unexport pm_power_off_prepare
[safe/jmp/linux-2.6] / kernel / sys.c
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36
37 #include <linux/compat.h>
38 #include <linux/syscalls.h>
39 #include <linux/kprobes.h>
40 #include <linux/user_namespace.h>
41
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/unistd.h>
45
46 #ifndef SET_UNALIGN_CTL
47 # define SET_UNALIGN_CTL(a,b)   (-EINVAL)
48 #endif
49 #ifndef GET_UNALIGN_CTL
50 # define GET_UNALIGN_CTL(a,b)   (-EINVAL)
51 #endif
52 #ifndef SET_FPEMU_CTL
53 # define SET_FPEMU_CTL(a,b)     (-EINVAL)
54 #endif
55 #ifndef GET_FPEMU_CTL
56 # define GET_FPEMU_CTL(a,b)     (-EINVAL)
57 #endif
58 #ifndef SET_FPEXC_CTL
59 # define SET_FPEXC_CTL(a,b)     (-EINVAL)
60 #endif
61 #ifndef GET_FPEXC_CTL
62 # define GET_FPEXC_CTL(a,b)     (-EINVAL)
63 #endif
64 #ifndef GET_ENDIAN
65 # define GET_ENDIAN(a,b)        (-EINVAL)
66 #endif
67 #ifndef SET_ENDIAN
68 # define SET_ENDIAN(a,b)        (-EINVAL)
69 #endif
70
71 /*
72  * this is where the system-wide overflow UID and GID are defined, for
73  * architectures that now have 32-bit UID/GID but didn't in the past
74  */
75
76 int overflowuid = DEFAULT_OVERFLOWUID;
77 int overflowgid = DEFAULT_OVERFLOWGID;
78
79 #ifdef CONFIG_UID16
80 EXPORT_SYMBOL(overflowuid);
81 EXPORT_SYMBOL(overflowgid);
82 #endif
83
84 /*
85  * the same as above, but for filesystems which can only store a 16-bit
86  * UID and GID. as such, this is needed on all architectures
87  */
88
89 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
90 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
91
92 EXPORT_SYMBOL(fs_overflowuid);
93 EXPORT_SYMBOL(fs_overflowgid);
94
95 /*
96  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
97  */
98
99 int C_A_D = 1;
100 struct pid *cad_pid;
101 EXPORT_SYMBOL(cad_pid);
102
103 /*
104  * If set, this is used for preparing the system to power off.
105  */
106
107 void (*pm_power_off_prepare)(void);
108
109 /*
110  *      Notifier list for kernel code which wants to be called
111  *      at shutdown. This is used to stop any idling DMA operations
112  *      and the like. 
113  */
114
115 static BLOCKING_NOTIFIER_HEAD(reboot_notifier_list);
116
117 /*
118  *      Notifier chain core routines.  The exported routines below
119  *      are layered on top of these, with appropriate locking added.
120  */
121
122 static int notifier_chain_register(struct notifier_block **nl,
123                 struct notifier_block *n)
124 {
125         while ((*nl) != NULL) {
126                 if (n->priority > (*nl)->priority)
127                         break;
128                 nl = &((*nl)->next);
129         }
130         n->next = *nl;
131         rcu_assign_pointer(*nl, n);
132         return 0;
133 }
134
135 static int notifier_chain_unregister(struct notifier_block **nl,
136                 struct notifier_block *n)
137 {
138         while ((*nl) != NULL) {
139                 if ((*nl) == n) {
140                         rcu_assign_pointer(*nl, n->next);
141                         return 0;
142                 }
143                 nl = &((*nl)->next);
144         }
145         return -ENOENT;
146 }
147
148 /**
149  * notifier_call_chain - Informs the registered notifiers about an event.
150  *      @nl:            Pointer to head of the blocking notifier chain
151  *      @val:           Value passed unmodified to notifier function
152  *      @v:             Pointer passed unmodified to notifier function
153  *      @nr_to_call:    Number of notifier functions to be called. Don't care
154  *                      value of this parameter is -1.
155  *      @nr_calls:      Records the number of notifications sent. Don't care
156  *                      value of this field is NULL.
157  *      @returns:       notifier_call_chain returns the value returned by the
158  *                      last notifier function called.
159  */
160
161 static int __kprobes notifier_call_chain(struct notifier_block **nl,
162                                         unsigned long val, void *v,
163                                         int nr_to_call, int *nr_calls)
164 {
165         int ret = NOTIFY_DONE;
166         struct notifier_block *nb, *next_nb;
167
168         nb = rcu_dereference(*nl);
169
170         while (nb && nr_to_call) {
171                 next_nb = rcu_dereference(nb->next);
172                 ret = nb->notifier_call(nb, val, v);
173
174                 if (nr_calls)
175                         (*nr_calls)++;
176
177                 if ((ret & NOTIFY_STOP_MASK) == NOTIFY_STOP_MASK)
178                         break;
179                 nb = next_nb;
180                 nr_to_call--;
181         }
182         return ret;
183 }
184
185 /*
186  *      Atomic notifier chain routines.  Registration and unregistration
187  *      use a spinlock, and call_chain is synchronized by RCU (no locks).
188  */
189
190 /**
191  *      atomic_notifier_chain_register - Add notifier to an atomic notifier chain
192  *      @nh: Pointer to head of the atomic notifier chain
193  *      @n: New entry in notifier chain
194  *
195  *      Adds a notifier to an atomic notifier chain.
196  *
197  *      Currently always returns zero.
198  */
199
200 int atomic_notifier_chain_register(struct atomic_notifier_head *nh,
201                 struct notifier_block *n)
202 {
203         unsigned long flags;
204         int ret;
205
206         spin_lock_irqsave(&nh->lock, flags);
207         ret = notifier_chain_register(&nh->head, n);
208         spin_unlock_irqrestore(&nh->lock, flags);
209         return ret;
210 }
211
212 EXPORT_SYMBOL_GPL(atomic_notifier_chain_register);
213
214 /**
215  *      atomic_notifier_chain_unregister - Remove notifier from an atomic notifier chain
216  *      @nh: Pointer to head of the atomic notifier chain
217  *      @n: Entry to remove from notifier chain
218  *
219  *      Removes a notifier from an atomic notifier chain.
220  *
221  *      Returns zero on success or %-ENOENT on failure.
222  */
223 int atomic_notifier_chain_unregister(struct atomic_notifier_head *nh,
224                 struct notifier_block *n)
225 {
226         unsigned long flags;
227         int ret;
228
229         spin_lock_irqsave(&nh->lock, flags);
230         ret = notifier_chain_unregister(&nh->head, n);
231         spin_unlock_irqrestore(&nh->lock, flags);
232         synchronize_rcu();
233         return ret;
234 }
235
236 EXPORT_SYMBOL_GPL(atomic_notifier_chain_unregister);
237
238 /**
239  *      __atomic_notifier_call_chain - Call functions in an atomic notifier chain
240  *      @nh: Pointer to head of the atomic notifier chain
241  *      @val: Value passed unmodified to notifier function
242  *      @v: Pointer passed unmodified to notifier function
243  *      @nr_to_call: See the comment for notifier_call_chain.
244  *      @nr_calls: See the comment for notifier_call_chain.
245  *
246  *      Calls each function in a notifier chain in turn.  The functions
247  *      run in an atomic context, so they must not block.
248  *      This routine uses RCU to synchronize with changes to the chain.
249  *
250  *      If the return value of the notifier can be and'ed
251  *      with %NOTIFY_STOP_MASK then atomic_notifier_call_chain()
252  *      will return immediately, with the return value of
253  *      the notifier function which halted execution.
254  *      Otherwise the return value is the return value
255  *      of the last notifier function called.
256  */
257  
258 int __kprobes __atomic_notifier_call_chain(struct atomic_notifier_head *nh,
259                                         unsigned long val, void *v,
260                                         int nr_to_call, int *nr_calls)
261 {
262         int ret;
263
264         rcu_read_lock();
265         ret = notifier_call_chain(&nh->head, val, v, nr_to_call, nr_calls);
266         rcu_read_unlock();
267         return ret;
268 }
269
270 EXPORT_SYMBOL_GPL(__atomic_notifier_call_chain);
271
272 int __kprobes atomic_notifier_call_chain(struct atomic_notifier_head *nh,
273                 unsigned long val, void *v)
274 {
275         return __atomic_notifier_call_chain(nh, val, v, -1, NULL);
276 }
277
278 EXPORT_SYMBOL_GPL(atomic_notifier_call_chain);
279 /*
280  *      Blocking notifier chain routines.  All access to the chain is
281  *      synchronized by an rwsem.
282  */
283
284 /**
285  *      blocking_notifier_chain_register - Add notifier to a blocking notifier chain
286  *      @nh: Pointer to head of the blocking notifier chain
287  *      @n: New entry in notifier chain
288  *
289  *      Adds a notifier to a blocking notifier chain.
290  *      Must be called in process context.
291  *
292  *      Currently always returns zero.
293  */
294  
295 int blocking_notifier_chain_register(struct blocking_notifier_head *nh,
296                 struct notifier_block *n)
297 {
298         int ret;
299
300         /*
301          * This code gets used during boot-up, when task switching is
302          * not yet working and interrupts must remain disabled.  At
303          * such times we must not call down_write().
