1916         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1917                 return;
1918
1919         cpu_buffer = buffer->buffers[cpu];
1920         atomic_inc(&cpu_buffer->record_disabled);
1921 }
1922 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1923
1924 /**
1925  * ring_buffer_record_enable_cpu - enable writes to the buffer
1926  * @buffer: The ring buffer to enable writes
1927  * @cpu: The CPU to enable.
1928  *
1929  * Note, multiple disables will need the same number of enables
1930  * to truely enable the writing (much like preempt_disable).
1931  */
1932 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1933 {
1934         struct ring_buffer_per_cpu *cpu_buffer;
1935
1936         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1937                 return;
1938
1939         cpu_buffer = buffer->buffers[cpu];
1940         atomic_dec(&cpu_buffer->record_disabled);
1941 }
1942 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1943
1944 /**
1945  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1946  * @buffer: The ring buffer
1947  * @cpu: The per CPU buffer to get the entries from.
1948  */
1949 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1950 {
1951         struct ring_buffer_per_cpu *cpu_buffer;
1952         unsigned long ret;
1953
1954         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1955                 return 0;
1956
1957         cpu_buffer = buffer->buffers[cpu];
1958         ret = (local_read(&cpu_buffer->entries) - cpu_buffer->overrun)
1959                 - cpu_buffer->read;
1960
1961         return ret;
1962 }
1963 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1964
1965 /**
1966  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1967  * @buffer: The ring buffer
1968  * @cpu: The per CPU buffer to get the number of overruns from
1969  */
1970 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1971 {
1972         struct ring_buffer_per_cpu *cpu_buffer;
1973         unsigned long ret;
1974
1975         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1976                 return 0;
1977
1978         cpu_buffer = buffer->buffers[cpu];
1979         ret = cpu_buffer->overrun;
1980
1981         return ret;
1982 }
1983 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1984
1985 /**
1986  * ring_buffer_nmi_dropped_cpu - get the number of nmis that were dropped
1987  * @buffer: The ring buffer
1988  * @cpu: The per CPU buffer to get the number of overruns from
1989  */
1990 unsigned long ring_buffer_nmi_dropped_cpu(struct ring_buffer *buffer, int cpu)
1991 {
1992         struct ring_buffer_per_cpu *cpu_buffer;
1993         unsigned long ret;
1994
1995         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1996                 return 0;
1997
1998         cpu_buffer = buffer->buffers[cpu];
1999         ret = cpu_buffer->nmi_dropped;
2000
2001         return ret;
2002 }
2003 EXPORT_SYMBOL_GPL(ring_buffer_nmi_dropped_cpu);
2004
2005 /**
2006  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2007  * @buffer: The ring buffer
2008  * @cpu: The per CPU buffer to get the number of overruns from
2009  */
2010 unsigned long
2011 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2012 {
2013         struct ring_buffer_per_cpu *cpu_buffer;
2014         unsigned long ret;
2015
2016         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2017                 return 0;
2018
2019         cpu_buffer = buffer->buffers[cpu];
2020         ret = cpu_buffer->commit_overrun;
2021
2022         return ret;
2023 }
2024 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2025
2026 /**
2027  * ring_buffer_entries - get the number of entries in a buffer
2028  * @buffer: The ring buffer
2029  *
2030  * Returns the total number of entries in the ring buffer
2031  * (all CPU entries)
2032  */
2033 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2034 {
2035         struct ring_buffer_per_cpu *cpu_buffer;
2036         unsigned long entries = 0;
2037         int cpu;
2038
2039         /* if you care about this being correct, lock the buffer */
2040         for_each_buffer_cpu(buffer, cpu) {
2041                 cpu_buffer = buffer->buffers[cpu];
2042                 entries += (local_read(&cpu_buffer->entries) -
2043                             cpu_buffer->overrun) - cpu_buffer->read;
2044         }
2045
2046         return entries;
2047 }
2048 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2049
2050 /**
2051  * ring_buffer_overrun_cpu - get the number of overruns in buffer
2052  * @buffer: The ring buffer
2053  *
2054  * Returns the total number of overruns in the ring buffer
2055  * (all CPU entries)
2056  */
2057 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2058 {
2059         struct ring_buffer_per_cpu *cpu_buffer;
2060         unsigned long overruns = 0;
2061         int cpu;
2062
2063         /* if you care about this being correct, lock the buffer */
2064         for_each_buffer_cpu(buffer, cpu) {
2065                 cpu_buffer = buffer->buffers[cpu];
2066                 overruns += cpu_buffer->overrun;
2067         }
2068
2069         return overruns;
2070 }
2071 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2072
2073 static void rb_iter_reset(struct ring_buffer_iter *iter)
2074 {
2075         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2076
2077         /* Iterator usage is expected to have record disabled */
2078         if (list_empty(&cpu_buffer->reader_page->list)) {
2079                 iter->head_page = cpu_buffer->head_page;
2080                 iter->head = cpu_buffer->head_page->read;
2081         } else {
2082                 iter->head_page = cpu_buffer->reader_page;
2083                 iter->head = cpu_buffer->reader_page->read;
2084         }
2085         if (iter->head)
2086                 iter->read_stamp = cpu_buffer->read_stamp;
2087         else
2088                 iter->read_stamp = iter->head_page->page->time_stamp;
2089 }
2090
2091 /**
2092  * ring_buffer_iter_reset - reset an iterator
2093  * @iter: The iterator to reset
2094  *
2095  * Resets the iterator, so that it will start from the beginning
2096  * again.
