Merge branch 'timers/posixtimers' into timers/tracing
[safe/jmp/linux-2.6] / kernel / posix-cpu-timers.c
1 /*
2  * Implement CPU time clocks for the POSIX clock interface.
3  */
4
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11
12 /*
13  * Called after updating RLIMIT_CPU to set timer expiration if necessary.
14  */
15 void update_rlimit_cpu(unsigned long rlim_new)
16 {
17         cputime_t cputime = secs_to_cputime(rlim_new);
18         struct signal_struct *const sig = current->signal;
19
20         if (cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) ||
21             cputime_gt(sig->it[CPUCLOCK_PROF].expires, cputime)) {
22                 spin_lock_irq(&current->sighand->siglock);
23                 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
24                 spin_unlock_irq(&current->sighand->siglock);
25         }
26 }
27
28 static int check_clock(const clockid_t which_clock)
29 {
30         int error = 0;
31         struct task_struct *p;
32         const pid_t pid = CPUCLOCK_PID(which_clock);
33
34         if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
35                 return -EINVAL;
36
37         if (pid == 0)
38                 return 0;
39
40         read_lock(&tasklist_lock);
41         p = find_task_by_vpid(pid);
42         if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
43                    same_thread_group(p, current) : thread_group_leader(p))) {
44                 error = -EINVAL;
45         }
46         read_unlock(&tasklist_lock);
47
48         return error;
49 }
50
51 static inline union cpu_time_count
52 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
53 {
54         union cpu_time_count ret;
55         ret.sched = 0;          /* high half always zero when .cpu used */
56         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
57                 ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
58         } else {
59                 ret.cpu = timespec_to_cputime(tp);
60         }
61         return ret;
62 }
63
64 static void sample_to_timespec(const clockid_t which_clock,
65                                union cpu_time_count cpu,
66                                struct timespec *tp)
67 {
68         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
69                 *tp = ns_to_timespec(cpu.sched);
70         else
71                 cputime_to_timespec(cpu.cpu, tp);
72 }
73
74 static inline int cpu_time_before(const clockid_t which_clock,
75                                   union cpu_time_count now,
76                                   union cpu_time_count then)
77 {
78         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
79                 return now.sched < then.sched;
80         }  else {
81                 return cputime_lt(now.cpu, then.cpu);
82         }
83 }
84 static inline void cpu_time_add(const clockid_t which_clock,
85                                 union cpu_time_count *acc,
86                                 union cpu_time_count val)
87 {
88         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
89                 acc->sched += val.sched;
90         }  else {
91                 acc->cpu = cputime_add(acc->cpu, val.cpu);
92         }
93 }
94 static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
95                                                 union cpu_time_count a,
96                                                 union cpu_time_count b)
97 {
98         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
99                 a.sched -= b.sched;
100         }  else {
101                 a.cpu = cputime_sub(a.cpu, b.cpu);
102         }
103         return a;
104 }
105
106 /*
107  * Divide and limit the result to res >= 1
108  *
109  * This is necessary to prevent signal delivery starvation, when the result of
110  * the division would be rounded down to 0.
111  */
112 static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
113 {
114         cputime_t res = cputime_div(time, div);
115
116         return max_t(cputime_t, res, 1);
117 }
118
119 /*
120  * Update expiry time from increment, and increase overrun count,
121  * given the current clock sample.
122  */
123 static void bump_cpu_timer(struct k_itimer *timer,
124                                   union cpu_time_count now)
125 {
126         int i;
127
128         if (timer->it.cpu.incr.sched == 0)
129                 return;
130
131         if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
132                 unsigned long long delta, incr;
133
134                 if (now.sched < timer->it.cpu.expires.sched)
135                         return;
136                 incr = timer->it.cpu.incr.sched;
137                 delta = now.sched + incr - timer->it.cpu.expires.sched;
138                 /* Don't use (incr*2 < delta), incr*2 might overflow. */
139                 for (i = 0; incr < delta - incr; i++)
140                         incr = incr << 1;
141                 for (; i >= 0; incr >>= 1, i--) {
142                         if (delta < incr)
143                                 continue;
144                         timer->it.cpu.expires.sched += incr;
145                         timer->it_overrun += 1 << i;
146                         delta -= incr;
147                 }
148         } else {
149                 cputime_t delta, incr;
150
151                 if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
152                         return;
153                 incr = timer->it.cpu.incr.cpu;
154                 delta = cputime_sub(cputime_add(now.cpu, incr),
155                                     timer->it.cpu.expires.cpu);
156                 /* Don't use (incr*2 < delta), incr*2 might overflow. */
157                 for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
158                              incr = cputime_add(incr, incr);
159                 for (; i >= 0; incr = cputime_halve(incr), i--) {
160                         if (cputime_lt(delta, incr))
161                                 continue;
162                         timer->it.cpu.expires.cpu =
163                                 cputime_add(timer->it.cpu.expires.cpu, incr);
164                         timer->it_overrun += 1 << i;
165                         delta = cputime_sub(delta, incr);
166                 }
167         }
168 }
169
170 static inline cputime_t prof_ticks(struct task_struct *p)
171 {
172         return cputime_add(p->utime, p->stime);
173 }
174 static inline cputime_t virt_ticks(struct task_struct *p)
175 {
176         return p->utime;
177 }
178
179 int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
180 {
181         int error = check_clock(which_clock);
182         if (!error) {
183                 tp->tv_sec = 0;
184                 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
185                 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
186                         /*
187                          * If sched_clock is using a cycle counter, we
188                          * don't have any idea of its true resolution
189                          * exported, but it is much more than 1s/HZ.
190                          */
191                         tp->tv_nsec = 1;
192                 }
193         }
194         return error;
195 }
196
197 int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
198 {
199         /*
200          * You can never reset a CPU clock, but we check for other errors
201          * in the call before failing with EPERM.
202          */
203         int error = check_clock(which_clock);
204         if (error == 0) {
205                 error = -EPERM;
206         }
207         return error;
208 }
209
210
211 /*
212  * Sample a per-thread clock for the given task.
