Merge branch 'linus' into perfcounters/core
[safe/jmp/linux-2.6] / kernel / sys.c
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/perf_counter.h>
18 #include <linux/resource.h>
19 #include <linux/kernel.h>
20 #include <linux/kexec.h>
21 #include <linux/workqueue.h>
22 #include <linux/capability.h>
23 #include <linux/device.h>
24 #include <linux/key.h>
25 #include <linux/times.h>
26 #include <linux/posix-timers.h>
27 #include <linux/security.h>
28 #include <linux/dcookies.h>
29 #include <linux/suspend.h>
30 #include <linux/tty.h>
31 #include <linux/signal.h>
32 #include <linux/cn_proc.h>
33 #include <linux/getcpu.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/seccomp.h>
36 #include <linux/cpu.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39
40 #include <linux/compat.h>
41 #include <linux/syscalls.h>
42 #include <linux/kprobes.h>
43 #include <linux/user_namespace.h>
44
45 #include <asm/uaccess.h>
46 #include <asm/io.h>
47 #include <asm/unistd.h>
48
49 #ifndef SET_UNALIGN_CTL
50 # define SET_UNALIGN_CTL(a,b)   (-EINVAL)
51 #endif
52 #ifndef GET_UNALIGN_CTL
53 # define GET_UNALIGN_CTL(a,b)   (-EINVAL)
54 #endif
55 #ifndef SET_FPEMU_CTL
56 # define SET_FPEMU_CTL(a,b)     (-EINVAL)
57 #endif
58 #ifndef GET_FPEMU_CTL
59 # define GET_FPEMU_CTL(a,b)     (-EINVAL)
60 #endif
61 #ifndef SET_FPEXC_CTL
62 # define SET_FPEXC_CTL(a,b)     (-EINVAL)
63 #endif
64 #ifndef GET_FPEXC_CTL
65 # define GET_FPEXC_CTL(a,b)     (-EINVAL)
66 #endif
67 #ifndef GET_ENDIAN
68 # define GET_ENDIAN(a,b)        (-EINVAL)
69 #endif
70 #ifndef SET_ENDIAN
71 # define SET_ENDIAN(a,b)        (-EINVAL)
72 #endif
73 #ifndef GET_TSC_CTL
74 # define GET_TSC_CTL(a)         (-EINVAL)
75 #endif
76 #ifndef SET_TSC_CTL
77 # define SET_TSC_CTL(a)         (-EINVAL)
78 #endif
79
80 /*
81  * this is where the system-wide overflow UID and GID are defined, for
82  * architectures that now have 32-bit UID/GID but didn't in the past
83  */
84
85 int overflowuid = DEFAULT_OVERFLOWUID;
86 int overflowgid = DEFAULT_OVERFLOWGID;
87
88 #ifdef CONFIG_UID16
89 EXPORT_SYMBOL(overflowuid);
90 EXPORT_SYMBOL(overflowgid);
91 #endif
92
93 /*
94  * the same as above, but for filesystems which can only store a 16-bit
95  * UID and GID. as such, this is needed on all architectures
96  */
97
98 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
99 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
100
101 EXPORT_SYMBOL(fs_overflowuid);
102 EXPORT_SYMBOL(fs_overflowgid);
103
104 /*
105  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
106  */
107
108 int C_A_D = 1;
109 struct pid *cad_pid;
110 EXPORT_SYMBOL(cad_pid);
111
112 /*
113  * If set, this is used for preparing the system to power off.
114  */
115
116 void (*pm_power_off_prepare)(void);
117
118 /*
119  * set the priority of a task
120  * - the caller must hold the RCU read lock
121  */
122 static int set_one_prio(struct task_struct *p, int niceval, int error)
123 {
124         const struct cred *cred = current_cred(), *pcred = __task_cred(p);
125         int no_nice;
126
127         if (pcred->uid  != cred->euid &&
128             pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
129                 error = -EPERM;
130                 goto out;
131         }
132         if (niceval < task_nice(p) && !can_nice(p, niceval)) {
133                 error = -EACCES;
134                 goto out;
135         }
136         no_nice = security_task_setnice(p, niceval);
137         if (no_nice) {
138                 error = no_nice;
139                 goto out;
140         }
141         if (error == -ESRCH)
142                 error = 0;
143         set_user_nice(p, niceval);
144 out:
145         return error;
146 }
147
148 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
149 {
150         struct task_struct *g, *p;
151         struct user_struct *user;
152         const struct cred *cred = current_cred();
153         int error = -EINVAL;
154         struct pid *pgrp;
155
156         if (which > PRIO_USER || which < PRIO_PROCESS)
157                 goto out;
158
159         /* normalize: avoid signed division (rounding problems) */
160         error = -ESRCH;
161         if (niceval < -20)
162                 niceval = -20;
163         if (niceval > 19)
164                 niceval = 19;
165
166         read_lock(&tasklist_lock);
167         switch (which) {
168                 case PRIO_PROCESS:
169                         if (who)
170                                 p = find_task_by_vpid(who);
171                         else
172                                 p = current;
173                         if (p)
174                                 error = set_one_prio(p, niceval, error);
175                         break;
176                 case PRIO_PGRP:
177                         if (who)
178                                 pgrp = find_vpid(who);
179                         else
180                                 pgrp = task_pgrp(current);
181                         do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
182                                 error = set_one_prio(p, niceval, error);
183                         } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
184                         break;
185                 case PRIO_USER:
186                         user = (struct user_struct *) cred->user;
187                         if (!who)
188                                 who = cred->uid;
189                         else if ((who != cred->uid) &&
190                                  !(user = find_user(who)))
191                                 goto out_unlock;        /* No processes for this user */
192
193                         do_each_thread(g, p)
194                                 if (__task_cred(p)->uid == who)
195                                         error = set_one_prio(p, niceval, error);
196                         while_each_thread(g, p);
197                         if (who != cred->uid)
198                                 free_uid(user);         /* For find_user() */
199                         break;
200         }
201 out_unlock:
202         read_unlock(&tasklist_lock);
203 out:
204         return error;
205 }
206
207 /*
208  * Ugh. To avoid negative return values, "getpriority()" will
209  * not return the normal nice-value, but a negated value that
210  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
211  * to stay compatible.
