sched: Clean up check_preempt_wakeup()
[safe/jmp/linux-2.6] / kernel / sched_fair.c
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22
23 #include <linux/latencytop.h>
24
25 /*
26  * Targeted preemption latency for CPU-bound tasks:
27  * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
28  *
29  * NOTE: this latency value is not the same as the concept of
30  * 'timeslice length' - timeslices in CFS are of variable length
31  * and have no persistent notion like in traditional, time-slice
32  * based scheduling concepts.
33  *
34  * (to see the precise effective timeslice length of your workload,
35  *  run vmstat and monitor the context-switches (cs) field)
36  */
37 unsigned int sysctl_sched_latency = 5000000ULL;
38
39 /*
40  * Minimal preemption granularity for CPU-bound tasks:
41  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
42  */
43 unsigned int sysctl_sched_min_granularity = 1000000ULL;
44
45 /*
46  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47  */
48 static unsigned int sched_nr_latency = 5;
49
50 /*
51  * After fork, child runs first. If set to 0 (default) then
52  * parent will (try to) run first.
53  */
54 unsigned int sysctl_sched_child_runs_first __read_mostly;
55
56 /*
57  * sys_sched_yield() compat mode
58  *
59  * This option switches the agressive yield implementation of the
60  * old scheduler back on.
61  */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63
64 /*
65  * SCHED_OTHER wake-up granularity.
66  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
67  *
68  * This option delays the preemption effects of decoupled workloads
69  * and reduces their over-scheduling. Synchronous workloads will still
70  * have immediate wakeup/sleep latencies.
71  */
72 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
73
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
76 static const struct sched_class fair_sched_class;
77
78 /**************************************************************
79  * CFS operations on generic schedulable entities:
80  */
81
82 #ifdef CONFIG_FAIR_GROUP_SCHED
83
84 /* cpu runqueue to which this cfs_rq is attached */
85 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
86 {
87         return cfs_rq->rq;
88 }
89
90 /* An entity is a task if it doesn't "own" a runqueue */
91 #define entity_is_task(se)      (!se->my_q)
92
93 static inline struct task_struct *task_of(struct sched_entity *se)
94 {
95 #ifdef CONFIG_SCHED_DEBUG
96         WARN_ON_ONCE(!entity_is_task(se));
97 #endif
98         return container_of(se, struct task_struct, se);
99 }
100
101 /* Walk up scheduling entities hierarchy */
102 #define for_each_sched_entity(se) \
103                 for (; se; se = se->parent)
104
105 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
106 {
107         return p->se.cfs_rq;
108 }
109
110 /* runqueue on which this entity is (to be) queued */
111 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
112 {
113         return se->cfs_rq;
114 }
115
116 /* runqueue "owned" by this group */
117 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
118 {
119         return grp->my_q;
120 }
121
122 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
123  * another cpu ('this_cpu')
124  */
125 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
126 {
127         return cfs_rq->tg->cfs_rq[this_cpu];
128 }
129
130 /* Iterate thr' all leaf cfs_rq's on a runqueue */
131 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
132         list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
133
134 /* Do the two (enqueued) entities belong to the same group ? */
135 static inline int
136 is_same_group(struct sched_entity *se, struct sched_entity *pse)
137 {
138         if (se->cfs_rq == pse->cfs_rq)
139                 return 1;
140
141         return 0;
142 }
143
144 static inline struct sched_entity *parent_entity(struct sched_entity *se)
145 {
146         return se->parent;
147 }
148
149 /* return depth at which a sched entity is present in the hierarchy */
150 static inline int depth_se(struct sched_entity *se)
151 {
152         int depth = 0;
153
154         for_each_sched_entity(se)
155                 depth++;
156
157         return depth;
158 }
159
160 static void
161 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
162 {
163         int se_depth, pse_depth;
164
165         /*
166          * preemption test can be made between sibling entities who are in the
167          * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
168          * both tasks until we find their ancestors who are siblings of common
169          * parent.
170          */
171
172         /* First walk up until both entities are at same depth */
173         se_depth = depth_se(*se);
174         pse_depth = depth_se(*pse);
175
176         while (se_depth > pse_depth) {
177                 se_depth--;
178                 *se = parent_entity(*se);
179         }
180
181         while (pse_depth > se_depth) {
182                 pse_depth--;
183                 *pse = parent_entity(*pse);
184         }
185
186         while (!is_same_group(*se, *pse)) {
187                 *se = parent_entity(*se);
188                 *pse = parent_entity(*pse);
189         }
190 }
191
192 #else   /* !CONFIG_FAIR_GROUP_SCHED */
193
194 static inline struct task_struct *task_of(struct sched_entity *se)
195 {
196         return container_of(se, struct task_struct, se);
197 }
198
199 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
200 {
201         return container_of(cfs_rq, struct rq, cfs);
202 }
203
204 #define entity_is_task(se)      1
205
206 #define for_each_sched_entity(se) \
207                 for (; se; se = NULL)
208
209 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
210 {
211         return &task_rq(p)->cfs;
212 }
213
214 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
215 {
216         struct task_struct *p = task_of(se);
217         struct rq *rq = task_rq(p);
218
219         return &rq->cfs;
220 }
221
222 /* runqueue "owned" by this group */
223 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
224 {
225         return NULL;
226 }
227
228 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
229 {
230         return &cpu_rq(this_cpu)->cfs;
231 }
232
233 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
234                 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
235
236 static inline int
237 is_same_group(struct sched_entity *se, struct sched_entity *pse)
238 {
239         return 1;
240 }
241
242 static inline struct sched_entity *parent_entity(struct sched_entity *se)
243 {
244         return NULL;
245 }
246
247 static inline void
248 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
249 {
250 }
251
252 #endif  /* CONFIG_FAIR_GROUP_SCHED */
253
254
255 /**************************************************************
256  * Scheduling class tree data structure manipulation methods:
257  */
258
259 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
260 {
261         s64 delta = (s64)(vruntime - min_vruntime);
262         if (delta > 0)
263                 min_vruntime = vruntime;
264
265         return min_vruntime;
266 }
267
268 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
269 {
270         s64 delta = (s64)(vruntime - min_vruntime);
271         if (delta < 0)
272                 min_vruntime = vruntime;
273
274         return min_vruntime;
275 }
276
277 static inline int entity_before(struct sched_entity *a,
278                                 struct sched_entity *b)
279 {
280         return (s64)(a->vruntime - b->vruntime) < 0;
281 }
282
283 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
284 {
285         return se->vruntime - cfs_rq->min_vruntime;
286 }
287
288 static void update_min_vruntime(struct cfs_rq *cfs_rq)
289 {
290         u64 vruntime = cfs_rq->min_vruntime;
291
292         if (cfs_rq->curr)
293                 vruntime = cfs_rq->curr->vruntime;
294
295         if (cfs_rq->rb_leftmost) {
296                 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
297                                                    struct sched_entity,
298                                                    run_node);
299
300                 if (!cfs_rq->curr)
301                         vruntime = se->vruntime;
302                 else
303                         vruntime = min_vruntime(vruntime, se->vruntime);
304         }
305
306         cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
307 }
308
309 /*
310  * Enqueue an entity into the rb-tree:
311  */
312 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
313 {
314         struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
315         struct rb_node *parent = NULL;
316         struct sched_entity *entry;
317         s64 key = entity_key(cfs_rq, se);
318         int leftmost = 1;
319
320         /*
321          * Find the right place in the rbtree:
322          */
323         while (*link) {
324                 parent = *link;
325                 entry = rb_entry(parent, struct sched_entity, run_node);
326                 /*
327                  * We dont care about collisions. Nodes with
328                  * the same key stay together.
