[PATCH] Make ctrl_alt_del call kernel_restart to get a proper reboot.
[safe/jmp/linux-2.6] / kernel / sys.c
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/config.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/smp_lock.h>
13 #include <linux/notifier.h>
14 #include <linux/reboot.h>
15 #include <linux/prctl.h>
16 #include <linux/init.h>
17 #include <linux/highuid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kexec.h>
21 #include <linux/workqueue.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31
32 #include <linux/compat.h>
33 #include <linux/syscalls.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/io.h>
37 #include <asm/unistd.h>
38
39 #ifndef SET_UNALIGN_CTL
40 # define SET_UNALIGN_CTL(a,b)   (-EINVAL)
41 #endif
42 #ifndef GET_UNALIGN_CTL
43 # define GET_UNALIGN_CTL(a,b)   (-EINVAL)
44 #endif
45 #ifndef SET_FPEMU_CTL
46 # define SET_FPEMU_CTL(a,b)     (-EINVAL)
47 #endif
48 #ifndef GET_FPEMU_CTL
49 # define GET_FPEMU_CTL(a,b)     (-EINVAL)
50 #endif
51 #ifndef SET_FPEXC_CTL
52 # define SET_FPEXC_CTL(a,b)     (-EINVAL)
53 #endif
54 #ifndef GET_FPEXC_CTL
55 # define GET_FPEXC_CTL(a,b)     (-EINVAL)
56 #endif
57
58 /*
59  * this is where the system-wide overflow UID and GID are defined, for
60  * architectures that now have 32-bit UID/GID but didn't in the past
61  */
62
63 int overflowuid = DEFAULT_OVERFLOWUID;
64 int overflowgid = DEFAULT_OVERFLOWGID;
65
66 #ifdef CONFIG_UID16
67 EXPORT_SYMBOL(overflowuid);
68 EXPORT_SYMBOL(overflowgid);
69 #endif
70
71 /*
72  * the same as above, but for filesystems which can only store a 16-bit
73  * UID and GID. as such, this is needed on all architectures
74  */
75
76 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
77 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
78
79 EXPORT_SYMBOL(fs_overflowuid);
80 EXPORT_SYMBOL(fs_overflowgid);
81
82 /*
83  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
84  */
85
86 int C_A_D = 1;
87 int cad_pid = 1;
88
89 /*
90  *      Notifier list for kernel code which wants to be called
91  *      at shutdown. This is used to stop any idling DMA operations
92  *      and the like. 
93  */
94
95 static struct notifier_block *reboot_notifier_list;
96 static DEFINE_RWLOCK(notifier_lock);
97
98 /**
99  *      notifier_chain_register - Add notifier to a notifier chain
100  *      @list: Pointer to root list pointer
101  *      @n: New entry in notifier chain
102  *
103  *      Adds a notifier to a notifier chain.
104  *
105  *      Currently always returns zero.
106  */
107  
108 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)
109 {
110         write_lock(&notifier_lock);
111         while(*list)
112         {
113                 if(n->priority > (*list)->priority)
114                         break;
115                 list= &((*list)->next);
116         }
117         n->next = *list;
118         *list=n;
119         write_unlock(&notifier_lock);
120         return 0;
121 }
122
123 EXPORT_SYMBOL(notifier_chain_register);
124
125 /**
126  *      notifier_chain_unregister - Remove notifier from a notifier chain
127  *      @nl: Pointer to root list pointer
128  *      @n: New entry in notifier chain
129  *
130  *      Removes a notifier from a notifier chain.
131  *
132  *      Returns zero on success, or %-ENOENT on failure.
133  */
134  
135 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n)
136 {
137         write_lock(&notifier_lock);
138         while((*nl)!=NULL)
139         {
140                 if((*nl)==n)
141                 {
142                         *nl=n->next;
143                         write_unlock(&notifier_lock);
144                         return 0;
145                 }
146                 nl=&((*nl)->next);
147         }
148         write_unlock(&notifier_lock);
149         return -ENOENT;
150 }
151
152 EXPORT_SYMBOL(notifier_chain_unregister);
153
154 /**
155  *      notifier_call_chain - Call functions in a notifier chain
156  *      @n: Pointer to root pointer of notifier chain
157  *      @val: Value passed unmodified to notifier function
158  *      @v: Pointer passed unmodified to notifier function
159  *
160  *      Calls each function in a notifier chain in turn.
161  *
162  *      If the return value of the notifier can be and'd
163  *      with %NOTIFY_STOP_MASK, then notifier_call_chain
164  *      will return immediately, with the return value of
165  *      the notifier function which halted execution.
166  *      Otherwise, the return value is the return value
167  *      of the last notifier function called.
168  */
169  
170 int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)
171 {
172         int ret=NOTIFY_DONE;
173         struct notifier_block *nb = *n;
174
175         while(nb)
176         {
177                 ret=nb->notifier_call(nb,val,v);
178                 if(ret&NOTIFY_STOP_MASK)
179                 {
180                         return ret;
181                 }
182                 nb=nb->next;
183         }
184         return ret;
185 }
186
187 EXPORT_SYMBOL(notifier_call_chain);
188
189 /**
190  *      register_reboot_notifier - Register function to be called at reboot time
191  *      @nb: Info about notifier function to be called
192  *
193  *      Registers a function with the list of functions
194  *      to be called at reboot time.
195  *
196  *      Currently always returns zero, as notifier_chain_register
197  *      always returns zero.
198  */
199  
200 int register_reboot_notifier(struct notifier_block * nb)
201 {
202         return notifier_chain_register(&reboot_notifier_list, nb);
203 }
204
205 EXPORT_SYMBOL(register_reboot_notifier);
206
207 /**
208  *      unregister_reboot_notifier - Unregister previously registered reboot notifier
209  *      @nb: Hook to be unregistered
210  *
211  *      Unregisters a previously registered reboot
212  *      notifier function.
213  *
214  *      Returns zero on success, or %-ENOENT on failure.