212  */
213 SYSCALL_DEFINE2(getpriority, int, which, int, who)
214 {
215         struct task_struct *g, *p;
216         struct user_struct *user;
217         const struct cred *cred = current_cred();
218         long niceval, retval = -ESRCH;
219         struct pid *pgrp;
220
221         if (which > PRIO_USER || which < PRIO_PROCESS)
222                 return -EINVAL;
223
224         read_lock(&tasklist_lock);
225         switch (which) {
226                 case PRIO_PROCESS:
227                         if (who)
228                                 p = find_task_by_vpid(who);
229                         else
230                                 p = current;
231                         if (p) {
232                                 niceval = 20 - task_nice(p);
233                                 if (niceval > retval)
234                                         retval = niceval;
235                         }
236                         break;
237                 case PRIO_PGRP:
238                         if (who)
239                                 pgrp = find_vpid(who);
240                         else
241                                 pgrp = task_pgrp(current);
242                         do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
243                                 niceval = 20 - task_nice(p);
244                                 if (niceval > retval)
245                                         retval = niceval;
246                         } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
247                         break;
248                 case PRIO_USER:
249                         user = (struct user_struct *) cred->user;
250                         if (!who)
251                                 who = cred->uid;
252                         else if ((who != cred->uid) &&
253                                  !(user = find_user(who)))
254                                 goto out_unlock;        /* No processes for this user */
255
256                         do_each_thread(g, p)
257                                 if (__task_cred(p)->uid == who) {
258                                         niceval = 20 - task_nice(p);
259                                         if (niceval > retval)
260                                                 retval = niceval;
261                                 }
262                         while_each_thread(g, p);
263                         if (who != cred->uid)
264                                 free_uid(user);         /* for find_user() */
265                         break;
266         }
267 out_unlock:
268         read_unlock(&tasklist_lock);
269
270         return retval;
271 }
272
273 /**
274  *      emergency_restart - reboot the system
275  *
276  *      Without shutting down any hardware or taking any locks
277  *      reboot the system.  This is called when we know we are in
278  *      trouble so this is our best effort to reboot.  This is
279  *      safe to call in interrupt context.
280  */
281 void emergency_restart(void)
282 {
283         machine_emergency_restart();
284 }
285 EXPORT_SYMBOL_GPL(emergency_restart);
286
287 void kernel_restart_prepare(char *cmd)
288 {
289         blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
290         system_state = SYSTEM_RESTART;
291         device_shutdown();
292         sysdev_shutdown();
293 }
294
295 /**
296  *      kernel_restart - reboot the system
297  *      @cmd: pointer to buffer containing command to execute for restart
298  *              or %NULL
299  *
300  *      Shutdown everything and perform a clean reboot.
301  *      This is not safe to call in interrupt context.
302  */
303 void kernel_restart(char *cmd)
304 {
305         kernel_restart_prepare(cmd);
306         if (!cmd)
307                 printk(KERN_EMERG "Restarting system.\n");
308         else
309                 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
310         machine_restart(cmd);
311 }
312 EXPORT_SYMBOL_GPL(kernel_restart);
313
314 static void kernel_shutdown_prepare(enum system_states state)
315 {
316         blocking_notifier_call_chain(&reboot_notifier_list,
317                 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
318         system_state = state;
319         device_shutdown();
320 }
321 /**
322  *      kernel_halt - halt the system
323  *
324  *      Shutdown everything and perform a clean system halt.
325  */
326 void kernel_halt(void)
327 {
328         kernel_shutdown_prepare(SYSTEM_HALT);
329         sysdev_shutdown();
330         printk(KERN_EMERG "System halted.\n");
331         machine_halt();
332 }
333
334 EXPORT_SYMBOL_GPL(kernel_halt);
335
336 /**
337  *      kernel_power_off - power_off the system
338  *
339  *      Shutdown everything and perform a clean system power_off.
340  */
341 void kernel_power_off(void)
342 {
343         kernel_shutdown_prepare(SYSTEM_POWER_OFF);
344         if (pm_power_off_prepare)
345                 pm_power_off_prepare();
346         disable_nonboot_cpus();
347         sysdev_shutdown();
348         printk(KERN_EMERG "Power down.\n");
349         machine_power_off();
350 }
351 EXPORT_SYMBOL_GPL(kernel_power_off);
352 /*
353  * Reboot system call: for obvious reasons only root may call it,
354  * and even root needs to set up some magic numbers in the registers
355  * so that some mistake won't make this reboot the whole machine.
356  * You can also set the meaning of the ctrl-alt-del-key here.
357  *
358  * reboot doesn't sync: do that yourself before calling this.
359  */
360 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
361                 void __user *, arg)
362 {
363         char buffer[256];
364         int ret = 0;
365
366         /* We only trust the superuser with rebooting the system. */
367         if (!capable(CAP_SYS_BOOT))
368                 return -EPERM;
369
370         /* For safety, we require "magic" arguments. */
371         if (magic1 != LINUX_REBOOT_MAGIC1 ||
372             (magic2 != LINUX_REBOOT_MAGIC2 &&
373                         magic2 != LINUX_REBOOT_MAGIC2A &&
374                         magic2 != LINUX_REBOOT_MAGIC2B &&
375                         magic2 != LINUX_REBOOT_MAGIC2C))
376                 return -EINVAL;
377
378         /* Instead of trying to make the power_off code look like
379          * halt when pm_power_off is not set do it the easy way.
380          */
381         if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
382                 cmd = LINUX_REBOOT_CMD_HALT;
383
384         lock_kernel();
385         switch (cmd) {
386         case LINUX_REBOOT_CMD_RESTART:
387                 kernel_restart(NULL);
388                 break;
389
390         case LINUX_REBOOT_CMD_CAD_ON:
391                 C_A_D = 1;
392                 break;
393
394         case LINUX_REBOOT_CMD_CAD_OFF:
395                 C_A_D = 0;
396                 break;
397
398         case LINUX_REBOOT_CMD_HALT:
399                 kernel_halt();
400                 unlock_kernel();
401                 do_exit(0);
402                 panic("cannot halt");
403
404         case LINUX_REBOOT_CMD_POWER_OFF:
405                 kernel_power_off();
406                 unlock_kernel();
407                 do_exit(0);
408                 break;
409
410         case LINUX_REBOOT_CMD_RESTART2:
411                 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
412                         unlock_kernel();
413                         return -EFAULT;
414                 }
415                 buffer[sizeof(buffer) - 1] = '\0';
416
417                 kernel_restart(buffer);
418                 break;
419
420 #ifdef CONFIG_KEXEC
421         case LINUX_REBOOT_CMD_KEXEC:
422                 ret = kernel_kexec();
423                 break;
424 #endif
425
426 #ifdef CONFIG_HIBERNATION
427         case LINUX_REBOOT_CMD_SW_SUSPEND:
428                 ret = hibernate();
429                 break;
430 #endif
431
432         default:
433                 ret = -EINVAL;
434                 break;
435         }
436         unlock_kernel();
437         return ret;
438 }
439
440 static void deferred_cad(struct work_struct *dummy)
441 {
442         kernel_restart(NULL);
443 }
444
445 /*
446  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
447  * As it's called within an interrupt, it may NOT sync: the only choice
448  * is whether to reboot at once, or just ignore the ctrl-alt-del.
449  */
450 void ctrl_alt_del(void)
451 {
452         static DECLARE_WORK(cad_work, deferred_cad);
453
454         if (C_A_D)
455                 schedule_work(&cad_work);
456         else
457                 kill_cad_pid(SIGINT, 1);
458 }
459         
460 /*
461  * Unprivileged users may change the real gid to the effective gid
462  * or vice versa.  (BSD-style)
463  *
464  * If you set the real gid at all, or set the effective gid to a value not
465  * equal to the real gid, then the saved gid is set to the new effective gid.