2097  */
2098 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2099 {
2100         struct ring_buffer_per_cpu *cpu_buffer;
2101         unsigned long flags;
2102
2103         if (!iter)
2104                 return;
2105
2106         cpu_buffer = iter->cpu_buffer;
2107
2108         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2109         rb_iter_reset(iter);
2110         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2111 }
2112 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2113
2114 /**
2115  * ring_buffer_iter_empty - check if an iterator has no more to read
2116  * @iter: The iterator to check
2117  */
2118 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2119 {
2120         struct ring_buffer_per_cpu *cpu_buffer;
2121
2122         cpu_buffer = iter->cpu_buffer;
2123
2124         return iter->head_page == cpu_buffer->commit_page &&
2125                 iter->head == rb_commit_index(cpu_buffer);
2126 }
2127 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2128
2129 static void
2130 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2131                      struct ring_buffer_event *event)
2132 {
2133         u64 delta;
2134
2135         switch (event->type_len) {
2136         case RINGBUF_TYPE_PADDING:
2137                 return;
2138
2139         case RINGBUF_TYPE_TIME_EXTEND:
2140                 delta = event->array[0];
2141                 delta <<= TS_SHIFT;
2142                 delta += event->time_delta;
2143                 cpu_buffer->read_stamp += delta;
2144                 return;
2145
2146         case RINGBUF_TYPE_TIME_STAMP:
2147                 /* FIXME: not implemented */
2148                 return;
2149
2150         case RINGBUF_TYPE_DATA:
2151                 cpu_buffer->read_stamp += event->time_delta;
2152                 return;
2153
2154         default:
2155                 BUG();
2156         }
2157         return;
2158 }
2159
2160 static void
2161 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2162                           struct ring_buffer_event *event)
2163 {
2164         u64 delta;
2165
2166         switch (event->type_len) {
2167         case RINGBUF_TYPE_PADDING:
2168                 return;
2169
2170         case RINGBUF_TYPE_TIME_EXTEND:
2171                 delta = event->array[0];
2172                 delta <<= TS_SHIFT;
2173                 delta += event->time_delta;
2174                 iter->read_stamp += delta;
2175                 return;
2176
2177         case RINGBUF_TYPE_TIME_STAMP:
2178                 /* FIXME: not implemented */
2179                 return;
2180
2181         case RINGBUF_TYPE_DATA:
2182                 iter->read_stamp += event->time_delta;
2183                 return;
2184
2185         default:
2186                 BUG();
2187         }
2188         return;
2189 }
2190
2191 static struct buffer_page *
2192 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2193 {
2194         struct buffer_page *reader = NULL;
2195         unsigned long flags;
2196         int nr_loops = 0;
2197
2198         local_irq_save(flags);
2199         __raw_spin_lock(&cpu_buffer->lock);
2200
2201  again:
2202         /*
2203          * This should normally only loop twice. But because the
2204          * start of the reader inserts an empty page, it causes
2205          * a case where we will loop three times. There should be no
2206          * reason to loop four times (that I know of).
2207          */
2208         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2209                 reader = NULL;
2210                 goto out;
2211         }
2212
2213         reader = cpu_buffer->reader_page;
2214
2215         /* If there's more to read, return this page */
2216         if (cpu_buffer->reader_page->read < rb_page_size(reader))
2217                 goto out;
2218
2219         /* Never should we have an index greater than the size */
2220         if (RB_WARN_ON(cpu_buffer,
2221                        cpu_buffer->reader_page->read > rb_page_size(reader)))
2222                 goto out;
2223
2224         /* check if we caught up to the tail */
2225         reader = NULL;
2226         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2227                 goto out;
2228
2229         /*
2230          * Splice the empty reader page into the list around the head.
2231          * Reset the reader page to size zero.
2232          */
2233
2234         reader = cpu_buffer->head_page;
2235         cpu_buffer->reader_page->list.next = reader->list.next;
2236         cpu_buffer->reader_page->list.prev = reader->list.prev;
2237
2238         local_set(&cpu_buffer->reader_page->write, 0);
2239         local_set(&cpu_buffer->reader_page->entries, 0);
2240         local_set(&cpu_buffer->reader_page->page->commit, 0);
2241
2242         /* Make the reader page now replace the head */
2243         reader->list.prev->next = &cpu_buffer->reader_page->list;
2244         reader->list.next->prev = &cpu_buffer->reader_page->list;
2245
2246         /*
2247          * If the tail is on the reader, then we must set the head
2248          * to the inserted page, otherwise we set it one before.