215  */
216  
217 int unregister_reboot_notifier(struct notifier_block * nb)
218 {
219         return notifier_chain_unregister(&reboot_notifier_list, nb);
220 }
221
222 EXPORT_SYMBOL(unregister_reboot_notifier);
223
224 static int set_one_prio(struct task_struct *p, int niceval, int error)
225 {
226         int no_nice;
227
228         if (p->uid != current->euid &&
229                 p->euid != current->euid && !capable(CAP_SYS_NICE)) {
230                 error = -EPERM;
231                 goto out;
232         }
233         if (niceval < task_nice(p) && !can_nice(p, niceval)) {
234                 error = -EACCES;
235                 goto out;
236         }
237         no_nice = security_task_setnice(p, niceval);
238         if (no_nice) {
239                 error = no_nice;
240                 goto out;
241         }
242         if (error == -ESRCH)
243                 error = 0;
244         set_user_nice(p, niceval);
245 out:
246         return error;
247 }
248
249 asmlinkage long sys_setpriority(int which, int who, int niceval)
250 {
251         struct task_struct *g, *p;
252         struct user_struct *user;
253         int error = -EINVAL;
254
255         if (which > 2 || which < 0)
256                 goto out;
257
258         /* normalize: avoid signed division (rounding problems) */
259         error = -ESRCH;
260         if (niceval < -20)
261                 niceval = -20;
262         if (niceval > 19)
263                 niceval = 19;
264
265         read_lock(&tasklist_lock);
266         switch (which) {
267                 case PRIO_PROCESS:
268                         if (!who)
269                                 who = current->pid;
270                         p = find_task_by_pid(who);
271                         if (p)
272                                 error = set_one_prio(p, niceval, error);
273                         break;
274                 case PRIO_PGRP:
275                         if (!who)
276                                 who = process_group(current);
277                         do_each_task_pid(who, PIDTYPE_PGID, p) {
278                                 error = set_one_prio(p, niceval, error);
279                         } while_each_task_pid(who, PIDTYPE_PGID, p);
280                         break;
281                 case PRIO_USER:
282                         user = current->user;
283                         if (!who)
284                                 who = current->uid;
285                         else
286                                 if ((who != current->uid) && !(user = find_user(who)))
287                                         goto out_unlock;        /* No processes for this user */
288
289                         do_each_thread(g, p)
290                                 if (p->uid == who)
291                                         error = set_one_prio(p, niceval, error);
292                         while_each_thread(g, p);
293                         if (who != current->uid)
294                                 free_uid(user);         /* For find_user() */
295                         break;
296         }
297 out_unlock:
298         read_unlock(&tasklist_lock);
299 out:
300         return error;
301 }
302
303 /*
304  * Ugh. To avoid negative return values, "getpriority()" will
305  * not return the normal nice-value, but a negated value that
306  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
307  * to stay compatible.
308  */
309 asmlinkage long sys_getpriority(int which, int who)
310 {
311         struct task_struct *g, *p;
312         struct user_struct *user;
313         long niceval, retval = -ESRCH;
314
315         if (which > 2 || which < 0)
316                 return -EINVAL;
317
318         read_lock(&tasklist_lock);
319         switch (which) {
320                 case PRIO_PROCESS:
321                         if (!who)
322                                 who = current->pid;
323                         p = find_task_by_pid(who);
324                         if (p) {
325                                 niceval = 20 - task_nice(p);
326                                 if (niceval > retval)
327                                         retval = niceval;
328                         }
329                         break;
330                 case PRIO_PGRP:
331                         if (!who)
332                                 who = process_group(current);
333                         do_each_task_pid(who, PIDTYPE_PGID, p) {
334                                 niceval = 20 - task_nice(p);
335                                 if (niceval > retval)
336                                         retval = niceval;
337                         } while_each_task_pid(who, PIDTYPE_PGID, p);
338                         break;
339                 case PRIO_USER:
340                         user = current->user;
341                         if (!who)
342                                 who = current->uid;
343                         else
344                                 if ((who != current->uid) && !(user = find_user(who)))
345                                         goto out_unlock;        /* No processes for this user */
346
347                         do_each_thread(g, p)
348                                 if (p->uid == who) {
349                                         niceval = 20 - task_nice(p);
350                                         if (niceval > retval)
351                                                 retval = niceval;
352                                 }
353                         while_each_thread(g, p);
354                         if (who != current->uid)
355                                 free_uid(user);         /* for find_user() */
356                         break;
357         }
358 out_unlock:
359         read_unlock(&tasklist_lock);
360
361         return retval;
362 }
363
364 void kernel_restart(char *cmd)
365 {
366         notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
367         system_state = SYSTEM_RESTART;
368         device_suspend(PMSG_FREEZE);
369         device_shutdown();
370         if (!cmd) {
371                 printk(KERN_EMERG "Restarting system.\n");
372         } else {
373                 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
374         }
375         printk(".\n");
376         machine_restart(cmd);
377 }
378 EXPORT_SYMBOL_GPL(kernel_restart);
379
380 void kernel_kexec(void)
381 {
382 #ifdef CONFIG_KEXEC
383         struct kimage *image;
384         image = xchg(&kexec_image, 0);
385         if (!image) {
386                 return;
387         }
388         notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
389         system_state = SYSTEM_RESTART;
390         device_suspend(PMSG_FREEZE);
391         device_shutdown();
392         printk(KERN_EMERG "Starting new kernel\n");
393         machine_shutdown();
394         machine_kexec(image);
395 #endif
396 }
397 EXPORT_SYMBOL_GPL(kernel_kexec);
398
399 void kernel_halt(void)
400 {
401         notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL);
402         system_state = SYSTEM_HALT;
403         device_suspend(PMSG_SUSPEND);
404         device_shutdown();
405         printk(KERN_EMERG "System halted.\n");
406         machine_halt();
407 }
408 EXPORT_SYMBOL_GPL(kernel_halt);
409
410 void kernel_power_off(void)
411 {
412         notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL);
413         system_state = SYSTEM_POWER_OFF;
414         device_suspend(PMSG_SUSPEND);
415         device_shutdown();
416         printk(KERN_EMERG "Power down.\n");
417         machine_power_off();
418 }
419 EXPORT_SYMBOL_GPL(kernel_power_off);
420
421 /*
422  * Reboot system call: for obvious reasons only root may call it,
423  * and even root needs to set up some magic numbers in the registers
424  * so that some mistake won't make this reboot the whole machine.
425  * You can also set the meaning of the ctrl-alt-del-key here.
426  *
427  * reboot doesn't sync: do that yourself before calling this.
428  */
429 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
430 {
431         char buffer[256];
432
433         /* We only trust the superuser with rebooting the system. */
434         if (!capable(CAP_SYS_BOOT))
435                 return -EPERM;
436
437         /* For safety, we require "magic" arguments. */
438         if (magic1 != LINUX_REBOOT_MAGIC1 ||
439             (magic2 != LINUX_REBOOT_MAGIC2 &&
440                         magic2 != LINUX_REBOOT_MAGIC2A &&
441                         magic2 != LINUX_REBOOT_MAGIC2B &&
442                         magic2 != LINUX_REBOOT_MAGIC2C))
443                 return -EINVAL;
444
445         lock_kernel();
446         switch (cmd) {
447         case LINUX_REBOOT_CMD_RESTART:
448                 kernel_restart(NULL);
449                 break;
450
451         case LINUX_REBOOT_CMD_CAD_ON:
452                 C_A_D = 1;
453                 break;
454
455         case LINUX_REBOOT_CMD_CAD_OFF:
456                 C_A_D = 0;
457                 break;
458
459         case LINUX_REBOOT_CMD_HALT:
460                 kernel_halt();
461                 unlock_kernel();
462                 do_exit(0);
463                 break;
464
465         case LINUX_REBOOT_CMD_POWER_OFF:
466                 kernel_power_off();
467                 unlock_kernel();
468                 do_exit(0);
469                 break;
470
471         case LINUX_REBOOT_CMD_RESTART2:
472                 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
473                         unlock_kernel();
474                         return -EFAULT;
475                 }
476                 buffer[sizeof(buffer) - 1] = '\0';
477
478                 kernel_restart(buffer);
479                 break;
480
481         case LINUX_REBOOT_CMD_KEXEC:
482                 kernel_kexec();
483                 unlock_kernel();
484                 return -EINVAL;
485
486 #ifdef CONFIG_SOFTWARE_SUSPEND
487         case LINUX_REBOOT_CMD_SW_SUSPEND:
488                 {
489                         int ret = software_suspend();
490                         unlock_kernel();
491                         return ret;
492                 }
493 #endif
494
495         default:
496                 unlock_kernel();
497                 return -EINVAL;
498         }
499         unlock_kernel();
500         return 0;
501 }
502
503 static void deferred_cad(void *dummy)
504 {
505         kernel_restart(NULL);
506 }
507
508 /*
509  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
510  * As it's called within an interrupt, it may NOT sync: the only choice
511  * is whether to reboot at once, or just ignore the ctrl-alt-del.