466  *
467  * This makes it possible for a setgid program to completely drop its
468  * privileges, which is often a useful assertion to make when you are doing
469  * a security audit over a program.
470  *
471  * The general idea is that a program which uses just setregid() will be
472  * 100% compatible with BSD.  A program which uses just setgid() will be
473  * 100% compatible with POSIX with saved IDs. 
474  *
475  * SMP: There are not races, the GIDs are checked only by filesystem
476  *      operations (as far as semantic preservation is concerned).
477  */
478 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
479 {
480         const struct cred *old;
481         struct cred *new;
482         int retval;
483
484         new = prepare_creds();
485         if (!new)
486                 return -ENOMEM;
487         old = current_cred();
488
489         retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
490         if (retval)
491                 goto error;
492
493         retval = -EPERM;
494         if (rgid != (gid_t) -1) {
495                 if (old->gid == rgid ||
496                     old->egid == rgid ||
497                     capable(CAP_SETGID))
498                         new->gid = rgid;
499                 else
500                         goto error;
501         }
502         if (egid != (gid_t) -1) {
503                 if (old->gid == egid ||
504                     old->egid == egid ||
505                     old->sgid == egid ||
506                     capable(CAP_SETGID))
507                         new->egid = egid;
508                 else
509                         goto error;
510         }
511
512         if (rgid != (gid_t) -1 ||
513             (egid != (gid_t) -1 && egid != old->gid))
514                 new->sgid = new->egid;
515         new->fsgid = new->egid;
516
517         return commit_creds(new);
518
519 error:
520         abort_creds(new);
521         return retval;
522 }
523
524 /*
525  * setgid() is implemented like SysV w/ SAVED_IDS 
526  *
527  * SMP: Same implicit races as above.
528  */
529 SYSCALL_DEFINE1(setgid, gid_t, gid)
530 {
531         const struct cred *old;
532         struct cred *new;
533         int retval;
534
535         new = prepare_creds();
536         if (!new)
537                 return -ENOMEM;
538         old = current_cred();
539
540         retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
541         if (retval)
542                 goto error;
543
544         retval = -EPERM;
545         if (capable(CAP_SETGID))
546                 new->gid = new->egid = new->sgid = new->fsgid = gid;
547         else if (gid == old->gid || gid == old->sgid)
548                 new->egid = new->fsgid = gid;
549         else
550                 goto error;
551
552         return commit_creds(new);
553
554 error:
555         abort_creds(new);
556         return retval;
557 }
558
559 /*
560  * change the user struct in a credentials set to match the new UID
561  */
562 static int set_user(struct cred *new)
563 {
564         struct user_struct *new_user;
565
566         new_user = alloc_uid(current_user_ns(), new->uid);
567         if (!new_user)
568                 return -EAGAIN;
569
570         if (!task_can_switch_user(new_user, current)) {
571                 free_uid(new_user);
572                 return -EINVAL;
573         }
574
575         if (atomic_read(&new_user->processes) >=
576                                 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
577                         new_user != INIT_USER) {
578                 free_uid(new_user);
579                 return -EAGAIN;
580         }
581
582         free_uid(new->user);
583         new->user = new_user;
584         return 0;
585 }
586
587 /*
588  * Unprivileged users may change the real uid to the effective uid
589  * or vice versa.  (BSD-style)
590  *
591  * If you set the real uid at all, or set the effective uid to a value not
592  * equal to the real uid, then the saved uid is set to the new effective uid.
593  *
594  * This makes it possible for a setuid program to completely drop its
595  * privileges, which is often a useful assertion to make when you are doing
596  * a security audit over a program.
597  *
598  * The general idea is that a program which uses just setreuid() will be
599  * 100% compatible with BSD.  A program which uses just setuid() will be
600  * 100% compatible with POSIX with saved IDs. 
601  */
602 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
603 {
604         const struct cred *old;
605         struct cred *new;
606         int retval;
607
608         new = prepare_creds();
609         if (!new)
610                 return -ENOMEM;
611         old = current_cred();
612
613         retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
614         if (retval)
615                 goto error;
616
617         retval = -EPERM;
618         if (ruid != (uid_t) -1) {
619                 new->uid = ruid;
620                 if (old->uid != ruid &&
621                     old->euid != ruid &&
622                     !capable(CAP_SETUID))
623                         goto error;
624         }
625
626         if (euid != (uid_t) -1) {
627                 new->euid = euid;
628                 if (old->uid != euid &&
629                     old->euid != euid &&
630                     old->suid != euid &&
631                     !capable(CAP_SETUID))
632                         goto error;
633         }
634
635         if (new->uid != old->uid) {
636                 retval = set_user(new);
637                 if (retval < 0)
638                         goto error;
639         }
640         if (ruid != (uid_t) -1 ||
641             (euid != (uid_t) -1 && euid != old->uid))
642                 new->suid = new->euid;
643         new->fsuid = new->euid;
644
645         retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
646         if (retval < 0)
647                 goto error;
648
649         return commit_creds(new);
650
651 error:
652         abort_creds(new);
653         return retval;
654 }
655                 
656 /*
657  * setuid() is implemented like SysV with SAVED_IDS 
658  * 
659  * Note that SAVED_ID's is deficient in that a setuid root program
660  * like sendmail, for example, cannot set its uid to be a normal 
661  * user and then switch back, because if you're root, setuid() sets
662  * the saved uid too.  If you don't like this, blame the bright people
663  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
664  * will allow a root program to temporarily drop privileges and be able to
665  * regain them by swapping the real and effective uid.  
666  */
667 SYSCALL_DEFINE1(setuid, uid_t, uid)
668 {
669         const struct cred *old;
670         struct cred *new;
671         int retval;
672
673         new = prepare_creds();
674         if (!new)
675                 return -ENOMEM;
676         old = current_cred();
677
678         retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
679         if (retval)
680                 goto error;
681
682         retval = -EPERM;
683         if (capable(CAP_SETUID)) {
684                 new->suid = new->uid = uid;
685                 if (uid != old->uid) {
686                         retval = set_user(new);
687                         if (retval < 0)
688                                 goto error;
689                 }
690         } else if (uid != old->uid && uid != new->suid) {
691                 goto error;
692         }
693
694         new->fsuid = new->euid = uid;
695
696         retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
697         if (retval < 0)
698                 goto error;
699
700         return commit_creds(new);
701
702 error:
703         abort_creds(new);
704         return retval;
705 }
706
707
708 /*
709  * This function implements a generic ability to update ruid, euid,
710  * and suid.  This allows you to implement the 4.4 compatible seteuid().