213  */
214 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
215                             union cpu_time_count *cpu)
216 {
217         switch (CPUCLOCK_WHICH(which_clock)) {
218         default:
219                 return -EINVAL;
220         case CPUCLOCK_PROF:
221                 cpu->cpu = prof_ticks(p);
222                 break;
223         case CPUCLOCK_VIRT:
224                 cpu->cpu = virt_ticks(p);
225                 break;
226         case CPUCLOCK_SCHED:
227                 cpu->sched = task_sched_runtime(p);
228                 break;
229         }
230         return 0;
231 }
232
233 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
234 {
235         struct sighand_struct *sighand;
236         struct signal_struct *sig;
237         struct task_struct *t;
238
239         *times = INIT_CPUTIME;
240
241         rcu_read_lock();
242         sighand = rcu_dereference(tsk->sighand);
243         if (!sighand)
244                 goto out;
245
246         sig = tsk->signal;
247
248         t = tsk;
249         do {
250                 times->utime = cputime_add(times->utime, t->utime);
251                 times->stime = cputime_add(times->stime, t->stime);
252                 times->sum_exec_runtime += t->se.sum_exec_runtime;
253
254                 t = next_thread(t);
255         } while (t != tsk);
256
257         times->utime = cputime_add(times->utime, sig->utime);
258         times->stime = cputime_add(times->stime, sig->stime);
259         times->sum_exec_runtime += sig->sum_sched_runtime;
260 out:
261         rcu_read_unlock();
262 }
263
264 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
265 {
266         if (cputime_gt(b->utime, a->utime))
267                 a->utime = b->utime;
268
269         if (cputime_gt(b->stime, a->stime))
270                 a->stime = b->stime;
271
272         if (b->sum_exec_runtime > a->sum_exec_runtime)
273                 a->sum_exec_runtime = b->sum_exec_runtime;
274 }
275
276 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
277 {
278         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
279         struct task_cputime sum;
280         unsigned long flags;
281
282         spin_lock_irqsave(&cputimer->lock, flags);
283         if (!cputimer->running) {
284                 cputimer->running = 1;
285                 /*
286                  * The POSIX timer interface allows for absolute time expiry
287                  * values through the TIMER_ABSTIME flag, therefore we have
288                  * to synchronize the timer to the clock every time we start
289                  * it.
290                  */
291                 thread_group_cputime(tsk, &sum);
292                 update_gt_cputime(&cputimer->cputime, &sum);
293         }
294         *times = cputimer->cputime;
295         spin_unlock_irqrestore(&cputimer->lock, flags);
296 }
297
298 /*
299  * Sample a process (thread group) clock for the given group_leader task.
300  * Must be called with tasklist_lock held for reading.
301  */
302 static int cpu_clock_sample_group(const clockid_t which_clock,
303                                   struct task_struct *p,
304                                   union cpu_time_count *cpu)
305 {
306         struct task_cputime cputime;
307
308         switch (CPUCLOCK_WHICH(which_clock)) {
309         default:
310                 return -EINVAL;
311         case CPUCLOCK_PROF:
312                 thread_group_cputime(p, &cputime);
313                 cpu->cpu = cputime_add(cputime.utime, cputime.stime);
314                 break;
315         case CPUCLOCK_VIRT:
316                 thread_group_cputime(p, &cputime);
317                 cpu->cpu = cputime.utime;
318                 break;
319         case CPUCLOCK_SCHED:
320                 cpu->sched = thread_group_sched_runtime(p);
321                 break;
322         }
323         return 0;
324 }
325
326
327 int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
328 {
329         const pid_t pid = CPUCLOCK_PID(which_clock);
330         int error = -EINVAL;
331         union cpu_time_count rtn;
332
333         if (pid == 0) {
334                 /*
335                  * Special case constant value for our own clocks.
336                  * We don't have to do any lookup to find ourselves.
337                  */
338                 if (CPUCLOCK_PERTHREAD(which_clock)) {
339                         /*
340                          * Sampling just ourselves we can do with no locking.
341                          */
342                         error = cpu_clock_sample(which_clock,
343                                                  current, &rtn);
344                 } else {
345                         read_lock(&tasklist_lock);
346                         error = cpu_clock_sample_group(which_clock,
347                                                        current, &rtn);
348                         read_unlock(&tasklist_lock);
349                 }
350         } else {
351                 /*
352                  * Find the given PID, and validate that the caller
353                  * should be able to see it.
354                  */
355                 struct task_struct *p;
356                 rcu_read_lock();
357                 p = find_task_by_vpid(pid);
358                 if (p) {
359                         if (CPUCLOCK_PERTHREAD(which_clock)) {
360                                 if (same_thread_group(p, current)) {
361                                         error = cpu_clock_sample(which_clock,
362                                                                  p, &rtn);
363                                 }
364                         } else {
365                                 read_lock(&tasklist_lock);
366                                 if (thread_group_leader(p) && p->signal) {
367                                         error =
368                                             cpu_clock_sample_group(which_clock,
369                                                                    p, &rtn);
370                                 }
371                                 read_unlock(&tasklist_lock);
372                         }
373                 }
374                 rcu_read_unlock();
375         }
376
377         if (error)
378                 return error;
379         sample_to_timespec(which_clock, rtn, tp);
380         return 0;
381 }
382
383
384 /*
385  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
386  * This is called from sys_timer_create with the new timer already locked.
387  */
388 int posix_cpu_timer_create(struct k_itimer *new_timer)
389 {
390         int ret = 0;
391         const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
392         struct task_struct *p;
393
394         if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
395                 return -EINVAL;
396
397         INIT_LIST_HEAD(&new_timer->it.cpu.entry);
398         new_timer->it.cpu.incr.sched = 0;
399         new_timer->it.cpu.expires.sched = 0;
400
401         read_lock(&tasklist_lock);
402         if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
403                 if (pid == 0) {
404                         p = current;
405                 } else {
406                         p = find_task_by_vpid(pid);
407                         if (p && !same_thread_group(p, current))
408                                 p = NULL;
409                 }
410         } else {
411                 if (pid == 0) {
412                         p = current->group_leader;
413                 } else {
414                         p = find_task_by_vpid(pid);
415                         if (p && !thread_group_leader(p))
416                                 p = NULL;
417                 }
418         }
419         new_timer->it.cpu.task = p;
420         if (p) {
421                 get_task_struct(p);
422         } else {
423                 ret = -EINVAL;
424         }
425         read_unlock(&tasklist_lock);
426
427         return ret;
428 }
429
430 /*
431  * Clean up a CPU-clock timer that is about to be destroyed.
432  * This is called from timer deletion with the timer already locked.
433  * If we return TIMER_RETRY, it's necessary to release the timer's lock
434  * and try again.  (This happens when the timer is in the middle of firing.)
435  */
436 int posix_cpu_timer_del(struct k_itimer *timer)
437 {
438         struct task_struct *p = timer->it.cpu.task;
439         int ret = 0;
440
441         if (likely(p != NULL)) {
442                 read_lock(&tasklist_lock);
443                 if (unlikely(p->signal == NULL)) {
444                         /*
445                          * We raced with the reaping of the task.
446                          * The deletion should have cleared us off the list.
447                          */
448                         BUG_ON(!list_empty(&timer->it.cpu.entry));
449                 } else {
450                         spin_lock(&p->sighand->siglock);
451                         if (timer->it.cpu.firing)
452                                 ret = TIMER_RETRY;
453                         else
454                                 list_del(&timer->it.cpu.entry);
455                         spin_unlock(&p->sighand->siglock);
456                 }
457                 read_unlock(&tasklist_lock);
458
459                 if (!ret)
460                         put_task_struct(p);
461         }
462
463         return ret;
464 }
465
466 /*
467  * Clean out CPU timers still ticking when a thread exited.  The task
468  * pointer is cleared, and the expiry time is replaced with the residual
469  * time for later timer_gettime calls to return.