2249          */
2250         cpu_buffer->head_page = cpu_buffer->reader_page;
2251
2252         if (cpu_buffer->commit_page != reader)
2253                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2254
2255         /* Finally update the reader page to the new head */
2256         cpu_buffer->reader_page = reader;
2257         rb_reset_reader_page(cpu_buffer);
2258
2259         goto again;
2260
2261  out:
2262         __raw_spin_unlock(&cpu_buffer->lock);
2263         local_irq_restore(flags);
2264
2265         return reader;
2266 }
2267
2268 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2269 {
2270         struct ring_buffer_event *event;
2271         struct buffer_page *reader;
2272         unsigned length;
2273
2274         reader = rb_get_reader_page(cpu_buffer);
2275
2276         /* This function should not be called when buffer is empty */
2277         if (RB_WARN_ON(cpu_buffer, !reader))
2278                 return;
2279
2280         event = rb_reader_event(cpu_buffer);
2281
2282         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
2283                         || rb_discarded_event(event))
2284                 cpu_buffer->read++;
2285
2286         rb_update_read_stamp(cpu_buffer, event);
2287
2288         length = rb_event_length(event);
2289         cpu_buffer->reader_page->read += length;
2290 }
2291
2292 static void rb_advance_iter(struct ring_buffer_iter *iter)
2293 {
2294         struct ring_buffer *buffer;
2295         struct ring_buffer_per_cpu *cpu_buffer;
2296         struct ring_buffer_event *event;
2297         unsigned length;
2298
2299         cpu_buffer = iter->cpu_buffer;
2300         buffer = cpu_buffer->buffer;
2301
2302         /*
2303          * Check if we are at the end of the buffer.
2304          */
2305         if (iter->head >= rb_page_size(iter->head_page)) {
2306                 /* discarded commits can make the page empty */
2307                 if (iter->head_page == cpu_buffer->commit_page)
2308                         return;
2309                 rb_inc_iter(iter);
2310                 return;
2311         }
2312
2313         event = rb_iter_head_event(iter);
2314
2315         length = rb_event_length(event);
2316
2317         /*
2318          * This should not be called to advance the header if we are
2319          * at the tail of the buffer.
2320          */
2321         if (RB_WARN_ON(cpu_buffer,
2322                        (iter->head_page == cpu_buffer->commit_page) &&
2323                        (iter->head + length > rb_commit_index(cpu_buffer))))
2324                 return;
2325
2326         rb_update_iter_read_stamp(iter, event);
2327
2328         iter->head += length;
2329
2330         /* check for end of page padding */
2331         if ((iter->head >= rb_page_size(iter->head_page)) &&
2332             (iter->head_page != cpu_buffer->commit_page))
2333                 rb_advance_iter(iter);
2334 }
2335
2336 static struct ring_buffer_event *
2337 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2338 {
2339         struct ring_buffer_per_cpu *cpu_buffer;
2340         struct ring_buffer_event *event;
2341         struct buffer_page *reader;
2342         int nr_loops = 0;
2343
2344         cpu_buffer = buffer->buffers[cpu];
2345
2346  again:
2347         /*
2348          * We repeat when a timestamp is encountered. It is possible
2349          * to get multiple timestamps from an interrupt entering just
2350          * as one timestamp is about to be written, or from discarded
2351          * commits. The most that we can have is the number on a single page.
2352          */
2353         if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
2354                 return NULL;
2355
2356         reader = rb_get_reader_page(cpu_buffer);
2357         if (!reader)
2358                 return NULL;
2359
2360         event = rb_reader_event(cpu_buffer);
2361
2362         switch (event->type_len) {
2363         case RINGBUF_TYPE_PADDING:
2364                 if (rb_null_event(event))
2365                         RB_WARN_ON(cpu_buffer, 1);
2366                 /*
2367                  * Because the writer could be discarding every
2368                  * event it creates (which would probably be bad)
2369                  * if we were to go back to "again" then we may never
2370                  * catch up, and will trigger the warn on, or lock
2371                  * the box. Return the padding, and we will release
2372                  * the current locks, and try again.
2373                  */
2374                 rb_advance_reader(cpu_buffer);
2375                 return event;
2376
2377         case RINGBUF_TYPE_TIME_EXTEND:
2378                 /* Internal data, OK to advance */
2379                 rb_advance_reader(cpu_buffer);
2380                 goto again;
2381
2382         case RINGBUF_TYPE_TIME_STAMP:
2383                 /* FIXME: not implemented */
2384                 rb_advance_reader(cpu_buffer);
2385                 goto again;
2386
2387         case RINGBUF_TYPE_DATA:
2388                 if (ts) {
2389                         *ts = cpu_buffer->read_stamp + event->time_delta;
2390                         ring_buffer_normalize_time_stamp(buffer,
2391                                                          cpu_buffer->cpu, ts);
2392                 }
2393                 return event;
2394
2395         default:
2396                 BUG();
2397         }
2398
2399         return NULL;
2400 }
2401 EXPORT_SYMBOL_GPL(ring_buffer_peek);
2402
2403 static struct ring_buffer_event *
2404 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2405 {
2406         struct ring_buffer *buffer;
2407         struct ring_buffer_per_cpu *cpu_buffer;
2408         struct ring_buffer_event *event;
2409         int nr_loops = 0;
2410
2411         if (ring_buffer_iter_empty(iter))
2412                 return NULL;
2413
2414         cpu_buffer = iter->cpu_buffer;
2415         buffer = cpu_buffer->buffer;
2416
2417  again:
2418         /*
2419          * We repeat when a timestamp is encountered.