512  */
513 void ctrl_alt_del(void)
514 {
515         static DECLARE_WORK(cad_work, deferred_cad, NULL);
516
517         if (C_A_D)
518                 schedule_work(&cad_work);
519         else
520                 kill_proc(cad_pid, SIGINT, 1);
521 }
522         
523
524 /*
525  * Unprivileged users may change the real gid to the effective gid
526  * or vice versa.  (BSD-style)
527  *
528  * If you set the real gid at all, or set the effective gid to a value not
529  * equal to the real gid, then the saved gid is set to the new effective gid.
530  *
531  * This makes it possible for a setgid program to completely drop its
532  * privileges, which is often a useful assertion to make when you are doing
533  * a security audit over a program.
534  *
535  * The general idea is that a program which uses just setregid() will be
536  * 100% compatible with BSD.  A program which uses just setgid() will be
537  * 100% compatible with POSIX with saved IDs. 
538  *
539  * SMP: There are not races, the GIDs are checked only by filesystem
540  *      operations (as far as semantic preservation is concerned).
541  */
542 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
543 {
544         int old_rgid = current->gid;
545         int old_egid = current->egid;
546         int new_rgid = old_rgid;
547         int new_egid = old_egid;
548         int retval;
549
550         retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
551         if (retval)
552                 return retval;
553
554         if (rgid != (gid_t) -1) {
555                 if ((old_rgid == rgid) ||
556                     (current->egid==rgid) ||
557                     capable(CAP_SETGID))
558                         new_rgid = rgid;
559                 else
560                         return -EPERM;
561         }
562         if (egid != (gid_t) -1) {
563                 if ((old_rgid == egid) ||
564                     (current->egid == egid) ||
565                     (current->sgid == egid) ||
566                     capable(CAP_SETGID))
567                         new_egid = egid;
568                 else {
569                         return -EPERM;
570                 }
571         }
572         if (new_egid != old_egid)
573         {
574                 current->mm->dumpable = suid_dumpable;
575                 smp_wmb();
576         }
577         if (rgid != (gid_t) -1 ||
578             (egid != (gid_t) -1 && egid != old_rgid))
579                 current->sgid = new_egid;
580         current->fsgid = new_egid;
581         current->egid = new_egid;
582         current->gid = new_rgid;
583         key_fsgid_changed(current);
584         return 0;
585 }
586
587 /*
588  * setgid() is implemented like SysV w/ SAVED_IDS 
589  *
590  * SMP: Same implicit races as above.
591  */
592 asmlinkage long sys_setgid(gid_t gid)
593 {
594         int old_egid = current->egid;
595         int retval;
596
597         retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
598         if (retval)
599                 return retval;
600
601         if (capable(CAP_SETGID))
602         {
603                 if(old_egid != gid)
604                 {
605                         current->mm->dumpable = suid_dumpable;
606                         smp_wmb();
607                 }
608                 current->gid = current->egid = current->sgid = current->fsgid = gid;
609         }
610         else if ((gid == current->gid) || (gid == current->sgid))
611         {
612                 if(old_egid != gid)
613                 {
614                         current->mm->dumpable = suid_dumpable;
615                         smp_wmb();
616                 }
617                 current->egid = current->fsgid = gid;
618         }
619         else
620                 return -EPERM;
621
622         key_fsgid_changed(current);
623         return 0;
624 }
625   
626 static int set_user(uid_t new_ruid, int dumpclear)
627 {
628         struct user_struct *new_user;
629
630         new_user = alloc_uid(new_ruid);
631         if (!new_user)
632                 return -EAGAIN;
633
634         if (atomic_read(&new_user->processes) >=
635                                 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
636                         new_user != &root_user) {
637                 free_uid(new_user);
638                 return -EAGAIN;
639         }
640
641         switch_uid(new_user);
642
643         if(dumpclear)
644         {
645                 current->mm->dumpable = suid_dumpable;
646                 smp_wmb();
647         }
648         current->uid = new_ruid;
649         return 0;
650 }
651
652 /*
653  * Unprivileged users may change the real uid to the effective uid
654  * or vice versa.  (BSD-style)
655  *
656  * If you set the real uid at all, or set the effective uid to a value not
657  * equal to the real uid, then the saved uid is set to the new effective uid.
658  *
659  * This makes it possible for a setuid program to completely drop its
660  * privileges, which is often a useful assertion to make when you are doing
661  * a security audit over a program.
662  *
663  * The general idea is that a program which uses just setreuid() will be
664  * 100% compatible with BSD.  A program which uses just setuid() will be
665  * 100% compatible with POSIX with saved IDs. 
666  */
667 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
668 {
669         int old_ruid, old_euid, old_suid, new_ruid, new_euid;
670         int retval;
671
672         retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
673         if (retval)
674                 return retval;
675
676         new_ruid = old_ruid = current->uid;
677         new_euid = old_euid = current->euid;
678         old_suid = current->suid;
679
680         if (ruid != (uid_t) -1) {
681                 new_ruid = ruid;
682                 if ((old_ruid != ruid) &&
683                     (current->euid != ruid) &&
684                     !capable(CAP_SETUID))
685                         return -EPERM;
686         }
687
688         if (euid != (uid_t) -1) {
689                 new_euid = euid;
690                 if ((old_ruid != euid) &&
691                     (current->euid != euid) &&
692                     (current->suid != euid) &&
693                     !capable(CAP_SETUID))
694                         return -EPERM;
695         }
696
697         if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
698                 return -EAGAIN;
699
700         if (new_euid != old_euid)
701         {
702                 current->mm->dumpable = suid_dumpable;
703                 smp_wmb();
704         }
705         current->fsuid = current->euid = new_euid;
706         if (ruid != (uid_t) -1 ||
707             (euid != (uid_t) -1 && euid != old_ruid))
708                 current->suid = current->euid;
709         current->fsuid = current->euid;
710
711         key_fsuid_changed(current);
712
713         return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
714 }
715
716
717                 
718 /*
719  * setuid() is implemented like SysV with SAVED_IDS 
720  * 
721  * Note that SAVED_ID's is deficient in that a setuid root program
722  * like sendmail, for example, cannot set its uid to be a normal 
723  * user and then switch back, because if you're root, setuid() sets
724  * the saved uid too.  If you don't like this, blame the bright people
725  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
726  * will allow a root program to temporarily drop privileges and be able to
727  * regain them by swapping the real and effective uid.  