470  * This must be called with the siglock held.
471  */
472 static void cleanup_timers(struct list_head *head,
473                            cputime_t utime, cputime_t stime,
474                            unsigned long long sum_exec_runtime)
475 {
476         struct cpu_timer_list *timer, *next;
477         cputime_t ptime = cputime_add(utime, stime);
478
479         list_for_each_entry_safe(timer, next, head, entry) {
480                 list_del_init(&timer->entry);
481                 if (cputime_lt(timer->expires.cpu, ptime)) {
482                         timer->expires.cpu = cputime_zero;
483                 } else {
484                         timer->expires.cpu = cputime_sub(timer->expires.cpu,
485                                                          ptime);
486                 }
487         }
488
489         ++head;
490         list_for_each_entry_safe(timer, next, head, entry) {
491                 list_del_init(&timer->entry);
492                 if (cputime_lt(timer->expires.cpu, utime)) {
493                         timer->expires.cpu = cputime_zero;
494                 } else {
495                         timer->expires.cpu = cputime_sub(timer->expires.cpu,
496                                                          utime);
497                 }
498         }
499
500         ++head;
501         list_for_each_entry_safe(timer, next, head, entry) {
502                 list_del_init(&timer->entry);
503                 if (timer->expires.sched < sum_exec_runtime) {
504                         timer->expires.sched = 0;
505                 } else {
506                         timer->expires.sched -= sum_exec_runtime;
507                 }
508         }
509 }
510
511 /*
512  * These are both called with the siglock held, when the current thread
513  * is being reaped.  When the final (leader) thread in the group is reaped,
514  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
515  */
516 void posix_cpu_timers_exit(struct task_struct *tsk)
517 {
518         cleanup_timers(tsk->cpu_timers,
519                        tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
520
521 }
522 void posix_cpu_timers_exit_group(struct task_struct *tsk)
523 {
524         struct signal_struct *const sig = tsk->signal;
525
526         cleanup_timers(tsk->signal->cpu_timers,
527                        cputime_add(tsk->utime, sig->utime),
528                        cputime_add(tsk->stime, sig->stime),
529                        tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
530 }
531
532 static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
533 {
534         /*
535          * That's all for this thread or process.
536          * We leave our residual in expires to be reported.
537          */
538         put_task_struct(timer->it.cpu.task);
539         timer->it.cpu.task = NULL;
540         timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
541                                              timer->it.cpu.expires,
542                                              now);
543 }
544
545 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
546 {
547         return cputime_eq(expires, cputime_zero) ||
548                cputime_gt(expires, new_exp);
549 }
550
551 static inline int expires_le(cputime_t expires, cputime_t new_exp)
552 {
553         return !cputime_eq(expires, cputime_zero) &&
554                cputime_le(expires, new_exp);
555 }
556 /*
557  * Insert the timer on the appropriate list before any timers that
558  * expire later.  This must be called with the tasklist_lock held
559  * for reading, and interrupts disabled.
560  */
561 static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
562 {
563         struct task_struct *p = timer->it.cpu.task;
564         struct list_head *head, *listpos;
565         struct cpu_timer_list *const nt = &timer->it.cpu;
566         struct cpu_timer_list *next;
567         unsigned long i;
568
569         head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
570                 p->cpu_timers : p->signal->cpu_timers);
571         head += CPUCLOCK_WHICH(timer->it_clock);
572
573         BUG_ON(!irqs_disabled());
574         spin_lock(&p->sighand->siglock);
575
576         listpos = head;
577         if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
578                 list_for_each_entry(next, head, entry) {
579                         if (next->expires.sched > nt->expires.sched)
580                                 break;
581                         listpos = &next->entry;
582                 }
583         } else {
584                 list_for_each_entry(next, head, entry) {
585                         if (cputime_gt(next->expires.cpu, nt->expires.cpu))
586                                 break;
587                         listpos = &next->entry;
588                 }
589         }
590         list_add(&nt->entry, listpos);
591
592         if (listpos == head) {
593                 /*
594                  * We are the new earliest-expiring timer.
595                  * If we are a thread timer, there can always
596                  * be a process timer telling us to stop earlier.
597                  */
598
599                 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
600                         union cpu_time_count *exp = &nt->expires;
601
602                         switch (CPUCLOCK_WHICH(timer->it_clock)) {
603                         default:
604                                 BUG();
605                         case CPUCLOCK_PROF:
606                                 if (expires_gt(p->cputime_expires.prof_exp,
607                                                exp->cpu))
608                                         p->cputime_expires.prof_exp = exp->cpu;
609                                 break;
610                         case CPUCLOCK_VIRT:
611                                 if (expires_gt(p->cputime_expires.virt_exp,
612                                                exp->cpu))
613                                         p->cputime_expires.virt_exp = exp->cpu;
614                                 break;
615                         case CPUCLOCK_SCHED:
616                                 if (p->cputime_expires.sched_exp == 0 ||
617                                     p->cputime_expires.sched_exp > exp->sched)
618                                         p->cputime_expires.sched_exp =
619                                                                 exp->sched;
620                                 break;
621                         }
622                 } else {
623                         struct signal_struct *const sig = p->signal;
624                         union cpu_time_count *exp = &timer->it.cpu.expires;
625
626                         /*
627                          * For a process timer, set the cached expiration time.
628                          */
629                         switch (CPUCLOCK_WHICH(timer->it_clock)) {
630                         default:
631                                 BUG();
632                         case CPUCLOCK_VIRT:
633                                 if (expires_le(sig->it[CPUCLOCK_VIRT].expires,
634                                                exp->cpu))
635                                         break;
636                                 sig->cputime_expires.virt_exp = exp->cpu;
637                                 break;
638                         case CPUCLOCK_PROF:
639                                 if (expires_le(sig->it[CPUCLOCK_PROF].expires,
640                                                exp->cpu))
641                                         break;
642                                 i = sig->rlim[RLIMIT_CPU].rlim_cur;
643                                 if (i != RLIM_INFINITY &&
644                                     i <= cputime_to_secs(exp->cpu))
645                                         break;
646                                 sig->cputime_expires.prof_exp = exp->cpu;
647                                 break;
648                         case CPUCLOCK_SCHED:
649                                 sig->cputime_expires.sched_exp = exp->sched;
650                                 break;
651                         }
652                 }
653         }
654
655         spin_unlock(&p->sighand->siglock);
656 }
657
658 /*
659  * The timer is locked, fire it and arrange for its reload.
660  */
661 static void cpu_timer_fire(struct k_itimer *timer)
662 {
663         if (unlikely(timer->sigq == NULL)) {
664                 /*
665                  * This a special case for clock_nanosleep,
666                  * not a normal timer from sys_timer_create.
667                  */
668                 wake_up_process(timer->it_process);
669                 timer->it.cpu.expires.sched = 0;
670         } else if (timer->it.cpu.incr.sched == 0) {
671                 /*
672                  * One-shot timer.  Clear it as soon as it's fired.