2420          * We can get multiple timestamps by nested interrupts or also
2421          * if filtering is on (discarding commits). Since discarding
2422          * commits can be frequent we can get a lot of timestamps.
2423          * But we limit them by not adding timestamps if they begin
2424          * at the start of a page.
2425          */
2426         if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
2427                 return NULL;
2428
2429         if (rb_per_cpu_empty(cpu_buffer))
2430                 return NULL;
2431
2432         event = rb_iter_head_event(iter);
2433
2434         switch (event->type_len) {
2435         case RINGBUF_TYPE_PADDING:
2436                 if (rb_null_event(event)) {
2437                         rb_inc_iter(iter);
2438                         goto again;
2439                 }
2440                 rb_advance_iter(iter);
2441                 return event;
2442
2443         case RINGBUF_TYPE_TIME_EXTEND:
2444                 /* Internal data, OK to advance */
2445                 rb_advance_iter(iter);
2446                 goto again;
2447
2448         case RINGBUF_TYPE_TIME_STAMP:
2449                 /* FIXME: not implemented */
2450                 rb_advance_iter(iter);
2451                 goto again;
2452
2453         case RINGBUF_TYPE_DATA:
2454                 if (ts) {
2455                         *ts = iter->read_stamp + event->time_delta;
2456                         ring_buffer_normalize_time_stamp(buffer,
2457                                                          cpu_buffer->cpu, ts);
2458                 }
2459                 return event;
2460
2461         default:
2462                 BUG();
2463         }
2464
2465         return NULL;
2466 }
2467 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2468
2469 static inline int rb_ok_to_lock(void)
2470 {
2471         /*
2472          * If an NMI die dumps out the content of the ring buffer
2473          * do not grab locks. We also permanently disable the ring
2474          * buffer too. A one time deal is all you get from reading
2475          * the ring buffer from an NMI.
2476          */
2477         if (likely(!in_nmi() && !oops_in_progress))
2478                 return 1;
2479
2480         tracing_off_permanent();
2481         return 0;
2482 }
2483
2484 /**
2485  * ring_buffer_peek - peek at the next event to be read
2486  * @buffer: The ring buffer to read
2487  * @cpu: The cpu to peak at
2488  * @ts: The timestamp counter of this event.
2489  *
2490  * This will return the event that will be read next, but does
2491  * not consume the data.
2492  */
2493 struct ring_buffer_event *
2494 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2495 {
2496         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2497         struct ring_buffer_event *event;
2498         unsigned long flags;
2499         int dolock;
2500
2501         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2502                 return NULL;
2503
2504         dolock = rb_ok_to_lock();
2505  again:
2506         local_irq_save(flags);
2507         if (dolock)
2508                 spin_lock(&cpu_buffer->reader_lock);
2509         event = rb_buffer_peek(buffer, cpu, ts);
2510         if (dolock)
2511                 spin_unlock(&cpu_buffer->reader_lock);
2512         local_irq_restore(flags);
2513
2514         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2515                 cpu_relax();
2516                 goto again;
2517         }
2518
2519         return event;
2520 }
2521
2522 /**
2523  * ring_buffer_iter_peek - peek at the next event to be read
2524  * @iter: The ring buffer iterator
2525  * @ts: The timestamp counter of this event.
2526  *
2527  * This will return the event that will be read next, but does
2528  * not increment the iterator.
2529  */
2530 struct ring_buffer_event *
2531 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2532 {
2533         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2534         struct ring_buffer_event *event;
2535         unsigned long flags;
2536
2537  again:
2538         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2539         event = rb_iter_peek(iter, ts);
2540         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2541
2542         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2543                 cpu_relax();
2544                 goto again;
2545         }
2546
2547         return event;
2548 }
2549
2550 /**
2551  * ring_buffer_consume - return an event and consume it
2552  * @buffer: The ring buffer to get the next event from
2553  *
2554  * Returns the next event in the ring buffer, and that event is consumed.
2555  * Meaning, that sequential reads will keep returning a different event,
2556  * and eventually empty the ring buffer if the producer is slower.