329                  */
330                 if (key < entity_key(cfs_rq, entry)) {
331                         link = &parent->rb_left;
332                 } else {
333                         link = &parent->rb_right;
334                         leftmost = 0;
335                 }
336         }
337
338         /*
339          * Maintain a cache of leftmost tree entries (it is frequently
340          * used):
341          */
342         if (leftmost)
343                 cfs_rq->rb_leftmost = &se->run_node;
344
345         rb_link_node(&se->run_node, parent, link);
346         rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
347 }
348
349 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
350 {
351         if (cfs_rq->rb_leftmost == &se->run_node) {
352                 struct rb_node *next_node;
353
354                 next_node = rb_next(&se->run_node);
355                 cfs_rq->rb_leftmost = next_node;
356         }
357
358         rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
359 }
360
361 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
362 {
363         struct rb_node *left = cfs_rq->rb_leftmost;
364
365         if (!left)
366                 return NULL;
367
368         return rb_entry(left, struct sched_entity, run_node);
369 }
370
371 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
372 {
373         struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
374
375         if (!last)
376                 return NULL;
377
378         return rb_entry(last, struct sched_entity, run_node);
379 }
380
381 /**************************************************************
382  * Scheduling class statistics methods:
383  */
384
385 #ifdef CONFIG_SCHED_DEBUG
386 int sched_nr_latency_handler(struct ctl_table *table, int write,
387                 void __user *buffer, size_t *lenp,
388                 loff_t *ppos)
389 {
390         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
391
392         if (ret || !write)
393                 return ret;
394
395         sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
396                                         sysctl_sched_min_granularity);
397
398         return 0;
399 }
400 #endif
401
402 /*
403  * delta /= w
404  */
405 static inline unsigned long
406 calc_delta_fair(unsigned long delta, struct sched_entity *se)
407 {
408         if (unlikely(se->load.weight != NICE_0_LOAD))
409                 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
410
411         return delta;
412 }
413
414 /*
415  * The idea is to set a period in which each task runs once.
416  *
417  * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
418  * this period because otherwise the slices get too small.
419  *
420  * p = (nr <= nl) ? l : l*nr/nl
421  */
422 static u64 __sched_period(unsigned long nr_running)
423 {
424         u64 period = sysctl_sched_latency;
425         unsigned long nr_latency = sched_nr_latency;
426
427         if (unlikely(nr_running > nr_latency)) {
428                 period = sysctl_sched_min_granularity;
429                 period *= nr_running;
430         }
431
432         return period;
433 }
434
435 /*
436  * We calculate the wall-time slice from the period by taking a part
437  * proportional to the weight.
438  *
439  * s = p*P[w/rw]
440  */
441 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
442 {
443         u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
444
445         for_each_sched_entity(se) {
446                 struct load_weight *load;
447                 struct load_weight lw;
448
449                 cfs_rq = cfs_rq_of(se);
450                 load = &cfs_rq->load;
451
452                 if (unlikely(!se->on_rq)) {
453                         lw = cfs_rq->load;
454
455                         update_load_add(&lw, se->load.weight);
456                         load = &lw;
457                 }
458                 slice = calc_delta_mine(slice, se->load.weight, load);
459         }
460         return slice;
461 }
462
463 /*
464  * We calculate the vruntime slice of a to be inserted task
465  *
466  * vs = s/w
467  */
468 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
469 {
470         return calc_delta_fair(sched_slice(cfs_rq, se), se);
471 }
472
473 /*
474  * Update the current task's runtime statistics. Skip current tasks that
475  * are not in our scheduling class.
476  */
477 static inline void
478 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
479               unsigned long delta_exec)
480 {
481         unsigned long delta_exec_weighted;
482
483         schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
484
485         curr->sum_exec_runtime += delta_exec;
486         schedstat_add(cfs_rq, exec_clock, delta_exec);
487         delta_exec_weighted = calc_delta_fair(delta_exec, curr);
488         curr->vruntime += delta_exec_weighted;
489         update_min_vruntime(cfs_rq);
490 }
491
492 static void update_curr(struct cfs_rq *cfs_rq)
493 {
494         struct sched_entity *curr = cfs_rq->curr;
495         u64 now = rq_of(cfs_rq)->clock;
496         unsigned long delta_exec;
497
498         if (unlikely(!curr))
499                 return;
500
501         /*
502          * Get the amount of time the current task was running
503          * since the last time we changed load (this cannot
504          * overflow on 32 bits):
505          */
506         delta_exec = (unsigned long)(now - curr->exec_start);
507         if (!delta_exec)
508                 return;
509
510         __update_curr(cfs_rq, curr, delta_exec);
511         curr->exec_start = now;
512
513         if (entity_is_task(curr)) {
514                 struct task_struct *curtask = task_of(curr);
515
516                 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
517                 cpuacct_charge(curtask, delta_exec);
518                 account_group_exec_runtime(curtask, delta_exec);
519         }
520 }
521
522 static inline void
523 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
524 {
525         schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
526 }
527
528 /*
529  * Task is being enqueued - update stats:
530  */
531 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
532 {
533         /*
534          * Are we enqueueing a waiting task? (for current tasks
535          * a dequeue/enqueue event is a NOP)
536          */
537         if (se != cfs_rq->curr)
538                 update_stats_wait_start(cfs_rq, se);
539 }
540
541 static void
542 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
543 {
544         schedstat_set(se->wait_max, max(se->wait_max,
545                         rq_of(cfs_rq)->clock - se->wait_start));
546         schedstat_set(se->wait_count, se->wait_count + 1);
547         schedstat_set(se->wait_sum, se->wait_sum +
548                         rq_of(cfs_rq)->clock - se->wait_start);
549 #ifdef CONFIG_SCHEDSTATS
550         if (entity_is_task(se)) {
551                 trace_sched_stat_wait(task_of(se),
552                         rq_of(cfs_rq)->clock - se->wait_start);
553         }
554 #endif
555         schedstat_set(se->wait_start, 0);
556 }
557
558 static inline void
559 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
560 {
561         /*
562          * Mark the end of the wait period if dequeueing a
563          * waiting task:
564          */
565         if (se != cfs_rq->curr)
566                 update_stats_wait_end(cfs_rq, se);
567 }
568
569 /*
570  * We are picking a new current task - update its stats:
571  */
572 static inline void
573 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
574 {
575         /*
576          * We are starting a new run period:
577          */
578         se->exec_start = rq_of(cfs_rq)->clock;
579 }
580
581 /**************************************************
582  * Scheduling class queueing methods:
583  */
584
585 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
586 static void
587 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
588 {
589         cfs_rq->task_weight += weight;
590 }
591 #else
592 static inline void
593 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
594 {
595 }
596 #endif
597
598 static void
599 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
600 {
601         update_load_add(&cfs_rq->load, se->load.weight);
602         if (!parent_entity(se))
603                 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
604         if (entity_is_task(se)) {
605                 add_cfs_task_weight(cfs_rq, se->load.weight);
606                 list_add(&se->group_node, &cfs_rq->tasks);
607         }
608         cfs_rq->nr_running++;
609         se->on_rq = 1;
610 }
611
612 static void