304          */
305         if (unlikely(system_state == SYSTEM_BOOTING))
306                 return notifier_chain_register(&nh->head, n);
307
308         down_write(&nh->rwsem);
309         ret = notifier_chain_register(&nh->head, n);
310         up_write(&nh->rwsem);
311         return ret;
312 }
313
314 EXPORT_SYMBOL_GPL(blocking_notifier_chain_register);
315
316 /**
317  *      blocking_notifier_chain_unregister - Remove notifier from a blocking notifier chain
318  *      @nh: Pointer to head of the blocking notifier chain
319  *      @n: Entry to remove from notifier chain
320  *
321  *      Removes a notifier from a blocking notifier chain.
322  *      Must be called from process context.
323  *
324  *      Returns zero on success or %-ENOENT on failure.
325  */
326 int blocking_notifier_chain_unregister(struct blocking_notifier_head *nh,
327                 struct notifier_block *n)
328 {
329         int ret;
330
331         /*
332          * This code gets used during boot-up, when task switching is
333          * not yet working and interrupts must remain disabled.  At
334          * such times we must not call down_write().
335          */
336         if (unlikely(system_state == SYSTEM_BOOTING))
337                 return notifier_chain_unregister(&nh->head, n);
338
339         down_write(&nh->rwsem);
340         ret = notifier_chain_unregister(&nh->head, n);
341         up_write(&nh->rwsem);
342         return ret;
343 }
344
345 EXPORT_SYMBOL_GPL(blocking_notifier_chain_unregister);
346
347 /**
348  *      __blocking_notifier_call_chain - Call functions in a blocking notifier chain
349  *      @nh: Pointer to head of the blocking notifier chain
350  *      @val: Value passed unmodified to notifier function
351  *      @v: Pointer passed unmodified to notifier function
352  *      @nr_to_call: See comment for notifier_call_chain.
353  *      @nr_calls: See comment for notifier_call_chain.
354  *
355  *      Calls each function in a notifier chain in turn.  The functions
356  *      run in a process context, so they are allowed to block.
357  *
358  *      If the return value of the notifier can be and'ed
359  *      with %NOTIFY_STOP_MASK then blocking_notifier_call_chain()
360  *      will return immediately, with the return value of
361  *      the notifier function which halted execution.
362  *      Otherwise the return value is the return value
363  *      of the last notifier function called.
364  */
365  
366 int __blocking_notifier_call_chain(struct blocking_notifier_head *nh,
367                                    unsigned long val, void *v,
368                                    int nr_to_call, int *nr_calls)
369 {
370         int ret = NOTIFY_DONE;
371
372         /*
373          * We check the head outside the lock, but if this access is
374          * racy then it does not matter what the result of the test
375          * is, we re-check the list after having taken the lock anyway:
376          */
377         if (rcu_dereference(nh->head)) {
378                 down_read(&nh->rwsem);
379                 ret = notifier_call_chain(&nh->head, val, v, nr_to_call,
380                                         nr_calls);
381                 up_read(&nh->rwsem);
382         }
383         return ret;
384 }
385 EXPORT_SYMBOL_GPL(__blocking_notifier_call_chain);
386
387 int blocking_notifier_call_chain(struct blocking_notifier_head *nh,
388                 unsigned long val, void *v)
389 {
390         return __blocking_notifier_call_chain(nh, val, v, -1, NULL);
391 }
392 EXPORT_SYMBOL_GPL(blocking_notifier_call_chain);
393
394 /*
395  *      Raw notifier chain routines.  There is no protection;
396  *      the caller must provide it.  Use at your own risk!
397  */
398
399 /**
400  *      raw_notifier_chain_register - Add notifier to a raw notifier chain
401  *      @nh: Pointer to head of the raw notifier chain
402  *      @n: New entry in notifier chain
403  *
404  *      Adds a notifier to a raw notifier chain.
405  *      All locking must be provided by the caller.
406  *
407  *      Currently always returns zero.
408  */
409
410 int raw_notifier_chain_register(struct raw_notifier_head *nh,
411                 struct notifier_block *n)
412 {
413         return notifier_chain_register(&nh->head, n);
414 }
415
416 EXPORT_SYMBOL_GPL(raw_notifier_chain_register);
417
418 /**
419  *      raw_notifier_chain_unregister - Remove notifier from a raw notifier chain
420  *      @nh: Pointer to head of the raw notifier chain
421  *      @n: Entry to remove from notifier chain
422  *
423  *      Removes a notifier from a raw notifier chain.
424  *      All locking must be provided by the caller.
425  *
426  *      Returns zero on success or %-ENOENT on failure.
427  */
428 int raw_notifier_chain_unregister(struct raw_notifier_head *nh,
429                 struct notifier_block *n)
430 {
431         return notifier_chain_unregister(&nh->head, n);
432 }
433
434 EXPORT_SYMBOL_GPL(raw_notifier_chain_unregister);
435
436 /**
437  *      __raw_notifier_call_chain - Call functions in a raw notifier chain
438  *      @nh: Pointer to head of the raw notifier chain
439  *      @val: Value passed unmodified to notifier function
440  *      @v: Pointer passed unmodified to notifier function
441  *      @nr_to_call: See comment for notifier_call_chain.
442  *      @nr_calls: See comment for notifier_call_chain
443  *
444  *      Calls each function in a notifier chain in turn.  The functions
445  *      run in an undefined context.
446  *      All locking must be provided by the caller.
447  *
448  *      If the return value of the notifier can be and'ed
449  *      with %NOTIFY_STOP_MASK then raw_notifier_call_chain()
450  *      will return immediately, with the return value of
451  *      the notifier function which halted execution.
452  *      Otherwise the return value is the return value
453  *      of the last notifier function called.
454  */
455
456 int __raw_notifier_call_chain(struct raw_notifier_head *nh,
457                               unsigned long val, void *v,
458                               int nr_to_call, int *nr_calls)
459 {
460         return notifier_call_chain(&nh->head, val, v, nr_to_call, nr_calls);
461 }
462
463 EXPORT_SYMBOL_GPL(__raw_notifier_call_chain);
464
465 int raw_notifier_call_chain(struct raw_notifier_head *nh,
466                 unsigned long val, void *v)
467 {
468         return __raw_notifier_call_chain(nh, val, v, -1, NULL);
469 }
470
471 EXPORT_SYMBOL_GPL(raw_notifier_call_chain);
472
473 /*
474  *      SRCU notifier chain routines.    Registration and unregistration
475  *      use a mutex, and call_chain is synchronized by SRCU (no locks).
476  */
477
478 /**
479  *      srcu_notifier_chain_register - Add notifier to an SRCU notifier chain
480  *      @nh: Pointer to head of the SRCU notifier chain
481  *      @n: New entry in notifier chain
482  *
483  *      Adds a notifier to an SRCU notifier chain.
484  *      Must be called in process context.
485  *
486  *      Currently always returns zero.
487  */
488
489 int srcu_notifier_chain_register(struct srcu_notifier_head *nh,
490                 struct notifier_block *n)
491 {
492         int ret;
493
494         /*
495          * This code gets used during boot-up, when task switching is
496          * not yet working and interrupts must remain disabled.  At
497          * such times we must not call mutex_lock().
498          */
499         if (unlikely(system_state == SYSTEM_BOOTING))
500                 return notifier_chain_register(&nh->head, n);
501
502         mutex_lock(&nh->mutex);
503         ret = notifier_chain_register(&nh->head, n);
504         mutex_unlock(&nh->mutex);
505         return ret;
506 }
507
508 EXPORT_SYMBOL_GPL(srcu_notifier_chain_register);
509
510 /**
511  *      srcu_notifier_chain_unregister - Remove notifier from an SRCU notifier chain
512  *      @nh: Pointer to head of the SRCU notifier chain
513  *      @n: Entry to remove from notifier chain
514  *
515  *      Removes a notifier from an SRCU notifier chain.
516  *      Must be called from process context.
517  *
518  *      Returns zero on success or %-ENOENT on failure.
519  */
520 int srcu_notifier_chain_unregister(struct srcu_notifier_head *nh,
521                 struct notifier_block *n)
522 {
523         int ret;
524
525         /*
526          * This code gets used during boot-up, when task switching is
527          * not yet working and interrupts must remain disabled.  At
528          * such times we must not call mutex_lock().
529          */
530         if (unlikely(system_state == SYSTEM_BOOTING))
531                 return notifier_chain_unregister(&nh->head, n);
532
533         mutex_lock(&nh->mutex);
534         ret = notifier_chain_unregister(&nh->head, n);
535         mutex_unlock(&nh->mutex);
536         synchronize_srcu(&nh->srcu);
537         return ret;
538 }
539
540 EXPORT_SYMBOL_GPL(srcu_notifier_chain_unregister);
541
542 /**
543  *      __srcu_notifier_call_chain - Call functions in an SRCU notifier chain
544  *      @nh: Pointer to head of the SRCU notifier chain
545  *      @val: Value passed unmodified to notifier function
546  *      @v: Pointer passed unmodified to notifier function
547  *      @nr_to_call: See comment for notifier_call_chain.
548  *      @nr_calls: See comment for notifier_call_chain
549  *
550  *      Calls each function in a notifier chain in turn.  The functions
551  *      run in a process context, so they are allowed to block.
552  *
553  *      If the return value of the notifier can be and'ed
554  *      with %NOTIFY_STOP_MASK then srcu_notifier_call_chain()
555  *      will return immediately, with the return value of
556  *      the notifier function which halted execution.
557  *      Otherwise the return value is the return value
558  *      of the last notifier function called.
