[PATCH] encrypt suspend data for easy wiping
[safe/jmp/linux-2.6] / kernel / power / swsusp.c
1 /*
2  * linux/kernel/power/swsusp.c
3  *
4  * This file is to realize architecture-independent
5  * machine suspend feature using pretty near only high-level routines
6  *
7  * Copyright (C) 1998-2001 Gabor Kuti <seasons@fornax.hu>
8  * Copyright (C) 1998,2001-2004 Pavel Machek <pavel@suse.cz>
9  *
10  * This file is released under the GPLv2.
11  *
12  * I'd like to thank the following people for their work:
13  *
14  * Pavel Machek <pavel@ucw.cz>:
15  * Modifications, defectiveness pointing, being with me at the very beginning,
16  * suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17.
17  *
18  * Steve Doddi <dirk@loth.demon.co.uk>:
19  * Support the possibility of hardware state restoring.
20  *
21  * Raph <grey.havens@earthling.net>:
22  * Support for preserving states of network devices and virtual console
23  * (including X and svgatextmode)
24  *
25  * Kurt Garloff <garloff@suse.de>:
26  * Straightened the critical function in order to prevent compilers from
27  * playing tricks with local variables.
28  *
29  * Andreas Mohr <a.mohr@mailto.de>
30  *
31  * Alex Badea <vampire@go.ro>:
32  * Fixed runaway init
33  *
34  * Andreas Steinmetz <ast@domdv.de>:
35  * Added encrypted suspend option
36  *
37  * More state savers are welcome. Especially for the scsi layer...
38  *
39  * For TODOs,FIXMEs also look in Documentation/power/swsusp.txt
40  */
41
42 #include <linux/module.h>
43 #include <linux/mm.h>
44 #include <linux/suspend.h>
45 #include <linux/smp_lock.h>
46 #include <linux/file.h>
47 #include <linux/utsname.h>
48 #include <linux/version.h>
49 #include <linux/delay.h>
50 #include <linux/reboot.h>
51 #include <linux/bitops.h>
52 #include <linux/vt_kern.h>
53 #include <linux/kbd_kern.h>
54 #include <linux/keyboard.h>
55 #include <linux/spinlock.h>
56 #include <linux/genhd.h>
57 #include <linux/kernel.h>
58 #include <linux/major.h>
59 #include <linux/swap.h>
60 #include <linux/pm.h>
61 #include <linux/device.h>
62 #include <linux/buffer_head.h>
63 #include <linux/swapops.h>
64 #include <linux/bootmem.h>
65 #include <linux/syscalls.h>
66 #include <linux/console.h>
67 #include <linux/highmem.h>
68 #include <linux/bio.h>
69 #include <linux/mount.h>
70
71 #include <asm/uaccess.h>
72 #include <asm/mmu_context.h>
73 #include <asm/pgtable.h>
74 #include <asm/tlbflush.h>
75 #include <asm/io.h>
76
77 #include <linux/random.h>
78 #include <linux/crypto.h>
79 #include <asm/scatterlist.h>
80
81 #include "power.h"
82
83 #define CIPHER "aes"
84 #define MAXKEY 32
85 #define MAXIV  32
86
87 /* References to section boundaries */
88 extern const void __nosave_begin, __nosave_end;
89
90 /* Variables to be preserved over suspend */
91 static int nr_copy_pages_check;
92
93 extern char resume_file[];
94
95 /* Local variables that should not be affected by save */
96 static unsigned int nr_copy_pages __nosavedata = 0;
97
98 /* Suspend pagedir is allocated before final copy, therefore it
99    must be freed after resume
100
101    Warning: this is evil. There are actually two pagedirs at time of
102    resume. One is "pagedir_save", which is empty frame allocated at
103    time of suspend, that must be freed. Second is "pagedir_nosave",
104    allocated at time of resume, that travels through memory not to
105    collide with anything.
106
107    Warning: this is even more evil than it seems. Pagedirs this file
108    talks about are completely different from page directories used by
109    MMU hardware.
110  */
111 suspend_pagedir_t *pagedir_nosave __nosavedata = NULL;
112 static suspend_pagedir_t *pagedir_save;
113
114 #define SWSUSP_SIG      "S1SUSPEND"
115
116 static struct swsusp_header {
117         char reserved[PAGE_SIZE - 20 - MAXKEY - MAXIV - sizeof(swp_entry_t)];
118         u8 key_iv[MAXKEY+MAXIV];
119         swp_entry_t swsusp_info;
120         char    orig_sig[10];
121         char    sig[10];
122 } __attribute__((packed, aligned(PAGE_SIZE))) swsusp_header;
123
124 static struct swsusp_info swsusp_info;
125
126 /*
127  * XXX: We try to keep some more pages free so that I/O operations succeed
128  * without paging. Might this be more?
129  */
130 #define PAGES_FOR_IO    512
131
132 /*
133  * Saving part...