613 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
614 {
615         update_load_sub(&cfs_rq->load, se->load.weight);
616         if (!parent_entity(se))
617                 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
618         if (entity_is_task(se)) {
619                 add_cfs_task_weight(cfs_rq, -se->load.weight);
620                 list_del_init(&se->group_node);
621         }
622         cfs_rq->nr_running--;
623         se->on_rq = 0;
624 }
625
626 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 #ifdef CONFIG_SCHEDSTATS
629         struct task_struct *tsk = NULL;
630
631         if (entity_is_task(se))
632                 tsk = task_of(se);
633
634         if (se->sleep_start) {
635                 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
636
637                 if ((s64)delta < 0)
638                         delta = 0;
639
640                 if (unlikely(delta > se->sleep_max))
641                         se->sleep_max = delta;
642
643                 se->sleep_start = 0;
644                 se->sum_sleep_runtime += delta;
645
646                 if (tsk) {
647                         account_scheduler_latency(tsk, delta >> 10, 1);
648                         trace_sched_stat_sleep(tsk, delta);
649                 }
650         }
651         if (se->block_start) {
652                 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
653
654                 if ((s64)delta < 0)
655                         delta = 0;
656
657                 if (unlikely(delta > se->block_max))
658                         se->block_max = delta;
659
660                 se->block_start = 0;
661                 se->sum_sleep_runtime += delta;
662
663                 if (tsk) {
664                         if (tsk->in_iowait) {
665                                 se->iowait_sum += delta;
666                                 se->iowait_count++;
667                                 trace_sched_stat_iowait(tsk, delta);
668                         }
669
670                         /*
671                          * Blocking time is in units of nanosecs, so shift by
672                          * 20 to get a milliseconds-range estimation of the
673                          * amount of time that the task spent sleeping:
674                          */
675                         if (unlikely(prof_on == SLEEP_PROFILING)) {
676                                 profile_hits(SLEEP_PROFILING,
677                                                 (void *)get_wchan(tsk),
678                                                 delta >> 20);
679                         }
680                         account_scheduler_latency(tsk, delta >> 10, 0);
681                 }
682         }
683 #endif
684 }
685
686 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
687 {
688 #ifdef CONFIG_SCHED_DEBUG
689         s64 d = se->vruntime - cfs_rq->min_vruntime;
690
691         if (d < 0)
692                 d = -d;
693
694         if (d > 3*sysctl_sched_latency)
695                 schedstat_inc(cfs_rq, nr_spread_over);
696 #endif
697 }
698
699 static void
700 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
701 {
702         u64 vruntime = cfs_rq->min_vruntime;
703
704         /*
705          * The 'current' period is already promised to the current tasks,
706          * however the extra weight of the new task will slow them down a
707          * little, place the new task so that it fits in the slot that
708          * stays open at the end.
709          */
710         if (initial && sched_feat(START_DEBIT))
711                 vruntime += sched_vslice(cfs_rq, se);
712
713         /* sleeps up to a single latency don't count. */
714         if (!initial && sched_feat(FAIR_SLEEPERS)) {
715                 unsigned long thresh = sysctl_sched_latency;
716
717                 /*
718                  * Convert the sleeper threshold into virtual time.
719                  * SCHED_IDLE is a special sub-class.  We care about
720                  * fairness only relative to other SCHED_IDLE tasks,
721                  * all of which have the same weight.
722                  */
723                 if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
724                                  task_of(se)->policy != SCHED_IDLE))
725                         thresh = calc_delta_fair(thresh, se);
726
727                 /*
728                  * Halve their sleep time's effect, to allow
729                  * for a gentler effect of sleepers:
730                  */
731                 if (sched_feat(GENTLE_FAIR_SLEEPERS))
732                         thresh >>= 1;
733
734                 vruntime -= thresh;
735         }
736
737         /* ensure we never gain time by being placed backwards. */
738         vruntime = max_vruntime(se->vruntime, vruntime);
739
740         se->vruntime = vruntime;
741 }
742
743 static void
744 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
745 {
746         /*
747          * Update run-time statistics of the 'current'.
748          */
749         update_curr(cfs_rq);
750         account_entity_enqueue(cfs_rq, se);
751
752         if (wakeup) {
753                 place_entity(cfs_rq, se, 0);
754                 enqueue_sleeper(cfs_rq, se);
755         }
756
757         update_stats_enqueue(cfs_rq, se);
758         check_spread(cfs_rq, se);
759         if (se != cfs_rq->curr)
760                 __enqueue_entity(cfs_rq, se);
761 }
762
763 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
764 {
765         if (!se || cfs_rq->last == se)
766                 cfs_rq->last = NULL;
767
768         if (!se || cfs_rq->next == se)
769                 cfs_rq->next = NULL;
770 }
771
772 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
773 {
774         for_each_sched_entity(se)
775                 __clear_buddies(cfs_rq_of(se), se);
776 }
777
778 static void
779 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
780 {
781         /*
782          * Update run-time statistics of the 'current'.
783          */
784         update_curr(cfs_rq);
785
786         update_stats_dequeue(cfs_rq, se);
787         if (sleep) {
788 #ifdef CONFIG_SCHEDSTATS
789                 if (entity_is_task(se)) {
790                         struct task_struct *tsk = task_of(se);
791
792                         if (tsk->state & TASK_INTERRUPTIBLE)
793                                 se->sleep_start = rq_of(cfs_rq)->clock;
794                         if (tsk->state & TASK_UNINTERRUPTIBLE)
795                                 se->block_start = rq_of(cfs_rq)->clock;
796                 }
797 #endif
798         }
799
800         clear_buddies(cfs_rq, se);
801
802         if (se != cfs_rq->curr)
803                 __dequeue_entity(cfs_rq, se);
804         account_entity_dequeue(cfs_rq, se);
805         update_min_vruntime(cfs_rq);
806 }
807
808 /*
809  * Preempt the current task with a newly woken task if needed:
810  */
811 static void
812 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
813 {
814         unsigned long ideal_runtime, delta_exec;
815
816         ideal_runtime = sched_slice(cfs_rq, curr);
817         delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
818         if (delta_exec > ideal_runtime) {
819                 resched_task(rq_of(cfs_rq)->curr);
820                 /*
821                  * The current task ran long enough, ensure it doesn't get
822                  * re-elected due to buddy favours.
823                  */
824                 clear_buddies(cfs_rq, curr);
825                 return;
826         }
827
828         /*
829          * Ensure that a task that missed wakeup preemption by a
830          * narrow margin doesn't have to wait for a full slice.
831          * This also mitigates buddy induced latencies under load.
832          */
833         if (!sched_feat(WAKEUP_PREEMPT))
834                 return;
835
836         if (delta_exec < sysctl_sched_min_granularity)
837                 return;
838
839         if (cfs_rq->nr_running > 1) {
840                 struct sched_entity *se = __pick_next_entity(cfs_rq);
841                 s64 delta = curr->vruntime - se->vruntime;
842
843                 if (delta > ideal_runtime)
844                         resched_task(rq_of(cfs_rq)->curr);
845         }
846 }
847
848 static void
849 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
850 {
851         /* 'current' is not kept within the tree. */
852         if (se->on_rq) {
853                 /*
854                  * Any task has to be enqueued before it get to execute on
855                  * a CPU. So account for the time it spent waiting on the
856                  * runqueue.