728  */
729 asmlinkage long sys_setuid(uid_t uid)
730 {
731         int old_euid = current->euid;
732         int old_ruid, old_suid, new_ruid, new_suid;
733         int retval;
734
735         retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
736         if (retval)
737                 return retval;
738
739         old_ruid = new_ruid = current->uid;
740         old_suid = current->suid;
741         new_suid = old_suid;
742         
743         if (capable(CAP_SETUID)) {
744                 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
745                         return -EAGAIN;
746                 new_suid = uid;
747         } else if ((uid != current->uid) && (uid != new_suid))
748                 return -EPERM;
749
750         if (old_euid != uid)
751         {
752                 current->mm->dumpable = suid_dumpable;
753                 smp_wmb();
754         }
755         current->fsuid = current->euid = uid;
756         current->suid = new_suid;
757
758         key_fsuid_changed(current);
759
760         return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
761 }
762
763
764 /*
765  * This function implements a generic ability to update ruid, euid,
766  * and suid.  This allows you to implement the 4.4 compatible seteuid().
767  */
768 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
769 {
770         int old_ruid = current->uid;
771         int old_euid = current->euid;
772         int old_suid = current->suid;
773         int retval;
774
775         retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
776         if (retval)
777                 return retval;
778
779         if (!capable(CAP_SETUID)) {
780                 if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
781                     (ruid != current->euid) && (ruid != current->suid))
782                         return -EPERM;
783                 if ((euid != (uid_t) -1) && (euid != current->uid) &&
784                     (euid != current->euid) && (euid != current->suid))
785                         return -EPERM;
786                 if ((suid != (uid_t) -1) && (suid != current->uid) &&
787                     (suid != current->euid) && (suid != current->suid))
788                         return -EPERM;
789         }
790         if (ruid != (uid_t) -1) {
791                 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
792                         return -EAGAIN;
793         }
794         if (euid != (uid_t) -1) {
795                 if (euid != current->euid)
796                 {
797                         current->mm->dumpable = suid_dumpable;
798                         smp_wmb();
799                 }
800                 current->euid = euid;
801         }
802         current->fsuid = current->euid;
803         if (suid != (uid_t) -1)
804                 current->suid = suid;
805
806         key_fsuid_changed(current);
807
808         return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
809 }
810
811 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
812 {
813         int retval;
814
815         if (!(retval = put_user(current->uid, ruid)) &&
816             !(retval = put_user(current->euid, euid)))
817                 retval = put_user(current->suid, suid);
818
819         return retval;
820 }
821
822 /*
823  * Same as above, but for rgid, egid, sgid.
824  */
825 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
826 {
827         int retval;
828
829         retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
830         if (retval)
831                 return retval;
832
833         if (!capable(CAP_SETGID)) {
834                 if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
835                     (rgid != current->egid) && (rgid != current->sgid))
836                         return -EPERM;
837                 if ((egid != (gid_t) -1) && (egid != current->gid) &&
838                     (egid != current->egid) && (egid != current->sgid))
839                         return -EPERM;
840                 if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
841                     (sgid != current->egid) && (sgid != current->sgid))
842                         return -EPERM;
843         }
844         if (egid != (gid_t) -1) {
845                 if (egid != current->egid)
846                 {
847                         current->mm->dumpable = suid_dumpable;
848                         smp_wmb();
849                 }
850                 current->egid = egid;
851         }
852         current->fsgid = current->egid;
853         if (rgid != (gid_t) -1)
854                 current->gid = rgid;
855         if (sgid != (gid_t) -1)
856                 current->sgid = sgid;
857
858         key_fsgid_changed(current);
859         return 0;
860 }
861
862 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
863 {
864         int retval;
865
866         if (!(retval = put_user(current->gid, rgid)) &&
867             !(retval = put_user(current->egid, egid)))
868                 retval = put_user(current->sgid, sgid);
869
870         return retval;
871 }
872
873
874 /*
875  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
876  * is used for "access()" and for the NFS daemon (letting nfsd stay at
877  * whatever uid it wants to). It normally shadows "euid", except when
878  * explicitly set by setfsuid() or for access..
879  */
880 asmlinkage long sys_setfsuid(uid_t uid)
881 {
882         int old_fsuid;
883
884         old_fsuid = current->fsuid;
885         if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
886                 return old_fsuid;
887
888         if (uid == current->uid || uid == current->euid ||
889             uid == current->suid || uid == current->fsuid || 
890             capable(CAP_SETUID))
891         {
892                 if (uid != old_fsuid)
893                 {
894                         current->mm->dumpable = suid_dumpable;
895                         smp_wmb();
896                 }
897                 current->fsuid = uid;
898         }
899
900         key_fsuid_changed(current);
901
902         security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
903
904         return old_fsuid;
905 }
906
907 /*
908  * Samma pÃ¥ svenska..
909  */
910 asmlinkage long sys_setfsgid(gid_t gid)
911 {
912         int old_fsgid;
913
914         old_fsgid = current->fsgid;
915         if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
916                 return old_fsgid;
917
918         if (gid == current->gid || gid == current->egid ||
919             gid == current->sgid || gid == current->fsgid || 
920             capable(CAP_SETGID))
921         {
922                 if (gid != old_fsgid)
923                 {
924                         current->mm->dumpable = suid_dumpable;
925                         smp_wmb();
926                 }
927                 current->fsgid = gid;
928                 key_fsgid_changed(current);
929         }
930         return old_fsgid;
931 }
932
933 asmlinkage long sys_times(struct tms __user * tbuf)
934 {
935         /*
936          *      In the SMP world we might just be unlucky and have one of
937          *      the times increment as we use it. Since the value is an
938          *      atomically safe type this is just fine. Conceptually its
939          *      as if the syscall took an instant longer to occur.
940          */
941         if (tbuf) {
942                 struct tms tmp;
943                 cputime_t utime, stime, cutime, cstime;
944
945 #ifdef CONFIG_SMP
946                 if (thread_group_empty(current)) {
947                         /*
948                          * Single thread case without the use of any locks.
949                          *
950                          * We may race with release_task if two threads are
951                          * executing. However, release task first adds up the
952                          * counters (__exit_signal) before  removing the task
953                          * from the process tasklist (__unhash_process).