134  */
135
136 /* We memorize in swapfile_used what swap devices are used for suspension */
137 #define SWAPFILE_UNUSED    0
138 #define SWAPFILE_SUSPEND   1    /* This is the suspending device */
139 #define SWAPFILE_IGNORED   2    /* Those are other swap devices ignored for suspension */
140
141 static unsigned short swapfile_used[MAX_SWAPFILES];
142 static unsigned short root_swap;
143
144 static int write_page(unsigned long addr, swp_entry_t * loc);
145 static int bio_read_page(pgoff_t page_off, void * page);
146
147 static u8 key_iv[MAXKEY+MAXIV];
148
149 #ifdef CONFIG_SWSUSP_ENCRYPT
150
151 static int crypto_init(int mode, void **mem)
152 {
153         int error = 0;
154         int len;
155         char *modemsg;
156         struct crypto_tfm *tfm;
157
158         modemsg = mode ? "suspend not possible" : "resume not possible";
159
160         tfm = crypto_alloc_tfm(CIPHER, CRYPTO_TFM_MODE_CBC);
161         if(!tfm) {
162                 printk(KERN_ERR "swsusp: no tfm, %s\n", modemsg);
163                 error = -EINVAL;
164                 goto out;
165         }
166
167         if(MAXKEY < crypto_tfm_alg_min_keysize(tfm)) {
168                 printk(KERN_ERR "swsusp: key buffer too small, %s\n", modemsg);
169                 error = -ENOKEY;
170                 goto fail;
171         }
172
173         if (mode)
174                 get_random_bytes(key_iv, MAXKEY+MAXIV);
175
176         len = crypto_tfm_alg_max_keysize(tfm);
177         if (len > MAXKEY)
178                 len = MAXKEY;
179
180         if (crypto_cipher_setkey(tfm, key_iv, len)) {
181                 printk(KERN_ERR "swsusp: key setup failure, %s\n", modemsg);
182                 error = -EKEYREJECTED;
183                 goto fail;
184         }
185
186         len = crypto_tfm_alg_ivsize(tfm);
187
188         if (MAXIV < len) {
189                 printk(KERN_ERR "swsusp: iv buffer too small, %s\n", modemsg);
190                 error = -EOVERFLOW;
191                 goto fail;
192         }
193
194         crypto_cipher_set_iv(tfm, key_iv+MAXKEY, len);
195
196         *mem=(void *)tfm;
197
198         goto out;
199
200 fail:   crypto_free_tfm(tfm);
201 out:    return error;
202 }
203
204 static __inline__ void crypto_exit(void *mem)
205 {
206         crypto_free_tfm((struct crypto_tfm *)mem);
207 }
208
209 static __inline__ int crypto_write(struct pbe *p, void *mem)
210 {
211         int error = 0;
212         struct scatterlist src, dst;
213
214         src.page   = virt_to_page(p->address);
215         src.offset = 0;
216         src.length = PAGE_SIZE;
217         dst.page   = virt_to_page((void *)&swsusp_header);
218         dst.offset = 0;
219         dst.length = PAGE_SIZE;
220
221         error = crypto_cipher_encrypt((struct crypto_tfm *)mem, &dst, &src,
222                                         PAGE_SIZE);
223
224         if (!error)
225                 error = write_page((unsigned long)&swsusp_header,
226                                 &(p->swap_address));
227         return error;
228 }
229
230 static __inline__ int crypto_read(struct pbe *p, void *mem)
231 {
232         int error = 0;
233         struct scatterlist src, dst;
234
235         error = bio_read_page(swp_offset(p->swap_address), (void *)p->address);
236         if (!error) {
237                 src.offset = 0;
238                 src.length = PAGE_SIZE;
239                 dst.offset = 0;
240                 dst.length = PAGE_SIZE;
241                 src.page = dst.page = virt_to_page((void *)p->address);
242
243                 error = crypto_cipher_decrypt((struct crypto_tfm *)mem, &dst,
244                                                 &src, PAGE_SIZE);
245         }
246         return error;
247 }
248 #else
249 static __inline__ int crypto_init(int mode, void *mem)
250 {
251         return 0;
252 }
253
254 static __inline__ void crypto_exit(void *mem)
255 {
256 }
257
258 static __inline__ int crypto_write(struct pbe *p, void *mem)
259 {
260         return write_page(p->address, &(p->swap_address));
261 }
262
263 static __inline__ int crypto_read(struct pbe *p, void *mem)
264 {
265         return bio_read_page(swp_offset(p->swap_address), (void *)p->address);
266 }
267 #endif
268
269 static int mark_swapfiles(swp_entry_t prev)
270 {
271         int error;
272
273         rw_swap_page_sync(READ,
274                           swp_entry(root_swap, 0),
275                           virt_to_page((unsigned long)&swsusp_header));
276         if (!memcmp("SWAP-SPACE",swsusp_header.sig, 10) ||
277             !memcmp("SWAPSPACE2",swsusp_header.sig, 10)) {
278                 memcpy(swsusp_header.orig_sig,swsusp_header.sig, 10);
279                 memcpy(swsusp_header.sig,SWSUSP_SIG, 10);
280                 memcpy(swsusp_header.key_iv, key_iv, MAXKEY+MAXIV);
281                 swsusp_header.swsusp_info = prev;
282                 error = rw_swap_page_sync(WRITE,
283                                           swp_entry(root_swap, 0),
284                                           virt_to_page((unsigned long)
285                                                        &swsusp_header));
286         } else {
287                 pr_debug("swsusp: Partition is not swap space.\n");
288                 error = -ENODEV;
289         }
290         return error;
291 }
292
293 /*
294  * Check whether the swap device is the specified resume
295  * device, irrespective of whether they are specified by
296  * identical names.
297  *
298  * (Thus, device inode aliasing is allowed.  You can say /dev/hda4
299  * instead of /dev/ide/host0/bus0/target0/lun0/part4 [if using devfs]
300  * and they'll be considered the same device.  This is *necessary* for
301  * devfs, since the resume code can only recognize the form /dev/hda4,
302  * but the suspend code would see the long name.)
303  */
304 static int is_resume_device(const struct swap_info_struct *swap_info)
305 {
306         struct file *file = swap_info->swap_file;
307         struct inode *inode = file->f_dentry->d_inode;
308
309         return S_ISBLK(inode->i_mode) &&
310                 swsusp_resume_device == MKDEV(imajor(inode), iminor(inode));
311 }
312
313 static int swsusp_swap_check(void) /* This is called before saving image */
314 {
315         int i, len;
316
317         len=strlen(resume_file);
318         root_swap = 0xFFFF;
319
320         spin_lock(&swap_lock);
321         for (i=0; i<MAX_SWAPFILES; i++) {
322                 if (!(swap_info[i].flags & SWP_WRITEOK)) {
323                         swapfile_used[i]=SWAPFILE_UNUSED;
324                 } else {
325                         if (!len) {
326                                 printk(KERN_WARNING "resume= option should be used to set suspend device" );
327                                 if (root_swap == 0xFFFF) {
328                                         swapfile_used[i] = SWAPFILE_SUSPEND;
329                                         root_swap = i;
330                                 } else
331                                         swapfile_used[i] = SWAPFILE_IGNORED;
332                         } else {
333                                 /* we ignore all swap devices that are not the resume_file */
334                                 if (is_resume_device(&swap_info[i])) {
335                                         swapfile_used[i] = SWAPFILE_SUSPEND;
336                                         root_swap = i;
337                                 } else {
338                                         swapfile_used[i] = SWAPFILE_IGNORED;
339                                 }
340                         }
341                 }
342         }
343         spin_unlock(&swap_lock);
344         return (root_swap != 0xffff) ? 0 : -ENODEV;
345 }
346
347 /**
348  * This is called after saving image so modification
349  * will be lost after resume... and that's what we want.
350  * we make the device unusable. A new call to
351  * lock_swapdevices can unlock the devices.