857                  */
858                 update_stats_wait_end(cfs_rq, se);
859                 __dequeue_entity(cfs_rq, se);
860         }
861
862         update_stats_curr_start(cfs_rq, se);
863         cfs_rq->curr = se;
864 #ifdef CONFIG_SCHEDSTATS
865         /*
866          * Track our maximum slice length, if the CPU's load is at
867          * least twice that of our own weight (i.e. dont track it
868          * when there are only lesser-weight tasks around):
869          */
870         if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
871                 se->slice_max = max(se->slice_max,
872                         se->sum_exec_runtime - se->prev_sum_exec_runtime);
873         }
874 #endif
875         se->prev_sum_exec_runtime = se->sum_exec_runtime;
876 }
877
878 static int
879 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
880
881 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
882 {
883         struct sched_entity *se = __pick_next_entity(cfs_rq);
884         struct sched_entity *left = se;
885
886         if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
887                 se = cfs_rq->next;
888
889         /*
890          * Prefer last buddy, try to return the CPU to a preempted task.
891          */
892         if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
893                 se = cfs_rq->last;
894
895         clear_buddies(cfs_rq, se);
896
897         return se;
898 }
899
900 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
901 {
902         /*
903          * If still on the runqueue then deactivate_task()
904          * was not called and update_curr() has to be done:
905          */
906         if (prev->on_rq)
907                 update_curr(cfs_rq);
908
909         check_spread(cfs_rq, prev);
910         if (prev->on_rq) {
911                 update_stats_wait_start(cfs_rq, prev);
912                 /* Put 'current' back into the tree. */
913                 __enqueue_entity(cfs_rq, prev);
914         }
915         cfs_rq->curr = NULL;
916 }
917
918 static void
919 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
920 {
921         /*
922          * Update run-time statistics of the 'current'.
923          */
924         update_curr(cfs_rq);
925
926 #ifdef CONFIG_SCHED_HRTICK
927         /*
928          * queued ticks are scheduled to match the slice, so don't bother
929          * validating it and just reschedule.
930          */
931         if (queued) {
932                 resched_task(rq_of(cfs_rq)->curr);
933                 return;
934         }
935         /*
936          * don't let the period tick interfere with the hrtick preemption
937          */
938         if (!sched_feat(DOUBLE_TICK) &&
939                         hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
940                 return;
941 #endif
942
943         if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
944                 check_preempt_tick(cfs_rq, curr);
945 }
946
947 /**************************************************
948  * CFS operations on tasks:
949  */
950
951 #ifdef CONFIG_SCHED_HRTICK
952 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
953 {
954         struct sched_entity *se = &p->se;
955         struct cfs_rq *cfs_rq = cfs_rq_of(se);
956
957         WARN_ON(task_rq(p) != rq);
958
959         if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
960                 u64 slice = sched_slice(cfs_rq, se);
961                 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
962                 s64 delta = slice - ran;
963
964                 if (delta < 0) {
965                         if (rq->curr == p)
966                                 resched_task(p);
967                         return;
968                 }
969
970                 /*
971                  * Don't schedule slices shorter than 10000ns, that just
972                  * doesn't make sense. Rely on vruntime for fairness.
973                  */
974                 if (rq->curr != p)
975                         delta = max_t(s64, 10000LL, delta);
976
977                 hrtick_start(rq, delta);
978         }
979 }
980
981 /*
982  * called from enqueue/dequeue and updates the hrtick when the
983  * current task is from our class and nr_running is low enough
984  * to matter.
985  */
986 static void hrtick_update(struct rq *rq)
987 {
988         struct task_struct *curr = rq->curr;
989
990         if (curr->sched_class != &fair_sched_class)
991                 return;
992
993         if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
994                 hrtick_start_fair(rq, curr);
995 }
996 #else /* !CONFIG_SCHED_HRTICK */
997 static inline void
998 hrtick_start_fair(struct rq *rq, struct task_struct *p)
999 {
1000 }
1001
1002 static inline void hrtick_update(struct rq *rq)
1003 {
1004 }
1005 #endif
1006
1007 /*
1008  * The enqueue_task method is called before nr_running is
1009  * increased. Here we update the fair scheduling stats and
1010  * then put the task into the rbtree:
1011  */
1012 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
1013 {
1014         struct cfs_rq *cfs_rq;
1015         struct sched_entity *se = &p->se;
1016
1017         for_each_sched_entity(se) {
1018                 if (se->on_rq)
1019                         break;
1020                 cfs_rq = cfs_rq_of(se);
1021                 enqueue_entity(cfs_rq, se, wakeup);
1022                 wakeup = 1;
1023         }
1024
1025         hrtick_update(rq);
1026 }
1027
1028 /*
1029  * The dequeue_task method is called before nr_running is
1030  * decreased. We remove the task from the rbtree and
1031  * update the fair scheduling stats:
1032  */
1033 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1034 {
1035         struct cfs_rq *cfs_rq;
1036         struct sched_entity *se = &p->se;
1037
1038         for_each_sched_entity(se) {
1039                 cfs_rq = cfs_rq_of(se);
1040                 dequeue_entity(cfs_rq, se, sleep);
1041                 /* Don't dequeue parent if it has other entities besides us */
1042                 if (cfs_rq->load.weight)
1043                         break;
1044                 sleep = 1;
1045         }
1046
1047         hrtick_update(rq);
1048 }
1049
1050 /*
1051  * sched_yield() support is very simple - we dequeue and enqueue.
1052  *
1053  * If compat_yield is turned on then we requeue to the end of the tree.
1054  */
1055 static void yield_task_fair(struct rq *rq)
1056 {
1057         struct task_struct *curr = rq->curr;
1058         struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1059         struct sched_entity *rightmost, *se = &curr->se;
1060
1061         /*
1062          * Are we the only task in the tree?
1063          */
1064         if (unlikely(cfs_rq->nr_running == 1))
1065                 return;
1066
1067         clear_buddies(cfs_rq, se);
1068
1069         if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1070                 update_rq_clock(rq);
1071                 /*
1072                  * Update run-time statistics of the 'current'.
1073                  */
1074                 update_curr(cfs_rq);
1075
1076                 return;
1077         }
1078         /*
1079          * Find the rightmost entry in the rbtree:
1080          */
1081         rightmost = __pick_last_entity(cfs_rq);
1082         /*
1083          * Already in the rightmost position?
1084          */
1085         if (unlikely(!rightmost || entity_before(rightmost, se)))
1086                 return;
1087
1088         /*
1089          * Minimally necessary key value to be last in the tree:
1090          * Upon rescheduling, sched_class::put_prev_task() will place
1091          * 'current' within the tree based on its new key value.
1092          */
1093         se->vruntime = rightmost->vruntime + 1;
1094 }
1095
1096 #ifdef CONFIG_SMP
1097
1098 #ifdef CONFIG_FAIR_GROUP_SCHED
1099 /*
1100  * effective_load() calculates the load change as seen from the root_task_group
1101  *
1102  * Adding load to a group doesn't make a group heavier, but can cause movement
1103  * of group shares between cpus. Assuming the shares were perfectly aligned one
1104  * can calculate the shift in shares.
1105  *
1106  * The problem is that perfectly aligning the shares is rather expensive, hence
1107  * we try to avoid doing that too often - see update_shares(), which ratelimits
1108  * this change.
1109  *
1110  * We compensate this by not only taking the current delta into account, but
1111  * also considering the delta between when the shares were last adjusted and
1112  * now.
