Merge branch 'pm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/suspe...
[safe/jmp/linux-2.6] / kernel / sched_fair.c
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22
23 #include <linux/latencytop.h>
24
25 /*
26  * Targeted preemption latency for CPU-bound tasks:
27  * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
28  *
29  * NOTE: this latency value is not the same as the concept of
30  * 'timeslice length' - timeslices in CFS are of variable length
31  * and have no persistent notion like in traditional, time-slice
32  * based scheduling concepts.
33  *
34  * (to see the precise effective timeslice length of your workload,
35  *  run vmstat and monitor the context-switches (cs) field)
36  */
37 unsigned int sysctl_sched_latency = 5000000ULL;
38
39 /*
40  * Minimal preemption granularity for CPU-bound tasks:
41  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
42  */
43 unsigned int sysctl_sched_min_granularity = 1000000ULL;
44
45 /*
46  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47  */
48 static unsigned int sched_nr_latency = 5;
49
50 /*
51  * After fork, child runs first. If set to 0 (default) then
52  * parent will (try to) run first.
53  */
54 unsigned int sysctl_sched_child_runs_first __read_mostly;
55
56 /*
57  * sys_sched_yield() compat mode
58  *
59  * This option switches the agressive yield implementation of the
60  * old scheduler back on.
61  */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63
64 /*
65  * SCHED_OTHER wake-up granularity.
66  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
67  *
68  * This option delays the preemption effects of decoupled workloads
69  * and reduces their over-scheduling. Synchronous workloads will still
70  * have immediate wakeup/sleep latencies.
71  */
72 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
73
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
76 static const struct sched_class fair_sched_class;
77
78 /**************************************************************
79  * CFS operations on generic schedulable entities:
80  */
81
82 #ifdef CONFIG_FAIR_GROUP_SCHED
83
84 /* cpu runqueue to which this cfs_rq is attached */
85 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
86 {
87         return cfs_rq->rq;
88 }
89
90 /* An entity is a task if it doesn't "own" a runqueue */
91 #define entity_is_task(se)      (!se->my_q)
92
93 static inline struct task_struct *task_of(struct sched_entity *se)
94 {
95 #ifdef CONFIG_SCHED_DEBUG
96         WARN_ON_ONCE(!entity_is_task(se));
97 #endif
98         return container_of(se, struct task_struct, se);
99 }
100
101 /* Walk up scheduling entities hierarchy */
102 #define for_each_sched_entity(se) \
103                 for (; se; se = se->parent)
104
105 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
106 {
107         return p->se.cfs_rq;
108 }
109
110 /* runqueue on which this entity is (to be) queued */
111 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
112 {
113         return se->cfs_rq;
114 }
115
116 /* runqueue "owned" by this group */
117 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
118 {
119         return grp->my_q;
120 }
121
122 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
123  * another cpu ('this_cpu')
124  */
125 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
126 {
127         return cfs_rq->tg->cfs_rq[this_cpu];
128 }
129
130 /* Iterate thr' all leaf cfs_rq's on a runqueue */
131 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
132         list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
133
134 /* Do the two (enqueued) entities belong to the same group ? */
135 static inline int
136 is_same_group(struct sched_entity *se, struct sched_entity *pse)
137 {
138         if (se->cfs_rq == pse->cfs_rq)
139                 return 1;
140
141         return 0;
142 }
143
144 static inline struct sched_entity *parent_entity(struct sched_entity *se)
145 {
146         return se->parent;
147 }
148
149 /* return depth at which a sched entity is present in the hierarchy */
150 static inline int depth_se(struct sched_entity *se)
151 {
152         int depth = 0;
153
154         for_each_sched_entity(se)
155                 depth++;
156
157         return depth;
158 }
159
160 static void
161 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
162 {
163         int se_depth, pse_depth;
164
165         /*
166          * preemption test can be made between sibling entities who are in the
167          * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
168          * both tasks until we find their ancestors who are siblings of common
169          * parent.
170          */
171
172         /* First walk up until both entities are at same depth */
173         se_depth = depth_se(*se);
174         pse_depth = depth_se(*pse);
175
176         while (se_depth > pse_depth) {
177                 se_depth--;
178                 *se = parent_entity(*se);
179         }
180
181         while (pse_depth > se_depth) {
182                 pse_depth--;
183                 *pse = parent_entity(*pse);
184         }
185
186         while (!is_same_group(*se, *pse)) {
187                 *se = parent_entity(*se);
188                 *pse = parent_entity(*pse);
189         }
190 }
191
192 #else   /* !CONFIG_FAIR_GROUP_SCHED */
193
194 static inline struct task_struct *task_of(struct sched_entity *se)
195 {
196         return container_of(se, struct task_struct, se);
197 }
198
199 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
200 {
201         return container_of(cfs_rq, struct rq, cfs);
202 }
203
204 #define entity_is_task(se)      1
205
206 #define for_each_sched_entity(se) \
207                 for (; se; se = NULL)
208
209 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
210 {
211         return &task_rq(p)->cfs;
212 }
213
214 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
215 {
216         struct task_struct *p = task_of(se);
217         struct rq *rq = task_rq(p);
218
219         return &rq->cfs;
220 }
221
222 /* runqueue "owned" by this group */
223 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
224 {
225         return NULL;
226 }
227
228 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
229 {
230         return &cpu_rq(this_cpu)->cfs;
231 }
232
233 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
234                 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
235
236 static inline int
237 is_same_group(struct sched_entity *se, struct sched_entity *pse)
238 {
239         return 1;
240 }
241
242 static inline struct sched_entity *parent_entity(struct sched_entity *se)
243 {
244         return NULL;
245 }
246
247 static inline void
248 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
249 {
250 }
251
252 #endif  /* CONFIG_FAIR_GROUP_SCHED */
253
254
255 /**************************************************************
256  * Scheduling class tree data structure manipulation methods:
257  */
258
259 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
260 {
261         s64 delta = (s64)(vruntime - min_vruntime);
262         if (delta > 0)
263                 min_vruntime = vruntime;
264
265         return min_vruntime;
266 }
267
268 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
269 {
270         s64 delta = (s64)(vruntime - min_vruntime);
271         if (delta < 0)
272                 min_vruntime = vruntime;
273
274         return min_vruntime;
275 }
276
277 static inline int entity_before(struct sched_entity *a,
278                                 struct sched_entity *b)
279 {
280         return (s64)(a->vruntime - b->vruntime) < 0;
281 }
282
283 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
284 {
285         return se->vruntime - cfs_rq->min_vruntime;
286 }
287
288 static void update_min_vruntime(struct cfs_rq *cfs_rq)
289 {
290         u64 vruntime = cfs_rq->min_vruntime;
291
292         if (cfs_rq->curr)
293                 vruntime = cfs_rq->curr->vruntime;
294
295         if (cfs_rq->rb_leftmost) {
296                 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
297                                                    struct sched_entity,
298                                                    run_node);
299
300                 if (!cfs_rq->curr)
301                         vruntime = se->vruntime;
302                 else
303                         vruntime = min_vruntime(vruntime, se->vruntime);
304         }
305
306         cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
307 }
308
309 /*
310  * Enqueue an entity into the rb-tree:
311  */
312 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
313 {
314         struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
315         struct rb_node *parent = NULL;
316         struct sched_entity *entry;
317         s64 key = entity_key(cfs_rq, se);
318         int leftmost = 1;
319
320         /*
321          * Find the right place in the rbtree:
322          */
323         while (*link) {
324                 parent = *link;
325                 entry = rb_entry(parent, struct sched_entity, run_node);
326                 /*
327                  * We dont care about collisions. Nodes with
328                  * the same key stay together.