673                  */
674                 posix_timer_event(timer, 0);
675                 timer->it.cpu.expires.sched = 0;
676         } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
677                 /*
678                  * The signal did not get queued because the signal
679                  * was ignored, so we won't get any callback to
680                  * reload the timer.  But we need to keep it
681                  * ticking in case the signal is deliverable next time.
682                  */
683                 posix_cpu_timer_schedule(timer);
684         }
685 }
686
687 /*
688  * Sample a process (thread group) timer for the given group_leader task.
689  * Must be called with tasklist_lock held for reading.
690  */
691 static int cpu_timer_sample_group(const clockid_t which_clock,
692                                   struct task_struct *p,
693                                   union cpu_time_count *cpu)
694 {
695         struct task_cputime cputime;
696
697         thread_group_cputimer(p, &cputime);
698         switch (CPUCLOCK_WHICH(which_clock)) {
699         default:
700                 return -EINVAL;
701         case CPUCLOCK_PROF:
702                 cpu->cpu = cputime_add(cputime.utime, cputime.stime);
703                 break;
704         case CPUCLOCK_VIRT:
705                 cpu->cpu = cputime.utime;
706                 break;
707         case CPUCLOCK_SCHED:
708                 cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
709                 break;
710         }
711         return 0;
712 }
713
714 /*
715  * Guts of sys_timer_settime for CPU timers.
716  * This is called with the timer locked and interrupts disabled.
717  * If we return TIMER_RETRY, it's necessary to release the timer's lock
718  * and try again.  (This happens when the timer is in the middle of firing.)
719  */
720 int posix_cpu_timer_set(struct k_itimer *timer, int flags,
721                         struct itimerspec *new, struct itimerspec *old)
722 {
723         struct task_struct *p = timer->it.cpu.task;
724         union cpu_time_count old_expires, new_expires, val;
725         int ret;
726
727         if (unlikely(p == NULL)) {
728                 /*
729                  * Timer refers to a dead task's clock.
730                  */
731                 return -ESRCH;
732         }
733
734         new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
735
736         read_lock(&tasklist_lock);
737         /*
738          * We need the tasklist_lock to protect against reaping that
739          * clears p->signal.  If p has just been reaped, we can no
740          * longer get any information about it at all.
741          */
742         if (unlikely(p->signal == NULL)) {
743                 read_unlock(&tasklist_lock);
744                 put_task_struct(p);
745                 timer->it.cpu.task = NULL;
746                 return -ESRCH;
747         }
748
749         /*
750          * Disarm any old timer after extracting its expiry time.
751          */
752         BUG_ON(!irqs_disabled());
753
754         ret = 0;
755         spin_lock(&p->sighand->siglock);
756         old_expires = timer->it.cpu.expires;
757         if (unlikely(timer->it.cpu.firing)) {
758                 timer->it.cpu.firing = -1;
759                 ret = TIMER_RETRY;
760         } else
761                 list_del_init(&timer->it.cpu.entry);
762         spin_unlock(&p->sighand->siglock);
763
764         /*
765          * We need to sample the current value to convert the new
766          * value from to relative and absolute, and to convert the
767          * old value from absolute to relative.  To set a process
768          * timer, we need a sample to balance the thread expiry
769          * times (in arm_timer).  With an absolute time, we must
770          * check if it's already passed.  In short, we need a sample.
771          */
772         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
773                 cpu_clock_sample(timer->it_clock, p, &val);
774         } else {
775                 cpu_timer_sample_group(timer->it_clock, p, &val);
776         }
777
778         if (old) {
779                 if (old_expires.sched == 0) {
780                         old->it_value.tv_sec = 0;
781                         old->it_value.tv_nsec = 0;
782                 } else {
783                         /*
784                          * Update the timer in case it has
785                          * overrun already.  If it has,
786                          * we'll report it as having overrun
787                          * and with the next reloaded timer
788                          * already ticking, though we are
789                          * swallowing that pending
790                          * notification here to install the
791                          * new setting.
792                          */
793                         bump_cpu_timer(timer, val);
794                         if (cpu_time_before(timer->it_clock, val,
795                                             timer->it.cpu.expires)) {
796                                 old_expires = cpu_time_sub(
797                                         timer->it_clock,
798                                         timer->it.cpu.expires, val);
799                                 sample_to_timespec(timer->it_clock,
800                                                    old_expires,
801                                                    &old->it_value);
802                         } else {
803                                 old->it_value.tv_nsec = 1;
804                                 old->it_value.tv_sec = 0;
805                         }
806                 }
807         }
808
809         if (unlikely(ret)) {
810                 /*
811                  * We are colliding with the timer actually firing.
812                  * Punt after filling in the timer's old value, and
813                  * disable this firing since we are already reporting
814                  * it as an overrun (thanks to bump_cpu_timer above).
815                  */
816                 read_unlock(&tasklist_lock);
817                 goto out;
818         }
819
820         if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
821                 cpu_time_add(timer->it_clock, &new_expires, val);
822         }
823
824         /*
825          * Install the new expiry time (or zero).
826          * For a timer with no notification action, we don't actually
827          * arm the timer (we'll just fake it for timer_gettime).
828          */
829         timer->it.cpu.expires = new_expires;
830         if (new_expires.sched != 0 &&
831             (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
832             cpu_time_before(timer->it_clock, val, new_expires)) {
833                 arm_timer(timer, val);
834         }
835
836         read_unlock(&tasklist_lock);
837
838         /*
839          * Install the new reload setting, and
840          * set up the signal and overrun bookkeeping.
841          */
842         timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
843                                                 &new->it_interval);
844
845         /*
846          * This acts as a modification timestamp for the timer,
847          * so any automatic reload attempt will punt on seeing
848          * that we have reset the timer manually.
849          */
850         timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
851                 ~REQUEUE_PENDING;
852         timer->it_overrun_last = 0;
853         timer->it_overrun = -1;
854
855         if (new_expires.sched != 0 &&
856             (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
857             !cpu_time_before(timer->it_clock, val, new_expires)) {
858                 /*
859                  * The designated time already passed, so we notify
860                  * immediately, even if the thread never runs to
861                  * accumulate more time on this clock.
862                  */
863                 cpu_timer_fire(timer);
864         }
865
866         ret = 0;
867  out:
868         if (old) {
869                 sample_to_timespec(timer->it_clock,
870                                    timer->it.cpu.incr, &old->it_interval);
871         }
872         return ret;
873 }
874
875 void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
876 {
877         union cpu_time_count now;
878         struct task_struct *p = timer->it.cpu.task;
879         int clear_dead;
880
881         /*
882          * Easy part: convert the reload time.
883          */
884         sample_to_timespec(timer->it_clock,
885                            timer->it.cpu.incr, &itp->it_interval);
886
887         if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all.  */
888                 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
889                 return;
890         }
891
892         if (unlikely(p == NULL)) {
893                 /*
894                  * This task already died and the timer will never fire.