559  */
560
561 int __srcu_notifier_call_chain(struct srcu_notifier_head *nh,
562                                unsigned long val, void *v,
563                                int nr_to_call, int *nr_calls)
564 {
565         int ret;
566         int idx;
567
568         idx = srcu_read_lock(&nh->srcu);
569         ret = notifier_call_chain(&nh->head, val, v, nr_to_call, nr_calls);
570         srcu_read_unlock(&nh->srcu, idx);
571         return ret;
572 }
573 EXPORT_SYMBOL_GPL(__srcu_notifier_call_chain);
574
575 int srcu_notifier_call_chain(struct srcu_notifier_head *nh,
576                 unsigned long val, void *v)
577 {
578         return __srcu_notifier_call_chain(nh, val, v, -1, NULL);
579 }
580 EXPORT_SYMBOL_GPL(srcu_notifier_call_chain);
581
582 /**
583  *      srcu_init_notifier_head - Initialize an SRCU notifier head
584  *      @nh: Pointer to head of the srcu notifier chain
585  *
586  *      Unlike other sorts of notifier heads, SRCU notifier heads require
587  *      dynamic initialization.  Be sure to call this routine before
588  *      calling any of the other SRCU notifier routines for this head.
589  *
590  *      If an SRCU notifier head is deallocated, it must first be cleaned
591  *      up by calling srcu_cleanup_notifier_head().  Otherwise the head's
592  *      per-cpu data (used by the SRCU mechanism) will leak.
593  */
594
595 void srcu_init_notifier_head(struct srcu_notifier_head *nh)
596 {
597         mutex_init(&nh->mutex);
598         if (init_srcu_struct(&nh->srcu) < 0)
599                 BUG();
600         nh->head = NULL;
601 }
602
603 EXPORT_SYMBOL_GPL(srcu_init_notifier_head);
604
605 /**
606  *      register_reboot_notifier - Register function to be called at reboot time
607  *      @nb: Info about notifier function to be called
608  *
609  *      Registers a function with the list of functions
610  *      to be called at reboot time.
611  *
612  *      Currently always returns zero, as blocking_notifier_chain_register()
613  *      always returns zero.
614  */
615  
616 int register_reboot_notifier(struct notifier_block * nb)
617 {
618         return blocking_notifier_chain_register(&reboot_notifier_list, nb);
619 }
620
621 EXPORT_SYMBOL(register_reboot_notifier);
622
623 /**
624  *      unregister_reboot_notifier - Unregister previously registered reboot notifier
625  *      @nb: Hook to be unregistered
626  *
627  *      Unregisters a previously registered reboot
628  *      notifier function.
629  *
630  *      Returns zero on success, or %-ENOENT on failure.
631  */
632  
633 int unregister_reboot_notifier(struct notifier_block * nb)
634 {
635         return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
636 }
637
638 EXPORT_SYMBOL(unregister_reboot_notifier);
639
640 static int set_one_prio(struct task_struct *p, int niceval, int error)
641 {
642         int no_nice;
643
644         if (p->uid != current->euid &&
645                 p->euid != current->euid && !capable(CAP_SYS_NICE)) {
646                 error = -EPERM;
647                 goto out;
648         }
649         if (niceval < task_nice(p) && !can_nice(p, niceval)) {
650                 error = -EACCES;
651                 goto out;
652         }
653         no_nice = security_task_setnice(p, niceval);
654         if (no_nice) {
655                 error = no_nice;
656                 goto out;
657         }
658         if (error == -ESRCH)
659                 error = 0;
660         set_user_nice(p, niceval);
661 out:
662         return error;
663 }
664
665 asmlinkage long sys_setpriority(int which, int who, int niceval)
666 {
667         struct task_struct *g, *p;
668         struct user_struct *user;
669         int error = -EINVAL;
670         struct pid *pgrp;
671
672         if (which > PRIO_USER || which < PRIO_PROCESS)
673                 goto out;
674
675         /* normalize: avoid signed division (rounding problems) */
676         error = -ESRCH;
677         if (niceval < -20)
678                 niceval = -20;
679         if (niceval > 19)
680                 niceval = 19;
681
682         read_lock(&tasklist_lock);
683         switch (which) {
684                 case PRIO_PROCESS:
685                         if (who)
686                                 p = find_task_by_pid(who);
687                         else
688                                 p = current;
689                         if (p)
690                                 error = set_one_prio(p, niceval, error);
691                         break;
692                 case PRIO_PGRP:
693                         if (who)
694                                 pgrp = find_pid(who);
695                         else
696                                 pgrp = task_pgrp(current);
697                         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
698                                 error = set_one_prio(p, niceval, error);
699                         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
700                         break;
701                 case PRIO_USER:
702                         user = current->user;
703                         if (!who)
704                                 who = current->uid;
705                         else
706                                 if ((who != current->uid) && !(user = find_user(who)))
707                                         goto out_unlock;        /* No processes for this user */
708
709                         do_each_thread(g, p)
710                                 if (p->uid == who)
711                                         error = set_one_prio(p, niceval, error);
712                         while_each_thread(g, p);
713                         if (who != current->uid)
714                                 free_uid(user);         /* For find_user() */
715                         break;
716         }
717 out_unlock:
718         read_unlock(&tasklist_lock);
719 out:
720         return error;
721 }
722
723 /*
724  * Ugh. To avoid negative return values, "getpriority()" will
725  * not return the normal nice-value, but a negated value that
726  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
727  * to stay compatible.
728  */
729 asmlinkage long sys_getpriority(int which, int who)
730 {
731         struct task_struct *g, *p;
732         struct user_struct *user;
733         long niceval, retval = -ESRCH;
734         struct pid *pgrp;
735
736         if (which > PRIO_USER || which < PRIO_PROCESS)
737                 return -EINVAL;
738
739         read_lock(&tasklist_lock);
740         switch (which) {
741                 case PRIO_PROCESS:
742                         if (who)
743                                 p = find_task_by_pid(who);
744                         else
745                                 p = current;
746                         if (p) {
747                                 niceval = 20 - task_nice(p);
748                                 if (niceval > retval)
749                                         retval = niceval;
750                         }
751                         break;
752                 case PRIO_PGRP:
753                         if (who)
754                                 pgrp = find_pid(who);
755                         else
756                                 pgrp = task_pgrp(current);
757                         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
758                                 niceval = 20 - task_nice(p);
759                                 if (niceval > retval)
760                                         retval = niceval;
761                         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
762                         break;
763                 case PRIO_USER:
764                         user = current->user;
765                         if (!who)
766                                 who = current->uid;
767                         else
768                                 if ((who != current->uid) && !(user = find_user(who)))
769                                         goto out_unlock;        /* No processes for this user */
770
771                         do_each_thread(g, p)
772                                 if (p->uid == who) {
773                                         niceval = 20 - task_nice(p);
774                                         if (niceval > retval)
775                                                 retval = niceval;
776                                 }
777                         while_each_thread(g, p);
778                         if (who != current->uid)
779                                 free_uid(user);         /* for find_user() */
780                         break;
781         }
782 out_unlock:
783         read_unlock(&tasklist_lock);
784
785         return retval;
786 }
787
788 /**
789  *      emergency_restart - reboot the system
790  *
791  *      Without shutting down any hardware or taking any locks
792  *      reboot the system.  This is called when we know we are in
793  *      trouble so this is our best effort to reboot.  This is
794  *      safe to call in interrupt context.
795  */
796 void emergency_restart(void)
797 {
798         machine_emergency_restart();
799 }
800 EXPORT_SYMBOL_GPL(emergency_restart);
801
802 static void kernel_restart_prepare(char *cmd)
803 {
804         blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
805         system_state = SYSTEM_RESTART;
806         device_shutdown();
807         sysdev_shutdown();
808 }
809
810 /**
811  *      kernel_restart - reboot the system
812  *      @cmd: pointer to buffer containing command to execute for restart
813  *              or %NULL
814  *
815  *      Shutdown everything and perform a clean reboot.
816  *      This is not safe to call in interrupt context.
817  */
818 void kernel_restart(char *cmd)
819 {
820         kernel_restart_prepare(cmd);
821         if (!cmd)
822                 printk(KERN_EMERG "Restarting system.\n");
823         else
824                 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
825         machine_restart(cmd);
826 }
827 EXPORT_SYMBOL_GPL(kernel_restart);
828
829 /**
830  *      kernel_kexec - reboot the system
831  *
832  *      Move into place and start executing a preloaded standalone
833  *      executable.  If nothing was preloaded return an error.
834  */
835 static void kernel_kexec(void)
836 {
837 #ifdef CONFIG_KEXEC
838         struct kimage *image;
839         image = xchg(&kexec_image, NULL);
840         if (!image)
841                 return;
842         kernel_restart_prepare(NULL);
843         printk(KERN_EMERG "Starting new kernel\n");
844         machine_shutdown();
845         machine_kexec(image);
846 #endif
847 }
848
849 void kernel_shutdown_prepare(enum system_states state)
850 {
851         blocking_notifier_call_chain(&reboot_notifier_list,
852                 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
853         system_state = state;
854         device_shutdown();
855 }
856 /**
857  *      kernel_halt - halt the system
858  *
859  *      Shutdown everything and perform a clean system halt.
860  */
861 void kernel_halt(void)
862 {
863         kernel_shutdown_prepare(SYSTEM_HALT);
864         sysdev_shutdown();
865         printk(KERN_EMERG "System halted.\n");
866         machine_halt();
867 }
868
869 EXPORT_SYMBOL_GPL(kernel_halt);
870
871 /**
872  *      kernel_power_off - power_off the system
873  *
874  *      Shutdown everything and perform a clean system power_off.