2557  */
2558 struct ring_buffer_event *
2559 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2560 {
2561         struct ring_buffer_per_cpu *cpu_buffer;
2562         struct ring_buffer_event *event = NULL;
2563         unsigned long flags;
2564         int dolock;
2565
2566         dolock = rb_ok_to_lock();
2567
2568  again:
2569         /* might be called in atomic */
2570         preempt_disable();
2571
2572         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2573                 goto out;
2574
2575         cpu_buffer = buffer->buffers[cpu];
2576         local_irq_save(flags);
2577         if (dolock)
2578                 spin_lock(&cpu_buffer->reader_lock);
2579
2580         event = rb_buffer_peek(buffer, cpu, ts);
2581         if (!event)
2582                 goto out_unlock;
2583
2584         rb_advance_reader(cpu_buffer);
2585
2586  out_unlock:
2587         if (dolock)
2588                 spin_unlock(&cpu_buffer->reader_lock);
2589         local_irq_restore(flags);
2590
2591  out:
2592         preempt_enable();
2593
2594         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2595                 cpu_relax();
2596                 goto again;
2597         }
2598
2599         return event;
2600 }
2601 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2602
2603 /**
2604  * ring_buffer_read_start - start a non consuming read of the buffer
2605  * @buffer: The ring buffer to read from
2606  * @cpu: The cpu buffer to iterate over
2607  *
2608  * This starts up an iteration through the buffer. It also disables
2609  * the recording to the buffer until the reading is finished.
2610  * This prevents the reading from being corrupted. This is not
2611  * a consuming read, so a producer is not expected.
2612  *
2613  * Must be paired with ring_buffer_finish.
2614  */
2615 struct ring_buffer_iter *
2616 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2617 {
2618         struct ring_buffer_per_cpu *cpu_buffer;
2619         struct ring_buffer_iter *iter;
2620         unsigned long flags;
2621
2622         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2623                 return NULL;
2624
2625         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2626         if (!iter)
2627                 return NULL;
2628
2629         cpu_buffer = buffer->buffers[cpu];
2630
2631         iter->cpu_buffer = cpu_buffer;
2632
2633         atomic_inc(&cpu_buffer->record_disabled);
2634         synchronize_sched();
2635
2636         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2637         __raw_spin_lock(&cpu_buffer->lock);
2638         rb_iter_reset(iter);
2639         __raw_spin_unlock(&cpu_buffer->lock);
2640         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2641
2642         return iter;
2643 }
2644 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2645
2646 /**
2647  * ring_buffer_finish - finish reading the iterator of the buffer
2648  * @iter: The iterator retrieved by ring_buffer_start
2649  *
2650  * This re-enables the recording to the buffer, and frees the
2651  * iterator.
2652  */
2653 void
2654 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2655 {
2656         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2657
2658         atomic_dec(&cpu_buffer->record_disabled);
2659         kfree(iter);
2660 }
2661 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2662
2663 /**
2664  * ring_buffer_read - read the next item in the ring buffer by the iterator
2665  * @iter: The ring buffer iterator
2666  * @ts: The time stamp of the event read.
2667  *
2668  * This reads the next event in the ring buffer and increments the iterator.
2669  */
2670 struct ring_buffer_event *
2671 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2672 {
2673         struct ring_buffer_event *event;
2674         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2675         unsigned long flags;
2676
2677  again:
2678         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2679         event = rb_iter_peek(iter, ts);
2680         if (!event)
2681                 goto out;
2682
2683         rb_advance_iter(iter);
2684  out:
2685         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2686
2687         if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2688                 cpu_relax();
2689                 goto again;
2690         }
2691
2692         return event;
2693 }
2694 EXPORT_SYMBOL_GPL(ring_buffer_read);
2695
2696 /**
2697  * ring_buffer_size - return the size of the ring buffer (in bytes)
2698  * @buffer: The ring buffer.
2699  */
2700 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2701 {
2702         return BUF_PAGE_SIZE * buffer->pages;
2703 }
2704 EXPORT_SYMBOL_GPL(ring_buffer_size);
2705
2706 static void
2707 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2708 {
2709         cpu_buffer->head_page
2710                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2711         local_set(&cpu_buffer->head_page->write, 0);
2712         local_set(&cpu_buffer->head_page->entries, 0);
2713         local_set(&cpu_buffer->head_page->page->commit, 0);
2714
2715         cpu_buffer->head_page->read = 0;
2716
2717         cpu_buffer->tail_page = cpu_buffer->head_page;
2718         cpu_buffer->commit_page = cpu_buffer->head_page;
2719
2720         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2721         local_set(&cpu_buffer->reader_page->write, 0);
2722         local_set(&cpu_buffer->reader_page->entries, 0);
2723         local_set(&cpu_buffer->reader_page->page->commit, 0);
2724         cpu_buffer->reader_page->read = 0;
2725
2726         cpu_buffer->nmi_dropped = 0;
2727         cpu_buffer->commit_overrun = 0;
2728         cpu_buffer->overrun = 0;
2729         cpu_buffer->read = 0;
2730         local_set(&cpu_buffer->entries, 0);
2731         local_set(&cpu_buffer->committing, 0);
2732         local_set(&cpu_buffer->commits, 0);
2733
2734         cpu_buffer->write_stamp = 0;
2735         cpu_buffer->read_stamp = 0;
2736 }
2737
2738 /**
2739  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2740  * @buffer: The ring buffer to reset a per cpu buffer of
2741  * @cpu: The CPU buffer to be reset
2742  */
2743 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2744 {
2745         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2746         unsigned long flags;
2747
2748         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2749                 return;
2750
2751         atomic_inc(&cpu_buffer->record_disabled);
2752
2753         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2754
2755         __raw_spin_lock(&cpu_buffer->lock);
2756
2757         rb_reset_cpu(cpu_buffer);
2758
2759         __raw_spin_unlock(&cpu_buffer->lock);
2760
2761         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2762
2763         atomic_dec(&cpu_buffer->record_disabled);
2764 }
2765 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2766
2767 /**
2768  * ring_buffer_reset - reset a ring buffer
2769  * @buffer: The ring buffer to reset all cpu buffers
2770  */
2771 void ring_buffer_reset(struct ring_buffer *buffer)
2772 {
2773         int cpu;
2774
2775         for_each_buffer_cpu(buffer, cpu)
2776                 ring_buffer_reset_cpu(buffer, cpu);
2777 }
2778 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2779
2780 /**
2781  * rind_buffer_empty - is the ring buffer empty?