711  */
712 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
713 {
714         const struct cred *old;
715         struct cred *new;
716         int retval;
717
718         new = prepare_creds();
719         if (!new)
720                 return -ENOMEM;
721
722         retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
723         if (retval)
724                 goto error;
725         old = current_cred();
726
727         retval = -EPERM;
728         if (!capable(CAP_SETUID)) {
729                 if (ruid != (uid_t) -1 && ruid != old->uid &&
730                     ruid != old->euid  && ruid != old->suid)
731                         goto error;
732                 if (euid != (uid_t) -1 && euid != old->uid &&
733                     euid != old->euid  && euid != old->suid)
734                         goto error;
735                 if (suid != (uid_t) -1 && suid != old->uid &&
736                     suid != old->euid  && suid != old->suid)
737                         goto error;
738         }
739
740         if (ruid != (uid_t) -1) {
741                 new->uid = ruid;
742                 if (ruid != old->uid) {
743                         retval = set_user(new);
744                         if (retval < 0)
745                                 goto error;
746                 }
747         }
748         if (euid != (uid_t) -1)
749                 new->euid = euid;
750         if (suid != (uid_t) -1)
751                 new->suid = suid;
752         new->fsuid = new->euid;
753
754         retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
755         if (retval < 0)
756                 goto error;
757
758         return commit_creds(new);
759
760 error:
761         abort_creds(new);
762         return retval;
763 }
764
765 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
766 {
767         const struct cred *cred = current_cred();
768         int retval;
769
770         if (!(retval   = put_user(cred->uid,  ruid)) &&
771             !(retval   = put_user(cred->euid, euid)))
772                 retval = put_user(cred->suid, suid);
773
774         return retval;
775 }
776
777 /*
778  * Same as above, but for rgid, egid, sgid.
779  */
780 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
781 {
782         const struct cred *old;
783         struct cred *new;
784         int retval;
785
786         new = prepare_creds();
787         if (!new)
788                 return -ENOMEM;
789         old = current_cred();
790
791         retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
792         if (retval)
793                 goto error;
794
795         retval = -EPERM;
796         if (!capable(CAP_SETGID)) {
797                 if (rgid != (gid_t) -1 && rgid != old->gid &&
798                     rgid != old->egid  && rgid != old->sgid)
799                         goto error;
800                 if (egid != (gid_t) -1 && egid != old->gid &&
801                     egid != old->egid  && egid != old->sgid)
802                         goto error;
803                 if (sgid != (gid_t) -1 && sgid != old->gid &&
804                     sgid != old->egid  && sgid != old->sgid)
805                         goto error;
806         }
807
808         if (rgid != (gid_t) -1)
809                 new->gid = rgid;
810         if (egid != (gid_t) -1)
811                 new->egid = egid;
812         if (sgid != (gid_t) -1)
813                 new->sgid = sgid;
814         new->fsgid = new->egid;
815
816         return commit_creds(new);
817
818 error:
819         abort_creds(new);
820         return retval;
821 }
822
823 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
824 {
825         const struct cred *cred = current_cred();
826         int retval;
827
828         if (!(retval   = put_user(cred->gid,  rgid)) &&
829             !(retval   = put_user(cred->egid, egid)))
830                 retval = put_user(cred->sgid, sgid);
831
832         return retval;
833 }
834
835
836 /*
837  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
838  * is used for "access()" and for the NFS daemon (letting nfsd stay at
839  * whatever uid it wants to). It normally shadows "euid", except when
840  * explicitly set by setfsuid() or for access..
841  */
842 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
843 {
844         const struct cred *old;
845         struct cred *new;
846         uid_t old_fsuid;
847
848         new = prepare_creds();
849         if (!new)
850                 return current_fsuid();
851         old = current_cred();
852         old_fsuid = old->fsuid;
853
854         if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS) < 0)
855                 goto error;
856
857         if (uid == old->uid  || uid == old->euid  ||
858             uid == old->suid || uid == old->fsuid ||
859             capable(CAP_SETUID)) {
860                 if (uid != old_fsuid) {
861                         new->fsuid = uid;
862                         if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
863                                 goto change_okay;
864                 }
865         }
866
867 error:
868         abort_creds(new);
869         return old_fsuid;
870
871 change_okay:
872         commit_creds(new);
873         return old_fsuid;
874 }
875
876 /*
877  * Samma pÃ¥ svenska..
878  */
879 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
880 {
881         const struct cred *old;
882         struct cred *new;
883         gid_t old_fsgid;
884
885         new = prepare_creds();
886         if (!new)
887                 return current_fsgid();
888         old = current_cred();
889         old_fsgid = old->fsgid;
890
891         if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
892                 goto error;
893
894         if (gid == old->gid  || gid == old->egid  ||
895             gid == old->sgid || gid == old->fsgid ||
896             capable(CAP_SETGID)) {
897                 if (gid != old_fsgid) {
898                         new->fsgid = gid;
899                         goto change_okay;
900                 }
901         }
902
903 error:
904         abort_creds(new);
905         return old_fsgid;
906
907 change_okay:
908         commit_creds(new);
909         return old_fsgid;
910 }
911
912 void do_sys_times(struct tms *tms)
913 {
914         struct task_cputime cputime;
915         cputime_t cutime, cstime;
916
917         thread_group_cputime(current, &cputime);
918         spin_lock_irq(&current->sighand->siglock);
919         cutime = current->signal->cutime;
920         cstime = current->signal->cstime;
921         spin_unlock_irq(&current->sighand->siglock);
922         tms->tms_utime = cputime_to_clock_t(cputime.utime);
923         tms->tms_stime = cputime_to_clock_t(cputime.stime);
924         tms->tms_cutime = cputime_to_clock_t(cutime);
925         tms->tms_cstime = cputime_to_clock_t(cstime);
926 }
927
928 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
929 {
930         if (tbuf) {
931                 struct tms tmp;
932
933                 do_sys_times(&tmp);
934                 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
935                         return -EFAULT;
936         }
937         force_successful_syscall_return();
938         return (long) jiffies_64_to_clock_t(get_jiffies_64());
939 }
940
941 /*
942  * This needs some heavy checking ...
943  * I just haven't the stomach for it. I also don't fully
944  * understand sessions/pgrp etc. Let somebody who does explain it.