875  */
876 void kernel_power_off(void)
877 {
878         kernel_shutdown_prepare(SYSTEM_POWER_OFF);
879         if (pm_power_off_prepare)
880                 pm_power_off_prepare();
881         disable_nonboot_cpus();
882         sysdev_shutdown();
883         printk(KERN_EMERG "Power down.\n");
884         machine_power_off();
885 }
886 EXPORT_SYMBOL_GPL(kernel_power_off);
887 /*
888  * Reboot system call: for obvious reasons only root may call it,
889  * and even root needs to set up some magic numbers in the registers
890  * so that some mistake won't make this reboot the whole machine.
891  * You can also set the meaning of the ctrl-alt-del-key here.
892  *
893  * reboot doesn't sync: do that yourself before calling this.
894  */
895 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
896 {
897         char buffer[256];
898
899         /* We only trust the superuser with rebooting the system. */
900         if (!capable(CAP_SYS_BOOT))
901                 return -EPERM;
902
903         /* For safety, we require "magic" arguments. */
904         if (magic1 != LINUX_REBOOT_MAGIC1 ||
905             (magic2 != LINUX_REBOOT_MAGIC2 &&
906                         magic2 != LINUX_REBOOT_MAGIC2A &&
907                         magic2 != LINUX_REBOOT_MAGIC2B &&
908                         magic2 != LINUX_REBOOT_MAGIC2C))
909                 return -EINVAL;
910
911         /* Instead of trying to make the power_off code look like
912          * halt when pm_power_off is not set do it the easy way.
913          */
914         if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
915                 cmd = LINUX_REBOOT_CMD_HALT;
916
917         lock_kernel();
918         switch (cmd) {
919         case LINUX_REBOOT_CMD_RESTART:
920                 kernel_restart(NULL);
921                 break;
922
923         case LINUX_REBOOT_CMD_CAD_ON:
924                 C_A_D = 1;
925                 break;
926
927         case LINUX_REBOOT_CMD_CAD_OFF:
928                 C_A_D = 0;
929                 break;
930
931         case LINUX_REBOOT_CMD_HALT:
932                 kernel_halt();
933                 unlock_kernel();
934                 do_exit(0);
935                 break;
936
937         case LINUX_REBOOT_CMD_POWER_OFF:
938                 kernel_power_off();
939                 unlock_kernel();
940                 do_exit(0);
941                 break;
942
943         case LINUX_REBOOT_CMD_RESTART2:
944                 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
945                         unlock_kernel();
946                         return -EFAULT;
947                 }
948                 buffer[sizeof(buffer) - 1] = '\0';
949
950                 kernel_restart(buffer);
951                 break;
952
953         case LINUX_REBOOT_CMD_KEXEC:
954                 kernel_kexec();
955                 unlock_kernel();
956                 return -EINVAL;
957
958 #ifdef CONFIG_HIBERNATION
959         case LINUX_REBOOT_CMD_SW_SUSPEND:
960                 {
961                         int ret = hibernate();
962                         unlock_kernel();
963                         return ret;
964                 }
965 #endif
966
967         default:
968                 unlock_kernel();
969                 return -EINVAL;
970         }
971         unlock_kernel();
972         return 0;
973 }
974
975 static void deferred_cad(struct work_struct *dummy)
976 {
977         kernel_restart(NULL);
978 }
979
980 /*
981  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
982  * As it's called within an interrupt, it may NOT sync: the only choice
983  * is whether to reboot at once, or just ignore the ctrl-alt-del.
984  */
985 void ctrl_alt_del(void)
986 {
987         static DECLARE_WORK(cad_work, deferred_cad);
988
989         if (C_A_D)
990                 schedule_work(&cad_work);
991         else
992                 kill_cad_pid(SIGINT, 1);
993 }
994         
995 /*
996  * Unprivileged users may change the real gid to the effective gid
997  * or vice versa.  (BSD-style)
998  *
999  * If you set the real gid at all, or set the effective gid to a value not
1000  * equal to the real gid, then the saved gid is set to the new effective gid.
1001  *
1002  * This makes it possible for a setgid program to completely drop its
1003  * privileges, which is often a useful assertion to make when you are doing
1004  * a security audit over a program.
1005  *
1006  * The general idea is that a program which uses just setregid() will be
1007  * 100% compatible with BSD.  A program which uses just setgid() will be
1008  * 100% compatible with POSIX with saved IDs. 
1009  *
1010  * SMP: There are not races, the GIDs are checked only by filesystem
1011  *      operations (as far as semantic preservation is concerned).
1012  */
1013 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
1014 {
1015         int old_rgid = current->gid;
1016         int old_egid = current->egid;
1017         int new_rgid = old_rgid;
1018         int new_egid = old_egid;
1019         int retval;
1020
1021         retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
1022         if (retval)
1023                 return retval;
1024
1025         if (rgid != (gid_t) -1) {
1026                 if ((old_rgid == rgid) ||
1027                     (current->egid==rgid) ||
1028                     capable(CAP_SETGID))
1029                         new_rgid = rgid;
1030                 else
1031                         return -EPERM;
1032         }
1033         if (egid != (gid_t) -1) {
1034                 if ((old_rgid == egid) ||
1035                     (current->egid == egid) ||
1036                     (current->sgid == egid) ||
1037                     capable(CAP_SETGID))
1038                         new_egid = egid;
1039                 else
1040                         return -EPERM;
1041         }
1042         if (new_egid != old_egid) {
1043                 set_dumpable(current->mm, suid_dumpable);
1044                 smp_wmb();
1045         }
1046         if (rgid != (gid_t) -1 ||
1047             (egid != (gid_t) -1 && egid != old_rgid))
1048                 current->sgid = new_egid;
1049         current->fsgid = new_egid;
1050         current->egid = new_egid;
1051         current->gid = new_rgid;
1052         key_fsgid_changed(current);
1053         proc_id_connector(current, PROC_EVENT_GID);
1054         return 0;
1055 }
1056
1057 /*
1058  * setgid() is implemented like SysV w/ SAVED_IDS 
1059  *
1060  * SMP: Same implicit races as above.
1061  */
1062 asmlinkage long sys_setgid(gid_t gid)
1063 {
1064         int old_egid = current->egid;
1065         int retval;
1066
1067         retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
1068         if (retval)
1069                 return retval;
1070
1071         if (capable(CAP_SETGID)) {
1072                 if (old_egid != gid) {
1073                         set_dumpable(current->mm, suid_dumpable);
1074                         smp_wmb();
1075                 }
1076                 current->gid = current->egid = current->sgid = current->fsgid = gid;
1077         } else if ((gid == current->gid) || (gid == current->sgid)) {
1078                 if (old_egid != gid) {
1079                         set_dumpable(current->mm, suid_dumpable);
1080                         smp_wmb();
1081                 }
1082                 current->egid = current->fsgid = gid;
1083         }
1084         else
1085                 return -EPERM;
1086
1087         key_fsgid_changed(current);
1088         proc_id_connector(current, PROC_EVENT_GID);
1089         return 0;
1090 }
1091   
1092 static int set_user(uid_t new_ruid, int dumpclear)
1093 {
1094         struct user_struct *new_user;
1095
1096         new_user = alloc_uid(current->nsproxy->user_ns, new_ruid);
1097         if (!new_user)
1098                 return -EAGAIN;
1099
1100         if (atomic_read(&new_user->processes) >=
1101                                 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
1102                         new_user != current->nsproxy->user_ns->root_user) {
1103                 free_uid(new_user);
1104                 return -EAGAIN;
1105         }
1106
1107         switch_uid(new_user);
1108
1109         if (dumpclear) {
1110                 set_dumpable(current->mm, suid_dumpable);
1111                 smp_wmb();
1112         }
1113         current->uid = new_ruid;
1114         return 0;
1115 }
1116
1117 /*
1118  * Unprivileged users may change the real uid to the effective uid
1119  * or vice versa.  (BSD-style)
1120  *
1121  * If you set the real uid at all, or set the effective uid to a value not
1122  * equal to the real uid, then the saved uid is set to the new effective uid.
1123  *
1124  * This makes it possible for a setuid program to completely drop its
1125  * privileges, which is often a useful assertion to make when you are doing
1126  * a security audit over a program.
1127  *
1128  * The general idea is that a program which uses just setreuid() will be
1129  * 100% compatible with BSD.  A program which uses just setuid() will be
1130  * 100% compatible with POSIX with saved IDs. 
1131  */
1132 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
1133 {
1134         int old_ruid, old_euid, old_suid, new_ruid, new_euid;
1135         int retval;
1136
1137         retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
1138         if (retval)
1139                 return retval;
1140
1141         new_ruid = old_ruid = current->uid;
1142         new_euid = old_euid = current->euid;
1143         old_suid = current->suid;
1144
1145         if (ruid != (uid_t) -1) {
1146                 new_ruid = ruid;
1147                 if ((old_ruid != ruid) &&
1148                     (current->euid != ruid) &&
1149                     !capable(CAP_SETUID))
1150                         return -EPERM;
1151         }
1152
1153         if (euid != (uid_t) -1) {
1154                 new_euid = euid;
1155                 if ((old_ruid != euid) &&
1156                     (current->euid != euid) &&
1157                     (current->suid != euid) &&
1158                     !capable(CAP_SETUID))
1159                         return -EPERM;
1160         }
1161
1162         if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
1163                 return -EAGAIN;
1164
1165         if (new_euid != old_euid) {
1166                 set_dumpable(current->mm, suid_dumpable);
1167                 smp_wmb();
1168         }
1169         current->fsuid = current->euid = new_euid;
1170         if (ruid != (uid_t) -1 ||
1171             (euid != (uid_t) -1 && euid != old_ruid))
1172                 current->suid = current->euid;
1173         current->fsuid = current->euid;
1174
1175         key_fsuid_changed(current);
1176         proc_id_connector(current, PROC_EVENT_UID);
1177
1178         return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
1179 }
1180
1181
1182                 
1183 /*
1184  * setuid() is implemented like SysV with SAVED_IDS 
1185  * 
1186  * Note that SAVED_ID's is deficient in that a setuid root program
1187  * like sendmail, for example, cannot set its uid to be a normal 
1188  * user and then switch back, because if you're root, setuid() sets
1189  * the saved uid too.  If you don't like this, blame the bright people
1190  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
1191  * will allow a root program to temporarily drop privileges and be able to
1192  * regain them by swapping the real and effective uid.  