329                  */
330                 if (key < entity_key(cfs_rq, entry)) {
331                         link = &parent->rb_left;
332                 } else {
333                         link = &parent->rb_right;
334                         leftmost = 0;
335                 }
336         }
337
338         /*
339          * Maintain a cache of leftmost tree entries (it is frequently
340          * used):
341          */
342         if (leftmost)
343                 cfs_rq->rb_leftmost = &se->run_node;
344
345         rb_link_node(&se->run_node, parent, link);
346         rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
347 }
348
349 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
350 {
351         if (cfs_rq->rb_leftmost == &se->run_node) {
352                 struct rb_node *next_node;
353
354                 next_node = rb_next(&se->run_node);
355                 cfs_rq->rb_leftmost = next_node;
356         }
357
358         rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
359 }
360
361 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
362 {
363         struct rb_node *left = cfs_rq->rb_leftmost;
364
365         if (!left)
366                 return NULL;
367
368         return rb_entry(left, struct sched_entity, run_node);
369 }
370
371 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
372 {
373         struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
374
375         if (!last)
376                 return NULL;
377
378         return rb_entry(last, struct sched_entity, run_node);
379 }
380
381 /**************************************************************
382  * Scheduling class statistics methods:
383  */
384
385 #ifdef CONFIG_SCHED_DEBUG
386 int sched_nr_latency_handler(struct ctl_table *table, int write,
387                 void __user *buffer, size_t *lenp,
388                 loff_t *ppos)
389 {
390         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
391
392         if (ret || !write)
393                 return ret;
394
395         sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
396                                         sysctl_sched_min_granularity);
397
398         return 0;
399 }
400 #endif
401
402 /*
403  * delta /= w
404  */
405 static inline unsigned long
406 calc_delta_fair(unsigned long delta, struct sched_entity *se)
407 {
408         if (unlikely(se->load.weight != NICE_0_LOAD))
409                 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
410
411         return delta;
412 }
413
414 /*
415  * The idea is to set a period in which each task runs once.
416  *
417  * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
418  * this period because otherwise the slices get too small.
419  *
420  * p = (nr <= nl) ? l : l*nr/nl
421  */
422 static u64 __sched_period(unsigned long nr_running)
423 {
424         u64 period = sysctl_sched_latency;
425         unsigned long nr_latency = sched_nr_latency;
426
427         if (unlikely(nr_running > nr_latency)) {
428                 period = sysctl_sched_min_granularity;
429                 period *= nr_running;
430         }
431
432         return period;
433 }
434
435 /*
436  * We calculate the wall-time slice from the period by taking a part
437  * proportional to the weight.
438  *
439  * s = p*P[w/rw]
440  */
441 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
442 {
443         u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
444
445         for_each_sched_entity(se) {
446                 struct load_weight *load;
447                 struct load_weight lw;
448
449                 cfs_rq = cfs_rq_of(se);
450                 load = &cfs_rq->load;
451
452                 if (unlikely(!se->on_rq)) {
453                         lw = cfs_rq->load;
454
455                         update_load_add(&lw, se->load.weight);
456                         load = &lw;
457                 }
458                 slice = calc_delta_mine(slice, se->load.weight, load);
459         }
460         return slice;
461 }
462
463 /*
464  * We calculate the vruntime slice of a to be inserted task
465  *
466  * vs = s/w
467  */
468 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
469 {
470         return calc_delta_fair(sched_slice(cfs_rq, se), se);
471 }
472
473 /*
474  * Update the current task's runtime statistics. Skip current tasks that
475  * are not in our scheduling class.
476  */
477 static inline void
478 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
479               unsigned long delta_exec)
480 {
481         unsigned long delta_exec_weighted;
482
483         schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
484
485         curr->sum_exec_runtime += delta_exec;
486         schedstat_add(cfs_rq, exec_clock, delta_exec);
487         delta_exec_weighted = calc_delta_fair(delta_exec, curr);
488         curr->vruntime += delta_exec_weighted;
489         update_min_vruntime(cfs_rq);
490 }
491
492 static void update_curr(struct cfs_rq *cfs_rq)
493 {
494         struct sched_entity *curr = cfs_rq->curr;
495         u64 now = rq_of(cfs_rq)->clock;
496         unsigned long delta_exec;
497
498         if (unlikely(!curr))
499                 return;
500
501         /*
502          * Get the amount of time the current task was running
503          * since the last time we changed load (this cannot
504          * overflow on 32 bits):
505          */
506         delta_exec = (unsigned long)(now - curr->exec_start);
507         if (!delta_exec)
508                 return;
509
510         __update_curr(cfs_rq, curr, delta_exec);
511         curr->exec_start = now;
512
513         if (entity_is_task(curr)) {
514                 struct task_struct *curtask = task_of(curr);
515
516                 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
517                 cpuacct_charge(curtask, delta_exec);
518                 account_group_exec_runtime(curtask, delta_exec);
519         }
520 }
521
522 static inline void
523 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
524 {
525         schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
526 }
527
528 /*
529  * Task is being enqueued - update stats:
530  */
531 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
532 {
533         /*
534          * Are we enqueueing a waiting task? (for current tasks
535          * a dequeue/enqueue event is a NOP)
536          */
537         if (se != cfs_rq->curr)
538                 update_stats_wait_start(cfs_rq, se);
539 }
540
541 static void
542 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
543 {
544         schedstat_set(se->wait_max, max(se->wait_max,
545                         rq_of(cfs_rq)->clock - se->wait_start));
546         schedstat_set(se->wait_count, se->wait_count + 1);
547         schedstat_set(se->wait_sum, se->wait_sum +
548                         rq_of(cfs_rq)->clock - se->wait_start);
549 #ifdef CONFIG_SCHEDSTATS
550         if (entity_is_task(se)) {
551                 trace_sched_stat_wait(task_of(se),
552                         rq_of(cfs_rq)->clock - se->wait_start);
553         }
554 #endif
555         schedstat_set(se->wait_start, 0);
556 }
557
558 static inline void
559 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
560 {
561         /*
562          * Mark the end of the wait period if dequeueing a
563          * waiting task:
564          */
565         if (se != cfs_rq->curr)
566                 update_stats_wait_end(cfs_rq, se);
567 }
568
569 /*
570  * We are picking a new current task - update its stats:
571  */
572 static inline void
573 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
574 {
575         /*
576          * We are starting a new run period:
577          */
578         se->exec_start = rq_of(cfs_rq)->clock;
579 }
580
581 /**************************************************
582  * Scheduling class queueing methods:
583  */
584
585 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
586 static void
587 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
588 {
589         cfs_rq->task_weight += weight;
590 }
591 #else
592 static inline void
593 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
594 {
595 }
596 #endif
597
598 static void
599 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
600 {
601         update_load_add(&cfs_rq->load, se->load.weight);