945  *
946  * OK, I think I have the protection semantics right.... this is really
947  * only important on a multi-user system anyway, to make sure one user
948  * can't send a signal to a process owned by another.  -TYT, 12/12/91
949  *
950  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
951  * LBT 04.03.94
952  */
953 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
954 {
955         struct task_struct *p;
956         struct task_struct *group_leader = current->group_leader;
957         struct pid *pgrp;
958         int err;
959
960         if (!pid)
961                 pid = task_pid_vnr(group_leader);
962         if (!pgid)
963                 pgid = pid;
964         if (pgid < 0)
965                 return -EINVAL;
966
967         /* From this point forward we keep holding onto the tasklist lock
968          * so that our parent does not change from under us. -DaveM
969          */
970         write_lock_irq(&tasklist_lock);
971
972         err = -ESRCH;
973         p = find_task_by_vpid(pid);
974         if (!p)
975                 goto out;
976
977         err = -EINVAL;
978         if (!thread_group_leader(p))
979                 goto out;
980
981         if (same_thread_group(p->real_parent, group_leader)) {
982                 err = -EPERM;
983                 if (task_session(p) != task_session(group_leader))
984                         goto out;
985                 err = -EACCES;
986                 if (p->did_exec)
987                         goto out;
988         } else {
989                 err = -ESRCH;
990                 if (p != group_leader)
991                         goto out;
992         }
993
994         err = -EPERM;
995         if (p->signal->leader)
996                 goto out;
997
998         pgrp = task_pid(p);
999         if (pgid != pid) {
1000                 struct task_struct *g;
1001
1002                 pgrp = find_vpid(pgid);
1003                 g = pid_task(pgrp, PIDTYPE_PGID);
1004                 if (!g || task_session(g) != task_session(group_leader))
1005                         goto out;
1006         }
1007
1008         err = security_task_setpgid(p, pgid);
1009         if (err)
1010                 goto out;
1011
1012         if (task_pgrp(p) != pgrp)
1013                 change_pid(p, PIDTYPE_PGID, pgrp);
1014
1015         err = 0;
1016 out:
1017         /* All paths lead to here, thus we are safe. -DaveM */
1018         write_unlock_irq(&tasklist_lock);
1019         return err;
1020 }
1021
1022 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1023 {
1024         struct task_struct *p;
1025         struct pid *grp;
1026         int retval;
1027
1028         rcu_read_lock();
1029         if (!pid)
1030                 grp = task_pgrp(current);
1031         else {
1032                 retval = -ESRCH;
1033                 p = find_task_by_vpid(pid);
1034                 if (!p)
1035                         goto out;
1036                 grp = task_pgrp(p);
1037                 if (!grp)
1038                         goto out;
1039
1040                 retval = security_task_getpgid(p);
1041                 if (retval)
1042                         goto out;
1043         }
1044         retval = pid_vnr(grp);
1045 out:
1046         rcu_read_unlock();
1047         return retval;
1048 }
1049
1050 #ifdef __ARCH_WANT_SYS_GETPGRP
1051
1052 SYSCALL_DEFINE0(getpgrp)
1053 {
1054         return sys_getpgid(0);
1055 }
1056
1057 #endif
1058
1059 SYSCALL_DEFINE1(getsid, pid_t, pid)
1060 {
1061         struct task_struct *p;
1062         struct pid *sid;
1063         int retval;
1064
1065         rcu_read_lock();
1066         if (!pid)
1067                 sid = task_session(current);
1068         else {
1069                 retval = -ESRCH;
1070                 p = find_task_by_vpid(pid);
1071                 if (!p)
1072                         goto out;
1073                 sid = task_session(p);
1074                 if (!sid)
1075                         goto out;
1076
1077                 retval = security_task_getsid(p);
1078                 if (retval)
1079                         goto out;
1080         }
1081         retval = pid_vnr(sid);
1082 out:
1083         rcu_read_unlock();
1084         return retval;
1085 }
1086
1087 SYSCALL_DEFINE0(setsid)
1088 {
1089         struct task_struct *group_leader = current->group_leader;
1090         struct pid *sid = task_pid(group_leader);
1091         pid_t session = pid_vnr(sid);
1092         int err = -EPERM;
1093
1094         write_lock_irq(&tasklist_lock);
1095         /* Fail if I am already a session leader */
1096         if (group_leader->signal->leader)
1097                 goto out;
1098
1099         /* Fail if a process group id already exists that equals the
1100          * proposed session id.
1101          */
1102         if (pid_task(sid, PIDTYPE_PGID))
1103                 goto out;
1104
1105         group_leader->signal->leader = 1;
1106         __set_special_pids(sid);
1107
1108         proc_clear_tty(group_leader);
1109
1110         err = session;
1111 out:
1112         write_unlock_irq(&tasklist_lock);
1113         return err;
1114 }
1115
1116 /*
1117  * Supplementary group IDs
1118  */
1119
1120 /* init to 2 - one for init_task, one to ensure it is never freed */
1121 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1122
1123 struct group_info *groups_alloc(int gidsetsize)
1124 {
1125         struct group_info *group_info;
1126         int nblocks;
1127         int i;
1128
1129         nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1130         /* Make sure we always allocate at least one indirect block pointer */
1131         nblocks = nblocks ? : 1;
1132         group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1133         if (!group_info)
1134                 return NULL;
1135         group_info->ngroups = gidsetsize;
1136         group_info->nblocks = nblocks;
1137         atomic_set(&group_info->usage, 1);
1138
1139         if (gidsetsize <= NGROUPS_SMALL)
1140                 group_info->blocks[0] = group_info->small_block;
1141         else {
1142                 for (i = 0; i < nblocks; i++) {
1143                         gid_t *b;
1144                         b = (void *)__get_free_page(GFP_USER);
1145                         if (!b)
1146                                 goto out_undo_partial_alloc;
1147                         group_info->blocks[i] = b;
1148                 }
1149         }
1150         return group_info;
1151
1152 out_undo_partial_alloc:
1153         while (--i >= 0) {
1154                 free_page((unsigned long)group_info->blocks[i]);
1155         }
1156         kfree(group_info);
1157         return NULL;
1158 }
1159
1160 EXPORT_SYMBOL(groups_alloc);
1161
1162 void groups_free(struct group_info *group_info)
1163 {
1164         if (group_info->blocks[0] != group_info->small_block) {
1165                 int i;
1166                 for (i = 0; i < group_info->nblocks; i++)
1167                         free_page((unsigned long)group_info->blocks[i]);
1168         }
1169         kfree(group_info);
1170 }
1171
1172 EXPORT_SYMBOL(groups_free);
1173
1174 /* export the group_info to a user-space array */
1175 static int groups_to_user(gid_t __user *grouplist,
1176                           const struct group_info *group_info)
1177 {
1178         int i;
1179         unsigned int count = group_info->ngroups;
1180
1181         for (i = 0; i < group_info->nblocks; i++) {
1182                 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1183                 unsigned int len = cp_count * sizeof(*grouplist);
1184
1185                 if (copy_to_user(grouplist, group_info->blocks[i], len))
1186                         return -EFAULT;
1187
1188                 grouplist += NGROUPS_PER_BLOCK;
1189                 count -= cp_count;
1190         }
1191         return 0;
1192 }
1193
1194 /* fill a group_info from a user-space array - it must be allocated already */
1195 static int groups_from_user(struct group_info *group_info,
1196     gid_t __user *grouplist)
1197 {
1198         int i;
1199         unsigned int count = group_info->ngroups;
1200
1201         for (i = 0; i < group_info->nblocks; i++) {
1202                 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1203                 unsigned int len = cp_count * sizeof(*grouplist);
1204
1205                 if (copy_from_user(group_info->blocks[i], grouplist, len))
1206                         return -EFAULT;
1207
1208                 grouplist += NGROUPS_PER_BLOCK;
1209                 count -= cp_count;
1210         }
1211         return 0;
1212 }
1213
1214 /* a simple Shell sort */
1215 static void groups_sort(struct group_info *group_info)
1216 {
1217         int base, max, stride;
1218         int gidsetsize = group_info->ngroups;
1219
1220         for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1221                 ; /* nothing */
1222         stride /= 3;
1223
1224         while (stride) {
1225                 max = gidsetsize - stride;
1226                 for (base = 0; base < max; base++) {
1227                         int left = base;
1228                         int right = left + stride;
1229                         gid_t tmp = GROUP_AT(group_info, right);
1230
1231                         while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1232                                 GROUP_AT(group_info, right) =
1233                                     GROUP_AT(group_info, left);
1234                                 right = left;
1235                                 left -= stride;
1236                         }
1237                         GROUP_AT(group_info, right) = tmp;
1238                 }
1239                 stride /= 3;
1240         }
1241 }
1242
1243 /* a simple bsearch */
1244 int groups_search(const struct group_info *group_info, gid_t grp)
1245 {
1246         unsigned int left, right;
1247
1248         if (!group_info)
1249                 return 0;
1250
1251         left = 0;
1252         right = group_info->ngroups;
1253         while (left < right) {
1254                 unsigned int mid = (left+right)/2;
1255                 int cmp = grp - GROUP_AT(group_info, mid);
1256                 if (cmp > 0)
1257                         left = mid + 1;
1258                 else if (cmp < 0)
1259                         right = mid;
1260                 else
1261                         return 1;
1262         }
1263         return 0;
1264 }
1265
1266 /**
1267  * set_groups - Change a group subscription in a set of credentials
1268  * @new: The newly prepared set of credentials to alter
1269  * @group_info: The group list to install
1270  *
1271  * Validate a group subscription and, if valid, insert it into a set
1272  * of credentials.