954                          * __exit_signal also acquires and releases the
955                          * siglock which results in the proper memory ordering
956                          * so that the list modifications are always visible
957                          * after the counters have been updated.
958                          *
959                          * If the counters have been updated by the second thread
960                          * but the thread has not yet been removed from the list
961                          * then the other branch will be executing which will
962                          * block on tasklist_lock until the exit handling of the
963                          * other task is finished.
964                          *
965                          * This also implies that the sighand->siglock cannot
966                          * be held by another processor. So we can also
967                          * skip acquiring that lock.
968                          */
969                         utime = cputime_add(current->signal->utime, current->utime);
970                         stime = cputime_add(current->signal->utime, current->stime);
971                         cutime = current->signal->cutime;
972                         cstime = current->signal->cstime;
973                 } else
974 #endif
975                 {
976
977                         /* Process with multiple threads */
978                         struct task_struct *tsk = current;
979                         struct task_struct *t;
980
981                         read_lock(&tasklist_lock);
982                         utime = tsk->signal->utime;
983                         stime = tsk->signal->stime;
984                         t = tsk;
985                         do {
986                                 utime = cputime_add(utime, t->utime);
987                                 stime = cputime_add(stime, t->stime);
988                                 t = next_thread(t);
989                         } while (t != tsk);
990
991                         /*
992                          * While we have tasklist_lock read-locked, no dying thread
993                          * can be updating current->signal->[us]time.  Instead,
994                          * we got their counts included in the live thread loop.
995                          * However, another thread can come in right now and
996                          * do a wait call that updates current->signal->c[us]time.
997                          * To make sure we always see that pair updated atomically,
998                          * we take the siglock around fetching them.
999                          */
1000                         spin_lock_irq(&tsk->sighand->siglock);
1001                         cutime = tsk->signal->cutime;
1002                         cstime = tsk->signal->cstime;
1003                         spin_unlock_irq(&tsk->sighand->siglock);
1004                         read_unlock(&tasklist_lock);
1005                 }
1006                 tmp.tms_utime = cputime_to_clock_t(utime);
1007                 tmp.tms_stime = cputime_to_clock_t(stime);
1008                 tmp.tms_cutime = cputime_to_clock_t(cutime);
1009                 tmp.tms_cstime = cputime_to_clock_t(cstime);
1010                 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1011                         return -EFAULT;
1012         }
1013         return (long) jiffies_64_to_clock_t(get_jiffies_64());
1014 }
1015
1016 /*
1017  * This needs some heavy checking ...
1018  * I just haven't the stomach for it. I also don't fully
1019  * understand sessions/pgrp etc. Let somebody who does explain it.
1020  *
1021  * OK, I think I have the protection semantics right.... this is really
1022  * only important on a multi-user system anyway, to make sure one user
1023  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1024  *
1025  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1026  * LBT 04.03.94
1027  */
1028
1029 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
1030 {
1031         struct task_struct *p;
1032         int err = -EINVAL;
1033
1034         if (!pid)
1035                 pid = current->pid;
1036         if (!pgid)
1037                 pgid = pid;
1038         if (pgid < 0)
1039                 return -EINVAL;
1040
1041         /* From this point forward we keep holding onto the tasklist lock
1042          * so that our parent does not change from under us. -DaveM
1043          */
1044         write_lock_irq(&tasklist_lock);
1045
1046         err = -ESRCH;
1047         p = find_task_by_pid(pid);
1048         if (!p)
1049                 goto out;
1050
1051         err = -EINVAL;
1052         if (!thread_group_leader(p))
1053                 goto out;
1054
1055         if (p->parent == current || p->real_parent == current) {
1056                 err = -EPERM;
1057                 if (p->signal->session != current->signal->session)
1058                         goto out;
1059                 err = -EACCES;
1060                 if (p->did_exec)
1061                         goto out;
1062         } else {
1063                 err = -ESRCH;
1064                 if (p != current)
1065                         goto out;
1066         }
1067
1068         err = -EPERM;
1069         if (p->signal->leader)
1070                 goto out;
1071
1072         if (pgid != pid) {
1073                 struct task_struct *p;
1074
1075                 do_each_task_pid(pgid, PIDTYPE_PGID, p) {
1076                         if (p->signal->session == current->signal->session)
1077                                 goto ok_pgid;
1078                 } while_each_task_pid(pgid, PIDTYPE_PGID, p);
1079                 goto out;
1080         }
1081
1082 ok_pgid:
1083         err = security_task_setpgid(p, pgid);
1084         if (err)
1085                 goto out;
1086
1087         if (process_group(p) != pgid) {
1088                 detach_pid(p, PIDTYPE_PGID);
1089                 p->signal->pgrp = pgid;
1090                 attach_pid(p, PIDTYPE_PGID, pgid);
1091         }
1092
1093         err = 0;
1094 out:
1095         /* All paths lead to here, thus we are safe. -DaveM */
1096         write_unlock_irq(&tasklist_lock);
1097         return err;
1098 }
1099
1100 asmlinkage long sys_getpgid(pid_t pid)
1101 {
1102         if (!pid) {
1103                 return process_group(current);
1104         } else {
1105                 int retval;
1106                 struct task_struct *p;
1107
1108                 read_lock(&tasklist_lock);
1109                 p = find_task_by_pid(pid);
1110
1111                 retval = -ESRCH;
1112                 if (p) {
1113                         retval = security_task_getpgid(p);
1114                         if (!retval)
1115                                 retval = process_group(p);
1116                 }
1117                 read_unlock(&tasklist_lock);
1118                 return retval;
1119         }
1120 }
1121
1122 #ifdef __ARCH_WANT_SYS_GETPGRP
1123
1124 asmlinkage long sys_getpgrp(void)
1125 {
1126         /* SMP - assuming writes are word atomic this is fine */
1127         return process_group(current);
1128 }
1129
1130 #endif
1131
1132 asmlinkage long sys_getsid(pid_t pid)
1133 {
1134         if (!pid) {
1135                 return current->signal->session;
1136         } else {
1137                 int retval;
1138                 struct task_struct *p;
1139
1140                 read_lock(&tasklist_lock);
1141                 p = find_task_by_pid(pid);
1142
1143                 retval = -ESRCH;
1144                 if(p) {
1145                         retval = security_task_getsid(p);
1146                         if (!retval)
1147                                 retval = p->signal->session;
1148                 }
1149                 read_unlock(&tasklist_lock);
1150                 return retval;
1151         }
1152 }
1153
1154 asmlinkage long sys_setsid(void)
1155 {
1156         struct pid *pid;
1157         int err = -EPERM;
1158
1159         if (!thread_group_leader(current))
1160                 return -EINVAL;
1161
1162         down(&tty_sem);
1163         write_lock_irq(&tasklist_lock);
1164
1165         pid = find_pid(PIDTYPE_PGID, current->pid);