602         if (!parent_entity(se))
603                 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
604         if (entity_is_task(se)) {
605                 add_cfs_task_weight(cfs_rq, se->load.weight);
606                 list_add(&se->group_node, &cfs_rq->tasks);
607         }
608         cfs_rq->nr_running++;
609         se->on_rq = 1;
610 }
611
612 static void
613 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
614 {
615         update_load_sub(&cfs_rq->load, se->load.weight);
616         if (!parent_entity(se))
617                 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
618         if (entity_is_task(se)) {
619                 add_cfs_task_weight(cfs_rq, -se->load.weight);
620                 list_del_init(&se->group_node);
621         }
622         cfs_rq->nr_running--;
623         se->on_rq = 0;
624 }
625
626 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 #ifdef CONFIG_SCHEDSTATS
629         struct task_struct *tsk = NULL;
630
631         if (entity_is_task(se))
632                 tsk = task_of(se);
633
634         if (se->sleep_start) {
635                 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
636
637                 if ((s64)delta < 0)
638                         delta = 0;
639
640                 if (unlikely(delta > se->sleep_max))
641                         se->sleep_max = delta;
642
643                 se->sleep_start = 0;
644                 se->sum_sleep_runtime += delta;
645
646                 if (tsk) {
647                         account_scheduler_latency(tsk, delta >> 10, 1);
648                         trace_sched_stat_sleep(tsk, delta);
649                 }
650         }
651         if (se->block_start) {
652                 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
653
654                 if ((s64)delta < 0)
655                         delta = 0;
656
657                 if (unlikely(delta > se->block_max))
658                         se->block_max = delta;
659
660                 se->block_start = 0;
661                 se->sum_sleep_runtime += delta;
662
663                 if (tsk) {
664                         if (tsk->in_iowait) {
665                                 se->iowait_sum += delta;
666                                 se->iowait_count++;
667                                 trace_sched_stat_iowait(tsk, delta);
668                         }
669
670                         /*
671                          * Blocking time is in units of nanosecs, so shift by
672                          * 20 to get a milliseconds-range estimation of the
673                          * amount of time that the task spent sleeping:
674                          */
675                         if (unlikely(prof_on == SLEEP_PROFILING)) {
676                                 profile_hits(SLEEP_PROFILING,
677                                                 (void *)get_wchan(tsk),
678                                                 delta >> 20);
679                         }
680                         account_scheduler_latency(tsk, delta >> 10, 0);
681                 }
682         }
683 #endif
684 }
685
686 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
687 {
688 #ifdef CONFIG_SCHED_DEBUG
689         s64 d = se->vruntime - cfs_rq->min_vruntime;
690
691         if (d < 0)
692                 d = -d;
693
694         if (d > 3*sysctl_sched_latency)
695                 schedstat_inc(cfs_rq, nr_spread_over);
696 #endif
697 }
698
699 static void
700 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
701 {
702         u64 vruntime = cfs_rq->min_vruntime;
703
704         /*
705          * The 'current' period is already promised to the current tasks,
706          * however the extra weight of the new task will slow them down a
707          * little, place the new task so that it fits in the slot that
708          * stays open at the end.
709          */
710         if (initial && sched_feat(START_DEBIT))
711                 vruntime += sched_vslice(cfs_rq, se);
712
713         /* sleeps up to a single latency don't count. */
714         if (!initial && sched_feat(FAIR_SLEEPERS)) {
715                 unsigned long thresh = sysctl_sched_latency;
716
717                 /*
718                  * Convert the sleeper threshold into virtual time.
719                  * SCHED_IDLE is a special sub-class.  We care about
720                  * fairness only relative to other SCHED_IDLE tasks,
721                  * all of which have the same weight.
722                  */
723                 if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
724                                  task_of(se)->policy != SCHED_IDLE))
725                         thresh = calc_delta_fair(thresh, se);
726
727                 /*
728                  * Halve their sleep time's effect, to allow
729                  * for a gentler effect of sleepers:
730                  */
731                 if (sched_feat(GENTLE_FAIR_SLEEPERS))
732                         thresh >>= 1;
733
734                 vruntime -= thresh;
735         }
736
737         /* ensure we never gain time by being placed backwards. */
738         vruntime = max_vruntime(se->vruntime, vruntime);
739
740         se->vruntime = vruntime;
741 }
742
743 static void
744 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
745 {
746         /*
747          * Update run-time statistics of the 'current'.
748          */
749         update_curr(cfs_rq);
750         account_entity_enqueue(cfs_rq, se);
751
752         if (wakeup) {
753                 place_entity(cfs_rq, se, 0);
754                 enqueue_sleeper(cfs_rq, se);
755         }
756
757         update_stats_enqueue(cfs_rq, se);
758         check_spread(cfs_rq, se);
759         if (se != cfs_rq->curr)
760                 __enqueue_entity(cfs_rq, se);
761 }
762
763 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
764 {
765         if (!se || cfs_rq->last == se)
766                 cfs_rq->last = NULL;
767
768         if (!se || cfs_rq->next == se)
769                 cfs_rq->next = NULL;
770 }
771
772 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
773 {
774         for_each_sched_entity(se)
775                 __clear_buddies(cfs_rq_of(se), se);
776 }
777
778 static void
779 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
780 {
781         /*
782          * Update run-time statistics of the 'current'.
783          */
784         update_curr(cfs_rq);
785
786         update_stats_dequeue(cfs_rq, se);
787         if (sleep) {
788 #ifdef CONFIG_SCHEDSTATS
789                 if (entity_is_task(se)) {
790                         struct task_struct *tsk = task_of(se);
791
792                         if (tsk->state & TASK_INTERRUPTIBLE)
793                                 se->sleep_start = rq_of(cfs_rq)->clock;
794                         if (tsk->state & TASK_UNINTERRUPTIBLE)
795                                 se->block_start = rq_of(cfs_rq)->clock;
796                 }
797 #endif
798         }
799
800         clear_buddies(cfs_rq, se);
801
802         if (se != cfs_rq->curr)
803                 __dequeue_entity(cfs_rq, se);
804         account_entity_dequeue(cfs_rq, se);
805         update_min_vruntime(cfs_rq);
806 }
807
808 /*
809  * Preempt the current task with a newly woken task if needed:
810  */
811 static void
812 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
813 {
814         unsigned long ideal_runtime, delta_exec;
815
816         ideal_runtime = sched_slice(cfs_rq, curr);
817         delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
818         if (delta_exec > ideal_runtime) {
819                 resched_task(rq_of(cfs_rq)->curr);
820                 /*
821                  * The current task ran long enough, ensure it doesn't get
822                  * re-elected due to buddy favours.
823                  */
824                 clear_buddies(cfs_rq, curr);
825         }
826 }
827
828 static void
829 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
830 {
831         /* 'current' is not kept within the tree. */
832         if (se->on_rq) {
833                 /*
834                  * Any task has to be enqueued before it get to execute on
835                  * a CPU. So account for the time it spent waiting on the
836                  * runqueue.