1273  */
1274 int set_groups(struct cred *new, struct group_info *group_info)
1275 {
1276         int retval;
1277
1278         retval = security_task_setgroups(group_info);
1279         if (retval)
1280                 return retval;
1281
1282         put_group_info(new->group_info);
1283         groups_sort(group_info);
1284         get_group_info(group_info);
1285         new->group_info = group_info;
1286         return 0;
1287 }
1288
1289 EXPORT_SYMBOL(set_groups);
1290
1291 /**
1292  * set_current_groups - Change current's group subscription
1293  * @group_info: The group list to impose
1294  *
1295  * Validate a group subscription and, if valid, impose it upon current's task
1296  * security record.
1297  */
1298 int set_current_groups(struct group_info *group_info)
1299 {
1300         struct cred *new;
1301         int ret;
1302
1303         new = prepare_creds();
1304         if (!new)
1305                 return -ENOMEM;
1306
1307         ret = set_groups(new, group_info);
1308         if (ret < 0) {
1309                 abort_creds(new);
1310                 return ret;
1311         }
1312
1313         return commit_creds(new);
1314 }
1315
1316 EXPORT_SYMBOL(set_current_groups);
1317
1318 SYSCALL_DEFINE2(getgroups, int, gidsetsize, gid_t __user *, grouplist)
1319 {
1320         const struct cred *cred = current_cred();
1321         int i;
1322
1323         if (gidsetsize < 0)
1324                 return -EINVAL;
1325
1326         /* no need to grab task_lock here; it cannot change */
1327         i = cred->group_info->ngroups;
1328         if (gidsetsize) {
1329                 if (i > gidsetsize) {
1330                         i = -EINVAL;
1331                         goto out;
1332                 }
1333                 if (groups_to_user(grouplist, cred->group_info)) {
1334                         i = -EFAULT;
1335                         goto out;
1336                 }
1337         }
1338 out:
1339         return i;
1340 }
1341
1342 /*
1343  *      SMP: Our groups are copy-on-write. We can set them safely
1344  *      without another task interfering.
1345  */
1346  
1347 SYSCALL_DEFINE2(setgroups, int, gidsetsize, gid_t __user *, grouplist)
1348 {
1349         struct group_info *group_info;
1350         int retval;
1351
1352         if (!capable(CAP_SETGID))
1353                 return -EPERM;
1354         if ((unsigned)gidsetsize > NGROUPS_MAX)
1355                 return -EINVAL;
1356
1357         group_info = groups_alloc(gidsetsize);
1358         if (!group_info)
1359                 return -ENOMEM;
1360         retval = groups_from_user(group_info, grouplist);
1361         if (retval) {
1362                 put_group_info(group_info);
1363                 return retval;
1364         }
1365
1366         retval = set_current_groups(group_info);
1367         put_group_info(group_info);
1368
1369         return retval;
1370 }
1371
1372 /*
1373  * Check whether we're fsgid/egid or in the supplemental group..
1374  */
1375 int in_group_p(gid_t grp)
1376 {
1377         const struct cred *cred = current_cred();
1378         int retval = 1;
1379
1380         if (grp != cred->fsgid)
1381                 retval = groups_search(cred->group_info, grp);
1382         return retval;
1383 }
1384
1385 EXPORT_SYMBOL(in_group_p);
1386
1387 int in_egroup_p(gid_t grp)
1388 {
1389         const struct cred *cred = current_cred();
1390         int retval = 1;
1391
1392         if (grp != cred->egid)
1393                 retval = groups_search(cred->group_info, grp);
1394         return retval;
1395 }
1396
1397 EXPORT_SYMBOL(in_egroup_p);
1398
1399 DECLARE_RWSEM(uts_sem);
1400
1401 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1402 {
1403         int errno = 0;
1404
1405         down_read(&uts_sem);
1406         if (copy_to_user(name, utsname(), sizeof *name))
1407                 errno = -EFAULT;
1408         up_read(&uts_sem);
1409         return errno;
1410 }
1411
1412 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1413 {
1414         int errno;
1415         char tmp[__NEW_UTS_LEN];
1416
1417         if (!capable(CAP_SYS_ADMIN))
1418                 return -EPERM;
1419         if (len < 0 || len > __NEW_UTS_LEN)
1420                 return -EINVAL;
1421         down_write(&uts_sem);
1422         errno = -EFAULT;
1423         if (!copy_from_user(tmp, name, len)) {
1424                 struct new_utsname *u = utsname();
1425
1426                 memcpy(u->nodename, tmp, len);
1427                 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1428                 errno = 0;
1429         }
1430         up_write(&uts_sem);
1431         return errno;
1432 }
1433
1434 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1435
1436 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1437 {
1438         int i, errno;
1439         struct new_utsname *u;
1440
1441         if (len < 0)
1442                 return -EINVAL;
1443         down_read(&uts_sem);
1444         u = utsname();
1445         i = 1 + strlen(u->nodename);
1446         if (i > len)
1447                 i = len;
1448         errno = 0;
1449         if (copy_to_user(name, u->nodename, i))
1450                 errno = -EFAULT;
1451         up_read(&uts_sem);
1452         return errno;
1453 }
1454
1455 #endif
1456
1457 /*
1458  * Only setdomainname; getdomainname can be implemented by calling
1459  * uname()
1460  */
1461 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1462 {
1463         int errno;
1464         char tmp[__NEW_UTS_LEN];
1465
1466         if (!capable(CAP_SYS_ADMIN))
1467                 return -EPERM;
1468         if (len < 0 || len > __NEW_UTS_LEN)
1469                 return -EINVAL;
1470
1471         down_write(&uts_sem);
1472         errno = -EFAULT;
1473         if (!copy_from_user(tmp, name, len)) {
1474                 struct new_utsname *u = utsname();
1475
1476                 memcpy(u->domainname, tmp, len);
1477                 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1478                 errno = 0;
1479         }
1480         up_write(&uts_sem);
1481         return errno;
1482 }
1483
1484 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1485 {
1486         if (resource >= RLIM_NLIMITS)
1487                 return -EINVAL;
1488         else {
1489                 struct rlimit value;
1490                 task_lock(current->group_leader);
1491                 value = current->signal->rlim[resource];
1492                 task_unlock(current->group_leader);
1493                 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1494         }
1495 }
1496
1497 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1498
1499 /*
1500  *      Back compatibility for getrlimit. Needed for some apps.