352  */
353 static void lock_swapdevices(void)
354 {
355         int i;
356
357         spin_lock(&swap_lock);
358         for (i = 0; i< MAX_SWAPFILES; i++)
359                 if (swapfile_used[i] == SWAPFILE_IGNORED) {
360                         swap_info[i].flags ^= SWP_WRITEOK;
361                 }
362         spin_unlock(&swap_lock);
363 }
364
365 /**
366  *      write_swap_page - Write one page to a fresh swap location.
367  *      @addr:  Address we're writing.
368  *      @loc:   Place to store the entry we used.
369  *
370  *      Allocate a new swap entry and 'sync' it. Note we discard -EIO
371  *      errors. That is an artifact left over from swsusp. It did not
372  *      check the return of rw_swap_page_sync() at all, since most pages
373  *      written back to swap would return -EIO.
374  *      This is a partial improvement, since we will at least return other
375  *      errors, though we need to eventually fix the damn code.
376  */
377 static int write_page(unsigned long addr, swp_entry_t * loc)
378 {
379         swp_entry_t entry;
380         int error = 0;
381
382         entry = get_swap_page();
383         if (swp_offset(entry) &&
384             swapfile_used[swp_type(entry)] == SWAPFILE_SUSPEND) {
385                 error = rw_swap_page_sync(WRITE, entry,
386                                           virt_to_page(addr));
387                 if (error == -EIO)
388                         error = 0;
389                 if (!error)
390                         *loc = entry;
391         } else
392                 error = -ENOSPC;
393         return error;
394 }
395
396 /**
397  *      data_free - Free the swap entries used by the saved image.
398  *
399  *      Walk the list of used swap entries and free each one.
400  *      This is only used for cleanup when suspend fails.
401  */
402 static void data_free(void)
403 {
404         swp_entry_t entry;
405         int i;
406
407         for (i = 0; i < nr_copy_pages; i++) {
408                 entry = (pagedir_nosave + i)->swap_address;
409                 if (entry.val)
410                         swap_free(entry);
411                 else
412                         break;
413                 (pagedir_nosave + i)->swap_address = (swp_entry_t){0};
414         }
415 }
416
417 /**
418  *      data_write - Write saved image to swap.
419  *
420  *      Walk the list of pages in the image and sync each one to swap.
421  */
422 static int data_write(void)
423 {
424         int error = 0, i = 0;
425         unsigned int mod = nr_copy_pages / 100;
426         struct pbe *p;
427         void *tfm;
428
429         if ((error = crypto_init(1, &tfm)))
430                 return error;
431
432         if (!mod)
433                 mod = 1;
434
435         printk( "Writing data to swap (%d pages)...     ", nr_copy_pages );
436         for_each_pbe (p, pagedir_nosave) {
437                 if (!(i%mod))
438                         printk( "\b\b\b\b%3d%%", i / mod );
439                 if ((error = crypto_write(p, tfm))) {
440                         crypto_exit(tfm);
441                         return error;
442                 }
443                 i++;
444         }
445         printk("\b\b\b\bdone\n");
446         crypto_exit(tfm);
447         return error;
448 }
449
450 static void dump_info(void)
451 {
452         pr_debug(" swsusp: Version: %u\n",swsusp_info.version_code);
453         pr_debug(" swsusp: Num Pages: %ld\n",swsusp_info.num_physpages);
454         pr_debug(" swsusp: UTS Sys: %s\n",swsusp_info.uts.sysname);
455         pr_debug(" swsusp: UTS Node: %s\n",swsusp_info.uts.nodename);
456         pr_debug(" swsusp: UTS Release: %s\n",swsusp_info.uts.release);
457         pr_debug(" swsusp: UTS Version: %s\n",swsusp_info.uts.version);
458         pr_debug(" swsusp: UTS Machine: %s\n",swsusp_info.uts.machine);
459         pr_debug(" swsusp: UTS Domain: %s\n",swsusp_info.uts.domainname);
460         pr_debug(" swsusp: CPUs: %d\n",swsusp_info.cpus);
461         pr_debug(" swsusp: Image: %ld Pages\n",swsusp_info.image_pages);
462         pr_debug(" swsusp: Pagedir: %ld Pages\n",swsusp_info.pagedir_pages);
463 }
464
465 static void init_header(void)
466 {
467         memset(&swsusp_info, 0, sizeof(swsusp_info));
468         swsusp_info.version_code = LINUX_VERSION_CODE;
469         swsusp_info.num_physpages = num_physpages;
470         memcpy(&swsusp_info.uts, &system_utsname, sizeof(system_utsname));
471
472         swsusp_info.suspend_pagedir = pagedir_nosave;
473         swsusp_info.cpus = num_online_cpus();
474         swsusp_info.image_pages = nr_copy_pages;
475 }
476
477 static int close_swap(void)
478 {
479         swp_entry_t entry;
480         int error;
481
482         dump_info();
483         error = write_page((unsigned long)&swsusp_info, &entry);
484         if (!error) {
485                 printk( "S" );
486                 error = mark_swapfiles(entry);
487                 printk( "|\n" );
488         }
489         return error;
490 }
491
492 /**
493  *      free_pagedir_entries - Free pages used by the page directory.
494  *
495  *      This is used during suspend for error recovery.
496  */
497
498 static void free_pagedir_entries(void)
499 {
500         int i;
501
502         for (i = 0; i < swsusp_info.pagedir_pages; i++)
503                 swap_free(swsusp_info.pagedir[i]);
504 }
505
506
507 /**
508  *      write_pagedir - Write the array of pages holding the page directory.
509  *      @last:  Last swap entry we write (needed for header).
510  */
511
512 static int write_pagedir(void)
513 {
514         int error = 0;
515         unsigned n = 0;
516         struct pbe * pbe;
517
518         printk( "Writing pagedir...");
519         for_each_pb_page (pbe, pagedir_nosave) {
520                 if ((error = write_page((unsigned long)pbe, &swsusp_info.pagedir[n++])))
521                         return error;
522         }
523
524         swsusp_info.pagedir_pages = n;
525         printk("done (%u pages)\n", n);
526         return error;
527 }
528
529 /**
530  *      write_suspend_image - Write entire image and metadata.