1166         if (pid)
1167                 goto out;
1168
1169         current->signal->leader = 1;
1170         __set_special_pids(current->pid, current->pid);
1171         current->signal->tty = NULL;
1172         current->signal->tty_old_pgrp = 0;
1173         err = process_group(current);
1174 out:
1175         write_unlock_irq(&tasklist_lock);
1176         up(&tty_sem);
1177         return err;
1178 }
1179
1180 /*
1181  * Supplementary group IDs
1182  */
1183
1184 /* init to 2 - one for init_task, one to ensure it is never freed */
1185 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1186
1187 struct group_info *groups_alloc(int gidsetsize)
1188 {
1189         struct group_info *group_info;
1190         int nblocks;
1191         int i;
1192
1193         nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1194         /* Make sure we always allocate at least one indirect block pointer */
1195         nblocks = nblocks ? : 1;
1196         group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1197         if (!group_info)
1198                 return NULL;
1199         group_info->ngroups = gidsetsize;
1200         group_info->nblocks = nblocks;
1201         atomic_set(&group_info->usage, 1);
1202
1203         if (gidsetsize <= NGROUPS_SMALL) {
1204                 group_info->blocks[0] = group_info->small_block;
1205         } else {
1206                 for (i = 0; i < nblocks; i++) {
1207                         gid_t *b;
1208                         b = (void *)__get_free_page(GFP_USER);
1209                         if (!b)
1210                                 goto out_undo_partial_alloc;
1211                         group_info->blocks[i] = b;
1212                 }
1213         }
1214         return group_info;
1215
1216 out_undo_partial_alloc:
1217         while (--i >= 0) {
1218                 free_page((unsigned long)group_info->blocks[i]);
1219         }
1220         kfree(group_info);
1221         return NULL;
1222 }
1223
1224 EXPORT_SYMBOL(groups_alloc);
1225
1226 void groups_free(struct group_info *group_info)
1227 {
1228         if (group_info->blocks[0] != group_info->small_block) {
1229                 int i;
1230                 for (i = 0; i < group_info->nblocks; i++)
1231                         free_page((unsigned long)group_info->blocks[i]);
1232         }
1233         kfree(group_info);
1234 }
1235
1236 EXPORT_SYMBOL(groups_free);
1237
1238 /* export the group_info to a user-space array */
1239 static int groups_to_user(gid_t __user *grouplist,
1240     struct group_info *group_info)
1241 {
1242         int i;
1243         int count = group_info->ngroups;
1244
1245         for (i = 0; i < group_info->nblocks; i++) {
1246                 int cp_count = min(NGROUPS_PER_BLOCK, count);
1247                 int off = i * NGROUPS_PER_BLOCK;
1248                 int len = cp_count * sizeof(*grouplist);
1249
1250                 if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1251                         return -EFAULT;
1252
1253                 count -= cp_count;
1254         }
1255         return 0;
1256 }
1257
1258 /* fill a group_info from a user-space array - it must be allocated already */
1259 static int groups_from_user(struct group_info *group_info,
1260     gid_t __user *grouplist)
1261  {
1262         int i;
1263         int count = group_info->ngroups;
1264
1265         for (i = 0; i < group_info->nblocks; i++) {
1266                 int cp_count = min(NGROUPS_PER_BLOCK, count);
1267                 int off = i * NGROUPS_PER_BLOCK;
1268                 int len = cp_count * sizeof(*grouplist);
1269
1270                 if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1271                         return -EFAULT;
1272
1273                 count -= cp_count;
1274         }
1275         return 0;
1276 }
1277
1278 /* a simple Shell sort */
1279 static void groups_sort(struct group_info *group_info)
1280 {
1281         int base, max, stride;
1282         int gidsetsize = group_info->ngroups;
1283
1284         for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1285                 ; /* nothing */
1286         stride /= 3;
1287
1288         while (stride) {
1289                 max = gidsetsize - stride;
1290                 for (base = 0; base < max; base++) {
1291                         int left = base;
1292                         int right = left + stride;
1293                         gid_t tmp = GROUP_AT(group_info, right);
1294
1295                         while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1296                                 GROUP_AT(group_info, right) =
1297                                     GROUP_AT(group_info, left);
1298                                 right = left;
1299                                 left -= stride;
1300                         }
1301                         GROUP_AT(group_info, right) = tmp;
1302                 }
1303                 stride /= 3;
1304         }
1305 }
1306
1307 /* a simple bsearch */
1308 int groups_search(struct group_info *group_info, gid_t grp)
1309 {
1310         int left, right;
1311
1312         if (!group_info)
1313                 return 0;
1314
1315         left = 0;
1316         right = group_info->ngroups;
1317         while (left < right) {
1318                 int mid = (left+right)/2;
1319                 int cmp = grp - GROUP_AT(group_info, mid);
1320                 if (cmp > 0)
1321                         left = mid + 1;
1322                 else if (cmp < 0)
1323                         right = mid;
1324                 else
1325                         return 1;
1326         }
1327         return 0;
1328 }
1329
1330 /* validate and set current->group_info */
1331 int set_current_groups(struct group_info *group_info)
1332 {
1333         int retval;
1334         struct group_info *old_info;
1335
1336         retval = security_task_setgroups(group_info);
1337         if (retval)
1338                 return retval;
1339
1340         groups_sort(group_info);
1341         get_group_info(group_info);
1342
1343         task_lock(current);
1344         old_info = current->group_info;
1345         current->group_info = group_info;
1346         task_unlock(current);
1347
1348         put_group_info(old_info);
1349
1350         return 0;
1351 }
1352
1353 EXPORT_SYMBOL(set_current_groups);
1354
1355 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1356 {
1357         int i = 0;
1358
1359         /*
1360          *      SMP: Nobody else can change our grouplist. Thus we are
1361          *      safe.
1362          */
1363
1364         if (gidsetsize < 0)
1365                 return -EINVAL;
1366
1367         /* no need to grab task_lock here; it cannot change */
1368         get_group_info(current->group_info);
1369         i = current->group_info->ngroups;
1370         if (gidsetsize) {
1371                 if (i > gidsetsize) {
1372                         i = -EINVAL;
1373                         goto out;
1374                 }
1375                 if (groups_to_user(grouplist, current->group_info)) {
1376                         i = -EFAULT;
1377                         goto out;
1378                 }
1379         }
1380 out:
1381         put_group_info(current->group_info);
1382         return i;
1383 }
1384
1385 /*
1386  *      SMP: Our groups are copy-on-write. We can set them safely
1387  *      without another task interfering.
1388  */
1389  
1390 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1391 {
1392         struct group_info *group_info;
1393         int retval;
1394
1395         if (!capable(CAP_SETGID))
1396                 return -EPERM;
1397         if ((unsigned)gidsetsize > NGROUPS_MAX)
1398                 return -EINVAL;
1399
1400         group_info = groups_alloc(gidsetsize);
1401         if (!group_info)
1402                 return -ENOMEM;
1403         retval = groups_from_user(group_info, grouplist);
1404         if (retval) {
1405                 put_group_info(group_info);
1406                 return retval;
1407         }
1408
1409         retval = set_current_groups(group_info);
1410         put_group_info(group_info);
1411
1412         return retval;
1413 }
1414
1415 /*
1416  * Check whether we're fsgid/egid or in the supplemental group..