837                  */
838                 update_stats_wait_end(cfs_rq, se);
839                 __dequeue_entity(cfs_rq, se);
840         }
841
842         update_stats_curr_start(cfs_rq, se);
843         cfs_rq->curr = se;
844 #ifdef CONFIG_SCHEDSTATS
845         /*
846          * Track our maximum slice length, if the CPU's load is at
847          * least twice that of our own weight (i.e. dont track it
848          * when there are only lesser-weight tasks around):
849          */
850         if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
851                 se->slice_max = max(se->slice_max,
852                         se->sum_exec_runtime - se->prev_sum_exec_runtime);
853         }
854 #endif
855         se->prev_sum_exec_runtime = se->sum_exec_runtime;
856 }
857
858 static int
859 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
860
861 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
862 {
863         struct sched_entity *se = __pick_next_entity(cfs_rq);
864         struct sched_entity *buddy;
865
866         if (cfs_rq->next) {
867                 buddy = cfs_rq->next;
868                 cfs_rq->next = NULL;
869                 if (wakeup_preempt_entity(buddy, se) < 1)
870                         return buddy;
871         }
872
873         if (cfs_rq->last) {
874                 buddy = cfs_rq->last;
875                 cfs_rq->last = NULL;
876                 if (wakeup_preempt_entity(buddy, se) < 1)
877                         return buddy;
878         }
879
880         return se;
881 }
882
883 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
884 {
885         /*
886          * If still on the runqueue then deactivate_task()
887          * was not called and update_curr() has to be done:
888          */
889         if (prev->on_rq)
890                 update_curr(cfs_rq);
891
892         check_spread(cfs_rq, prev);
893         if (prev->on_rq) {
894                 update_stats_wait_start(cfs_rq, prev);
895                 /* Put 'current' back into the tree. */
896                 __enqueue_entity(cfs_rq, prev);
897         }
898         cfs_rq->curr = NULL;
899 }
900
901 static void
902 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
903 {
904         /*
905          * Update run-time statistics of the 'current'.
906          */
907         update_curr(cfs_rq);
908
909 #ifdef CONFIG_SCHED_HRTICK
910         /*
911          * queued ticks are scheduled to match the slice, so don't bother
912          * validating it and just reschedule.
913          */
914         if (queued) {
915                 resched_task(rq_of(cfs_rq)->curr);
916                 return;
917         }
918         /*
919          * don't let the period tick interfere with the hrtick preemption
920          */
921         if (!sched_feat(DOUBLE_TICK) &&
922                         hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
923                 return;
924 #endif
925
926         if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
927                 check_preempt_tick(cfs_rq, curr);
928 }
929
930 /**************************************************
931  * CFS operations on tasks:
932  */
933
934 #ifdef CONFIG_SCHED_HRTICK
935 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
936 {
937         struct sched_entity *se = &p->se;
938         struct cfs_rq *cfs_rq = cfs_rq_of(se);
939
940         WARN_ON(task_rq(p) != rq);
941
942         if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
943                 u64 slice = sched_slice(cfs_rq, se);
944                 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
945                 s64 delta = slice - ran;
946
947                 if (delta < 0) {
948                         if (rq->curr == p)
949                                 resched_task(p);
950                         return;
951                 }
952
953                 /*
954                  * Don't schedule slices shorter than 10000ns, that just
955                  * doesn't make sense. Rely on vruntime for fairness.
956                  */
957                 if (rq->curr != p)
958                         delta = max_t(s64, 10000LL, delta);
959
960                 hrtick_start(rq, delta);
961         }
962 }
963
964 /*
965  * called from enqueue/dequeue and updates the hrtick when the
966  * current task is from our class and nr_running is low enough
967  * to matter.
968  */
969 static void hrtick_update(struct rq *rq)
970 {
971         struct task_struct *curr = rq->curr;
972
973         if (curr->sched_class != &fair_sched_class)
974                 return;
975
976         if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
977                 hrtick_start_fair(rq, curr);
978 }
979 #else /* !CONFIG_SCHED_HRTICK */
980 static inline void
981 hrtick_start_fair(struct rq *rq, struct task_struct *p)
982 {
983 }
984
985 static inline void hrtick_update(struct rq *rq)
986 {
987 }
988 #endif
989
990 /*
991  * The enqueue_task method is called before nr_running is
992  * increased. Here we update the fair scheduling stats and
993  * then put the task into the rbtree:
994  */
995 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
996 {
997         struct cfs_rq *cfs_rq;
998         struct sched_entity *se = &p->se;
999
1000         for_each_sched_entity(se) {
1001                 if (se->on_rq)
1002                         break;
1003                 cfs_rq = cfs_rq_of(se);
1004                 enqueue_entity(cfs_rq, se, wakeup);
1005                 wakeup = 1;
1006         }
1007
1008         hrtick_update(rq);
1009 }
1010
1011 /*
1012  * The dequeue_task method is called before nr_running is
1013  * decreased. We remove the task from the rbtree and
1014  * update the fair scheduling stats:
1015  */
1016 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1017 {
1018         struct cfs_rq *cfs_rq;
1019         struct sched_entity *se = &p->se;
1020
1021         for_each_sched_entity(se) {
1022                 cfs_rq = cfs_rq_of(se);
1023                 dequeue_entity(cfs_rq, se, sleep);
1024                 /* Don't dequeue parent if it has other entities besides us */
1025                 if (cfs_rq->load.weight)
1026                         break;
1027                 sleep = 1;
1028         }
1029
1030         hrtick_update(rq);
1031 }
1032
1033 /*
1034  * sched_yield() support is very simple - we dequeue and enqueue.
1035  *
1036  * If compat_yield is turned on then we requeue to the end of the tree.
1037  */
1038 static void yield_task_fair(struct rq *rq)
1039 {
1040         struct task_struct *curr = rq->curr;
1041         struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1042         struct sched_entity *rightmost, *se = &curr->se;
1043
1044         /*
1045          * Are we the only task in the tree?
1046          */
1047         if (unlikely(cfs_rq->nr_running == 1))
1048                 return;
1049
1050         clear_buddies(cfs_rq, se);
1051
1052         if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1053                 update_rq_clock(rq);
1054                 /*
1055                  * Update run-time statistics of the 'current'.
1056                  */
1057                 update_curr(cfs_rq);
1058
1059                 return;
1060         }
1061         /*
1062          * Find the rightmost entry in the rbtree:
1063          */
1064         rightmost = __pick_last_entity(cfs_rq);
1065         /*
1066          * Already in the rightmost position?
1067          */
1068         if (unlikely(!rightmost || entity_before(rightmost, se)))
1069                 return;
1070
1071         /*
1072          * Minimally necessary key value to be last in the tree:
1073          * Upon rescheduling, sched_class::put_prev_task() will place
1074          * 'current' within the tree based on its new key value.
1075          */
1076         se->vruntime = rightmost->vruntime + 1;
1077 }
1078
1079 #ifdef CONFIG_SMP
1080
1081 #ifdef CONFIG_FAIR_GROUP_SCHED
1082 /*
1083  * effective_load() calculates the load change as seen from the root_task_group
1084  *
1085  * Adding load to a group doesn't make a group heavier, but can cause movement
1086  * of group shares between cpus. Assuming the shares were perfectly aligned one
1087  * can calculate the shift in shares.