531  *
532  */
533
534 static int write_suspend_image(void)
535 {
536         int error;
537
538         init_header();
539         if ((error = data_write()))
540                 goto FreeData;
541
542         if ((error = write_pagedir()))
543                 goto FreePagedir;
544
545         if ((error = close_swap()))
546                 goto FreePagedir;
547  Done:
548         memset(key_iv, 0, MAXKEY+MAXIV);
549         return error;
550  FreePagedir:
551         free_pagedir_entries();
552  FreeData:
553         data_free();
554         goto Done;
555 }
556
557
558 #ifdef CONFIG_HIGHMEM
559 struct highmem_page {
560         char *data;
561         struct page *page;
562         struct highmem_page *next;
563 };
564
565 static struct highmem_page *highmem_copy;
566
567 static int save_highmem_zone(struct zone *zone)
568 {
569         unsigned long zone_pfn;
570         mark_free_pages(zone);
571         for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
572                 struct page *page;
573                 struct highmem_page *save;
574                 void *kaddr;
575                 unsigned long pfn = zone_pfn + zone->zone_start_pfn;
576
577                 if (!(pfn%1000))
578                         printk(".");
579                 if (!pfn_valid(pfn))
580                         continue;
581                 page = pfn_to_page(pfn);
582                 /*
583                  * This condition results from rvmalloc() sans vmalloc_32()
584                  * and architectural memory reservations. This should be
585                  * corrected eventually when the cases giving rise to this
586                  * are better understood.
587                  */
588                 if (PageReserved(page)) {
589                         printk("highmem reserved page?!\n");
590                         continue;
591                 }
592                 BUG_ON(PageNosave(page));
593                 if (PageNosaveFree(page))
594                         continue;
595                 save = kmalloc(sizeof(struct highmem_page), GFP_ATOMIC);
596                 if (!save)
597                         return -ENOMEM;
598                 save->next = highmem_copy;
599                 save->page = page;
600                 save->data = (void *) get_zeroed_page(GFP_ATOMIC);
601                 if (!save->data) {
602                         kfree(save);
603                         return -ENOMEM;
604                 }
605                 kaddr = kmap_atomic(page, KM_USER0);
606                 memcpy(save->data, kaddr, PAGE_SIZE);
607                 kunmap_atomic(kaddr, KM_USER0);
608                 highmem_copy = save;
609         }
610         return 0;
611 }
612 #endif /* CONFIG_HIGHMEM */
613
614
615 static int save_highmem(void)
616 {
617 #ifdef CONFIG_HIGHMEM
618         struct zone *zone;
619         int res = 0;
620
621         pr_debug("swsusp: Saving Highmem\n");
622         for_each_zone (zone) {
623                 if (is_highmem(zone))
624                         res = save_highmem_zone(zone);
625                 if (res)
626                         return res;
627         }
628 #endif
629         return 0;
630 }
631
632 static int restore_highmem(void)
633 {
634 #ifdef CONFIG_HIGHMEM
635         printk("swsusp: Restoring Highmem\n");
636         while (highmem_copy) {
637                 struct highmem_page *save = highmem_copy;
638                 void *kaddr;
639                 highmem_copy = save->next;
640
641                 kaddr = kmap_atomic(save->page, KM_USER0);
642                 memcpy(kaddr, save->data, PAGE_SIZE);
643                 kunmap_atomic(kaddr, KM_USER0);
644                 free_page((long) save->data);
645                 kfree(save);
646         }
647 #endif
648         return 0;
649 }
650
651
652 static int pfn_is_nosave(unsigned long pfn)
653 {
654         unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT;
655         unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT;
656         return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
657 }
658
659 /**
660  *      saveable - Determine whether a page should be cloned or not.
661  *      @pfn:   The page
662  *
663  *      We save a page if it's Reserved, and not in the range of pages
664  *      statically defined as 'unsaveable', or if it isn't reserved, and
665  *      isn't part of a free chunk of pages.
666  */
667
668 static int saveable(struct zone * zone, unsigned long * zone_pfn)
669 {
670         unsigned long pfn = *zone_pfn + zone->zone_start_pfn;
671         struct page * page;
672
673         if (!pfn_valid(pfn))
674                 return 0;
675
676         page = pfn_to_page(pfn);
677         BUG_ON(PageReserved(page) && PageNosave(page));
678         if (PageNosave(page))
679                 return 0;
680         if (PageReserved(page) && pfn_is_nosave(pfn)) {
681                 pr_debug("[nosave pfn 0x%lx]", pfn);
682                 return 0;
683         }
684         if (PageNosaveFree(page))
685                 return 0;
686
687         return 1;
688 }
689
690 static void count_data_pages(void)
691 {
692         struct zone *zone;
693         unsigned long zone_pfn;
694
695         nr_copy_pages = 0;
696
697         for_each_zone (zone) {
698                 if (is_highmem(zone))
699                         continue;
700                 mark_free_pages(zone);
701                 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
702                         nr_copy_pages += saveable(zone, &zone_pfn);
703         }
704 }
705
706
707 static void copy_data_pages(void)
708 {
709         struct zone *zone;
710         unsigned long zone_pfn;
711         struct pbe * pbe = pagedir_nosave;
712
713         pr_debug("copy_data_pages(): pages to copy: %d\n", nr_copy_pages);
714         for_each_zone (zone) {
715                 if (is_highmem(zone))
716                         continue;
717                 mark_free_pages(zone);
718                 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
719                         if (saveable(zone, &zone_pfn)) {
720                                 struct page * page;
721                                 page = pfn_to_page(zone_pfn + zone->zone_start_pfn);
722                                 BUG_ON(!pbe);
723                                 pbe->orig_address = (long) page_address(page);
724                                 /* copy_page is not usable for copying task structs. */
725                                 memcpy((void *)pbe->address, (void *)pbe->orig_address, PAGE_SIZE);
726                                 pbe = pbe->next;
727                         }
728                 }
729         }
730         BUG_ON(pbe);
731 }
732
733
734 /**
735  *      calc_nr - Determine the number of pages needed for a pbe list.