895                  * In this case, expires is actually the dead value.
896                  */
897         dead:
898                 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
899                                    &itp->it_value);
900                 return;
901         }
902
903         /*
904          * Sample the clock to take the difference with the expiry time.
905          */
906         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
907                 cpu_clock_sample(timer->it_clock, p, &now);
908                 clear_dead = p->exit_state;
909         } else {
910                 read_lock(&tasklist_lock);
911                 if (unlikely(p->signal == NULL)) {
912                         /*
913                          * The process has been reaped.
914                          * We can't even collect a sample any more.
915                          * Call the timer disarmed, nothing else to do.
916                          */
917                         put_task_struct(p);
918                         timer->it.cpu.task = NULL;
919                         timer->it.cpu.expires.sched = 0;
920                         read_unlock(&tasklist_lock);
921                         goto dead;
922                 } else {
923                         cpu_timer_sample_group(timer->it_clock, p, &now);
924                         clear_dead = (unlikely(p->exit_state) &&
925                                       thread_group_empty(p));
926                 }
927                 read_unlock(&tasklist_lock);
928         }
929
930         if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
931                 if (timer->it.cpu.incr.sched == 0 &&
932                     cpu_time_before(timer->it_clock,
933                                     timer->it.cpu.expires, now)) {
934                         /*
935                          * Do-nothing timer expired and has no reload,
936                          * so it's as if it was never set.
937                          */
938                         timer->it.cpu.expires.sched = 0;
939                         itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
940                         return;
941                 }
942                 /*
943                  * Account for any expirations and reloads that should
944                  * have happened.
945                  */
946                 bump_cpu_timer(timer, now);
947         }
948
949         if (unlikely(clear_dead)) {
950                 /*
951                  * We've noticed that the thread is dead, but
952                  * not yet reaped.  Take this opportunity to
953                  * drop our task ref.
954                  */
955                 clear_dead_task(timer, now);
956                 goto dead;
957         }
958
959         if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
960                 sample_to_timespec(timer->it_clock,
961                                    cpu_time_sub(timer->it_clock,
962                                                 timer->it.cpu.expires, now),
963                                    &itp->it_value);
964         } else {
965                 /*
966                  * The timer should have expired already, but the firing
967                  * hasn't taken place yet.  Say it's just about to expire.
968                  */
969                 itp->it_value.tv_nsec = 1;
970                 itp->it_value.tv_sec = 0;
971         }
972 }
973
974 /*
975  * Check for any per-thread CPU timers that have fired and move them off
976  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
977  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
978  */
979 static void check_thread_timers(struct task_struct *tsk,
980                                 struct list_head *firing)
981 {
982         int maxfire;
983         struct list_head *timers = tsk->cpu_timers;
984         struct signal_struct *const sig = tsk->signal;
985
986         maxfire = 20;
987         tsk->cputime_expires.prof_exp = cputime_zero;
988         while (!list_empty(timers)) {
989                 struct cpu_timer_list *t = list_first_entry(timers,
990                                                       struct cpu_timer_list,
991                                                       entry);
992                 if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
993                         tsk->cputime_expires.prof_exp = t->expires.cpu;
994                         break;
995                 }
996                 t->firing = 1;
997                 list_move_tail(&t->entry, firing);
998         }
999
1000         ++timers;
1001         maxfire = 20;
1002         tsk->cputime_expires.virt_exp = cputime_zero;
1003         while (!list_empty(timers)) {
1004                 struct cpu_timer_list *t = list_first_entry(timers,
1005                                                       struct cpu_timer_list,
1006                                                       entry);
1007                 if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
1008                         tsk->cputime_expires.virt_exp = t->expires.cpu;
1009                         break;
1010                 }
1011                 t->firing = 1;
1012                 list_move_tail(&t->entry, firing);
1013         }
1014
1015         ++timers;
1016         maxfire = 20;
1017         tsk->cputime_expires.sched_exp = 0;
1018         while (!list_empty(timers)) {
1019                 struct cpu_timer_list *t = list_first_entry(timers,
1020                                                       struct cpu_timer_list,
1021                                                       entry);
1022                 if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
1023                         tsk->cputime_expires.sched_exp = t->expires.sched;
1024                         break;
1025                 }
1026                 t->firing = 1;
1027                 list_move_tail(&t->entry, firing);
1028         }
1029
1030         /*
1031          * Check for the special case thread timers.
1032          */
1033         if (sig->rlim[RLIMIT_RTTIME].rlim_cur != RLIM_INFINITY) {
1034                 unsigned long hard = sig->rlim[RLIMIT_RTTIME].rlim_max;
1035                 unsigned long *soft = &sig->rlim[RLIMIT_RTTIME].rlim_cur;
1036
1037                 if (hard != RLIM_INFINITY &&
1038                     tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
1039                         /*
1040                          * At the hard limit, we just die.
1041                          * No need to calculate anything else now.
1042                          */
1043                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1044                         return;
1045                 }
1046                 if (tsk->rt.timeout > DIV_ROUND_UP(*soft, USEC_PER_SEC/HZ)) {
1047                         /*
1048                          * At the soft limit, send a SIGXCPU every second.
1049                          */
1050                         if (sig->rlim[RLIMIT_RTTIME].rlim_cur
1051                             < sig->rlim[RLIMIT_RTTIME].rlim_max) {
1052                                 sig->rlim[RLIMIT_RTTIME].rlim_cur +=
1053                                                                 USEC_PER_SEC;
1054                         }
1055                         printk(KERN_INFO
1056                                 "RT Watchdog Timeout: %s[%d]\n",
1057                                 tsk->comm, task_pid_nr(tsk));
1058                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1059                 }
1060         }
1061 }
1062
1063 static void stop_process_timers(struct task_struct *tsk)
1064 {
1065         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
1066         unsigned long flags;
1067
1068         if (!cputimer->running)
1069                 return;
1070
1071         spin_lock_irqsave(&cputimer->lock, flags);
1072         cputimer->running = 0;
1073         spin_unlock_irqrestore(&cputimer->lock, flags);
1074 }
1075
1076 static u32 onecputick;
1077
1078 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
1079                              cputime_t *expires, cputime_t cur_time, int signo)
1080 {
1081         if (cputime_eq(it->expires, cputime_zero))
1082                 return;
1083
1084         if (cputime_ge(cur_time, it->expires)) {
1085                 if (!cputime_eq(it->incr, cputime_zero)) {
1086                         it->expires = cputime_add(it->expires, it->incr);
1087                         it->error += it->incr_error;
1088                         if (it->error >= onecputick) {
1089                                 it->expires = cputime_sub(it->expires,
1090                                                           cputime_one_jiffy);
1091                                 it->error -= onecputick;
1092                         }
1093                 } else
1094                         it->expires = cputime_zero;
1095
1096                 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
1097         }
1098
1099         if (!cputime_eq(it->expires, cputime_zero) &&
1100             (cputime_eq(*expires, cputime_zero) ||
1101              cputime_lt(it->expires, *expires))) {
1102                 *expires = it->expires;
1103         }
1104 }
1105
1106 /*
1107  * Check for any per-thread CPU timers that have fired and move them
1108  * off the tsk->*_timers list onto the firing list.  Per-thread timers
1109  * have already been taken off.