1113  *
1114  * We still saw a performance dip, some tracing learned us that between
1115  * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1116  * significantly. Therefore try to bias the error in direction of failing
1117  * the affine wakeup.
1118  *
1119  */
1120 static long effective_load(struct task_group *tg, int cpu,
1121                 long wl, long wg)
1122 {
1123         struct sched_entity *se = tg->se[cpu];
1124
1125         if (!tg->parent)
1126                 return wl;
1127
1128         /*
1129          * By not taking the decrease of shares on the other cpu into
1130          * account our error leans towards reducing the affine wakeups.
1131          */
1132         if (!wl && sched_feat(ASYM_EFF_LOAD))
1133                 return wl;
1134
1135         for_each_sched_entity(se) {
1136                 long S, rw, s, a, b;
1137                 long more_w;
1138
1139                 /*
1140                  * Instead of using this increment, also add the difference
1141                  * between when the shares were last updated and now.
1142                  */
1143                 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1144                 wl += more_w;
1145                 wg += more_w;
1146
1147                 S = se->my_q->tg->shares;
1148                 s = se->my_q->shares;
1149                 rw = se->my_q->rq_weight;
1150
1151                 a = S*(rw + wl);
1152                 b = S*rw + s*wg;
1153
1154                 wl = s*(a-b);
1155
1156                 if (likely(b))
1157                         wl /= b;
1158
1159                 /*
1160                  * Assume the group is already running and will
1161                  * thus already be accounted for in the weight.
1162                  *
1163                  * That is, moving shares between CPUs, does not
1164                  * alter the group weight.
1165                  */
1166                 wg = 0;
1167         }
1168
1169         return wl;
1170 }
1171
1172 #else
1173
1174 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1175                 unsigned long wl, unsigned long wg)
1176 {
1177         return wl;
1178 }
1179
1180 #endif
1181
1182 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1183 {
1184         struct task_struct *curr = current;
1185         unsigned long this_load, load;
1186         int idx, this_cpu, prev_cpu;
1187         unsigned long tl_per_task;
1188         unsigned int imbalance;
1189         struct task_group *tg;
1190         unsigned long weight;
1191         int balanced;
1192
1193         idx       = sd->wake_idx;
1194         this_cpu  = smp_processor_id();
1195         prev_cpu  = task_cpu(p);
1196         load      = source_load(prev_cpu, idx);
1197         this_load = target_load(this_cpu, idx);
1198
1199         if (sync) {
1200                if (sched_feat(SYNC_LESS) &&
1201                    (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1202                     p->se.avg_overlap > sysctl_sched_migration_cost))
1203                        sync = 0;
1204         } else {
1205                 if (sched_feat(SYNC_MORE) &&
1206                     (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1207                      p->se.avg_overlap < sysctl_sched_migration_cost))
1208                         sync = 1;
1209         }
1210
1211         /*
1212          * If sync wakeup then subtract the (maximum possible)
1213          * effect of the currently running task from the load
1214          * of the current CPU:
1215          */
1216         if (sync) {
1217                 tg = task_group(current);
1218                 weight = current->se.load.weight;
1219
1220                 this_load += effective_load(tg, this_cpu, -weight, -weight);
1221                 load += effective_load(tg, prev_cpu, 0, -weight);
1222         }
1223
1224         tg = task_group(p);
1225         weight = p->se.load.weight;
1226
1227         imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1228
1229         /*
1230          * In low-load situations, where prev_cpu is idle and this_cpu is idle
1231          * due to the sync cause above having dropped this_load to 0, we'll
1232          * always have an imbalance, but there's really nothing you can do
1233          * about that, so that's good too.
1234          *
1235          * Otherwise check if either cpus are near enough in load to allow this
1236          * task to be woken on this_cpu.
1237          */
1238         balanced = !this_load ||
1239                 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
1240                 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1241
1242         /*
1243          * If the currently running task will sleep within
1244          * a reasonable amount of time then attract this newly
1245          * woken task:
1246          */
1247         if (sync && balanced)
1248                 return 1;
1249
1250         schedstat_inc(p, se.nr_wakeups_affine_attempts);
1251         tl_per_task = cpu_avg_load_per_task(this_cpu);
1252
1253         if (balanced ||
1254             (this_load <= load &&
1255              this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1256                 /*
1257                  * This domain has SD_WAKE_AFFINE and
1258                  * p is cache cold in this domain, and
1259                  * there is no bad imbalance.
1260                  */
1261                 schedstat_inc(sd, ttwu_move_affine);
1262                 schedstat_inc(p, se.nr_wakeups_affine);
1263
1264                 return 1;
1265         }
1266         return 0;
1267 }
1268
1269 /*
1270  * find_idlest_group finds and returns the least busy CPU group within the
1271  * domain.
1272  */
1273 static struct sched_group *
1274 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1275                   int this_cpu, int load_idx)
1276 {
1277         struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1278         unsigned long min_load = ULONG_MAX, this_load = 0;
1279         int imbalance = 100 + (sd->imbalance_pct-100)/2;
1280
1281         do {
1282                 unsigned long load, avg_load;
1283                 int local_group;
1284                 int i;
1285
1286                 /* Skip over this group if it has no CPUs allowed */
1287                 if (!cpumask_intersects(sched_group_cpus(group),
1288                                         &p->cpus_allowed))
1289                         continue;
1290
1291                 local_group = cpumask_test_cpu(this_cpu,
1292                                                sched_group_cpus(group));
1293
1294                 /* Tally up the load of all CPUs in the group */
1295                 avg_load = 0;
1296
1297                 for_each_cpu(i, sched_group_cpus(group)) {
1298                         /* Bias balancing toward cpus of our domain */
1299                         if (local_group)
1300                                 load = source_load(i, load_idx);
1301                         else
1302                                 load = target_load(i, load_idx);
1303
1304                         avg_load += load;
1305                 }
1306
1307                 /* Adjust by relative CPU power of the group */
1308                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1309
1310                 if (local_group) {
1311                         this_load = avg_load;
1312                         this = group;
1313                 } else if (avg_load < min_load) {
1314                         min_load = avg_load;
1315                         idlest = group;
1316                 }
1317         } while (group = group->next, group != sd->groups);
1318
1319         if (!idlest || 100*this_load < imbalance*min_load)
1320                 return NULL;
1321         return idlest;
1322 }
1323
1324 /*
1325  * find_idlest_cpu - find the idlest cpu among the cpus in group.
1326  */
1327 static int
1328 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1329 {
1330         unsigned long load, min_load = ULONG_MAX;
1331         int idlest = -1;
1332         int i;
1333
1334         /* Traverse only the allowed CPUs */
1335         for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1336                 load = weighted_cpuload(i);
1337
1338                 if (load < min_load || (load == min_load && i == this_cpu)) {
1339                         min_load = load;
1340                         idlest = i;
1341                 }
1342         }
1343
1344         return idlest;
1345 }
1346
1347 /*
1348  * Try and locate an idle CPU in the sched_domain.
1349  */
1350 static int
1351 select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
1352 {
1353         int cpu = smp_processor_id();
1354         int prev_cpu = task_cpu(p);
1355         int i;
1356
1357         /*
1358          * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
1359          * test in select_task_rq_fair) and the prev_cpu is idle then that's
1360          * always a better target than the current cpu.
1361          */
1362         if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
1363                 return prev_cpu;
1364
1365         /*
1366          * Otherwise, iterate the domain and find an elegible idle cpu.