1501  */
1502  
1503 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1504                 struct rlimit __user *, rlim)
1505 {
1506         struct rlimit x;
1507         if (resource >= RLIM_NLIMITS)
1508                 return -EINVAL;
1509
1510         task_lock(current->group_leader);
1511         x = current->signal->rlim[resource];
1512         task_unlock(current->group_leader);
1513         if (x.rlim_cur > 0x7FFFFFFF)
1514                 x.rlim_cur = 0x7FFFFFFF;
1515         if (x.rlim_max > 0x7FFFFFFF)
1516                 x.rlim_max = 0x7FFFFFFF;
1517         return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1518 }
1519
1520 #endif
1521
1522 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1523 {
1524         struct rlimit new_rlim, *old_rlim;
1525         int retval;
1526
1527         if (resource >= RLIM_NLIMITS)
1528                 return -EINVAL;
1529         if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1530                 return -EFAULT;
1531         if (new_rlim.rlim_cur > new_rlim.rlim_max)
1532                 return -EINVAL;
1533         old_rlim = current->signal->rlim + resource;
1534         if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1535             !capable(CAP_SYS_RESOURCE))
1536                 return -EPERM;
1537         if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > sysctl_nr_open)
1538                 return -EPERM;
1539
1540         retval = security_task_setrlimit(resource, &new_rlim);
1541         if (retval)
1542                 return retval;
1543
1544         if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1545                 /*
1546                  * The caller is asking for an immediate RLIMIT_CPU
1547                  * expiry.  But we use the zero value to mean "it was
1548                  * never set".  So let's cheat and make it one second
1549                  * instead
1550                  */
1551                 new_rlim.rlim_cur = 1;
1552         }
1553
1554         task_lock(current->group_leader);
1555         *old_rlim = new_rlim;
1556         task_unlock(current->group_leader);
1557
1558         if (resource != RLIMIT_CPU)
1559                 goto out;
1560
1561         /*
1562          * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1563          * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1564          * very long-standing error, and fixing it now risks breakage of
1565          * applications, so we live with it
1566          */
1567         if (new_rlim.rlim_cur == RLIM_INFINITY)
1568                 goto out;
1569
1570         update_rlimit_cpu(new_rlim.rlim_cur);
1571 out:
1572         return 0;
1573 }
1574
1575 /*
1576  * It would make sense to put struct rusage in the task_struct,
1577  * except that would make the task_struct be *really big*.  After
1578  * task_struct gets moved into malloc'ed memory, it would
1579  * make sense to do this.  It will make moving the rest of the information
1580  * a lot simpler!  (Which we're not doing right now because we're not
1581  * measuring them yet).
1582  *
1583  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1584  * races with threads incrementing their own counters.  But since word
1585  * reads are atomic, we either get new values or old values and we don't
1586  * care which for the sums.  We always take the siglock to protect reading
1587  * the c* fields from p->signal from races with exit.c updating those
1588  * fields when reaping, so a sample either gets all the additions of a
1589  * given child after it's reaped, or none so this sample is before reaping.
1590  *
1591  * Locking:
1592  * We need to take the siglock for CHILDEREN, SELF and BOTH
1593  * for  the cases current multithreaded, non-current single threaded
1594  * non-current multithreaded.  Thread traversal is now safe with
1595  * the siglock held.
1596  * Strictly speaking, we donot need to take the siglock if we are current and
1597  * single threaded,  as no one else can take our signal_struct away, no one
1598  * else can  reap the  children to update signal->c* counters, and no one else
1599  * can race with the signal-> fields. If we do not take any lock, the
1600  * signal-> fields could be read out of order while another thread was just
1601  * exiting. So we should  place a read memory barrier when we avoid the lock.
1602  * On the writer side,  write memory barrier is implied in  __exit_signal
1603  * as __exit_signal releases  the siglock spinlock after updating the signal->
1604  * fields. But we don't do this yet to keep things simple.
1605  *
1606  */
1607
1608 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1609 {
1610         r->ru_nvcsw += t->nvcsw;
1611         r->ru_nivcsw += t->nivcsw;
1612         r->ru_minflt += t->min_flt;
1613         r->ru_majflt += t->maj_flt;
1614         r->ru_inblock += task_io_get_inblock(t);
1615         r->ru_oublock += task_io_get_oublock(t);
1616 }
1617
1618 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1619 {
1620         struct task_struct *t;
1621         unsigned long flags;
1622         cputime_t utime, stime;
1623         struct task_cputime cputime;
1624
1625         memset((char *) r, 0, sizeof *r);
1626         utime = stime = cputime_zero;
1627
1628         if (who == RUSAGE_THREAD) {
1629                 utime = task_utime(current);
1630                 stime = task_stime(current);
1631                 accumulate_thread_rusage(p, r);
1632                 goto out;
1633         }
1634
1635         if (!lock_task_sighand(p, &flags))
1636                 return;
1637
1638         switch (who) {
1639                 case RUSAGE_BOTH:
1640                 case RUSAGE_CHILDREN:
1641                         utime = p->signal->cutime;
1642                         stime = p->signal->cstime;
1643                         r->ru_nvcsw = p->signal->cnvcsw;
1644                         r->ru_nivcsw = p->signal->cnivcsw;
1645                         r->ru_minflt = p->signal->cmin_flt;
1646                         r->ru_majflt = p->signal->cmaj_flt;
1647                         r->ru_inblock = p->signal->cinblock;
1648                         r->ru_oublock = p->signal->coublock;
1649
1650                         if (who == RUSAGE_CHILDREN)
1651                                 break;
1652
1653                 case RUSAGE_SELF:
1654                         thread_group_cputime(p, &cputime);
1655                         utime = cputime_add(utime, cputime.utime);
1656                         stime = cputime_add(stime, cputime.stime);
1657                         r->ru_nvcsw += p->signal->nvcsw;
1658                         r->ru_nivcsw += p->signal->nivcsw;
1659                         r->ru_minflt += p->signal->min_flt;
1660                         r->ru_majflt += p->signal->maj_flt;
1661                         r->ru_inblock += p->signal->inblock;
1662                         r->ru_oublock += p->signal->oublock;
1663                         t = p;
1664                         do {
1665                                 accumulate_thread_rusage(t, r);
1666                                 t = next_thread(t);
1667                         } while (t != p);
1668                         break;
1669
1670                 default:
1671                         BUG();
1672         }
1673         unlock_task_sighand(p, &flags);
1674
1675 out:
1676         cputime_to_timeval(utime, &r->ru_utime);
1677         cputime_to_timeval(stime, &r->ru_stime);
1678 }
1679
1680 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1681 {
1682         struct rusage r;
1683         k_getrusage(p, who, &r);
1684         return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1685 }
1686
1687 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1688 {
1689         if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1690             who != RUSAGE_THREAD)
1691                 return -EINVAL;