1417  */
1418 int in_group_p(gid_t grp)
1419 {
1420         int retval = 1;
1421         if (grp != current->fsgid) {
1422                 get_group_info(current->group_info);
1423                 retval = groups_search(current->group_info, grp);
1424                 put_group_info(current->group_info);
1425         }
1426         return retval;
1427 }
1428
1429 EXPORT_SYMBOL(in_group_p);
1430
1431 int in_egroup_p(gid_t grp)
1432 {
1433         int retval = 1;
1434         if (grp != current->egid) {
1435                 get_group_info(current->group_info);
1436                 retval = groups_search(current->group_info, grp);
1437                 put_group_info(current->group_info);
1438         }
1439         return retval;
1440 }
1441
1442 EXPORT_SYMBOL(in_egroup_p);
1443
1444 DECLARE_RWSEM(uts_sem);
1445
1446 EXPORT_SYMBOL(uts_sem);
1447
1448 asmlinkage long sys_newuname(struct new_utsname __user * name)
1449 {
1450         int errno = 0;
1451
1452         down_read(&uts_sem);
1453         if (copy_to_user(name,&system_utsname,sizeof *name))
1454                 errno = -EFAULT;
1455         up_read(&uts_sem);
1456         return errno;
1457 }
1458
1459 asmlinkage long sys_sethostname(char __user *name, int len)
1460 {
1461         int errno;
1462         char tmp[__NEW_UTS_LEN];
1463
1464         if (!capable(CAP_SYS_ADMIN))
1465                 return -EPERM;
1466         if (len < 0 || len > __NEW_UTS_LEN)
1467                 return -EINVAL;
1468         down_write(&uts_sem);
1469         errno = -EFAULT;
1470         if (!copy_from_user(tmp, name, len)) {
1471                 memcpy(system_utsname.nodename, tmp, len);
1472                 system_utsname.nodename[len] = 0;
1473                 errno = 0;
1474         }
1475         up_write(&uts_sem);
1476         return errno;
1477 }
1478
1479 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1480
1481 asmlinkage long sys_gethostname(char __user *name, int len)
1482 {
1483         int i, errno;
1484
1485         if (len < 0)
1486                 return -EINVAL;
1487         down_read(&uts_sem);
1488         i = 1 + strlen(system_utsname.nodename);
1489         if (i > len)
1490                 i = len;
1491         errno = 0;
1492         if (copy_to_user(name, system_utsname.nodename, i))
1493                 errno = -EFAULT;
1494         up_read(&uts_sem);
1495         return errno;
1496 }
1497
1498 #endif
1499
1500 /*
1501  * Only setdomainname; getdomainname can be implemented by calling
1502  * uname()
1503  */
1504 asmlinkage long sys_setdomainname(char __user *name, int len)
1505 {
1506         int errno;
1507         char tmp[__NEW_UTS_LEN];
1508
1509         if (!capable(CAP_SYS_ADMIN))
1510                 return -EPERM;
1511         if (len < 0 || len > __NEW_UTS_LEN)
1512                 return -EINVAL;
1513
1514         down_write(&uts_sem);
1515         errno = -EFAULT;
1516         if (!copy_from_user(tmp, name, len)) {
1517                 memcpy(system_utsname.domainname, tmp, len);
1518                 system_utsname.domainname[len] = 0;
1519                 errno = 0;
1520         }
1521         up_write(&uts_sem);
1522         return errno;
1523 }
1524
1525 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1526 {
1527         if (resource >= RLIM_NLIMITS)
1528                 return -EINVAL;
1529         else {
1530                 struct rlimit value;
1531                 task_lock(current->group_leader);
1532                 value = current->signal->rlim[resource];
1533                 task_unlock(current->group_leader);
1534                 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1535         }
1536 }
1537
1538 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1539
1540 /*
1541  *      Back compatibility for getrlimit. Needed for some apps.
1542  */
1543  
1544 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1545 {
1546         struct rlimit x;
1547         if (resource >= RLIM_NLIMITS)
1548                 return -EINVAL;
1549
1550         task_lock(current->group_leader);
1551         x = current->signal->rlim[resource];
1552         task_unlock(current->group_leader);
1553         if(x.rlim_cur > 0x7FFFFFFF)
1554                 x.rlim_cur = 0x7FFFFFFF;
1555         if(x.rlim_max > 0x7FFFFFFF)
1556                 x.rlim_max = 0x7FFFFFFF;
1557         return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1558 }
1559
1560 #endif
1561
1562 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1563 {
1564         struct rlimit new_rlim, *old_rlim;
1565         int retval;
1566
1567         if (resource >= RLIM_NLIMITS)
1568                 return -EINVAL;
1569         if(copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1570                 return -EFAULT;
1571        if (new_rlim.rlim_cur > new_rlim.rlim_max)
1572                return -EINVAL;
1573         old_rlim = current->signal->rlim + resource;
1574         if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1575             !capable(CAP_SYS_RESOURCE))
1576                 return -EPERM;
1577         if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1578                         return -EPERM;
1579
1580         retval = security_task_setrlimit(resource, &new_rlim);
1581         if (retval)
1582                 return retval;
1583
1584         task_lock(current->group_leader);
1585         *old_rlim = new_rlim;
1586         task_unlock(current->group_leader);
1587
1588         if (resource == RLIMIT_CPU && new_rlim.rlim_cur != RLIM_INFINITY &&
1589             (cputime_eq(current->signal->it_prof_expires, cputime_zero) ||
1590              new_rlim.rlim_cur <= cputime_to_secs(
1591                      current->signal->it_prof_expires))) {
1592                 cputime_t cputime = secs_to_cputime(new_rlim.rlim_cur);
1593                 read_lock(&tasklist_lock);
1594                 spin_lock_irq(&current->sighand->siglock);
1595                 set_process_cpu_timer(current, CPUCLOCK_PROF,
1596                                       &cputime, NULL);
1597                 spin_unlock_irq(&current->sighand->siglock);
1598                 read_unlock(&tasklist_lock);
1599         }
1600
1601         return 0;
1602 }
1603
1604 /*
1605  * It would make sense to put struct rusage in the task_struct,
1606  * except that would make the task_struct be *really big*.  After
1607  * task_struct gets moved into malloc'ed memory, it would
1608  * make sense to do this.  It will make moving the rest of the information
1609  * a lot simpler!  (Which we're not doing right now because we're not
1610  * measuring them yet).
1611  *
1612  * This expects to be called with tasklist_lock read-locked or better,
1613  * and the siglock not locked.  It may momentarily take the siglock.