1367          */
1368         for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1369                 if (!cpu_rq(i)->cfs.nr_running) {
1370                         target = i;
1371                         break;
1372                 }
1373         }
1374
1375         return target;
1376 }
1377
1378 /*
1379  * sched_balance_self: balance the current task (running on cpu) in domains
1380  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1381  * SD_BALANCE_EXEC.
1382  *
1383  * Balance, ie. select the least loaded group.
1384  *
1385  * Returns the target CPU number, or the same CPU if no balancing is needed.
1386  *
1387  * preempt must be disabled.
1388  */
1389 static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
1390 {
1391         struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1392         int cpu = smp_processor_id();
1393         int prev_cpu = task_cpu(p);
1394         int new_cpu = cpu;
1395         int want_affine = 0;
1396         int want_sd = 1;
1397         int sync = wake_flags & WF_SYNC;
1398
1399         if (sd_flag & SD_BALANCE_WAKE) {
1400                 if (sched_feat(AFFINE_WAKEUPS) &&
1401                     cpumask_test_cpu(cpu, &p->cpus_allowed))
1402                         want_affine = 1;
1403                 new_cpu = prev_cpu;
1404         }
1405
1406         rcu_read_lock();
1407         for_each_domain(cpu, tmp) {
1408                 /*
1409                  * If power savings logic is enabled for a domain, see if we
1410                  * are not overloaded, if so, don't balance wider.
1411                  */
1412                 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1413                         unsigned long power = 0;
1414                         unsigned long nr_running = 0;
1415                         unsigned long capacity;
1416                         int i;
1417
1418                         for_each_cpu(i, sched_domain_span(tmp)) {
1419                                 power += power_of(i);
1420                                 nr_running += cpu_rq(i)->cfs.nr_running;
1421                         }
1422
1423                         capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1424
1425                         if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1426                                 nr_running /= 2;
1427
1428                         if (nr_running < capacity)
1429                                 want_sd = 0;
1430                 }
1431
1432                 /*
1433                  * While iterating the domains looking for a spanning
1434                  * WAKE_AFFINE domain, adjust the affine target to any idle cpu
1435                  * in cache sharing domains along the way.
1436                  */
1437                 if (want_affine) {
1438                         int target = -1;
1439
1440                         /*
1441                          * If both cpu and prev_cpu are part of this domain,
1442                          * cpu is a valid SD_WAKE_AFFINE target.
1443                          */
1444                         if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
1445                                 target = cpu;
1446
1447                         /*
1448                          * If there's an idle sibling in this domain, make that
1449                          * the wake_affine target instead of the current cpu.
1450                          */
1451                         if (tmp->flags & SD_PREFER_SIBLING)
1452                                 target = select_idle_sibling(p, tmp, target);
1453
1454                         if (target >= 0) {
1455                                 if (tmp->flags & SD_WAKE_AFFINE) {
1456                                         affine_sd = tmp;
1457                                         want_affine = 0;
1458                                 }
1459                                 cpu = target;
1460                         }
1461                 }
1462
1463                 if (!want_sd && !want_affine)
1464                         break;
1465
1466                 if (!(tmp->flags & sd_flag))
1467                         continue;
1468
1469                 if (want_sd)
1470                         sd = tmp;
1471         }
1472
1473         if (sched_feat(LB_SHARES_UPDATE)) {
1474                 /*
1475                  * Pick the largest domain to update shares over
1476                  */
1477                 tmp = sd;
1478                 if (affine_sd && (!tmp ||
1479                                   cpumask_weight(sched_domain_span(affine_sd)) >
1480                                   cpumask_weight(sched_domain_span(sd))))
1481                         tmp = affine_sd;
1482
1483                 if (tmp)
1484                         update_shares(tmp);
1485         }
1486
1487         if (affine_sd && wake_affine(affine_sd, p, sync)) {
1488                 new_cpu = cpu;
1489                 goto out;
1490         }
1491
1492         while (sd) {
1493                 int load_idx = sd->forkexec_idx;
1494                 struct sched_group *group;
1495                 int weight;
1496
1497                 if (!(sd->flags & sd_flag)) {
1498                         sd = sd->child;
1499                         continue;
1500                 }
1501
1502                 if (sd_flag & SD_BALANCE_WAKE)
1503                         load_idx = sd->wake_idx;
1504
1505                 group = find_idlest_group(sd, p, cpu, load_idx);
1506                 if (!group) {
1507                         sd = sd->child;
1508                         continue;
1509                 }
1510
1511                 new_cpu = find_idlest_cpu(group, p, cpu);
1512                 if (new_cpu == -1 || new_cpu == cpu) {
1513                         /* Now try balancing at a lower domain level of cpu */
1514                         sd = sd->child;
1515                         continue;
1516                 }
1517
1518                 /* Now try balancing at a lower domain level of new_cpu */
1519                 cpu = new_cpu;
1520                 weight = cpumask_weight(sched_domain_span(sd));
1521                 sd = NULL;
1522                 for_each_domain(cpu, tmp) {
1523                         if (weight <= cpumask_weight(sched_domain_span(tmp)))
1524                                 break;
1525                         if (tmp->flags & sd_flag)
1526                                 sd = tmp;
1527                 }
1528                 /* while loop will break here if sd == NULL */
1529         }
1530
1531 out:
1532         rcu_read_unlock();
1533         return new_cpu;
1534 }
1535 #endif /* CONFIG_SMP */
1536
1537 /*
1538  * Adaptive granularity
1539  *
1540  * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1541  * with the limit of wakeup_gran -- when it never does a wakeup.
1542  *
1543  * So the smaller avg_wakeup is the faster we want this task to preempt,
1544  * but we don't want to treat the preemptee unfairly and therefore allow it
1545  * to run for at least the amount of time we'd like to run.
1546  *
1547  * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1548  *
1549  * NOTE: we use *nr_running to scale with load, this nicely matches the
1550  *       degrading latency on load.
1551  */
1552 static unsigned long
1553 adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1554 {
1555         u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1556         u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1557         u64 gran = 0;
1558
1559         if (this_run < expected_wakeup)
1560                 gran = expected_wakeup - this_run;
1561
1562         return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1563 }
1564
1565 static unsigned long
1566 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1567 {
1568         unsigned long gran = sysctl_sched_wakeup_granularity;
1569
1570         if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1571                 gran = adaptive_gran(curr, se);
1572
1573         /*
1574          * Since its curr running now, convert the gran from real-time
1575          * to virtual-time in his units.
1576          */
1577         if (sched_feat(ASYM_GRAN)) {
1578                 /*
1579                  * By using 'se' instead of 'curr' we penalize light tasks, so
1580                  * they get preempted easier. That is, if 'se' < 'curr' then
1581                  * the resulting gran will be larger, therefore penalizing the
1582                  * lighter, if otoh 'se' > 'curr' then the resulting gran will
1583                  * be smaller, again penalizing the lighter task.
1584                  *
1585                  * This is especially important for buddies when the leftmost
1586                  * task is higher priority than the buddy.
1587                  */
1588                 if (unlikely(se->load.weight != NICE_0_LOAD))
1589                         gran = calc_delta_fair(gran, se);
1590         } else {
1591                 if (unlikely(curr->load.weight != NICE_0_LOAD))
1592                         gran = calc_delta_fair(gran, curr);
1593         }
1594
1595         return gran;
1596 }
1597
1598 /*
1599  * Should 'se' preempt 'curr'.