2782  * @buffer: The ring buffer to test
2783  */
2784 int ring_buffer_empty(struct ring_buffer *buffer)
2785 {
2786         struct ring_buffer_per_cpu *cpu_buffer;
2787         unsigned long flags;
2788         int dolock;
2789         int cpu;
2790         int ret;
2791
2792         dolock = rb_ok_to_lock();
2793
2794         /* yes this is racy, but if you don't like the race, lock the buffer */
2795         for_each_buffer_cpu(buffer, cpu) {
2796                 cpu_buffer = buffer->buffers[cpu];
2797                 local_irq_save(flags);
2798                 if (dolock)
2799                         spin_lock(&cpu_buffer->reader_lock);
2800                 ret = rb_per_cpu_empty(cpu_buffer);
2801                 if (dolock)
2802                         spin_unlock(&cpu_buffer->reader_lock);
2803                 local_irq_restore(flags);
2804
2805                 if (!ret)
2806                         return 0;
2807         }
2808
2809         return 1;
2810 }
2811 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2812
2813 /**
2814  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2815  * @buffer: The ring buffer
2816  * @cpu: The CPU buffer to test
2817  */
2818 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2819 {
2820         struct ring_buffer_per_cpu *cpu_buffer;
2821         unsigned long flags;
2822         int dolock;
2823         int ret;
2824
2825         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2826                 return 1;
2827
2828         dolock = rb_ok_to_lock();
2829
2830         cpu_buffer = buffer->buffers[cpu];
2831         local_irq_save(flags);
2832         if (dolock)
2833                 spin_lock(&cpu_buffer->reader_lock);
2834         ret = rb_per_cpu_empty(cpu_buffer);
2835         if (dolock)
2836                 spin_unlock(&cpu_buffer->reader_lock);
2837         local_irq_restore(flags);
2838
2839         return ret;
2840 }
2841 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2842
2843 /**
2844  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2845  * @buffer_a: One buffer to swap with
2846  * @buffer_b: The other buffer to swap with
2847  *
2848  * This function is useful for tracers that want to take a "snapshot"
2849  * of a CPU buffer and has another back up buffer lying around.
2850  * it is expected that the tracer handles the cpu buffer not being
2851  * used at the moment.
2852  */
2853 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2854                          struct ring_buffer *buffer_b, int cpu)
2855 {
2856         struct ring_buffer_per_cpu *cpu_buffer_a;
2857         struct ring_buffer_per_cpu *cpu_buffer_b;
2858         int ret = -EINVAL;
2859
2860         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2861             !cpumask_test_cpu(cpu, buffer_b->cpumask))
2862                 goto out;
2863
2864         /* At least make sure the two buffers are somewhat the same */
2865         if (buffer_a->pages != buffer_b->pages)
2866                 goto out;
2867
2868         ret = -EAGAIN;
2869
2870         if (ring_buffer_flags != RB_BUFFERS_ON)
2871                 goto out;
2872
2873         if (atomic_read(&buffer_a->record_disabled))
2874                 goto out;
2875
2876         if (atomic_read(&buffer_b->record_disabled))
2877                 goto out;
2878
2879         cpu_buffer_a = buffer_a->buffers[cpu];
2880         cpu_buffer_b = buffer_b->buffers[cpu];
2881
2882         if (atomic_read(&cpu_buffer_a->record_disabled))
2883                 goto out;
2884
2885         if (atomic_read(&cpu_buffer_b->record_disabled))
2886                 goto out;
2887
2888         /*
2889          * We can't do a synchronize_sched here because this
2890          * function can be called in atomic context.
2891          * Normally this will be called from the same CPU as cpu.
2892          * If not it's up to the caller to protect this.