1614  *
1615  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1616  * races with threads incrementing their own counters.  But since word
1617  * reads are atomic, we either get new values or old values and we don't
1618  * care which for the sums.  We always take the siglock to protect reading
1619  * the c* fields from p->signal from races with exit.c updating those
1620  * fields when reaping, so a sample either gets all the additions of a
1621  * given child after it's reaped, or none so this sample is before reaping.
1622  */
1623
1624 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1625 {
1626         struct task_struct *t;
1627         unsigned long flags;
1628         cputime_t utime, stime;
1629
1630         memset((char *) r, 0, sizeof *r);
1631
1632         if (unlikely(!p->signal))
1633                 return;
1634
1635         switch (who) {
1636                 case RUSAGE_CHILDREN:
1637                         spin_lock_irqsave(&p->sighand->siglock, flags);
1638                         utime = p->signal->cutime;
1639                         stime = p->signal->cstime;
1640                         r->ru_nvcsw = p->signal->cnvcsw;
1641                         r->ru_nivcsw = p->signal->cnivcsw;
1642                         r->ru_minflt = p->signal->cmin_flt;
1643                         r->ru_majflt = p->signal->cmaj_flt;
1644                         spin_unlock_irqrestore(&p->sighand->siglock, flags);
1645                         cputime_to_timeval(utime, &r->ru_utime);
1646                         cputime_to_timeval(stime, &r->ru_stime);
1647                         break;
1648                 case RUSAGE_SELF:
1649                         spin_lock_irqsave(&p->sighand->siglock, flags);
1650                         utime = stime = cputime_zero;
1651                         goto sum_group;
1652                 case RUSAGE_BOTH:
1653                         spin_lock_irqsave(&p->sighand->siglock, flags);
1654                         utime = p->signal->cutime;
1655                         stime = p->signal->cstime;
1656                         r->ru_nvcsw = p->signal->cnvcsw;
1657                         r->ru_nivcsw = p->signal->cnivcsw;
1658                         r->ru_minflt = p->signal->cmin_flt;
1659                         r->ru_majflt = p->signal->cmaj_flt;
1660                 sum_group:
1661                         utime = cputime_add(utime, p->signal->utime);
1662                         stime = cputime_add(stime, p->signal->stime);
1663                         r->ru_nvcsw += p->signal->nvcsw;
1664                         r->ru_nivcsw += p->signal->nivcsw;
1665                         r->ru_minflt += p->signal->min_flt;
1666                         r->ru_majflt += p->signal->maj_flt;
1667                         t = p;
1668                         do {
1669                                 utime = cputime_add(utime, t->utime);
1670                                 stime = cputime_add(stime, t->stime);
1671                                 r->ru_nvcsw += t->nvcsw;
1672                                 r->ru_nivcsw += t->nivcsw;
1673                                 r->ru_minflt += t->min_flt;
1674                                 r->ru_majflt += t->maj_flt;
1675                                 t = next_thread(t);
1676                         } while (t != p);
1677                         spin_unlock_irqrestore(&p->sighand->siglock, flags);
1678                         cputime_to_timeval(utime, &r->ru_utime);
1679                         cputime_to_timeval(stime, &r->ru_stime);
1680                         break;
1681                 default:
1682                         BUG();
1683         }
1684 }
1685
1686 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1687 {
1688         struct rusage r;
1689         read_lock(&tasklist_lock);
1690         k_getrusage(p, who, &r);
1691         read_unlock(&tasklist_lock);
1692         return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1693 }
1694
1695 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1696 {
1697         if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1698                 return -EINVAL;
1699         return getrusage(current, who, ru);
1700 }
1701
1702 asmlinkage long sys_umask(int mask)
1703 {
1704         mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1705         return mask;
1706 }
1707     
1708 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1709                           unsigned long arg4, unsigned long arg5)
1710 {
1711         long error;
1712         int sig;
1713
1714         error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1715         if (error)
1716                 return error;
1717
1718         switch (option) {
1719                 case PR_SET_PDEATHSIG:
1720                         sig = arg2;
1721                         if (!valid_signal(sig)) {
1722                                 error = -EINVAL;
1723                                 break;
1724                         }
1725                         current->pdeath_signal = sig;
1726                         break;
1727                 case PR_GET_PDEATHSIG:
1728                         error = put_user(current->pdeath_signal, (int __user *)arg2);
1729                         break;
1730                 case PR_GET_DUMPABLE:
1731                         if (current->mm->dumpable)
1732                                 error = 1;
1733                         break;
1734                 case PR_SET_DUMPABLE:
1735                         if (arg2 < 0 || arg2 > 2) {
1736                                 error = -EINVAL;
1737                                 break;
1738                         }
1739                         current->mm->dumpable = arg2;
1740                         break;
1741
1742                 case PR_SET_UNALIGN:
1743                         error = SET_UNALIGN_CTL(current, arg2);
1744                         break;
1745                 case PR_GET_UNALIGN:
1746                         error = GET_UNALIGN_CTL(current, arg2);
1747                         break;
1748                 case PR_SET_FPEMU:
1749                         error = SET_FPEMU_CTL(current, arg2);
1750                         break;
1751                 case PR_GET_FPEMU:
1752                         error = GET_FPEMU_CTL(current, arg2);
1753                         break;
1754                 case PR_SET_FPEXC:
1755                         error = SET_FPEXC_CTL(current, arg2);
1756                         break;
1757                 case PR_GET_FPEXC:
1758                         error = GET_FPEXC_CTL(current, arg2);
1759                         break;
1760                 case PR_GET_TIMING:
1761                         error = PR_TIMING_STATISTICAL;
1762                         break;
1763                 case PR_SET_TIMING:
1764                         if (arg2 == PR_TIMING_STATISTICAL)
1765                                 error = 0;
1766                         else
1767                                 error = -EINVAL;
1768                         break;
1769
1770                 case PR_GET_KEEPCAPS:
1771                         if (current->keep_capabilities)
1772                                 error = 1;
1773                         break;
1774                 case PR_SET_KEEPCAPS:
1775                         if (arg2 != 0 && arg2 != 1) {
1776                                 error = -EINVAL;
1777                                 break;
1778                         }
1779                         current->keep_capabilities = arg2;
1780                         break;
1781                 case PR_SET_NAME: {
1782                         struct task_struct *me = current;
1783                         unsigned char ncomm[sizeof(me->comm)];
1784
1785                         ncomm[sizeof(me->comm)-1] = 0;
1786                         if (strncpy_from_user(ncomm, (char __user *)arg2,
1787                                                 sizeof(me->comm)-1) < 0)
1788                                 return -EFAULT;
1789                         set_task_comm(me, ncomm);
1790                         return 0;
1791                 }
1792                 case PR_GET_NAME: {
1793                         struct task_struct *me = current;
1794                         unsigned char tcomm[sizeof(me->comm)];
1795
1796                         get_task_comm(tcomm, me);
1797                         if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
1798                                 return -EFAULT;
1799                         return 0;
1800                 }
1801                 default:
1802                         error = -EINVAL;
1803                         break;
1804         }
1805         return error;
1806 }