736  */
737
738 static int calc_nr(int nr_copy)
739 {
740         int extra = 0;
741         int mod = !!(nr_copy % PBES_PER_PAGE);
742         int diff = (nr_copy / PBES_PER_PAGE) + mod;
743
744         do {
745                 extra += diff;
746                 nr_copy += diff;
747                 mod = !!(nr_copy % PBES_PER_PAGE);
748                 diff = (nr_copy / PBES_PER_PAGE) + mod - extra;
749         } while (diff > 0);
750
751         return nr_copy;
752 }
753
754 /**
755  *      free_pagedir - free pages allocated with alloc_pagedir()
756  */
757
758 static inline void free_pagedir(struct pbe *pblist)
759 {
760         struct pbe *pbe;
761
762         while (pblist) {
763                 pbe = (pblist + PB_PAGE_SKIP)->next;
764                 free_page((unsigned long)pblist);
765                 pblist = pbe;
766         }
767 }
768
769 /**
770  *      fill_pb_page - Create a list of PBEs on a given memory page
771  */
772
773 static inline void fill_pb_page(struct pbe *pbpage)
774 {
775         struct pbe *p;
776
777         p = pbpage;
778         pbpage += PB_PAGE_SKIP;
779         do
780                 p->next = p + 1;
781         while (++p < pbpage);
782 }
783
784 /**
785  *      create_pbe_list - Create a list of PBEs on top of a given chain
786  *      of memory pages allocated with alloc_pagedir()
787  */
788
789 static void create_pbe_list(struct pbe *pblist, unsigned nr_pages)
790 {
791         struct pbe *pbpage, *p;
792         unsigned num = PBES_PER_PAGE;
793
794         for_each_pb_page (pbpage, pblist) {
795                 if (num >= nr_pages)
796                         break;
797
798                 fill_pb_page(pbpage);
799                 num += PBES_PER_PAGE;
800         }
801         if (pbpage) {
802                 for (num -= PBES_PER_PAGE - 1, p = pbpage; num < nr_pages; p++, num++)
803                         p->next = p + 1;
804                 p->next = NULL;
805         }
806         pr_debug("create_pbe_list(): initialized %d PBEs\n", num);
807 }
808
809 /**
810  *      alloc_pagedir - Allocate the page directory.
811  *
812  *      First, determine exactly how many pages we need and
813  *      allocate them.
814  *
815  *      We arrange the pages in a chain: each page is an array of PBES_PER_PAGE
816  *      struct pbe elements (pbes) and the last element in the page points
817  *      to the next page.
818  *
819  *      On each page we set up a list of struct_pbe elements.
820  */
821
822 static struct pbe * alloc_pagedir(unsigned nr_pages)
823 {
824         unsigned num;
825         struct pbe *pblist, *pbe;
826
827         if (!nr_pages)
828                 return NULL;
829
830         pr_debug("alloc_pagedir(): nr_pages = %d\n", nr_pages);
831         pblist = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
832         for (pbe = pblist, num = PBES_PER_PAGE; pbe && num < nr_pages;
833                         pbe = pbe->next, num += PBES_PER_PAGE) {
834                 pbe += PB_PAGE_SKIP;
835                 pbe->next = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
836         }
837         if (!pbe) { /* get_zeroed_page() failed */
838                 free_pagedir(pblist);
839                 pblist = NULL;
840         }
841         return pblist;
842 }
843
844 /**
845  *      free_image_pages - Free pages allocated for snapshot
846  */
847
848 static void free_image_pages(void)
849 {
850         struct pbe * p;
851
852         for_each_pbe (p, pagedir_save) {
853                 if (p->address) {
854                         ClearPageNosave(virt_to_page(p->address));
855                         free_page(p->address);
856                         p->address = 0;
857                 }
858         }
859 }
860
861 /**
862  *      alloc_image_pages - Allocate pages for the snapshot.
863  */
864
865 static int alloc_image_pages(void)
866 {
867         struct pbe * p;
868
869         for_each_pbe (p, pagedir_save) {
870                 p->address = get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
871                 if (!p->address)
872                         return -ENOMEM;
873                 SetPageNosave(virt_to_page(p->address));
874         }
875         return 0;
876 }
877
878 void swsusp_free(void)
879 {
880         BUG_ON(PageNosave(virt_to_page(pagedir_save)));
881         BUG_ON(PageNosaveFree(virt_to_page(pagedir_save)));
882         free_image_pages();
883         free_pagedir(pagedir_save);
884 }
885
886
887 /**
888  *      enough_free_mem - Make sure we enough free memory to snapshot.
889  *
890  *      Returns TRUE or FALSE after checking the number of available
891  *      free pages.
892  */
893
894 static int enough_free_mem(void)
895 {
896         if (nr_free_pages() < (nr_copy_pages + PAGES_FOR_IO)) {
897                 pr_debug("swsusp: Not enough free pages: Have %d\n",
898                          nr_free_pages());
899                 return 0;
900         }
901         return 1;
902 }
903
904
905 /**
906  *      enough_swap - Make sure we have enough swap to save the image.
907  *
908  *      Returns TRUE or FALSE after checking the total amount of swap
909  *      space avaiable.
910  *
911  *      FIXME: si_swapinfo(&i) returns all swap devices information.
912  *      We should only consider resume_device.
913  */
914
915 static int enough_swap(void)
916 {
917         struct sysinfo i;
918
919         si_swapinfo(&i);
920         if (i.freeswap < (nr_copy_pages + PAGES_FOR_IO))  {
921                 pr_debug("swsusp: Not enough swap. Need %ld\n",i.freeswap);
922                 return 0;
923         }
924         return 1;
925 }
926
927 static int swsusp_alloc(void)
928 {
929         int error;
930
931         pagedir_nosave = NULL;
932         nr_copy_pages = calc_nr(nr_copy_pages);
933
934         pr_debug("suspend: (pages needed: %d + %d free: %d)\n",
935                  nr_copy_pages, PAGES_FOR_IO, nr_free_pages());
936
937         if (!enough_free_mem())
938                 return -ENOMEM;
939
940         if (!enough_swap())
941                 return -ENOSPC;
942
943         if (!(pagedir_save = alloc_pagedir(nr_copy_pages))) {
944                 printk(KERN_ERR "suspend: Allocating pagedir failed.\n");
945                 return -ENOMEM;
946         }
947         create_pbe_list(pagedir_save, nr_copy_pages);
948         pagedir_nosave = pagedir_save;
949         if ((error = alloc_image_pages())) {
950                 printk(KERN_ERR "suspend: Allocating image pages failed.\n");
951                 swsusp_free();
952                 return error;
953         }
954
955         nr_copy_pages_check = nr_copy_pages;
956         return 0;
957 }
958
959 static int suspend_prepare_image(void)
960 {
961         int error;
962
963         pr_debug("swsusp: critical section: \n");
964         if (save_highmem()) {
965                 printk(KERN_CRIT "Suspend machine: Not enough free pages for highmem\n");
966                 restore_highmem();
967                 return -ENOMEM;
968         }
969
970         drain_local_pages();
971         count_data_pages();
972         printk("swsusp: Need to copy %u pages\n", nr_copy_pages);
973
974         error = swsusp_alloc();
975         if (error)
976                 return error;
977
978         /* During allocating of suspend pagedir, new cold pages may appear.