1088  *
1089  * The problem is that perfectly aligning the shares is rather expensive, hence
1090  * we try to avoid doing that too often - see update_shares(), which ratelimits
1091  * this change.
1092  *
1093  * We compensate this by not only taking the current delta into account, but
1094  * also considering the delta between when the shares were last adjusted and
1095  * now.
1096  *
1097  * We still saw a performance dip, some tracing learned us that between
1098  * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1099  * significantly. Therefore try to bias the error in direction of failing
1100  * the affine wakeup.
1101  *
1102  */
1103 static long effective_load(struct task_group *tg, int cpu,
1104                 long wl, long wg)
1105 {
1106         struct sched_entity *se = tg->se[cpu];
1107
1108         if (!tg->parent)
1109                 return wl;
1110
1111         /*
1112          * By not taking the decrease of shares on the other cpu into
1113          * account our error leans towards reducing the affine wakeups.
1114          */
1115         if (!wl && sched_feat(ASYM_EFF_LOAD))
1116                 return wl;
1117
1118         for_each_sched_entity(se) {
1119                 long S, rw, s, a, b;
1120                 long more_w;
1121
1122                 /*
1123                  * Instead of using this increment, also add the difference
1124                  * between when the shares were last updated and now.
1125                  */
1126                 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1127                 wl += more_w;
1128                 wg += more_w;
1129
1130                 S = se->my_q->tg->shares;
1131                 s = se->my_q->shares;
1132                 rw = se->my_q->rq_weight;
1133
1134                 a = S*(rw + wl);
1135                 b = S*rw + s*wg;
1136
1137                 wl = s*(a-b);
1138
1139                 if (likely(b))
1140                         wl /= b;
1141
1142                 /*
1143                  * Assume the group is already running and will
1144                  * thus already be accounted for in the weight.
1145                  *
1146                  * That is, moving shares between CPUs, does not
1147                  * alter the group weight.
1148                  */
1149                 wg = 0;
1150         }
1151
1152         return wl;
1153 }
1154
1155 #else
1156
1157 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1158                 unsigned long wl, unsigned long wg)
1159 {
1160         return wl;
1161 }
1162
1163 #endif
1164
1165 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1166 {
1167         struct task_struct *curr = current;
1168         unsigned long this_load, load;
1169         int idx, this_cpu, prev_cpu;
1170         unsigned long tl_per_task;
1171         unsigned int imbalance;
1172         struct task_group *tg;
1173         unsigned long weight;
1174         int balanced;
1175
1176         idx       = sd->wake_idx;
1177         this_cpu  = smp_processor_id();
1178         prev_cpu  = task_cpu(p);
1179         load      = source_load(prev_cpu, idx);
1180         this_load = target_load(this_cpu, idx);
1181
1182         if (sync) {
1183                if (sched_feat(SYNC_LESS) &&
1184                    (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1185                     p->se.avg_overlap > sysctl_sched_migration_cost))
1186                        sync = 0;
1187         } else {
1188                 if (sched_feat(SYNC_MORE) &&
1189                     (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1190                      p->se.avg_overlap < sysctl_sched_migration_cost))
1191                         sync = 1;
1192         }
1193
1194         /*
1195          * If sync wakeup then subtract the (maximum possible)
1196          * effect of the currently running task from the load
1197          * of the current CPU:
1198          */
1199         if (sync) {
1200                 tg = task_group(current);
1201                 weight = current->se.load.weight;
1202
1203                 this_load += effective_load(tg, this_cpu, -weight, -weight);
1204                 load += effective_load(tg, prev_cpu, 0, -weight);
1205         }
1206
1207         tg = task_group(p);
1208         weight = p->se.load.weight;
1209
1210         imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1211
1212         /*
1213          * In low-load situations, where prev_cpu is idle and this_cpu is idle
1214          * due to the sync cause above having dropped this_load to 0, we'll
1215          * always have an imbalance, but there's really nothing you can do
1216          * about that, so that's good too.
1217          *
1218          * Otherwise check if either cpus are near enough in load to allow this
1219          * task to be woken on this_cpu.
1220          */
1221         balanced = !this_load ||
1222                 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
1223                 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1224
1225         /*
1226          * If the currently running task will sleep within
1227          * a reasonable amount of time then attract this newly
1228          * woken task:
1229          */
1230         if (sync && balanced)
1231                 return 1;
1232
1233         schedstat_inc(p, se.nr_wakeups_affine_attempts);
1234         tl_per_task = cpu_avg_load_per_task(this_cpu);
1235
1236         if (balanced ||
1237             (this_load <= load &&
1238              this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1239                 /*
1240                  * This domain has SD_WAKE_AFFINE and
1241                  * p is cache cold in this domain, and
1242                  * there is no bad imbalance.
1243                  */
1244                 schedstat_inc(sd, ttwu_move_affine);
1245                 schedstat_inc(p, se.nr_wakeups_affine);
1246
1247                 return 1;
1248         }
1249         return 0;
1250 }
1251
1252 /*
1253  * find_idlest_group finds and returns the least busy CPU group within the
1254  * domain.
1255  */
1256 static struct sched_group *
1257 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1258                   int this_cpu, int load_idx)
1259 {
1260         struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1261         unsigned long min_load = ULONG_MAX, this_load = 0;
1262         int imbalance = 100 + (sd->imbalance_pct-100)/2;
1263
1264         do {
1265                 unsigned long load, avg_load;
1266                 int local_group;
1267                 int i;
1268
1269                 /* Skip over this group if it has no CPUs allowed */
1270                 if (!cpumask_intersects(sched_group_cpus(group),
1271                                         &p->cpus_allowed))
1272                         continue;
1273
1274                 local_group = cpumask_test_cpu(this_cpu,
1275                                                sched_group_cpus(group));
1276
1277                 /* Tally up the load of all CPUs in the group */
1278                 avg_load = 0;
1279
1280                 for_each_cpu(i, sched_group_cpus(group)) {
1281                         /* Bias balancing toward cpus of our domain */
1282                         if (local_group)
1283                                 load = source_load(i, load_idx);
1284                         else
1285                                 load = target_load(i, load_idx);
1286
1287                         avg_load += load;
1288                 }
1289
1290                 /* Adjust by relative CPU power of the group */
1291                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1292
1293                 if (local_group) {
1294                         this_load = avg_load;
1295                         this = group;
1296                 } else if (avg_load < min_load) {
1297                         min_load = avg_load;
1298                         idlest = group;
1299                 }
1300         } while (group = group->next, group != sd->groups);
1301
1302         if (!idlest || 100*this_load < imbalance*min_load)
1303                 return NULL;
1304         return idlest;
1305 }
1306
1307 /*
1308  * find_idlest_cpu - find the idlest cpu among the cpus in group.
1309  */
1310 static int
1311 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1312 {
1313         unsigned long load, min_load = ULONG_MAX;
1314         int idlest = -1;
1315         int i;
1316
1317         /* Traverse only the allowed CPUs */
1318         for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1319                 load = weighted_cpuload(i);
1320
1321                 if (load < min_load || (load == min_load && i == this_cpu)) {
1322                         min_load = load;
1323                         idlest = i;
1324                 }
1325         }
1326
1327         return idlest;
1328 }
1329
1330 /*
1331  * sched_balance_self: balance the current task (running on cpu) in domains
1332  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1333  * SD_BALANCE_EXEC.