2893          */
2894         atomic_inc(&cpu_buffer_a->record_disabled);
2895         atomic_inc(&cpu_buffer_b->record_disabled);
2896
2897         buffer_a->buffers[cpu] = cpu_buffer_b;
2898         buffer_b->buffers[cpu] = cpu_buffer_a;
2899
2900         cpu_buffer_b->buffer = buffer_a;
2901         cpu_buffer_a->buffer = buffer_b;
2902
2903         atomic_dec(&cpu_buffer_a->record_disabled);
2904         atomic_dec(&cpu_buffer_b->record_disabled);
2905
2906         ret = 0;
2907 out:
2908         return ret;
2909 }
2910 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2911
2912 /**
2913  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2914  * @buffer: the buffer to allocate for.
2915  *
2916  * This function is used in conjunction with ring_buffer_read_page.
2917  * When reading a full page from the ring buffer, these functions
2918  * can be used to speed up the process. The calling function should
2919  * allocate a few pages first with this function. Then when it
2920  * needs to get pages from the ring buffer, it passes the result
2921  * of this function into ring_buffer_read_page, which will swap
2922  * the page that was allocated, with the read page of the buffer.
2923  *
2924  * Returns:
2925  *  The page allocated, or NULL on error.
2926  */
2927 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2928 {
2929         struct buffer_data_page *bpage;
2930         unsigned long addr;
2931
2932         addr = __get_free_page(GFP_KERNEL);
2933         if (!addr)
2934                 return NULL;
2935
2936         bpage = (void *)addr;
2937
2938         rb_init_page(bpage);
2939
2940         return bpage;
2941 }
2942 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
2943
2944 /**
2945  * ring_buffer_free_read_page - free an allocated read page
2946  * @buffer: the buffer the page was allocate for
2947  * @data: the page to free
2948  *
2949  * Free a page allocated from ring_buffer_alloc_read_page.
2950  */
2951 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2952 {
2953         free_page((unsigned long)data);
2954 }
2955 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
2956
2957 /**
2958  * ring_buffer_read_page - extract a page from the ring buffer
2959  * @buffer: buffer to extract from
2960  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2961  * @len: amount to extract
2962  * @cpu: the cpu of the buffer to extract
2963  * @full: should the extraction only happen when the page is full.
2964  *
2965  * This function will pull out a page from the ring buffer and consume it.
2966  * @data_page must be the address of the variable that was returned
2967  * from ring_buffer_alloc_read_page. This is because the page might be used
2968  * to swap with a page in the ring buffer.
2969  *
2970  * for example:
2971  *      rpage = ring_buffer_alloc_read_page(buffer);
2972  *      if (!rpage)
2973  *              return error;
2974  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
2975  *      if (ret >= 0)
2976  *              process_page(rpage, ret);
2977  *
2978  * When @full is set, the function will not return true unless
2979  * the writer is off the reader page.
2980  *
2981  * Note: it is up to the calling functions to handle sleeps and wakeups.
2982  *  The ring buffer can be used anywhere in the kernel and can not
2983  *  blindly call wake_up. The layer that uses the ring buffer must be
2984  *  responsible for that.
2985  *
2986  * Returns:
2987  *  >=0 if data has been transferred, returns the offset of consumed data.
2988  *  <0 if no data has been transferred.
2989  */
2990 int ring_buffer_read_page(struct ring_buffer *buffer,
2991                           void **data_page, size_t len, int cpu, int full)
2992 {
2993         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2994         struct ring_buffer_event *event;
2995         struct buffer_data_page *bpage;
2996         struct buffer_page *reader;
2997         unsigned long flags;
2998         unsigned int commit;
2999         unsigned int read;
3000         u64 save_timestamp;
3001         int ret = -1;
3002
3003         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3004                 goto out;
3005
3006         /*
3007          * If len is not big enough to hold the page header, then
3008          * we can not copy anything.
3009          */
3010         if (len <= BUF_PAGE_HDR_SIZE)
3011                 goto out;
3012
3013         len -= BUF_PAGE_HDR_SIZE;
3014
3015         if (!data_page)
3016                 goto out;
3017
3018         bpage = *data_page;
3019         if (!bpage)
3020                 goto out;
3021
3022         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3023
3024         reader = rb_get_reader_page(cpu_buffer);
3025         if (!reader)
3026                 goto out_unlock;
3027
3028         event = rb_reader_event(cpu_buffer);
3029
3030         read = reader->read;
3031         commit = rb_page_commit(reader);
3032
3033         /*
3034          * If this page has been partially read or
3035          * if len is not big enough to read the rest of the page or
3036          * a writer is still on the page, then
3037          * we must copy the data from the page to the buffer.
3038          * Otherwise, we can simply swap the page with the one passed in.