979          * Kill them.
980          */
981         drain_local_pages();
982         copy_data_pages();
983
984         /*
985          * End of critical section. From now on, we can write to memory,
986          * but we should not touch disk. This specially means we must _not_
987          * touch swap space! Except we must write out our image of course.
988          */
989
990         printk("swsusp: critical section/: done (%d pages copied)\n", nr_copy_pages );
991         return 0;
992 }
993
994
995 /* It is important _NOT_ to umount filesystems at this point. We want
996  * them synced (in case something goes wrong) but we DO not want to mark
997  * filesystem clean: it is not. (And it does not matter, if we resume
998  * correctly, we'll mark system clean, anyway.)
999  */
1000 int swsusp_write(void)
1001 {
1002         int error;
1003         device_resume();
1004         lock_swapdevices();
1005         error = write_suspend_image();
1006         /* This will unlock ignored swap devices since writing is finished */
1007         lock_swapdevices();
1008         return error;
1009
1010 }
1011
1012
1013 extern asmlinkage int swsusp_arch_suspend(void);
1014 extern asmlinkage int swsusp_arch_resume(void);
1015
1016
1017 asmlinkage int swsusp_save(void)
1018 {
1019         return suspend_prepare_image();
1020 }
1021
1022 int swsusp_suspend(void)
1023 {
1024         int error;
1025         if ((error = arch_prepare_suspend()))
1026                 return error;
1027         local_irq_disable();
1028         /* At this point, device_suspend() has been called, but *not*
1029          * device_power_down(). We *must* device_power_down() now.
1030          * Otherwise, drivers for some devices (e.g. interrupt controllers)
1031          * become desynchronized with the actual state of the hardware
1032          * at resume time, and evil weirdness ensues.
1033          */
1034         if ((error = device_power_down(PMSG_FREEZE))) {
1035                 local_irq_enable();
1036                 return error;
1037         }
1038
1039         if ((error = swsusp_swap_check())) {
1040                 printk(KERN_ERR "swsusp: FATAL: cannot find swap device, try "
1041                                 "swapon -a!\n");
1042                 local_irq_enable();
1043                 return error;
1044         }
1045
1046         save_processor_state();
1047         if ((error = swsusp_arch_suspend()))
1048                 printk("Error %d suspending\n", error);
1049         /* Restore control flow magically appears here */
1050         restore_processor_state();
1051         BUG_ON (nr_copy_pages_check != nr_copy_pages);
1052         restore_highmem();
1053         device_power_up();
1054         local_irq_enable();
1055         return error;
1056 }
1057
1058 int swsusp_resume(void)
1059 {
1060         int error;
1061         local_irq_disable();
1062         if (device_power_down(PMSG_FREEZE))
1063                 printk(KERN_ERR "Some devices failed to power down, very bad\n");
1064         /* We'll ignore saved state, but this gets preempt count (etc) right */
1065         save_processor_state();
1066         error = swsusp_arch_resume();
1067         /* Code below is only ever reached in case of failure. Otherwise
1068          * execution continues at place where swsusp_arch_suspend was called
1069          */
1070         BUG_ON(!error);
1071         restore_processor_state();
1072         restore_highmem();
1073         device_power_up();
1074         local_irq_enable();
1075         return error;
1076 }
1077
1078 /**
1079  *      On resume, for storing the PBE list and the image,
1080  *      we can only use memory pages that do not conflict with the pages
1081  *      which had been used before suspend.
1082  *
1083  *      We don't know which pages are usable until we allocate them.
1084  *
1085  *      Allocated but unusable (ie eaten) memory pages are linked together
1086  *      to create a list, so that we can free them easily
1087  *
1088  *      We could have used a type other than (void *)
1089  *      for this purpose, but ...
1090  */
1091 static void **eaten_memory = NULL;
1092
1093 static inline void eat_page(void *page)
1094 {
1095         void **c;
1096
1097         c = eaten_memory;
1098         eaten_memory = page;
1099         *eaten_memory = c;
1100 }
1101
1102 static unsigned long get_usable_page(unsigned gfp_mask)
1103 {
1104         unsigned long m;
1105
1106         m = get_zeroed_page(gfp_mask);
1107         while (!PageNosaveFree(virt_to_page(m))) {
1108                 eat_page((void *)m);
1109                 m = get_zeroed_page(gfp_mask);
1110                 if (!m)
1111                         break;
1112         }
1113         return m;
1114 }
1115
1116 static void free_eaten_memory(void)
1117 {
1118         unsigned long m;
1119         void **c;
1120         int i = 0;
1121
1122         c = eaten_memory;
1123         while (c) {
1124                 m = (unsigned long)c;
1125                 c = *c;
1126                 free_page(m);
1127                 i++;
1128         }
1129         eaten_memory = NULL;
1130         pr_debug("swsusp: %d unused pages freed\n", i);
1131 }
1132
1133 /**
1134  *      check_pagedir - We ensure here that pages that the PBEs point to
1135  *      won't collide with pages where we're going to restore from the loaded
1136  *      pages later
1137  */
1138
1139 static int check_pagedir(struct pbe *pblist)
1140 {
1141         struct pbe *p;
1142
1143         /* This is necessary, so that we can free allocated pages
1144          * in case of failure
1145          */
1146         for_each_pbe (p, pblist)
1147                 p->address = 0UL;
1148
1149         for_each_pbe (p, pblist) {
1150                 p->address = get_usable_page(GFP_ATOMIC);
1151                 if (!p->address)
1152                         return -ENOMEM;
1153         }
1154         return 0;
1155 }
1156
1157 /**
1158  *      swsusp_pagedir_relocate - It is possible, that some memory pages
1159  *      occupied by the list of PBEs collide with pages where we're going to
1160  *      restore from the loaded pages later.  We relocate them here.