1110  */
1111 static void check_process_timers(struct task_struct *tsk,
1112                                  struct list_head *firing)
1113 {
1114         int maxfire;
1115         struct signal_struct *const sig = tsk->signal;
1116         cputime_t utime, ptime, virt_expires, prof_expires;
1117         unsigned long long sum_sched_runtime, sched_expires;
1118         struct list_head *timers = sig->cpu_timers;
1119         struct task_cputime cputime;
1120
1121         /*
1122          * Don't sample the current process CPU clocks if there are no timers.
1123          */
1124         if (list_empty(&timers[CPUCLOCK_PROF]) &&
1125             cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) &&
1126             sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
1127             list_empty(&timers[CPUCLOCK_VIRT]) &&
1128             cputime_eq(sig->it[CPUCLOCK_VIRT].expires, cputime_zero) &&
1129             list_empty(&timers[CPUCLOCK_SCHED])) {
1130                 stop_process_timers(tsk);
1131                 return;
1132         }
1133
1134         /*
1135          * Collect the current process totals.
1136          */
1137         thread_group_cputimer(tsk, &cputime);
1138         utime = cputime.utime;
1139         ptime = cputime_add(utime, cputime.stime);
1140         sum_sched_runtime = cputime.sum_exec_runtime;
1141         maxfire = 20;
1142         prof_expires = cputime_zero;
1143         while (!list_empty(timers)) {
1144                 struct cpu_timer_list *tl = list_first_entry(timers,
1145                                                       struct cpu_timer_list,
1146                                                       entry);
1147                 if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) {
1148                         prof_expires = tl->expires.cpu;
1149                         break;
1150                 }
1151                 tl->firing = 1;
1152                 list_move_tail(&tl->entry, firing);
1153         }
1154
1155         ++timers;
1156         maxfire = 20;
1157         virt_expires = cputime_zero;
1158         while (!list_empty(timers)) {
1159                 struct cpu_timer_list *tl = list_first_entry(timers,
1160                                                       struct cpu_timer_list,
1161                                                       entry);
1162                 if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) {
1163                         virt_expires = tl->expires.cpu;
1164                         break;
1165                 }
1166                 tl->firing = 1;
1167                 list_move_tail(&tl->entry, firing);
1168         }
1169
1170         ++timers;
1171         maxfire = 20;
1172         sched_expires = 0;
1173         while (!list_empty(timers)) {
1174                 struct cpu_timer_list *tl = list_first_entry(timers,
1175                                                       struct cpu_timer_list,
1176                                                       entry);
1177                 if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
1178                         sched_expires = tl->expires.sched;
1179                         break;
1180                 }
1181                 tl->firing = 1;
1182                 list_move_tail(&tl->entry, firing);
1183         }
1184
1185         /*
1186          * Check for the special case process timers.
1187          */
1188         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1189                          SIGPROF);
1190         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1191                          SIGVTALRM);
1192
1193         if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1194                 unsigned long psecs = cputime_to_secs(ptime);
1195                 cputime_t x;
1196                 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
1197                         /*
1198                          * At the hard limit, we just die.
1199                          * No need to calculate anything else now.
1200                          */
1201                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1202                         return;
1203                 }
1204                 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) {
1205                         /*
1206                          * At the soft limit, send a SIGXCPU every second.
1207                          */
1208                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1209                         if (sig->rlim[RLIMIT_CPU].rlim_cur
1210                             < sig->rlim[RLIMIT_CPU].rlim_max) {
1211                                 sig->rlim[RLIMIT_CPU].rlim_cur++;
1212                         }
1213                 }
1214                 x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
1215                 if (cputime_eq(prof_expires, cputime_zero) ||
1216                     cputime_lt(x, prof_expires)) {
1217                         prof_expires = x;
1218                 }
1219         }
1220
1221         if (!cputime_eq(prof_expires, cputime_zero) &&
1222             (cputime_eq(sig->cputime_expires.prof_exp, cputime_zero) ||
1223              cputime_gt(sig->cputime_expires.prof_exp, prof_expires)))
1224                 sig->cputime_expires.prof_exp = prof_expires;
1225         if (!cputime_eq(virt_expires, cputime_zero) &&
1226             (cputime_eq(sig->cputime_expires.virt_exp, cputime_zero) ||
1227              cputime_gt(sig->cputime_expires.virt_exp, virt_expires)))
1228                 sig->cputime_expires.virt_exp = virt_expires;
1229         if (sched_expires != 0 &&
1230             (sig->cputime_expires.sched_exp == 0 ||
1231              sig->cputime_expires.sched_exp > sched_expires))
1232                 sig->cputime_expires.sched_exp = sched_expires;
1233 }
1234
1235 /*
1236  * This is called from the signal code (via do_schedule_next_timer)
1237  * when the last timer signal was delivered and we have to reload the timer.
1238  */
1239 void posix_cpu_timer_schedule(struct k_itimer *timer)
1240 {
1241         struct task_struct *p = timer->it.cpu.task;
1242         union cpu_time_count now;
1243
1244         if (unlikely(p == NULL))
1245                 /*
1246                  * The task was cleaned up already, no future firings.
1247                  */
1248                 goto out;
1249
1250         /*
1251          * Fetch the current sample and update the timer's expiry time.
1252          */
1253         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1254                 cpu_clock_sample(timer->it_clock, p, &now);
1255                 bump_cpu_timer(timer, now);
1256                 if (unlikely(p->exit_state)) {
1257                         clear_dead_task(timer, now);
1258                         goto out;
1259                 }
1260                 read_lock(&tasklist_lock); /* arm_timer needs it.  */
1261         } else {
1262                 read_lock(&tasklist_lock);
1263                 if (unlikely(p->signal == NULL)) {
1264                         /*
1265                          * The process has been reaped.
1266                          * We can't even collect a sample any more.
1267                          */
1268                         put_task_struct(p);
1269                         timer->it.cpu.task = p = NULL;
1270                         timer->it.cpu.expires.sched = 0;
1271                         goto out_unlock;
1272                 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1273                         /*
1274                          * We've noticed that the thread is dead, but
1275                          * not yet reaped.  Take this opportunity to
1276                          * drop our task ref.
1277                          */
1278                         clear_dead_task(timer, now);
1279                         goto out_unlock;
1280                 }
1281                 cpu_timer_sample_group(timer->it_clock, p, &now);
1282                 bump_cpu_timer(timer, now);
1283                 /* Leave the tasklist_lock locked for the call below.  */
1284         }
1285
1286         /*
1287          * Now re-arm for the new expiry time.