1193  */
1194 asmlinkage long sys_setuid(uid_t uid)
1195 {
1196         int old_euid = current->euid;
1197         int old_ruid, old_suid, new_suid;
1198         int retval;
1199
1200         retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
1201         if (retval)
1202                 return retval;
1203
1204         old_ruid = current->uid;
1205         old_suid = current->suid;
1206         new_suid = old_suid;
1207         
1208         if (capable(CAP_SETUID)) {
1209                 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
1210                         return -EAGAIN;
1211                 new_suid = uid;
1212         } else if ((uid != current->uid) && (uid != new_suid))
1213                 return -EPERM;
1214
1215         if (old_euid != uid) {
1216                 set_dumpable(current->mm, suid_dumpable);
1217                 smp_wmb();
1218         }
1219         current->fsuid = current->euid = uid;
1220         current->suid = new_suid;
1221
1222         key_fsuid_changed(current);
1223         proc_id_connector(current, PROC_EVENT_UID);
1224
1225         return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
1226 }
1227
1228
1229 /*
1230  * This function implements a generic ability to update ruid, euid,
1231  * and suid.  This allows you to implement the 4.4 compatible seteuid().
1232  */
1233 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
1234 {
1235         int old_ruid = current->uid;
1236         int old_euid = current->euid;
1237         int old_suid = current->suid;
1238         int retval;
1239
1240         retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
1241         if (retval)
1242                 return retval;
1243
1244         if (!capable(CAP_SETUID)) {
1245                 if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
1246                     (ruid != current->euid) && (ruid != current->suid))
1247                         return -EPERM;
1248                 if ((euid != (uid_t) -1) && (euid != current->uid) &&
1249                     (euid != current->euid) && (euid != current->suid))
1250                         return -EPERM;
1251                 if ((suid != (uid_t) -1) && (suid != current->uid) &&
1252                     (suid != current->euid) && (suid != current->suid))
1253                         return -EPERM;
1254         }
1255         if (ruid != (uid_t) -1) {
1256                 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
1257                         return -EAGAIN;
1258         }
1259         if (euid != (uid_t) -1) {
1260                 if (euid != current->euid) {
1261                         set_dumpable(current->mm, suid_dumpable);
1262                         smp_wmb();
1263                 }
1264                 current->euid = euid;
1265         }
1266         current->fsuid = current->euid;
1267         if (suid != (uid_t) -1)
1268                 current->suid = suid;
1269
1270         key_fsuid_changed(current);
1271         proc_id_connector(current, PROC_EVENT_UID);
1272
1273         return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
1274 }
1275
1276 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
1277 {
1278         int retval;
1279
1280         if (!(retval = put_user(current->uid, ruid)) &&
1281             !(retval = put_user(current->euid, euid)))
1282                 retval = put_user(current->suid, suid);
1283
1284         return retval;
1285 }
1286
1287 /*
1288  * Same as above, but for rgid, egid, sgid.
1289  */
1290 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
1291 {
1292         int retval;
1293
1294         retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
1295         if (retval)
1296                 return retval;
1297
1298         if (!capable(CAP_SETGID)) {
1299                 if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
1300                     (rgid != current->egid) && (rgid != current->sgid))
1301                         return -EPERM;
1302                 if ((egid != (gid_t) -1) && (egid != current->gid) &&
1303                     (egid != current->egid) && (egid != current->sgid))
1304                         return -EPERM;
1305                 if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
1306                     (sgid != current->egid) && (sgid != current->sgid))
1307                         return -EPERM;
1308         }
1309         if (egid != (gid_t) -1) {
1310                 if (egid != current->egid) {
1311                         set_dumpable(current->mm, suid_dumpable);
1312                         smp_wmb();
1313                 }
1314                 current->egid = egid;
1315         }
1316         current->fsgid = current->egid;
1317         if (rgid != (gid_t) -1)
1318                 current->gid = rgid;
1319         if (sgid != (gid_t) -1)
1320                 current->sgid = sgid;
1321
1322         key_fsgid_changed(current);
1323         proc_id_connector(current, PROC_EVENT_GID);
1324         return 0;
1325 }
1326
1327 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
1328 {
1329         int retval;
1330
1331         if (!(retval = put_user(current->gid, rgid)) &&
1332             !(retval = put_user(current->egid, egid)))
1333                 retval = put_user(current->sgid, sgid);
1334
1335         return retval;
1336 }
1337
1338
1339 /*
1340  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
1341  * is used for "access()" and for the NFS daemon (letting nfsd stay at
1342  * whatever uid it wants to). It normally shadows "euid", except when
1343  * explicitly set by setfsuid() or for access..
1344  */
1345 asmlinkage long sys_setfsuid(uid_t uid)
1346 {
1347         int old_fsuid;
1348
1349         old_fsuid = current->fsuid;
1350         if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
1351                 return old_fsuid;
1352
1353         if (uid == current->uid || uid == current->euid ||
1354             uid == current->suid || uid == current->fsuid || 
1355             capable(CAP_SETUID)) {
1356                 if (uid != old_fsuid) {
1357                         set_dumpable(current->mm, suid_dumpable);
1358                         smp_wmb();
1359                 }
1360                 current->fsuid = uid;
1361         }
1362
1363         key_fsuid_changed(current);
1364         proc_id_connector(current, PROC_EVENT_UID);
1365
1366         security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
1367
1368         return old_fsuid;
1369 }
1370
1371 /*
1372  * Samma pÃ¥ svenska..
1373  */
1374 asmlinkage long sys_setfsgid(gid_t gid)
1375 {
1376         int old_fsgid;
1377
1378         old_fsgid = current->fsgid;
1379         if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
1380                 return old_fsgid;
1381
1382         if (gid == current->gid || gid == current->egid ||
1383             gid == current->sgid || gid == current->fsgid || 
1384             capable(CAP_SETGID)) {
1385                 if (gid != old_fsgid) {
1386                         set_dumpable(current->mm, suid_dumpable);
1387                         smp_wmb();
1388                 }
1389                 current->fsgid = gid;
1390                 key_fsgid_changed(current);
1391                 proc_id_connector(current, PROC_EVENT_GID);
1392         }
1393         return old_fsgid;
1394 }
1395
1396 asmlinkage long sys_times(struct tms __user * tbuf)
1397 {
1398         /*
1399          *      In the SMP world we might just be unlucky and have one of
1400          *      the times increment as we use it. Since the value is an
1401          *      atomically safe type this is just fine. Conceptually its
1402          *      as if the syscall took an instant longer to occur.
1403          */
1404         if (tbuf) {
1405                 struct tms tmp;
1406                 struct task_struct *tsk = current;
1407                 struct task_struct *t;
1408                 cputime_t utime, stime, cutime, cstime;
1409
1410                 spin_lock_irq(&tsk->sighand->siglock);
1411                 utime = tsk->signal->utime;
1412                 stime = tsk->signal->stime;
1413                 t = tsk;
1414                 do {
1415                         utime = cputime_add(utime, t->utime);
1416                         stime = cputime_add(stime, t->stime);
1417                         t = next_thread(t);
1418                 } while (t != tsk);
1419
1420                 cutime = tsk->signal->cutime;
1421                 cstime = tsk->signal->cstime;
1422                 spin_unlock_irq(&tsk->sighand->siglock);
1423
1424                 tmp.tms_utime = cputime_to_clock_t(utime);
1425                 tmp.tms_stime = cputime_to_clock_t(stime);
1426                 tmp.tms_cutime = cputime_to_clock_t(cutime);
1427                 tmp.tms_cstime = cputime_to_clock_t(cstime);
1428                 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1429                         return -EFAULT;
1430         }
1431         return (long) jiffies_64_to_clock_t(get_jiffies_64());
1432 }
1433
1434 /*
1435  * This needs some heavy checking ...
1436  * I just haven't the stomach for it. I also don't fully
1437  * understand sessions/pgrp etc. Let somebody who does explain it.