3039          */
3040         if (read || (len < (commit - read)) ||
3041             cpu_buffer->reader_page == cpu_buffer->commit_page) {
3042                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3043                 unsigned int rpos = read;
3044                 unsigned int pos = 0;
3045                 unsigned int size;
3046
3047                 if (full)
3048                         goto out_unlock;
3049
3050                 if (len > (commit - read))
3051                         len = (commit - read);
3052
3053                 size = rb_event_length(event);
3054
3055                 if (len < size)
3056                         goto out_unlock;
3057
3058                 /* save the current timestamp, since the user will need it */
3059                 save_timestamp = cpu_buffer->read_stamp;
3060
3061                 /* Need to copy one event at a time */
3062                 do {
3063                         memcpy(bpage->data + pos, rpage->data + rpos, size);
3064
3065                         len -= size;
3066
3067                         rb_advance_reader(cpu_buffer);
3068                         rpos = reader->read;
3069                         pos += size;
3070
3071                         event = rb_reader_event(cpu_buffer);
3072                         size = rb_event_length(event);
3073                 } while (len > size);
3074
3075                 /* update bpage */
3076                 local_set(&bpage->commit, pos);
3077                 bpage->time_stamp = save_timestamp;
3078
3079                 /* we copied everything to the beginning */
3080                 read = 0;
3081         } else {
3082                 /* update the entry counter */
3083                 cpu_buffer->read += local_read(&reader->entries);
3084
3085                 /* swap the pages */
3086                 rb_init_page(bpage);
3087                 bpage = reader->page;
3088                 reader->page = *data_page;
3089                 local_set(&reader->write, 0);
3090                 local_set(&reader->entries, 0);
3091                 reader->read = 0;
3092                 *data_page = bpage;
3093         }
3094         ret = read;
3095
3096  out_unlock:
3097         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3098
3099  out:
3100         return ret;
3101 }
3102 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3103
3104 static ssize_t
3105 rb_simple_read(struct file *filp, char __user *ubuf,
3106                size_t cnt, loff_t *ppos)
3107 {
3108         unsigned long *p = filp->private_data;
3109         char buf[64];
3110         int r;
3111
3112         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3113                 r = sprintf(buf, "permanently disabled\n");
3114         else
3115                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3116
3117         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3118 }
3119
3120 static ssize_t
3121 rb_simple_write(struct file *filp, const char __user *ubuf,
3122                 size_t cnt, loff_t *ppos)
3123 {
3124         unsigned long *p = filp->private_data;
3125         char buf[64];
3126         unsigned long val;
3127         int ret;
3128
3129         if (cnt >= sizeof(buf))
3130                 return -EINVAL;
3131
3132         if (copy_from_user(&buf, ubuf, cnt))
3133                 return -EFAULT;
3134
3135         buf[cnt] = 0;
3136
3137         ret = strict_strtoul(buf, 10, &val);
3138         if (ret < 0)
3139                 return ret;
3140
3141         if (val)
3142                 set_bit(RB_BUFFERS_ON_BIT, p);
3143         else
3144                 clear_bit(RB_BUFFERS_ON_BIT, p);
3145
3146         (*ppos)++;
3147
3148         return cnt;
3149 }
3150
3151 static const struct file_operations rb_simple_fops = {
3152         .open           = tracing_open_generic,
3153         .read           = rb_simple_read,
3154         .write          = rb_simple_write,
3155 };
3156
3157
3158 static __init int rb_init_debugfs(void)
3159 {
3160         struct dentry *d_tracer;
3161
3162         d_tracer = tracing_init_dentry();
3163
3164         trace_create_file("tracing_on", 0644, d_tracer,
3165                             &ring_buffer_flags, &rb_simple_fops);
3166
3167         return 0;
3168 }
3169
3170 fs_initcall(rb_init_debugfs);
3171
3172 #ifdef CONFIG_HOTPLUG_CPU
3173 static int rb_cpu_notify(struct notifier_block *self,
3174                          unsigned long action, void *hcpu)
3175 {
3176         struct ring_buffer *buffer =
3177                 container_of(self, struct ring_buffer, cpu_notify);
3178         long cpu = (long)hcpu;
3179
3180         switch (action) {
3181         case CPU_UP_PREPARE:
3182         case CPU_UP_PREPARE_FROZEN:
3183                 if (cpumask_test_cpu(cpu, buffer->cpumask))
3184                         return NOTIFY_OK;
3185
3186                 buffer->buffers[cpu] =
3187                         rb_allocate_cpu_buffer(buffer, cpu);
3188                 if (!buffer->buffers[cpu]) {
3189                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3190                              cpu);
3191                         return NOTIFY_OK;
3192                 }
3193                 smp_wmb();
3194                 cpumask_set_cpu(cpu, buffer->cpumask);
3195                 break;
3196         case CPU_DOWN_PREPARE:
3197         case CPU_DOWN_PREPARE_FROZEN:
3198                 /*
3199                  * Do nothing.
3200                  *  If we were to free the buffer, then the user would
3201                  *  lose any trace that was in the buffer.
3202                  */
3203                 break;
3204         default:
3205                 break;
3206         }
3207         return NOTIFY_OK;
3208 }
3209 #endif