1288          */
1289         arm_timer(timer, now);
1290
1291 out_unlock:
1292         read_unlock(&tasklist_lock);
1293
1294 out:
1295         timer->it_overrun_last = timer->it_overrun;
1296         timer->it_overrun = -1;
1297         ++timer->it_requeue_pending;
1298 }
1299
1300 /**
1301  * task_cputime_zero - Check a task_cputime struct for all zero fields.
1302  *
1303  * @cputime:    The struct to compare.
1304  *
1305  * Checks @cputime to see if all fields are zero.  Returns true if all fields
1306  * are zero, false if any field is nonzero.
1307  */
1308 static inline int task_cputime_zero(const struct task_cputime *cputime)
1309 {
1310         if (cputime_eq(cputime->utime, cputime_zero) &&
1311             cputime_eq(cputime->stime, cputime_zero) &&
1312             cputime->sum_exec_runtime == 0)
1313                 return 1;
1314         return 0;
1315 }
1316
1317 /**
1318  * task_cputime_expired - Compare two task_cputime entities.
1319  *
1320  * @sample:     The task_cputime structure to be checked for expiration.
1321  * @expires:    Expiration times, against which @sample will be checked.
1322  *
1323  * Checks @sample against @expires to see if any field of @sample has expired.
1324  * Returns true if any field of the former is greater than the corresponding
1325  * field of the latter if the latter field is set.  Otherwise returns false.
1326  */
1327 static inline int task_cputime_expired(const struct task_cputime *sample,
1328                                         const struct task_cputime *expires)
1329 {
1330         if (!cputime_eq(expires->utime, cputime_zero) &&
1331             cputime_ge(sample->utime, expires->utime))
1332                 return 1;
1333         if (!cputime_eq(expires->stime, cputime_zero) &&
1334             cputime_ge(cputime_add(sample->utime, sample->stime),
1335                        expires->stime))
1336                 return 1;
1337         if (expires->sum_exec_runtime != 0 &&
1338             sample->sum_exec_runtime >= expires->sum_exec_runtime)
1339                 return 1;
1340         return 0;
1341 }
1342
1343 /**
1344  * fastpath_timer_check - POSIX CPU timers fast path.
1345  *
1346  * @tsk:        The task (thread) being checked.
1347  *
1348  * Check the task and thread group timers.  If both are zero (there are no
1349  * timers set) return false.  Otherwise snapshot the task and thread group
1350  * timers and compare them with the corresponding expiration times.  Return
1351  * true if a timer has expired, else return false.
1352  */
1353 static inline int fastpath_timer_check(struct task_struct *tsk)
1354 {
1355         struct signal_struct *sig;
1356
1357         /* tsk == current, ensure it is safe to use ->signal/sighand */
1358         if (unlikely(tsk->exit_state))
1359                 return 0;
1360
1361         if (!task_cputime_zero(&tsk->cputime_expires)) {
1362                 struct task_cputime task_sample = {
1363                         .utime = tsk->utime,
1364                         .stime = tsk->stime,
1365                         .sum_exec_runtime = tsk->se.sum_exec_runtime
1366                 };
1367
1368                 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1369                         return 1;
1370         }
1371
1372         sig = tsk->signal;
1373         if (!task_cputime_zero(&sig->cputime_expires)) {
1374                 struct task_cputime group_sample;
1375
1376                 thread_group_cputimer(tsk, &group_sample);
1377                 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1378                         return 1;
1379         }
1380
1381         return sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY;
1382 }
1383
1384 /*
1385  * This is called from the timer interrupt handler.  The irq handler has
1386  * already updated our counts.  We need to check if any timers fire now.
1387  * Interrupts are disabled.
1388  */
1389 void run_posix_cpu_timers(struct task_struct *tsk)
1390 {
1391         LIST_HEAD(firing);
1392         struct k_itimer *timer, *next;
1393
1394         BUG_ON(!irqs_disabled());
1395
1396         /*
1397          * The fast path checks that there are no expired thread or thread
1398          * group timers.  If that's so, just return.
1399          */
1400         if (!fastpath_timer_check(tsk))
1401                 return;
1402
1403         spin_lock(&tsk->sighand->siglock);
1404         /*
1405          * Here we take off tsk->signal->cpu_timers[N] and
1406          * tsk->cpu_timers[N] all the timers that are firing, and
1407          * put them on the firing list.
1408          */
1409         check_thread_timers(tsk, &firing);
1410         check_process_timers(tsk, &firing);
1411
1412         /*
1413          * We must release these locks before taking any timer's lock.
1414          * There is a potential race with timer deletion here, as the
1415          * siglock now protects our private firing list.  We have set
1416          * the firing flag in each timer, so that a deletion attempt
1417          * that gets the timer lock before we do will give it up and
1418          * spin until we've taken care of that timer below.
1419          */
1420         spin_unlock(&tsk->sighand->siglock);
1421
1422         /*
1423          * Now that all the timers on our list have the firing flag,
1424          * noone will touch their list entries but us.  We'll take
1425          * each timer's lock before clearing its firing flag, so no
1426          * timer call will interfere.
1427          */
1428         list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1429                 int cpu_firing;
1430
1431                 spin_lock(&timer->it_lock);
1432                 list_del_init(&timer->it.cpu.entry);
1433                 cpu_firing = timer->it.cpu.firing;
1434                 timer->it.cpu.firing = 0;
1435                 /*
1436                  * The firing flag is -1 if we collided with a reset
1437                  * of the timer, which already reported this
1438                  * almost-firing as an overrun.  So don't generate an event.
1439                  */
1440                 if (likely(cpu_firing >= 0))
1441                         cpu_timer_fire(timer);
1442                 spin_unlock(&timer->it_lock);
1443         }
1444 }
1445
1446 /*
1447  * Set one of the process-wide special case CPU timers.
1448  * The tsk->sighand->siglock must be held by the caller.
1449  * The *newval argument is relative and we update it to be absolute, *oldval
1450  * is absolute and we update it to be relative.
1451  */
1452 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1453                            cputime_t *newval, cputime_t *oldval)
1454 {
1455         union cpu_time_count now;
1456         struct list_head *head;
1457
1458         BUG_ON(clock_idx == CPUCLOCK_SCHED);
1459         cpu_timer_sample_group(clock_idx, tsk, &now);
1460
1461         if (oldval) {
1462                 if (!cputime_eq(*oldval, cputime_zero)) {
1463                         if (cputime_le(*oldval, now.cpu)) {
1464                                 /* Just about to fire. */
1465                                 *oldval = cputime_one_jiffy;
1466                         } else {
1467                                 *oldval = cputime_sub(*oldval, now.cpu);
1468                         }
1469                 }
1470
1471                 if (cputime_eq(*newval, cputime_zero))
1472                         return;
1473                 *newval = cputime_add(*newval, now.cpu);
1474
1475                 /*
1476                  * If the RLIMIT_CPU timer will expire before the
1477                  * ITIMER_PROF timer, we have nothing else to do.