1600  *
1601  *             |s1
1602  *        |s2
1603  *   |s3
1604  *         g
1605  *      |<--->|c
1606  *
1607  *  w(c, s1) = -1
1608  *  w(c, s2) =  0
1609  *  w(c, s3) =  1
1610  *
1611  */
1612 static int
1613 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1614 {
1615         s64 gran, vdiff = curr->vruntime - se->vruntime;
1616
1617         if (vdiff <= 0)
1618                 return -1;
1619
1620         gran = wakeup_gran(curr, se);
1621         if (vdiff > gran)
1622                 return 1;
1623
1624         return 0;
1625 }
1626
1627 static void set_last_buddy(struct sched_entity *se)
1628 {
1629         if (likely(task_of(se)->policy != SCHED_IDLE)) {
1630                 for_each_sched_entity(se)
1631                         cfs_rq_of(se)->last = se;
1632         }
1633 }
1634
1635 static void set_next_buddy(struct sched_entity *se)
1636 {
1637         if (likely(task_of(se)->policy != SCHED_IDLE)) {
1638                 for_each_sched_entity(se)
1639                         cfs_rq_of(se)->next = se;
1640         }
1641 }
1642
1643 /*
1644  * Preempt the current task with a newly woken task if needed:
1645  */
1646 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1647 {
1648         struct task_struct *curr = rq->curr;
1649         struct sched_entity *se = &curr->se, *pse = &p->se;
1650         struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1651         int sync = wake_flags & WF_SYNC;
1652         int scale = cfs_rq->nr_running >= sched_nr_latency;
1653
1654         if (unlikely(rt_prio(p->prio)))
1655                 goto preempt;
1656
1657         if (unlikely(p->sched_class != &fair_sched_class))
1658                 return;
1659
1660         if (unlikely(se == pse))
1661                 return;
1662
1663         if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1664                 set_next_buddy(pse);
1665
1666         /*
1667          * We can come here with TIF_NEED_RESCHED already set from new task
1668          * wake up path.
1669          */
1670         if (test_tsk_need_resched(curr))
1671                 return;
1672
1673         /*
1674          * Batch and idle tasks do not preempt (their preemption is driven by
1675          * the tick):
1676          */
1677         if (unlikely(p->policy != SCHED_NORMAL))
1678                 return;
1679
1680         /* Idle tasks are by definition preempted by everybody. */
1681         if (unlikely(curr->policy == SCHED_IDLE))
1682                 goto preempt;
1683
1684         if (sched_feat(WAKEUP_SYNC) && sync)
1685                 goto preempt;
1686
1687         if (sched_feat(WAKEUP_OVERLAP) &&
1688                         se->avg_overlap < sysctl_sched_migration_cost &&
1689                         pse->avg_overlap < sysctl_sched_migration_cost)
1690                 goto preempt;
1691
1692         if (sched_feat(WAKEUP_RUNNING) && pse->avg_running < se->avg_running)
1693                 goto preempt;
1694
1695         if (!sched_feat(WAKEUP_PREEMPT))
1696                 return;
1697
1698         update_curr(cfs_rq);
1699         find_matching_se(&se, &pse);
1700         BUG_ON(!pse);
1701         if (wakeup_preempt_entity(se, pse) == 1)
1702                 goto preempt;
1703
1704         return;
1705
1706 preempt:
1707         resched_task(curr);
1708         /*
1709          * Only set the backward buddy when the current task is still
1710          * on the rq. This can happen when a wakeup gets interleaved
1711          * with schedule on the ->pre_schedule() or idle_balance()
1712          * point, either of which can * drop the rq lock.
1713          *
1714          * Also, during early boot the idle thread is in the fair class,
1715          * for obvious reasons its a bad idea to schedule back to it.
1716          */
1717         if (unlikely(!se->on_rq || curr == rq->idle))
1718                 return;
1719
1720         if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1721                 set_last_buddy(se);
1722 }
1723
1724 static struct task_struct *pick_next_task_fair(struct rq *rq)
1725 {
1726         struct task_struct *p;
1727         struct cfs_rq *cfs_rq = &rq->cfs;
1728         struct sched_entity *se;
1729
1730         if (!cfs_rq->nr_running)
1731                 return NULL;
1732
1733         do {
1734                 se = pick_next_entity(cfs_rq);
1735                 set_next_entity(cfs_rq, se);
1736                 cfs_rq = group_cfs_rq(se);
1737         } while (cfs_rq);
1738
1739         p = task_of(se);
1740         hrtick_start_fair(rq, p);
1741
1742         return p;
1743 }
1744
1745 /*
1746  * Account for a descheduled task:
1747  */
1748 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1749 {
1750         struct sched_entity *se = &prev->se;
1751         struct cfs_rq *cfs_rq;
1752
1753         for_each_sched_entity(se) {
1754                 cfs_rq = cfs_rq_of(se);
1755                 put_prev_entity(cfs_rq, se);
1756         }
1757 }
1758
1759 #ifdef CONFIG_SMP
1760 /**************************************************
1761  * Fair scheduling class load-balancing methods:
1762  */
1763
1764 /*
1765  * Load-balancing iterator. Note: while the runqueue stays locked
1766  * during the whole iteration, the current task might be
1767  * dequeued so the iterator has to be dequeue-safe. Here we
1768  * achieve that by always pre-iterating before returning
1769  * the current task:
1770  */
1771 static struct task_struct *
1772 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1773 {
1774         struct task_struct *p = NULL;
1775         struct sched_entity *se;
1776
1777         if (next == &cfs_rq->tasks)
1778                 return NULL;
1779
1780         se = list_entry(next, struct sched_entity, group_node);
1781         p = task_of(se);
1782         cfs_rq->balance_iterator = next->next;
1783
1784         return p;
1785 }
1786
1787 static struct task_struct *load_balance_start_fair(void *arg)
1788 {
1789         struct cfs_rq *cfs_rq = arg;
1790
1791         return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1792 }
1793
1794 static struct task_struct *load_balance_next_fair(void *arg)
1795 {
1796         struct cfs_rq *cfs_rq = arg;
1797
1798         return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1799 }
1800
1801 static unsigned long
1802 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1803                 unsigned long max_load_move, struct sched_domain *sd,
1804                 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1805                 struct cfs_rq *cfs_rq)
1806 {
1807         struct rq_iterator cfs_rq_iterator;
1808
1809         cfs_rq_iterator.start = load_balance_start_fair;
1810         cfs_rq_iterator.next = load_balance_next_fair;
1811         cfs_rq_iterator.arg = cfs_rq;
1812
1813         return balance_tasks(this_rq, this_cpu, busiest,
1814                         max_load_move, sd, idle, all_pinned,
1815                         this_best_prio, &cfs_rq_iterator);
1816 }
1817
1818 #ifdef CONFIG_FAIR_GROUP_SCHED
1819 static unsigned long
1820 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1821                   unsigned long max_load_move,
1822                   struct sched_domain *sd, enum cpu_idle_type idle,
1823                   int *all_pinned, int *this_best_prio)
1824 {
1825         long rem_load_move = max_load_move;
1826         int busiest_cpu = cpu_of(busiest);
1827         struct task_group *tg;
1828
1829         rcu_read_lock();
1830         update_h_load(busiest_cpu);
1831
1832         list_for_each_entry_rcu(tg, &task_groups, list) {
1833                 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1834                 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1835                 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1836                 u64 rem_load, moved_load;
1837
1838                 /*
1839                  * empty group
1840                  */
1841                 if (!busiest_cfs_rq->task_weight)