1334  *
1335  * Balance, ie. select the least loaded group.
1336  *
1337  * Returns the target CPU number, or the same CPU if no balancing is needed.
1338  *
1339  * preempt must be disabled.
1340  */
1341 static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
1342 {
1343         struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1344         int cpu = smp_processor_id();
1345         int prev_cpu = task_cpu(p);
1346         int new_cpu = cpu;
1347         int want_affine = 0;
1348         int want_sd = 1;
1349         int sync = wake_flags & WF_SYNC;
1350
1351         if (sd_flag & SD_BALANCE_WAKE) {
1352                 if (sched_feat(AFFINE_WAKEUPS) &&
1353                     cpumask_test_cpu(cpu, &p->cpus_allowed))
1354                         want_affine = 1;
1355                 new_cpu = prev_cpu;
1356         }
1357
1358         rcu_read_lock();
1359         for_each_domain(cpu, tmp) {
1360                 /*
1361                  * If power savings logic is enabled for a domain, see if we
1362                  * are not overloaded, if so, don't balance wider.
1363                  */
1364                 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1365                         unsigned long power = 0;
1366                         unsigned long nr_running = 0;
1367                         unsigned long capacity;
1368                         int i;
1369
1370                         for_each_cpu(i, sched_domain_span(tmp)) {
1371                                 power += power_of(i);
1372                                 nr_running += cpu_rq(i)->cfs.nr_running;
1373                         }
1374
1375                         capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1376
1377                         if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1378                                 nr_running /= 2;
1379
1380                         if (nr_running < capacity)
1381                                 want_sd = 0;
1382                 }
1383
1384                 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1385                     cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1386
1387                         affine_sd = tmp;
1388                         want_affine = 0;
1389                 }
1390
1391                 if (!want_sd && !want_affine)
1392                         break;
1393
1394                 if (!(tmp->flags & sd_flag))
1395                         continue;
1396
1397                 if (want_sd)
1398                         sd = tmp;
1399         }
1400
1401         if (sched_feat(LB_SHARES_UPDATE)) {
1402                 /*
1403                  * Pick the largest domain to update shares over
1404                  */
1405                 tmp = sd;
1406                 if (affine_sd && (!tmp ||
1407                                   cpumask_weight(sched_domain_span(affine_sd)) >
1408                                   cpumask_weight(sched_domain_span(sd))))
1409                         tmp = affine_sd;
1410
1411                 if (tmp)
1412                         update_shares(tmp);
1413         }
1414
1415         if (affine_sd && wake_affine(affine_sd, p, sync)) {
1416                 new_cpu = cpu;
1417                 goto out;
1418         }
1419
1420         while (sd) {
1421                 int load_idx = sd->forkexec_idx;
1422                 struct sched_group *group;
1423                 int weight;
1424
1425                 if (!(sd->flags & sd_flag)) {
1426                         sd = sd->child;
1427                         continue;
1428                 }
1429
1430                 if (sd_flag & SD_BALANCE_WAKE)
1431                         load_idx = sd->wake_idx;
1432
1433                 group = find_idlest_group(sd, p, cpu, load_idx);
1434                 if (!group) {
1435                         sd = sd->child;
1436                         continue;
1437                 }
1438
1439                 new_cpu = find_idlest_cpu(group, p, cpu);
1440                 if (new_cpu == -1 || new_cpu == cpu) {
1441                         /* Now try balancing at a lower domain level of cpu */
1442                         sd = sd->child;
1443                         continue;
1444                 }
1445
1446                 /* Now try balancing at a lower domain level of new_cpu */
1447                 cpu = new_cpu;
1448                 weight = cpumask_weight(sched_domain_span(sd));
1449                 sd = NULL;
1450                 for_each_domain(cpu, tmp) {
1451                         if (weight <= cpumask_weight(sched_domain_span(tmp)))
1452                                 break;
1453                         if (tmp->flags & sd_flag)
1454                                 sd = tmp;
1455                 }
1456                 /* while loop will break here if sd == NULL */
1457         }
1458
1459 out:
1460         rcu_read_unlock();
1461         return new_cpu;
1462 }
1463 #endif /* CONFIG_SMP */
1464
1465 /*
1466  * Adaptive granularity
1467  *
1468  * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1469  * with the limit of wakeup_gran -- when it never does a wakeup.
1470  *
1471  * So the smaller avg_wakeup is the faster we want this task to preempt,
1472  * but we don't want to treat the preemptee unfairly and therefore allow it
1473  * to run for at least the amount of time we'd like to run.
1474  *
1475  * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1476  *
1477  * NOTE: we use *nr_running to scale with load, this nicely matches the
1478  *       degrading latency on load.
1479  */
1480 static unsigned long
1481 adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1482 {
1483         u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1484         u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1485         u64 gran = 0;
1486
1487         if (this_run < expected_wakeup)
1488                 gran = expected_wakeup - this_run;
1489
1490         return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1491 }
1492
1493 static unsigned long
1494 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1495 {
1496         unsigned long gran = sysctl_sched_wakeup_granularity;
1497
1498         if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1499                 gran = adaptive_gran(curr, se);
1500
1501         /*
1502          * Since its curr running now, convert the gran from real-time
1503          * to virtual-time in his units.
1504          */
1505         if (sched_feat(ASYM_GRAN)) {
1506                 /*
1507                  * By using 'se' instead of 'curr' we penalize light tasks, so
1508                  * they get preempted easier. That is, if 'se' < 'curr' then
1509                  * the resulting gran will be larger, therefore penalizing the
1510                  * lighter, if otoh 'se' > 'curr' then the resulting gran will
1511                  * be smaller, again penalizing the lighter task.
1512                  *
1513                  * This is especially important for buddies when the leftmost
1514                  * task is higher priority than the buddy.
1515                  */
1516                 if (unlikely(se->load.weight != NICE_0_LOAD))
1517                         gran = calc_delta_fair(gran, se);
1518         } else {
1519                 if (unlikely(curr->load.weight != NICE_0_LOAD))
1520                         gran = calc_delta_fair(gran, curr);
1521         }
1522
1523         return gran;
1524 }
1525
1526 /*
1527  * Should 'se' preempt 'curr'.