1438  *
1439  * OK, I think I have the protection semantics right.... this is really
1440  * only important on a multi-user system anyway, to make sure one user
1441  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1442  *
1443  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1444  * LBT 04.03.94
1445  */
1446 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
1447 {
1448         struct task_struct *p;
1449         struct task_struct *group_leader = current->group_leader;
1450         int err = -EINVAL;
1451
1452         if (!pid)
1453                 pid = group_leader->pid;
1454         if (!pgid)
1455                 pgid = pid;
1456         if (pgid < 0)
1457                 return -EINVAL;
1458
1459         /* From this point forward we keep holding onto the tasklist lock
1460          * so that our parent does not change from under us. -DaveM
1461          */
1462         write_lock_irq(&tasklist_lock);
1463
1464         err = -ESRCH;
1465         p = find_task_by_pid(pid);
1466         if (!p)
1467                 goto out;
1468
1469         err = -EINVAL;
1470         if (!thread_group_leader(p))
1471                 goto out;
1472
1473         if (p->real_parent->tgid == group_leader->tgid) {
1474                 err = -EPERM;
1475                 if (task_session(p) != task_session(group_leader))
1476                         goto out;
1477                 err = -EACCES;
1478                 if (p->did_exec)
1479                         goto out;
1480         } else {
1481                 err = -ESRCH;
1482                 if (p != group_leader)
1483                         goto out;
1484         }
1485
1486         err = -EPERM;
1487         if (p->signal->leader)
1488                 goto out;
1489
1490         if (pgid != pid) {
1491                 struct task_struct *g =
1492                         find_task_by_pid_type(PIDTYPE_PGID, pgid);
1493
1494                 if (!g || task_session(g) != task_session(group_leader))
1495                         goto out;
1496         }
1497
1498         err = security_task_setpgid(p, pgid);
1499         if (err)
1500                 goto out;
1501
1502         if (process_group(p) != pgid) {
1503                 detach_pid(p, PIDTYPE_PGID);
1504                 p->signal->pgrp = pgid;
1505                 attach_pid(p, PIDTYPE_PGID, find_pid(pgid));
1506         }
1507
1508         err = 0;
1509 out:
1510         /* All paths lead to here, thus we are safe. -DaveM */
1511         write_unlock_irq(&tasklist_lock);
1512         return err;
1513 }
1514
1515 asmlinkage long sys_getpgid(pid_t pid)
1516 {
1517         if (!pid)
1518                 return process_group(current);
1519         else {
1520                 int retval;
1521                 struct task_struct *p;
1522
1523                 read_lock(&tasklist_lock);
1524                 p = find_task_by_pid(pid);
1525
1526                 retval = -ESRCH;
1527                 if (p) {
1528                         retval = security_task_getpgid(p);
1529                         if (!retval)
1530                                 retval = process_group(p);
1531                 }
1532                 read_unlock(&tasklist_lock);
1533                 return retval;
1534         }
1535 }
1536
1537 #ifdef __ARCH_WANT_SYS_GETPGRP
1538
1539 asmlinkage long sys_getpgrp(void)
1540 {
1541         /* SMP - assuming writes are word atomic this is fine */
1542         return process_group(current);
1543 }
1544
1545 #endif
1546
1547 asmlinkage long sys_getsid(pid_t pid)
1548 {
1549         if (!pid)
1550                 return process_session(current);
1551         else {
1552                 int retval;
1553                 struct task_struct *p;
1554
1555                 read_lock(&tasklist_lock);
1556                 p = find_task_by_pid(pid);
1557
1558                 retval = -ESRCH;
1559                 if (p) {
1560                         retval = security_task_getsid(p);
1561                         if (!retval)
1562                                 retval = process_session(p);
1563                 }
1564                 read_unlock(&tasklist_lock);
1565                 return retval;
1566         }
1567 }
1568
1569 asmlinkage long sys_setsid(void)
1570 {
1571         struct task_struct *group_leader = current->group_leader;
1572         pid_t session;
1573         int err = -EPERM;
1574
1575         write_lock_irq(&tasklist_lock);
1576
1577         /* Fail if I am already a session leader */
1578         if (group_leader->signal->leader)
1579                 goto out;
1580
1581         session = group_leader->pid;
1582         /* Fail if a process group id already exists that equals the
1583          * proposed session id.
1584          *
1585          * Don't check if session id == 1 because kernel threads use this
1586          * session id and so the check will always fail and make it so
1587          * init cannot successfully call setsid.
1588          */
1589         if (session > 1 && find_task_by_pid_type(PIDTYPE_PGID, session))
1590                 goto out;
1591
1592         group_leader->signal->leader = 1;
1593         __set_special_pids(session, session);
1594
1595         spin_lock(&group_leader->sighand->siglock);
1596         group_leader->signal->tty = NULL;
1597         spin_unlock(&group_leader->sighand->siglock);
1598
1599         err = process_group(group_leader);
1600 out:
1601         write_unlock_irq(&tasklist_lock);
1602         return err;
1603 }
1604
1605 /*
1606  * Supplementary group IDs
1607  */
1608
1609 /* init to 2 - one for init_task, one to ensure it is never freed */
1610 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1611
1612 struct group_info *groups_alloc(int gidsetsize)
1613 {
1614         struct group_info *group_info;
1615         int nblocks;
1616         int i;
1617
1618         nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1619         /* Make sure we always allocate at least one indirect block pointer */
1620         nblocks = nblocks ? : 1;
1621         group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1622         if (!group_info)
1623                 return NULL;
1624         group_info->ngroups = gidsetsize;
1625         group_info->nblocks = nblocks;
1626         atomic_set(&group_info->usage, 1);
1627
1628         if (gidsetsize <= NGROUPS_SMALL)
1629                 group_info->blocks[0] = group_info->small_block;
1630         else {
1631                 for (i = 0; i < nblocks; i++) {
1632                         gid_t *b;
1633                         b = (void *)__get_free_page(GFP_USER);
1634                         if (!b)
1635                                 goto out_undo_partial_alloc;
1636                         group_info->blocks[i] = b;
1637                 }
1638         }
1639         return group_info;
1640
1641 out_undo_partial_alloc:
1642         while (--i >= 0) {
1643                 free_page((unsigned long)group_info->blocks[i]);
1644         }
1645         kfree(group_info);
1646         return NULL;
1647 }
1648
1649 EXPORT_SYMBOL(groups_alloc);
1650
1651 void groups_free(struct group_info *group_info)
1652 {
1653         if (group_info->blocks[0] != group_info->small_block) {
1654                 int i;
1655                 for (i = 0; i < group_info->nblocks; i++)
1656                         free_page((unsigned long)group_info->blocks[i]);
1657         }
1658         kfree(group_info);
1659 }
1660
1661 EXPORT_SYMBOL(groups_free);
1662
1663 /* export the group_info to a user-space array */
1664 static int groups_to_user(gid_t __user *grouplist,
1665     struct group_info *group_info)
1666 {
1667         int i;
1668         int count = group_info->ngroups;
1669
1670         for (i = 0; i < group_info->nblocks; i++) {
1671                 int cp_count = min(NGROUPS_PER_BLOCK, count);
1672                 int off = i * NGROUPS_PER_BLOCK;
1673                 int len = cp_count * sizeof(*grouplist);
1674
1675                 if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1676                         return -EFAULT;
1677
1678                 count -= cp_count;
1679         }
1680         return 0;
1681 }
1682
1683 /* fill a group_info from a user-space array - it must be allocated already */
1684 static int groups_from_user(struct group_info *group_info,
1685     gid_t __user *grouplist)
1686 {
1687         int i;
1688         int count = group_info->ngroups;
1689
1690         for (i = 0; i < group_info->nblocks; i++) {
1691                 int cp_count = min(NGROUPS_PER_BLOCK, count);
1692                 int off = i * NGROUPS_PER_BLOCK;
1693                 int len = cp_count * sizeof(*grouplist);
1694
1695                 if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1696                         return -EFAULT;
1697
1698                 count -= cp_count;
1699         }
1700         return 0;
1701 }
1702
1703 /* a simple Shell sort */
1704 static void groups_sort(struct group_info *group_info)
1705 {
1706         int base, max, stride;
1707         int gidsetsize = group_info->ngroups;
1708
1709         for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1710                 ; /* nothing */
1711         stride /= 3;
1712
1713         while (stride) {
1714                 max = gidsetsize - stride;
1715                 for (base = 0; base < max; base++) {
1716                         int left = base;
1717                         int right = left + stride;
1718                         gid_t tmp = GROUP_AT(group_info, right);
1719
1720                         while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1721                                 GROUP_AT(group_info, right) =
1722                                     GROUP_AT(group_info, left);
1723                                 right = left;
1724                                 left -= stride;
1725                         }
1726                         GROUP_AT(group_info, right) = tmp;
1727                 }
1728                 stride /= 3;
1729         }
1730 }
1731
1732 /* a simple bsearch */
1733 int groups_search(struct group_info *group_info, gid_t grp)
1734 {
1735         unsigned int left, right;
1736
1737         if (!group_info)
1738                 return 0;
1739
1740         left = 0;
1741         right = group_info->ngroups;
1742         while (left < right) {
1743                 unsigned int mid = (left+right)/2;
1744                 int cmp = grp - GROUP_AT(group_info, mid);
1745                 if (cmp > 0)
1746                         left = mid + 1;
1747                 else if (cmp < 0)
1748                         right = mid;
1749                 else
1750                         return 1;
1751         }
1752         return 0;
1753 }
1754
1755 /* validate and set current->group_info */
1756 int set_current_groups(struct group_info *group_info)
1757 {
1758         int retval;
1759         struct group_info *old_info;
1760
1761         retval = security_task_setgroups(group_info);
1762         if (retval)
1763                 return retval;
1764
1765         groups_sort(group_info);
1766         get_group_info(group_info);
1767
1768         task_lock(current);
1769         old_info = current->group_info;
1770         current->group_info = group_info;
1771         task_unlock(current);
1772
1773         put_group_info(old_info);
1774
1775         return 0;
1776 }
1777
1778 EXPORT_SYMBOL(set_current_groups);
1779
1780 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1781 {
1782         int i = 0;
1783
1784         /*
1785          *      SMP: Nobody else can change our grouplist. Thus we are
1786          *      safe.