1161  */
1162
1163 static struct pbe * swsusp_pagedir_relocate(struct pbe *pblist)
1164 {
1165         struct zone *zone;
1166         unsigned long zone_pfn;
1167         struct pbe *pbpage, *tail, *p;
1168         void *m;
1169         int rel = 0, error = 0;
1170
1171         if (!pblist) /* a sanity check */
1172                 return NULL;
1173
1174         pr_debug("swsusp: Relocating pagedir (%lu pages to check)\n",
1175                         swsusp_info.pagedir_pages);
1176
1177         /* Set page flags */
1178
1179         for_each_zone (zone) {
1180                 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
1181                         SetPageNosaveFree(pfn_to_page(zone_pfn +
1182                                         zone->zone_start_pfn));
1183         }
1184
1185         /* Clear orig addresses */
1186
1187         for_each_pbe (p, pblist)
1188                 ClearPageNosaveFree(virt_to_page(p->orig_address));
1189
1190         tail = pblist + PB_PAGE_SKIP;
1191
1192         /* Relocate colliding pages */
1193
1194         for_each_pb_page (pbpage, pblist) {
1195                 if (!PageNosaveFree(virt_to_page((unsigned long)pbpage))) {
1196                         m = (void *)get_usable_page(GFP_ATOMIC | __GFP_COLD);
1197                         if (!m) {
1198                                 error = -ENOMEM;
1199                                 break;
1200                         }
1201                         memcpy(m, (void *)pbpage, PAGE_SIZE);
1202                         if (pbpage == pblist)
1203                                 pblist = (struct pbe *)m;
1204                         else
1205                                 tail->next = (struct pbe *)m;
1206
1207                         eat_page((void *)pbpage);
1208                         pbpage = (struct pbe *)m;
1209
1210                         /* We have to link the PBEs again */
1211
1212                         for (p = pbpage; p < pbpage + PB_PAGE_SKIP; p++)
1213                                 if (p->next) /* needed to save the end */
1214                                         p->next = p + 1;
1215
1216                         rel++;
1217                 }
1218                 tail = pbpage + PB_PAGE_SKIP;
1219         }
1220
1221         if (error) {
1222                 printk("\nswsusp: Out of memory\n\n");
1223                 free_pagedir(pblist);
1224                 free_eaten_memory();
1225                 pblist = NULL;
1226         }
1227         else
1228                 printk("swsusp: Relocated %d pages\n", rel);
1229
1230         return pblist;
1231 }
1232
1233 /*
1234  *      Using bio to read from swap.
1235  *      This code requires a bit more work than just using buffer heads
1236  *      but, it is the recommended way for 2.5/2.6.
1237  *      The following are to signal the beginning and end of I/O. Bios
1238  *      finish asynchronously, while we want them to happen synchronously.
1239  *      A simple atomic_t, and a wait loop take care of this problem.
1240  */
1241
1242 static atomic_t io_done = ATOMIC_INIT(0);
1243
1244 static int end_io(struct bio * bio, unsigned int num, int err)
1245 {
1246         if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1247                 panic("I/O error reading memory image");
1248         atomic_set(&io_done, 0);
1249         return 0;
1250 }
1251
1252 static struct block_device * resume_bdev;
1253
1254 /**
1255  *      submit - submit BIO request.
1256  *      @rw:    READ or WRITE.
1257  *      @off    physical offset of page.
1258  *      @page:  page we're reading or writing.
1259  *
1260  *      Straight from the textbook - allocate and initialize the bio.
1261  *      If we're writing, make sure the page is marked as dirty.
1262  *      Then submit it and wait.
1263  */
1264
1265 static int submit(int rw, pgoff_t page_off, void * page)
1266 {
1267         int error = 0;
1268         struct bio * bio;
1269
1270         bio = bio_alloc(GFP_ATOMIC, 1);
1271         if (!bio)
1272                 return -ENOMEM;
1273         bio->bi_sector = page_off * (PAGE_SIZE >> 9);
1274         bio_get(bio);
1275         bio->bi_bdev = resume_bdev;
1276         bio->bi_end_io = end_io;
1277
1278         if (bio_add_page(bio, virt_to_page(page), PAGE_SIZE, 0) < PAGE_SIZE) {
1279                 printk("swsusp: ERROR: adding page to bio at %ld\n",page_off);
1280                 error = -EFAULT;
1281                 goto Done;
1282         }
1283
1284         if (rw == WRITE)
1285                 bio_set_pages_dirty(bio);
1286
1287         atomic_set(&io_done, 1);
1288         submit_bio(rw | (1 << BIO_RW_SYNC), bio);
1289         while (atomic_read(&io_done))
1290                 yield();
1291
1292  Done:
1293         bio_put(bio);
1294         return error;
1295 }
1296
1297 static int bio_read_page(pgoff_t page_off, void * page)
1298 {
1299         return submit(READ, page_off, page);
1300 }
1301
1302 static int bio_write_page(pgoff_t page_off, void * page)
1303 {
1304         return submit(WRITE, page_off, page);
1305 }
1306
1307 /*
1308  * Sanity check if this image makes sense with this kernel/swap context
1309  * I really don't think that it's foolproof but more than nothing..
1310  */
1311
1312 static const char * sanity_check(void)
1313 {
1314         dump_info();
1315         if (swsusp_info.version_code != LINUX_VERSION_CODE)
1316                 return "kernel version";
1317         if (swsusp_info.num_physpages != num_physpages)
1318                 return "memory size";
1319         if (strcmp(swsusp_info.uts.sysname,system_utsname.sysname))
1320                 return "system type";
1321         if (strcmp(swsusp_info.uts.release,system_utsname.release))
1322                 return "kernel release";
1323         if (strcmp(swsusp_info.uts.version,system_utsname.version))
1324                 return "version";
1325         if (strcmp(swsusp_info.uts.machine,system_utsname.machine))
1326                 return "machine";
1327 #if 0
1328         if(swsusp_info.cpus != num_online_cpus())
1329                 return "number of cpus";
1330 #endif
1331         return NULL;
1332 }
1333
1334
1335 static int check_header(void)
1336 {
1337         const char * reason = NULL;
1338         int error;
1339
1340         if ((error = bio_read_page(swp_offset(swsusp_header.swsusp_info), &swsusp_info)))
1341                 return error;
1342
1343         /* Is this same machine? */
1344         if ((reason = sanity_check())) {
1345                 printk(KERN_ERR "swsusp: Resume mismatch: %s\n",reason);
1346                 return -EPERM;
1347         }
1348         nr_copy_pages = swsusp_info.image_pages;
1349         return error;
1350 }
1351
1352 static int check_sig(void)
1353 {
1354         int error;
1355
1356         memset(&swsusp_header, 0, sizeof(swsusp_header));
1357         if ((error = bio_read_page(0, &swsusp_header)))
1358                 return error;
1359         if (!memcmp(SWSUSP_SIG, swsusp_header.sig, 10)) {
1360                 memcpy(swsusp_header.sig, swsusp_header.orig_sig, 10);
1361                 memcpy(key_iv, swsusp_header.key_iv, MAXKEY+MAXIV);
1362                 memset(swsusp_header.key_iv, 0, MAXKEY+MAXIV);
1363
1364                 /*
1365                  * Reset swap signature now.