1842                         continue;
1843
1844                 rem_load = (u64)rem_load_move * busiest_weight;
1845                 rem_load = div_u64(rem_load, busiest_h_load + 1);
1846
1847                 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1848                                 rem_load, sd, idle, all_pinned, this_best_prio,
1849                                 tg->cfs_rq[busiest_cpu]);
1850
1851                 if (!moved_load)
1852                         continue;
1853
1854                 moved_load *= busiest_h_load;
1855                 moved_load = div_u64(moved_load, busiest_weight + 1);
1856
1857                 rem_load_move -= moved_load;
1858                 if (rem_load_move < 0)
1859                         break;
1860         }
1861         rcu_read_unlock();
1862
1863         return max_load_move - rem_load_move;
1864 }
1865 #else
1866 static unsigned long
1867 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1868                   unsigned long max_load_move,
1869                   struct sched_domain *sd, enum cpu_idle_type idle,
1870                   int *all_pinned, int *this_best_prio)
1871 {
1872         return __load_balance_fair(this_rq, this_cpu, busiest,
1873                         max_load_move, sd, idle, all_pinned,
1874                         this_best_prio, &busiest->cfs);
1875 }
1876 #endif
1877
1878 static int
1879 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1880                    struct sched_domain *sd, enum cpu_idle_type idle)
1881 {
1882         struct cfs_rq *busy_cfs_rq;
1883         struct rq_iterator cfs_rq_iterator;
1884
1885         cfs_rq_iterator.start = load_balance_start_fair;
1886         cfs_rq_iterator.next = load_balance_next_fair;
1887
1888         for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1889                 /*
1890                  * pass busy_cfs_rq argument into
1891                  * load_balance_[start|next]_fair iterators
1892                  */
1893                 cfs_rq_iterator.arg = busy_cfs_rq;
1894                 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1895                                        &cfs_rq_iterator))
1896                     return 1;
1897         }
1898
1899         return 0;
1900 }
1901 #endif /* CONFIG_SMP */
1902
1903 /*
1904  * scheduler tick hitting a task of our scheduling class:
1905  */
1906 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1907 {
1908         struct cfs_rq *cfs_rq;
1909         struct sched_entity *se = &curr->se;
1910
1911         for_each_sched_entity(se) {
1912                 cfs_rq = cfs_rq_of(se);
1913                 entity_tick(cfs_rq, se, queued);
1914         }
1915 }
1916
1917 /*
1918  * called on fork with the child task as argument from the parent's context
1919  *  - child not yet on the tasklist
1920  *  - preemption disabled
1921  */
1922 static void task_fork_fair(struct task_struct *p)
1923 {
1924         struct cfs_rq *cfs_rq = task_cfs_rq(current);
1925         struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1926         int this_cpu = smp_processor_id();
1927         struct rq *rq = this_rq();
1928         unsigned long flags;
1929
1930         spin_lock_irqsave(&rq->lock, flags);
1931
1932         if (unlikely(task_cpu(p) != this_cpu))
1933                 __set_task_cpu(p, this_cpu);
1934
1935         update_curr(cfs_rq);
1936
1937         if (curr)
1938                 se->vruntime = curr->vruntime;
1939         place_entity(cfs_rq, se, 1);
1940
1941         if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
1942                 /*
1943                  * Upon rescheduling, sched_class::put_prev_task() will place
1944                  * 'current' within the tree based on its new key value.
1945                  */
1946                 swap(curr->vruntime, se->vruntime);
1947                 resched_task(rq->curr);
1948         }
1949
1950         spin_unlock_irqrestore(&rq->lock, flags);
1951 }
1952
1953 /*
1954  * Priority of the task has changed. Check to see if we preempt
1955  * the current task.
1956  */
1957 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1958                               int oldprio, int running)
1959 {
1960         /*
1961          * Reschedule if we are currently running on this runqueue and
1962          * our priority decreased, or if we are not currently running on
1963          * this runqueue and our priority is higher than the current's
1964          */
1965         if (running) {
1966                 if (p->prio > oldprio)
1967                         resched_task(rq->curr);
1968         } else
1969                 check_preempt_curr(rq, p, 0);
1970 }
1971
1972 /*
1973  * We switched to the sched_fair class.
1974  */
1975 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1976                              int running)
1977 {
1978         /*
1979          * We were most likely switched from sched_rt, so
1980          * kick off the schedule if running, otherwise just see
1981          * if we can still preempt the current task.
1982          */
1983         if (running)
1984                 resched_task(rq->curr);
1985         else
1986                 check_preempt_curr(rq, p, 0);
1987 }
1988
1989 /* Account for a task changing its policy or group.
1990  *
1991  * This routine is mostly called to set cfs_rq->curr field when a task
1992  * migrates between groups/classes.
1993  */
1994 static void set_curr_task_fair(struct rq *rq)
1995 {
1996         struct sched_entity *se = &rq->curr->se;
1997
1998         for_each_sched_entity(se)
1999                 set_next_entity(cfs_rq_of(se), se);
2000 }
2001
2002 #ifdef CONFIG_FAIR_GROUP_SCHED
2003 static void moved_group_fair(struct task_struct *p)
2004 {
2005         struct cfs_rq *cfs_rq = task_cfs_rq(p);
2006
2007         update_curr(cfs_rq);
2008         place_entity(cfs_rq, &p->se, 1);
2009 }
2010 #endif
2011
2012 unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
2013 {
2014         struct sched_entity *se = &task->se;
2015         unsigned int rr_interval = 0;
2016
2017         /*
2018          * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
2019          * idle runqueue:
2020          */
2021         if (rq->cfs.load.weight)
2022                 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
2023
2024         return rr_interval;
2025 }
2026
2027 /*
2028  * All the scheduling class methods:
2029  */
2030 static const struct sched_class fair_sched_class = {
2031         .next                   = &idle_sched_class,
2032         .enqueue_task           = enqueue_task_fair,
2033         .dequeue_task           = dequeue_task_fair,
2034         .yield_task             = yield_task_fair,
2035
2036         .check_preempt_curr     = check_preempt_wakeup,
2037
2038         .pick_next_task         = pick_next_task_fair,
2039         .put_prev_task          = put_prev_task_fair,
2040
2041 #ifdef CONFIG_SMP
2042         .select_task_rq         = select_task_rq_fair,
2043
2044         .load_balance           = load_balance_fair,
2045         .move_one_task          = move_one_task_fair,
2046 #endif
2047
2048         .set_curr_task          = set_curr_task_fair,
2049         .task_tick              = task_tick_fair,
2050         .task_fork              = task_fork_fair,
2051
2052         .prio_changed           = prio_changed_fair,
2053         .switched_to            = switched_to_fair,
2054
2055         .get_rr_interval        = get_rr_interval_fair,
2056
2057 #ifdef CONFIG_FAIR_GROUP_SCHED
2058         .moved_group            = moved_group_fair,
2059 #endif
2060 };
2061
2062 #ifdef CONFIG_SCHED_DEBUG
2063 static void print_cfs_stats(struct seq_file *m, int cpu)
2064 {
2065         struct cfs_rq *cfs_rq;
2066
2067         rcu_read_lock();
2068         for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
2069                 print_cfs_rq(m, cpu, cfs_rq);
2070         rcu_read_unlock();
2071 }
2072 #endif