1787          */
1788
1789         if (gidsetsize < 0)
1790                 return -EINVAL;
1791
1792         /* no need to grab task_lock here; it cannot change */
1793         i = current->group_info->ngroups;
1794         if (gidsetsize) {
1795                 if (i > gidsetsize) {
1796                         i = -EINVAL;
1797                         goto out;
1798                 }
1799                 if (groups_to_user(grouplist, current->group_info)) {
1800                         i = -EFAULT;
1801                         goto out;
1802                 }
1803         }
1804 out:
1805         return i;
1806 }
1807
1808 /*
1809  *      SMP: Our groups are copy-on-write. We can set them safely
1810  *      without another task interfering.
1811  */
1812  
1813 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1814 {
1815         struct group_info *group_info;
1816         int retval;
1817
1818         if (!capable(CAP_SETGID))
1819                 return -EPERM;
1820         if ((unsigned)gidsetsize > NGROUPS_MAX)
1821                 return -EINVAL;
1822
1823         group_info = groups_alloc(gidsetsize);
1824         if (!group_info)
1825                 return -ENOMEM;
1826         retval = groups_from_user(group_info, grouplist);
1827         if (retval) {
1828                 put_group_info(group_info);
1829                 return retval;
1830         }
1831
1832         retval = set_current_groups(group_info);
1833         put_group_info(group_info);
1834
1835         return retval;
1836 }
1837
1838 /*
1839  * Check whether we're fsgid/egid or in the supplemental group..
1840  */
1841 int in_group_p(gid_t grp)
1842 {
1843         int retval = 1;
1844         if (grp != current->fsgid)
1845                 retval = groups_search(current->group_info, grp);
1846         return retval;
1847 }
1848
1849 EXPORT_SYMBOL(in_group_p);
1850
1851 int in_egroup_p(gid_t grp)
1852 {
1853         int retval = 1;
1854         if (grp != current->egid)
1855                 retval = groups_search(current->group_info, grp);
1856         return retval;
1857 }
1858
1859 EXPORT_SYMBOL(in_egroup_p);
1860
1861 DECLARE_RWSEM(uts_sem);
1862
1863 EXPORT_SYMBOL(uts_sem);
1864
1865 asmlinkage long sys_newuname(struct new_utsname __user * name)
1866 {
1867         int errno = 0;
1868
1869         down_read(&uts_sem);
1870         if (copy_to_user(name, utsname(), sizeof *name))
1871                 errno = -EFAULT;
1872         up_read(&uts_sem);
1873         return errno;
1874 }
1875
1876 asmlinkage long sys_sethostname(char __user *name, int len)
1877 {
1878         int errno;
1879         char tmp[__NEW_UTS_LEN];
1880
1881         if (!capable(CAP_SYS_ADMIN))
1882                 return -EPERM;
1883         if (len < 0 || len > __NEW_UTS_LEN)
1884                 return -EINVAL;
1885         down_write(&uts_sem);
1886         errno = -EFAULT;
1887         if (!copy_from_user(tmp, name, len)) {
1888                 memcpy(utsname()->nodename, tmp, len);
1889                 utsname()->nodename[len] = 0;
1890                 errno = 0;
1891         }
1892         up_write(&uts_sem);
1893         return errno;
1894 }
1895
1896 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1897
1898 asmlinkage long sys_gethostname(char __user *name, int len)
1899 {
1900         int i, errno;
1901
1902         if (len < 0)
1903                 return -EINVAL;
1904         down_read(&uts_sem);
1905         i = 1 + strlen(utsname()->nodename);
1906         if (i > len)
1907                 i = len;
1908         errno = 0;
1909         if (copy_to_user(name, utsname()->nodename, i))
1910                 errno = -EFAULT;
1911         up_read(&uts_sem);
1912         return errno;
1913 }
1914
1915 #endif
1916
1917 /*
1918  * Only setdomainname; getdomainname can be implemented by calling
1919  * uname()
1920  */
1921 asmlinkage long sys_setdomainname(char __user *name, int len)
1922 {
1923         int errno;
1924         char tmp[__NEW_UTS_LEN];
1925
1926         if (!capable(CAP_SYS_ADMIN))
1927                 return -EPERM;
1928         if (len < 0 || len > __NEW_UTS_LEN)
1929                 return -EINVAL;
1930
1931         down_write(&uts_sem);
1932         errno = -EFAULT;
1933         if (!copy_from_user(tmp, name, len)) {
1934                 memcpy(utsname()->domainname, tmp, len);
1935                 utsname()->domainname[len] = 0;
1936                 errno = 0;
1937         }
1938         up_write(&uts_sem);
1939         return errno;
1940 }
1941
1942 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1943 {
1944         if (resource >= RLIM_NLIMITS)
1945                 return -EINVAL;
1946         else {
1947                 struct rlimit value;
1948                 task_lock(current->group_leader);
1949                 value = current->signal->rlim[resource];
1950                 task_unlock(current->group_leader);
1951                 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1952         }
1953 }
1954
1955 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1956
1957 /*
1958  *      Back compatibility for getrlimit. Needed for some apps.
1959  */
1960  
1961 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1962 {
1963         struct rlimit x;
1964         if (resource >= RLIM_NLIMITS)
1965                 return -EINVAL;
1966
1967         task_lock(current->group_leader);
1968         x = current->signal->rlim[resource];
1969         task_unlock(current->group_leader);
1970         if (x.rlim_cur > 0x7FFFFFFF)
1971                 x.rlim_cur = 0x7FFFFFFF;
1972         if (x.rlim_max > 0x7FFFFFFF)
1973                 x.rlim_max = 0x7FFFFFFF;
1974         return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1975 }
1976
1977 #endif
1978
1979 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1980 {
1981         struct rlimit new_rlim, *old_rlim;
1982         unsigned long it_prof_secs;
1983         int retval;
1984
1985         if (resource >= RLIM_NLIMITS)
1986                 return -EINVAL;
1987         if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1988                 return -EFAULT;
1989         if (new_rlim.rlim_cur > new_rlim.rlim_max)
1990                 return -EINVAL;
1991         old_rlim = current->signal->rlim + resource;
1992         if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1993             !capable(CAP_SYS_RESOURCE))
1994                 return -EPERM;
1995         if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1996                 return -EPERM;
1997
1998         retval = security_task_setrlimit(resource, &new_rlim);
1999         if (retval)
2000                 return retval;
2001
2002         if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
2003                 /*
2004                  * The caller is asking for an immediate RLIMIT_CPU
2005                  * expiry.  But we use the zero value to mean "it was
2006                  * never set".  So let's cheat and make it one second
2007                  * instead
2008                  */
2009                 new_rlim.rlim_cur = 1;
2010         }
2011
2012         task_lock(current->group_leader);
2013         *old_rlim = new_rlim;
2014         task_unlock(current->group_leader);
2015
2016         if (resource != RLIMIT_CPU)
2017                 goto out;
2018
2019         /*
2020          * RLIMIT_CPU handling.   Note that the kernel fails to return an error
2021          * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
2022          * very long-standing error, and fixing it now risks breakage of
2023          * applications, so we live with it
2024          */
2025         if (new_rlim.rlim_cur == RLIM_INFINITY)
2026                 goto out;
2027
2028         it_prof_secs = cputime_to_secs(current->signal->it_prof_expires);
2029         if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) {
2030                 unsigned long rlim_cur = new_rlim.rlim_cur;
2031                 cputime_t cputime;
2032
2033                 cputime = secs_to_cputime(rlim_cur);
2034                 read_lock(&tasklist_lock);
2035                 spin_lock_irq(&current->sighand->siglock);
2036                 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
2037                 spin_unlock_irq(&current->sighand->siglock);
2038                 read_unlock(&tasklist_lock);
2039         }
2040 out:
2041         return 0;
2042 }
2043
2044 /*
2045  * It would make sense to put struct rusage in the task_struct,
2046  * except that would make the task_struct be *really big*.  After
2047  * task_struct gets moved into malloc'ed memory, it would
2048  * make sense to do this.  It will make moving the rest of the information
2049  * a lot simpler!  (Which we're not doing right now because we're not
2050  * measuring them yet).
2051  *
2052  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
2053  * races with threads incrementing their own counters.  But since word
2054  * reads are atomic, we either get new values or old values and we don't
2055  * care which for the sums.  We always take the siglock to protect reading
2056  * the c* fields from p->signal from races with exit.c updating those
2057  * fields when reaping, so a sample either gets all the additions of a
2058  * given child after it's reaped, or none so this sample is before reaping.
2059  *
2060  * Locking:
2061  * We need to take the siglock for CHILDEREN, SELF and BOTH
2062  * for  the cases current multithreaded, non-current single threaded
2063  * non-current multithreaded.  Thread traversal is now safe with
2064  * the siglock held.
2065  * Strictly speaking, we donot need to take the siglock if we are current and
2066  * single threaded,  as no one else can take our signal_struct away, no one
2067  * else can  reap the  children to update signal->c* counters, and no one else
2068  * can race with the signal-> fields. If we do not take any lock, the
2069  * signal-> fields could be read out of order while another thread was just
2070  * exiting. So we should  place a read memory barrier when we avoid the lock.
2071  * On the writer side,  write memory barrier is implied in  __exit_signal
2072  * as __exit_signal releases  the siglock spinlock after updating the signal->
2073  * fields. But we don't do this yet to keep things simple.