1366                  */
1367                 error = bio_write_page(0, &swsusp_header);
1368         } else { 
1369                 printk(KERN_ERR "swsusp: Suspend partition has wrong signature?\n");
1370                 return -EINVAL;
1371         }
1372         if (!error)
1373                 pr_debug("swsusp: Signature found, resuming\n");
1374         return error;
1375 }
1376
1377 /**
1378  *      data_read - Read image pages from swap.
1379  *
1380  *      You do not need to check for overlaps, check_pagedir()
1381  *      already did that.
1382  */
1383
1384 static int data_read(struct pbe *pblist)
1385 {
1386         struct pbe * p;
1387         int error = 0;
1388         int i = 0;
1389         int mod = swsusp_info.image_pages / 100;
1390         void *tfm;
1391
1392         if ((error = crypto_init(0, &tfm)))
1393                 return error;
1394
1395         if (!mod)
1396                 mod = 1;
1397
1398         printk("swsusp: Reading image data (%lu pages):     ",
1399                         swsusp_info.image_pages);
1400
1401         for_each_pbe (p, pblist) {
1402                 if (!(i % mod))
1403                         printk("\b\b\b\b%3d%%", i / mod);
1404
1405                 if ((error = crypto_read(p, tfm))) {
1406                         crypto_exit(tfm);
1407                         return error;
1408                 }
1409
1410                 i++;
1411         }
1412         printk("\b\b\b\bdone\n");
1413         crypto_exit(tfm);
1414         return error;
1415 }
1416
1417 /**
1418  *      read_pagedir - Read page backup list pages from swap
1419  */
1420
1421 static int read_pagedir(struct pbe *pblist)
1422 {
1423         struct pbe *pbpage, *p;
1424         unsigned i = 0;
1425         int error;
1426
1427         if (!pblist)
1428                 return -EFAULT;
1429
1430         printk("swsusp: Reading pagedir (%lu pages)\n",
1431                         swsusp_info.pagedir_pages);
1432
1433         for_each_pb_page (pbpage, pblist) {
1434                 unsigned long offset = swp_offset(swsusp_info.pagedir[i++]);
1435
1436                 error = -EFAULT;
1437                 if (offset) {
1438                         p = (pbpage + PB_PAGE_SKIP)->next;
1439                         error = bio_read_page(offset, (void *)pbpage);
1440                         (pbpage + PB_PAGE_SKIP)->next = p;
1441                 }
1442                 if (error)
1443                         break;
1444         }
1445
1446         if (error)
1447                 free_page((unsigned long)pblist);
1448
1449         BUG_ON(i != swsusp_info.pagedir_pages);
1450
1451         return error;
1452 }
1453
1454
1455 static int check_suspend_image(void)
1456 {
1457         int error = 0;
1458
1459         if ((error = check_sig()))
1460                 return error;
1461
1462         if ((error = check_header()))
1463                 return error;
1464
1465         return 0;
1466 }
1467
1468 static int read_suspend_image(void)
1469 {
1470         int error = 0;
1471         struct pbe *p;
1472
1473         if (!(p = alloc_pagedir(nr_copy_pages)))
1474                 return -ENOMEM;
1475
1476         if ((error = read_pagedir(p)))
1477                 return error;
1478
1479         create_pbe_list(p, nr_copy_pages);
1480
1481         if (!(pagedir_nosave = swsusp_pagedir_relocate(p)))
1482                 return -ENOMEM;
1483
1484         /* Allocate memory for the image and read the data from swap */
1485
1486         error = check_pagedir(pagedir_nosave);
1487         free_eaten_memory();
1488         if (!error)
1489                 error = data_read(pagedir_nosave);
1490
1491         if (error) { /* We fail cleanly */
1492                 for_each_pbe (p, pagedir_nosave)
1493                         if (p->address) {
1494                                 free_page(p->address);
1495                                 p->address = 0UL;
1496                         }
1497                 free_pagedir(pagedir_nosave);
1498         }
1499         return error;
1500 }
1501
1502 /**
1503  *      swsusp_check - Check for saved image in swap
1504  */
1505
1506 int swsusp_check(void)
1507 {
1508         int error;
1509
1510         resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ);
1511         if (!IS_ERR(resume_bdev)) {
1512                 set_blocksize(resume_bdev, PAGE_SIZE);
1513                 error = check_suspend_image();
1514                 if (error)
1515                     blkdev_put(resume_bdev);
1516         } else
1517                 error = PTR_ERR(resume_bdev);
1518
1519         if (!error)
1520                 pr_debug("swsusp: resume file found\n");
1521         else
1522                 pr_debug("swsusp: Error %d check for resume file\n", error);
1523         return error;
1524 }
1525
1526 /**
1527  *      swsusp_read - Read saved image from swap.
1528  */
1529
1530 int swsusp_read(void)
1531 {
1532         int error;
1533
1534         if (IS_ERR(resume_bdev)) {
1535                 pr_debug("swsusp: block device not initialised\n");
1536                 return PTR_ERR(resume_bdev);
1537         }
1538
1539         error = read_suspend_image();
1540         blkdev_put(resume_bdev);
1541         memset(key_iv, 0, MAXKEY+MAXIV);
1542
1543         if (!error)
1544                 pr_debug("swsusp: Reading resume file was successful\n");
1545         else
1546                 pr_debug("swsusp: Error %d resuming\n", error);
1547         return error;
1548 }
1549
1550 /**
1551  *      swsusp_close - close swap device.
1552  */
1553
1554 void swsusp_close(void)
1555 {
1556         if (IS_ERR(resume_bdev)) {
1557                 pr_debug("swsusp: block device not initialised\n");
1558                 return;
1559         }
1560
1561         blkdev_put(resume_bdev);
1562 }