1528  *
1529  *             |s1
1530  *        |s2
1531  *   |s3
1532  *         g
1533  *      |<--->|c
1534  *
1535  *  w(c, s1) = -1
1536  *  w(c, s2) =  0
1537  *  w(c, s3) =  1
1538  *
1539  */
1540 static int
1541 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1542 {
1543         s64 gran, vdiff = curr->vruntime - se->vruntime;
1544
1545         if (vdiff <= 0)
1546                 return -1;
1547
1548         gran = wakeup_gran(curr, se);
1549         if (vdiff > gran)
1550                 return 1;
1551
1552         return 0;
1553 }
1554
1555 static void set_last_buddy(struct sched_entity *se)
1556 {
1557         if (likely(task_of(se)->policy != SCHED_IDLE)) {
1558                 for_each_sched_entity(se)
1559                         cfs_rq_of(se)->last = se;
1560         }
1561 }
1562
1563 static void set_next_buddy(struct sched_entity *se)
1564 {
1565         if (likely(task_of(se)->policy != SCHED_IDLE)) {
1566                 for_each_sched_entity(se)
1567                         cfs_rq_of(se)->next = se;
1568         }
1569 }
1570
1571 /*
1572  * Preempt the current task with a newly woken task if needed:
1573  */
1574 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1575 {
1576         struct task_struct *curr = rq->curr;
1577         struct sched_entity *se = &curr->se, *pse = &p->se;
1578         struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1579         int sync = wake_flags & WF_SYNC;
1580
1581         update_curr(cfs_rq);
1582
1583         if (unlikely(rt_prio(p->prio))) {
1584                 resched_task(curr);
1585                 return;
1586         }
1587
1588         if (unlikely(p->sched_class != &fair_sched_class))
1589                 return;
1590
1591         if (unlikely(se == pse))
1592                 return;
1593
1594         /*
1595          * Only set the backward buddy when the current task is still on the
1596          * rq. This can happen when a wakeup gets interleaved with schedule on
1597          * the ->pre_schedule() or idle_balance() point, either of which can
1598          * drop the rq lock.
1599          *
1600          * Also, during early boot the idle thread is in the fair class, for
1601          * obvious reasons its a bad idea to schedule back to the idle thread.
1602          */
1603         if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1604                 set_last_buddy(se);
1605         if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK))
1606                 set_next_buddy(pse);
1607
1608         /*
1609          * We can come here with TIF_NEED_RESCHED already set from new task
1610          * wake up path.
1611          */
1612         if (test_tsk_need_resched(curr))
1613                 return;
1614
1615         /*
1616          * Batch and idle tasks do not preempt (their preemption is driven by
1617          * the tick):
1618          */
1619         if (unlikely(p->policy != SCHED_NORMAL))
1620                 return;
1621
1622         /* Idle tasks are by definition preempted by everybody. */
1623         if (unlikely(curr->policy == SCHED_IDLE)) {
1624                 resched_task(curr);
1625                 return;
1626         }
1627
1628         if ((sched_feat(WAKEUP_SYNC) && sync) ||
1629             (sched_feat(WAKEUP_OVERLAP) &&
1630              (se->avg_overlap < sysctl_sched_migration_cost &&
1631               pse->avg_overlap < sysctl_sched_migration_cost))) {
1632                 resched_task(curr);
1633                 return;
1634         }
1635
1636         if (sched_feat(WAKEUP_RUNNING)) {
1637                 if (pse->avg_running < se->avg_running) {
1638                         set_next_buddy(pse);
1639                         resched_task(curr);
1640                         return;
1641                 }
1642         }
1643
1644         if (!sched_feat(WAKEUP_PREEMPT))
1645                 return;
1646
1647         find_matching_se(&se, &pse);
1648
1649         BUG_ON(!pse);
1650
1651         if (wakeup_preempt_entity(se, pse) == 1)
1652                 resched_task(curr);
1653 }
1654
1655 static struct task_struct *pick_next_task_fair(struct rq *rq)
1656 {
1657         struct task_struct *p;
1658         struct cfs_rq *cfs_rq = &rq->cfs;
1659         struct sched_entity *se;
1660
1661         if (unlikely(!cfs_rq->nr_running))
1662                 return NULL;
1663
1664         do {
1665                 se = pick_next_entity(cfs_rq);
1666                 set_next_entity(cfs_rq, se);
1667                 cfs_rq = group_cfs_rq(se);
1668         } while (cfs_rq);
1669
1670         p = task_of(se);
1671         hrtick_start_fair(rq, p);
1672
1673         return p;
1674 }
1675
1676 /*
1677  * Account for a descheduled task:
1678  */
1679 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1680 {
1681         struct sched_entity *se = &prev->se;
1682         struct cfs_rq *cfs_rq;
1683
1684         for_each_sched_entity(se) {
1685                 cfs_rq = cfs_rq_of(se);
1686                 put_prev_entity(cfs_rq, se);
1687         }
1688 }
1689
1690 #ifdef CONFIG_SMP
1691 /**************************************************
1692  * Fair scheduling class load-balancing methods:
1693  */
1694
1695 /*
1696  * Load-balancing iterator. Note: while the runqueue stays locked
1697  * during the whole iteration, the current task might be
1698  * dequeued so the iterator has to be dequeue-safe. Here we
1699  * achieve that by always pre-iterating before returning
1700  * the current task:
1701  */
1702 static struct task_struct *
1703 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1704 {
1705         struct task_struct *p = NULL;
1706         struct sched_entity *se;
1707
1708         if (next == &cfs_rq->tasks)
1709                 return NULL;
1710
1711         se = list_entry(next, struct sched_entity, group_node);
1712         p = task_of(se);
1713         cfs_rq->balance_iterator = next->next;
1714
1715         return p;
1716 }
1717
1718 static struct task_struct *load_balance_start_fair(void *arg)
1719 {
1720         struct cfs_rq *cfs_rq = arg;
1721
1722         return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1723 }
1724
1725 static struct task_struct *load_balance_next_fair(void *arg)
1726 {
1727         struct cfs_rq *cfs_rq = arg;
1728
1729         return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1730 }
1731
1732 static unsigned long
1733 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1734                 unsigned long max_load_move, struct sched_domain *sd,
1735                 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1736                 struct cfs_rq *cfs_rq)
1737 {
1738         struct rq_iterator cfs_rq_iterator;
1739
1740         cfs_rq_iterator.start = load_balance_start_fair;
1741         cfs_rq_iterator.next = load_balance_next_fair;
1742         cfs_rq_iterator.arg = cfs_rq;
1743
1744         return balance_tasks(this_rq, this_cpu, busiest,
1745                         max_load_move, sd, idle, all_pinned,
1746                         this_best_prio, &cfs_rq_iterator);
1747 }
1748
1749 #ifdef CONFIG_FAIR_GROUP_SCHED
1750 static unsigned long
1751 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1752                   unsigned long max_load_move,
1753                   struct sched_domain *sd, enum cpu_idle_type idle,
1754                   int *all_pinned, int *this_best_prio)
1755 {
1756         long rem_load_move = max_load_move;
1757         int busiest_cpu = cpu_of(busiest);
1758         struct task_group *tg;
1759
1760         rcu_read_lock();
1761         update_h_load(busiest_cpu);
1762
1763         list_for_each_entry_rcu(tg, &task_groups, list) {
1764                 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1765                 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1766                 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1767                 u64 rem_load, moved_load;
1768
1769                 /*
1770                  * empty group
1771                  */
1772                 if (!busiest_cfs_rq->task_weight)
1773                         continue;
1774