2074  *
2075  */
2076
2077 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
2078 {
2079         struct task_struct *t;
2080         unsigned long flags;
2081         cputime_t utime, stime;
2082
2083         memset((char *) r, 0, sizeof *r);
2084         utime = stime = cputime_zero;
2085
2086         rcu_read_lock();
2087         if (!lock_task_sighand(p, &flags)) {
2088                 rcu_read_unlock();
2089                 return;
2090         }
2091
2092         switch (who) {
2093                 case RUSAGE_BOTH:
2094                 case RUSAGE_CHILDREN:
2095                         utime = p->signal->cutime;
2096                         stime = p->signal->cstime;
2097                         r->ru_nvcsw = p->signal->cnvcsw;
2098                         r->ru_nivcsw = p->signal->cnivcsw;
2099                         r->ru_minflt = p->signal->cmin_flt;
2100                         r->ru_majflt = p->signal->cmaj_flt;
2101                         r->ru_inblock = p->signal->cinblock;
2102                         r->ru_oublock = p->signal->coublock;
2103
2104                         if (who == RUSAGE_CHILDREN)
2105                                 break;
2106
2107                 case RUSAGE_SELF:
2108                         utime = cputime_add(utime, p->signal->utime);
2109                         stime = cputime_add(stime, p->signal->stime);
2110                         r->ru_nvcsw += p->signal->nvcsw;
2111                         r->ru_nivcsw += p->signal->nivcsw;
2112                         r->ru_minflt += p->signal->min_flt;
2113                         r->ru_majflt += p->signal->maj_flt;
2114                         r->ru_inblock += p->signal->inblock;
2115                         r->ru_oublock += p->signal->oublock;
2116                         t = p;
2117                         do {
2118                                 utime = cputime_add(utime, t->utime);
2119                                 stime = cputime_add(stime, t->stime);
2120                                 r->ru_nvcsw += t->nvcsw;
2121                                 r->ru_nivcsw += t->nivcsw;
2122                                 r->ru_minflt += t->min_flt;
2123                                 r->ru_majflt += t->maj_flt;
2124                                 r->ru_inblock += task_io_get_inblock(t);
2125                                 r->ru_oublock += task_io_get_oublock(t);
2126                                 t = next_thread(t);
2127                         } while (t != p);
2128                         break;
2129
2130                 default:
2131                         BUG();
2132         }
2133
2134         unlock_task_sighand(p, &flags);
2135         rcu_read_unlock();
2136
2137         cputime_to_timeval(utime, &r->ru_utime);
2138         cputime_to_timeval(stime, &r->ru_stime);
2139 }
2140
2141 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
2142 {
2143         struct rusage r;
2144         k_getrusage(p, who, &r);
2145         return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
2146 }
2147
2148 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
2149 {
2150         if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
2151                 return -EINVAL;
2152         return getrusage(current, who, ru);
2153 }
2154
2155 asmlinkage long sys_umask(int mask)
2156 {
2157         mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
2158         return mask;
2159 }
2160     
2161 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
2162                           unsigned long arg4, unsigned long arg5)
2163 {
2164         long error;
2165
2166         error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2167         if (error)
2168                 return error;
2169
2170         switch (option) {
2171                 case PR_SET_PDEATHSIG:
2172                         if (!valid_signal(arg2)) {
2173                                 error = -EINVAL;
2174                                 break;
2175                         }
2176                         current->pdeath_signal = arg2;
2177                         break;
2178                 case PR_GET_PDEATHSIG:
2179                         error = put_user(current->pdeath_signal, (int __user *)arg2);
2180                         break;
2181                 case PR_GET_DUMPABLE:
2182                         error = get_dumpable(current->mm);
2183                         break;
2184                 case PR_SET_DUMPABLE:
2185                         if (arg2 < 0 || arg2 > 1) {
2186                                 error = -EINVAL;
2187                                 break;
2188                         }
2189                         set_dumpable(current->mm, arg2);
2190                         break;
2191
2192                 case PR_SET_UNALIGN:
2193                         error = SET_UNALIGN_CTL(current, arg2);
2194                         break;
2195                 case PR_GET_UNALIGN:
2196                         error = GET_UNALIGN_CTL(current, arg2);
2197                         break;
2198                 case PR_SET_FPEMU:
2199                         error = SET_FPEMU_CTL(current, arg2);
2200                         break;
2201                 case PR_GET_FPEMU:
2202                         error = GET_FPEMU_CTL(current, arg2);
2203                         break;
2204                 case PR_SET_FPEXC:
2205                         error = SET_FPEXC_CTL(current, arg2);
2206                         break;
2207                 case PR_GET_FPEXC:
2208                         error = GET_FPEXC_CTL(current, arg2);
2209                         break;
2210                 case PR_GET_TIMING:
2211                         error = PR_TIMING_STATISTICAL;
2212                         break;
2213                 case PR_SET_TIMING:
2214                         if (arg2 == PR_TIMING_STATISTICAL)
2215                                 error = 0;
2216                         else
2217                                 error = -EINVAL;
2218                         break;
2219
2220                 case PR_GET_KEEPCAPS:
2221                         if (current->keep_capabilities)
2222                                 error = 1;
2223                         break;
2224                 case PR_SET_KEEPCAPS:
2225                         if (arg2 != 0 && arg2 != 1) {
2226                                 error = -EINVAL;
2227                                 break;
2228                         }
2229                         current->keep_capabilities = arg2;
2230                         break;
2231                 case PR_SET_NAME: {
2232                         struct task_struct *me = current;
2233                         unsigned char ncomm[sizeof(me->comm)];
2234
2235                         ncomm[sizeof(me->comm)-1] = 0;
2236                         if (strncpy_from_user(ncomm, (char __user *)arg2,
2237                                                 sizeof(me->comm)-1) < 0)
2238                                 return -EFAULT;
2239                         set_task_comm(me, ncomm);
2240                         return 0;
2241                 }
2242                 case PR_GET_NAME: {
2243                         struct task_struct *me = current;
2244                         unsigned char tcomm[sizeof(me->comm)];
2245
2246                         get_task_comm(tcomm, me);
2247                         if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
2248                                 return -EFAULT;
2249                         return 0;
2250                 }
2251                 case PR_GET_ENDIAN:
2252                         error = GET_ENDIAN(current, arg2);
2253                         break;
2254                 case PR_SET_ENDIAN:
2255                         error = SET_ENDIAN(current, arg2);
2256                         break;
2257
2258                 case PR_GET_SECCOMP:
2259                         error = prctl_get_seccomp();
2260                         break;
2261                 case PR_SET_SECCOMP:
2262                         error = prctl_set_seccomp(arg2);
2263                         break;
2264
2265                 default:
2266                         error = -EINVAL;
2267                         break;
2268         }
2269         return error;
2270 }
2271
2272 asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep,
2273                            struct getcpu_cache __user *cache)
2274 {
2275         int err = 0;
2276         int cpu = raw_smp_processor_id();
2277         if (cpup)
2278                 err |= put_user(cpu, cpup);
2279         if (nodep)
2280                 err |= put_user(cpu_to_node(cpu), nodep);
2281         if (cache) {
2282                 /*
2283                  * The cache is not needed for this implementation,
2284                  * but make sure user programs pass something
2285                  * valid. vsyscall implementations can instead make
2286                  * good use of the cache. Only use t0 and t1 because
2287                  * these are available in both 32bit and 64bit ABI (no
2288                  * need for a compat_getcpu). 32bit has enough
2289                  * padding
2290                  */
2291                 unsigned long t0, t1;
2292                 get_user(t0, &cache->blob[0]);
2293                 get_user(t1, &cache->blob[1]);
2294                 t0++;
2295                 t1++;
2296                 put_user(t0, &cache->blob[0]);
2297                 put_user(t1, &cache->blob[1]);
2298         }
2299         return err ? -EFAULT : 0;
2300 }
2301
2302 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
2303
2304 static void argv_cleanup(char **argv, char **envp)
2305 {
2306         argv_free(argv);
2307 }
2308
2309 /**
2310  * orderly_poweroff - Trigger an orderly system poweroff
2311  * @force: force poweroff if command execution fails
2312  *
2313  * This may be called from any context to trigger a system shutdown.
2314  * If the orderly shutdown fails, it will force an immediate shutdown.
2315  */
2316 int orderly_poweroff(bool force)
2317 {
2318         int argc;
2319         char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
2320         static char *envp[] = {
2321                 "HOME=/",
2322                 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2323                 NULL
2324         };
2325         int ret = -ENOMEM;
2326         struct subprocess_info *info;
2327
2328         if (argv == NULL) {
2329                 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
2330                        __func__, poweroff_cmd);
2331                 goto out;
2332         }
2333
2334         info = call_usermodehelper_setup(argv[0], argv, envp);
2335         if (info == NULL) {
2336                 argv_free(argv);
2337                 goto out;
2338         }
2339
2340         call_usermodehelper_setcleanup(info, argv_cleanup);
2341
2342         ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
2343
2344   out:
2345         if (ret && force) {
2346                 printk(KERN_WARNING "Failed to start orderly shutdown: "
2347                        "forcing the issue\n");
2348
2349                 /* I guess this should try to kick off some daemon to
2350                    sync and poweroff asap.  Or not even bother syncing
2351                    if we're doing an emergency shutdown? */
2352                 emergency_sync();
2353                 kernel_power_off();
2354         }
2355
2356         return ret;
2357 }
2358 EXPORT_SYMBOL_GPL(orderly_poweroff);