1692         return getrusage(current, who, ru);
1693 }
1694
1695 SYSCALL_DEFINE1(umask, int, mask)
1696 {
1697         mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1698         return mask;
1699 }
1700
1701 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1702                 unsigned long, arg4, unsigned long, arg5)
1703 {
1704         struct task_struct *me = current;
1705         unsigned char comm[sizeof(me->comm)];
1706         long error;
1707
1708         error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1709         if (error != -ENOSYS)
1710                 return error;
1711
1712         error = 0;
1713         switch (option) {
1714                 case PR_SET_PDEATHSIG:
1715                         if (!valid_signal(arg2)) {
1716                                 error = -EINVAL;
1717                                 break;
1718                         }
1719                         me->pdeath_signal = arg2;
1720                         error = 0;
1721                         break;
1722                 case PR_GET_PDEATHSIG:
1723                         error = put_user(me->pdeath_signal, (int __user *)arg2);
1724                         break;
1725                 case PR_GET_DUMPABLE:
1726                         error = get_dumpable(me->mm);
1727                         break;
1728                 case PR_SET_DUMPABLE:
1729                         if (arg2 < 0 || arg2 > 1) {
1730                                 error = -EINVAL;
1731                                 break;
1732                         }
1733                         set_dumpable(me->mm, arg2);
1734                         error = 0;
1735                         break;
1736
1737                 case PR_SET_UNALIGN:
1738                         error = SET_UNALIGN_CTL(me, arg2);
1739                         break;
1740                 case PR_GET_UNALIGN:
1741                         error = GET_UNALIGN_CTL(me, arg2);
1742                         break;
1743                 case PR_SET_FPEMU:
1744                         error = SET_FPEMU_CTL(me, arg2);
1745                         break;
1746                 case PR_GET_FPEMU:
1747                         error = GET_FPEMU_CTL(me, arg2);
1748                         break;
1749                 case PR_SET_FPEXC:
1750                         error = SET_FPEXC_CTL(me, arg2);
1751                         break;
1752                 case PR_GET_FPEXC:
1753                         error = GET_FPEXC_CTL(me, arg2);
1754                         break;
1755                 case PR_GET_TIMING:
1756                         error = PR_TIMING_STATISTICAL;
1757                         break;
1758                 case PR_SET_TIMING:
1759                         if (arg2 != PR_TIMING_STATISTICAL)
1760                                 error = -EINVAL;
1761                         else
1762                                 error = 0;
1763                         break;
1764
1765                 case PR_SET_NAME:
1766                         comm[sizeof(me->comm)-1] = 0;
1767                         if (strncpy_from_user(comm, (char __user *)arg2,
1768                                               sizeof(me->comm) - 1) < 0)
1769                                 return -EFAULT;
1770                         set_task_comm(me, comm);
1771                         return 0;
1772                 case PR_GET_NAME:
1773                         get_task_comm(comm, me);
1774                         if (copy_to_user((char __user *)arg2, comm,
1775                                          sizeof(comm)))
1776                                 return -EFAULT;
1777                         return 0;
1778                 case PR_GET_ENDIAN:
1779                         error = GET_ENDIAN(me, arg2);
1780                         break;
1781                 case PR_SET_ENDIAN:
1782                         error = SET_ENDIAN(me, arg2);
1783                         break;
1784
1785                 case PR_GET_SECCOMP:
1786                         error = prctl_get_seccomp();
1787                         break;
1788                 case PR_SET_SECCOMP:
1789                         error = prctl_set_seccomp(arg2);
1790                         break;
1791                 case PR_GET_TSC:
1792                         error = GET_TSC_CTL(arg2);
1793                         break;
1794                 case PR_SET_TSC:
1795                         error = SET_TSC_CTL(arg2);
1796                         break;
1797                 case PR_TASK_PERF_COUNTERS_DISABLE:
1798                         error = perf_counter_task_disable();
1799                         break;
1800                 case PR_TASK_PERF_COUNTERS_ENABLE:
1801                         error = perf_counter_task_enable();
1802                         break;
1803                 case PR_GET_TIMERSLACK:
1804                         error = current->timer_slack_ns;
1805                         break;
1806                 case PR_SET_TIMERSLACK:
1807                         if (arg2 <= 0)
1808                                 current->timer_slack_ns =
1809                                         current->default_timer_slack_ns;
1810                         else
1811                                 current->timer_slack_ns = arg2;
1812                         error = 0;
1813                         break;
1814                 default:
1815                         error = -EINVAL;
1816                         break;
1817         }
1818         return error;
1819 }
1820
1821 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1822                 struct getcpu_cache __user *, unused)
1823 {
1824         int err = 0;
1825         int cpu = raw_smp_processor_id();
1826         if (cpup)
1827                 err |= put_user(cpu, cpup);
1828         if (nodep)
1829                 err |= put_user(cpu_to_node(cpu), nodep);
1830         return err ? -EFAULT : 0;
1831 }
1832
1833 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1834
1835 static void argv_cleanup(char **argv, char **envp)
1836 {
1837         argv_free(argv);
1838 }
1839
1840 /**
1841  * orderly_poweroff - Trigger an orderly system poweroff
1842  * @force: force poweroff if command execution fails
1843  *
1844  * This may be called from any context to trigger a system shutdown.
1845  * If the orderly shutdown fails, it will force an immediate shutdown.
1846  */
1847 int orderly_poweroff(bool force)
1848 {
1849         int argc;
1850         char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1851         static char *envp[] = {
1852                 "HOME=/",
1853                 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1854                 NULL
1855         };
1856         int ret = -ENOMEM;
1857         struct subprocess_info *info;
1858
1859         if (argv == NULL) {
1860                 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1861                        __func__, poweroff_cmd);
1862                 goto out;
1863         }
1864
1865         info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1866         if (info == NULL) {
1867                 argv_free(argv);
1868                 goto out;
1869         }
1870
1871         call_usermodehelper_setcleanup(info, argv_cleanup);
1872
1873         ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1874
1875   out:
1876         if (ret && force) {
1877                 printk(KERN_WARNING "Failed to start orderly shutdown: "
1878                        "forcing the issue\n");
1879
1880                 /* I guess this should try to kick off some daemon to
1881                    sync and poweroff asap.  Or not even bother syncing
1882                    if we're doing an emergency shutdown? */
1883                 emergency_sync();
1884                 kernel_power_off();
1885         }
1886
1887         return ret;
1888 }
1889 EXPORT_SYMBOL_GPL(orderly_poweroff);