1775                 rem_load = (u64)rem_load_move * busiest_weight;
1776                 rem_load = div_u64(rem_load, busiest_h_load + 1);
1777
1778                 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1779                                 rem_load, sd, idle, all_pinned, this_best_prio,
1780                                 tg->cfs_rq[busiest_cpu]);
1781
1782                 if (!moved_load)
1783                         continue;
1784
1785                 moved_load *= busiest_h_load;
1786                 moved_load = div_u64(moved_load, busiest_weight + 1);
1787
1788                 rem_load_move -= moved_load;
1789                 if (rem_load_move < 0)
1790                         break;
1791         }
1792         rcu_read_unlock();
1793
1794         return max_load_move - rem_load_move;
1795 }
1796 #else
1797 static unsigned long
1798 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1799                   unsigned long max_load_move,
1800                   struct sched_domain *sd, enum cpu_idle_type idle,
1801                   int *all_pinned, int *this_best_prio)
1802 {
1803         return __load_balance_fair(this_rq, this_cpu, busiest,
1804                         max_load_move, sd, idle, all_pinned,
1805                         this_best_prio, &busiest->cfs);
1806 }
1807 #endif
1808
1809 static int
1810 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1811                    struct sched_domain *sd, enum cpu_idle_type idle)
1812 {
1813         struct cfs_rq *busy_cfs_rq;
1814         struct rq_iterator cfs_rq_iterator;
1815
1816         cfs_rq_iterator.start = load_balance_start_fair;
1817         cfs_rq_iterator.next = load_balance_next_fair;
1818
1819         for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1820                 /*
1821                  * pass busy_cfs_rq argument into
1822                  * load_balance_[start|next]_fair iterators
1823                  */
1824                 cfs_rq_iterator.arg = busy_cfs_rq;
1825                 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1826                                        &cfs_rq_iterator))
1827                     return 1;
1828         }
1829
1830         return 0;
1831 }
1832 #endif /* CONFIG_SMP */
1833
1834 /*
1835  * scheduler tick hitting a task of our scheduling class:
1836  */
1837 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1838 {
1839         struct cfs_rq *cfs_rq;
1840         struct sched_entity *se = &curr->se;
1841
1842         for_each_sched_entity(se) {
1843                 cfs_rq = cfs_rq_of(se);
1844                 entity_tick(cfs_rq, se, queued);
1845         }
1846 }
1847
1848 /*
1849  * Share the fairness runtime between parent and child, thus the
1850  * total amount of pressure for CPU stays equal - new tasks
1851  * get a chance to run but frequent forkers are not allowed to
1852  * monopolize the CPU. Note: the parent runqueue is locked,
1853  * the child is not running yet.
1854  */
1855 static void task_new_fair(struct rq *rq, struct task_struct *p)
1856 {
1857         struct cfs_rq *cfs_rq = task_cfs_rq(p);
1858         struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1859         int this_cpu = smp_processor_id();
1860
1861         sched_info_queued(p);
1862
1863         update_curr(cfs_rq);
1864         if (curr)
1865                 se->vruntime = curr->vruntime;
1866         place_entity(cfs_rq, se, 1);
1867
1868         /* 'curr' will be NULL if the child belongs to a different group */
1869         if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1870                         curr && entity_before(curr, se)) {
1871                 /*
1872                  * Upon rescheduling, sched_class::put_prev_task() will place
1873                  * 'current' within the tree based on its new key value.
1874                  */
1875                 swap(curr->vruntime, se->vruntime);
1876                 resched_task(rq->curr);
1877         }
1878
1879         enqueue_task_fair(rq, p, 0);
1880 }
1881
1882 /*
1883  * Priority of the task has changed. Check to see if we preempt
1884  * the current task.
1885  */
1886 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1887                               int oldprio, int running)
1888 {
1889         /*
1890          * Reschedule if we are currently running on this runqueue and
1891          * our priority decreased, or if we are not currently running on
1892          * this runqueue and our priority is higher than the current's
1893          */
1894         if (running) {
1895                 if (p->prio > oldprio)
1896                         resched_task(rq->curr);
1897         } else
1898                 check_preempt_curr(rq, p, 0);
1899 }
1900
1901 /*
1902  * We switched to the sched_fair class.
1903  */
1904 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1905                              int running)
1906 {
1907         /*
1908          * We were most likely switched from sched_rt, so
1909          * kick off the schedule if running, otherwise just see
1910          * if we can still preempt the current task.
1911          */
1912         if (running)
1913                 resched_task(rq->curr);
1914         else
1915                 check_preempt_curr(rq, p, 0);
1916 }
1917
1918 /* Account for a task changing its policy or group.
1919  *
1920  * This routine is mostly called to set cfs_rq->curr field when a task
1921  * migrates between groups/classes.
1922  */
1923 static void set_curr_task_fair(struct rq *rq)
1924 {
1925         struct sched_entity *se = &rq->curr->se;
1926
1927         for_each_sched_entity(se)
1928                 set_next_entity(cfs_rq_of(se), se);
1929 }
1930
1931 #ifdef CONFIG_FAIR_GROUP_SCHED
1932 static void moved_group_fair(struct task_struct *p)
1933 {
1934         struct cfs_rq *cfs_rq = task_cfs_rq(p);
1935
1936         update_curr(cfs_rq);
1937         place_entity(cfs_rq, &p->se, 1);
1938 }
1939 #endif
1940
1941 unsigned int get_rr_interval_fair(struct task_struct *task)
1942 {
1943         struct sched_entity *se = &task->se;
1944         unsigned long flags;
1945         struct rq *rq;
1946         unsigned int rr_interval = 0;
1947
1948         /*
1949          * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
1950          * idle runqueue:
1951          */
1952         rq = task_rq_lock(task, &flags);
1953         if (rq->cfs.load.weight)
1954                 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
1955         task_rq_unlock(rq, &flags);
1956
1957         return rr_interval;
1958 }
1959
1960 /*
1961  * All the scheduling class methods:
1962  */
1963 static const struct sched_class fair_sched_class = {
1964         .next                   = &idle_sched_class,
1965         .enqueue_task           = enqueue_task_fair,
1966         .dequeue_task           = dequeue_task_fair,
1967         .yield_task             = yield_task_fair,
1968
1969         .check_preempt_curr     = check_preempt_wakeup,
1970
1971         .pick_next_task         = pick_next_task_fair,
1972         .put_prev_task          = put_prev_task_fair,
1973
1974 #ifdef CONFIG_SMP
1975         .select_task_rq         = select_task_rq_fair,
1976
1977         .load_balance           = load_balance_fair,
1978         .move_one_task          = move_one_task_fair,
1979 #endif
1980
1981         .set_curr_task          = set_curr_task_fair,
1982         .task_tick              = task_tick_fair,
1983         .task_new               = task_new_fair,
1984
1985         .prio_changed           = prio_changed_fair,
1986         .switched_to            = switched_to_fair,
1987
1988         .get_rr_interval        = get_rr_interval_fair,
1989
1990 #ifdef CONFIG_FAIR_GROUP_SCHED
1991         .moved_group            = moved_group_fair,
1992 #endif
1993 };
1994
1995 #ifdef CONFIG_SCHED_DEBUG
1996 static void print_cfs_stats(struct seq_file *m, int cpu)
1997 {
1998         struct cfs_rq *cfs_rq;
1999
2000         rcu_read_lock();
2001         for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
2002                 print_cfs_rq(m, cpu, cfs_rq);
2003         rcu_read_unlock();
2004 }
2005 #endif