1478                  */
1479                 if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
1480                     < cputime_to_secs(*newval))
1481                         return;
1482         }
1483
1484         /*
1485          * Check whether there are any process timers already set to fire
1486          * before this one.  If so, we don't have anything more to do.
1487          */
1488         head = &tsk->signal->cpu_timers[clock_idx];
1489         if (list_empty(head) ||
1490             cputime_ge(list_first_entry(head,
1491                                   struct cpu_timer_list, entry)->expires.cpu,
1492                        *newval)) {
1493                 switch (clock_idx) {
1494                 case CPUCLOCK_PROF:
1495                         tsk->signal->cputime_expires.prof_exp = *newval;
1496                         break;
1497                 case CPUCLOCK_VIRT:
1498                         tsk->signal->cputime_expires.virt_exp = *newval;
1499                         break;
1500                 }
1501         }
1502 }
1503
1504 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1505                             struct timespec *rqtp, struct itimerspec *it)
1506 {
1507         struct k_itimer timer;
1508         int error;
1509
1510         /*
1511          * Set up a temporary timer and then wait for it to go off.
1512          */
1513         memset(&timer, 0, sizeof timer);
1514         spin_lock_init(&timer.it_lock);
1515         timer.it_clock = which_clock;
1516         timer.it_overrun = -1;
1517         error = posix_cpu_timer_create(&timer);
1518         timer.it_process = current;
1519         if (!error) {
1520                 static struct itimerspec zero_it;
1521
1522                 memset(it, 0, sizeof *it);
1523                 it->it_value = *rqtp;
1524
1525                 spin_lock_irq(&timer.it_lock);
1526                 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1527                 if (error) {
1528                         spin_unlock_irq(&timer.it_lock);
1529                         return error;
1530                 }
1531
1532                 while (!signal_pending(current)) {
1533                         if (timer.it.cpu.expires.sched == 0) {
1534                                 /*
1535                                  * Our timer fired and was reset.
1536                                  */
1537                                 spin_unlock_irq(&timer.it_lock);
1538                                 return 0;
1539                         }
1540
1541                         /*
1542                          * Block until cpu_timer_fire (or a signal) wakes us.
1543                          */
1544                         __set_current_state(TASK_INTERRUPTIBLE);
1545                         spin_unlock_irq(&timer.it_lock);
1546                         schedule();
1547                         spin_lock_irq(&timer.it_lock);
1548                 }
1549
1550                 /*
1551                  * We were interrupted by a signal.
1552                  */
1553                 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1554                 posix_cpu_timer_set(&timer, 0, &zero_it, it);
1555                 spin_unlock_irq(&timer.it_lock);
1556
1557                 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1558                         /*
1559                          * It actually did fire already.
1560                          */
1561                         return 0;
1562                 }
1563
1564                 error = -ERESTART_RESTARTBLOCK;
1565         }
1566
1567         return error;
1568 }
1569
1570 int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1571                      struct timespec *rqtp, struct timespec __user *rmtp)
1572 {
1573         struct restart_block *restart_block =
1574             &current_thread_info()->restart_block;
1575         struct itimerspec it;
1576         int error;
1577
1578         /*
1579          * Diagnose required errors first.
1580          */
1581         if (CPUCLOCK_PERTHREAD(which_clock) &&
1582             (CPUCLOCK_PID(which_clock) == 0 ||
1583              CPUCLOCK_PID(which_clock) == current->pid))
1584                 return -EINVAL;
1585
1586         error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1587
1588         if (error == -ERESTART_RESTARTBLOCK) {
1589
1590                 if (flags & TIMER_ABSTIME)
1591                         return -ERESTARTNOHAND;
1592                 /*
1593                  * Report back to the user the time still remaining.
1594                  */
1595                 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1596                         return -EFAULT;
1597
1598                 restart_block->fn = posix_cpu_nsleep_restart;
1599                 restart_block->arg0 = which_clock;
1600                 restart_block->arg1 = (unsigned long) rmtp;
1601                 restart_block->arg2 = rqtp->tv_sec;
1602                 restart_block->arg3 = rqtp->tv_nsec;
1603         }
1604         return error;
1605 }
1606
1607 long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1608 {
1609         clockid_t which_clock = restart_block->arg0;
1610         struct timespec __user *rmtp;
1611         struct timespec t;
1612         struct itimerspec it;
1613         int error;
1614
1615         rmtp = (struct timespec __user *) restart_block->arg1;
1616         t.tv_sec = restart_block->arg2;
1617         t.tv_nsec = restart_block->arg3;
1618
1619         restart_block->fn = do_no_restart_syscall;
1620         error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1621
1622         if (error == -ERESTART_RESTARTBLOCK) {
1623                 /*
1624                  * Report back to the user the time still remaining.
1625                  */
1626                 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1627                         return -EFAULT;
1628
1629                 restart_block->fn = posix_cpu_nsleep_restart;
1630                 restart_block->arg0 = which_clock;
1631                 restart_block->arg1 = (unsigned long) rmtp;
1632                 restart_block->arg2 = t.tv_sec;
1633                 restart_block->arg3 = t.tv_nsec;
1634         }
1635         return error;
1636
1637 }
1638
1639
1640 #define PROCESS_CLOCK   MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1641 #define THREAD_CLOCK    MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1642
1643 static int process_cpu_clock_getres(const clockid_t which_clock,
1644                                     struct timespec *tp)
1645 {
1646         return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1647 }
1648 static int process_cpu_clock_get(const clockid_t which_clock,
1649                                  struct timespec *tp)
1650 {
1651         return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1652 }
1653 static int process_cpu_timer_create(struct k_itimer *timer)
1654 {
1655         timer->it_clock = PROCESS_CLOCK;
1656         return posix_cpu_timer_create(timer);
1657 }
1658 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1659                               struct timespec *rqtp,
1660                               struct timespec __user *rmtp)
1661 {
1662         return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1663 }
1664 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1665 {
1666         return -EINVAL;
1667 }
1668 static int thread_cpu_clock_getres(const clockid_t which_clock,
1669                                    struct timespec *tp)
1670 {
1671         return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1672 }
1673 static int thread_cpu_clock_get(const clockid_t which_clock,
1674                                 struct timespec *tp)
1675 {
1676         return posix_cpu_clock_get(THREAD_CLOCK, tp);
1677 }
1678 static int thread_cpu_timer_create(struct k_itimer *timer)
1679 {
1680         timer->it_clock = THREAD_CLOCK;
1681         return posix_cpu_timer_create(timer);
1682 }
1683 static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
1684                               struct timespec *rqtp, struct timespec __user *rmtp)
1685 {
1686         return -EINVAL;
1687 }
1688 static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
1689 {
1690         return -EINVAL;
1691 }
1692
1693 static __init int init_posix_cpu_timers(void)
1694 {
1695         struct k_clock process = {
1696                 .clock_getres = process_cpu_clock_getres,
1697                 .clock_get = process_cpu_clock_get,
1698                 .clock_set = do_posix_clock_nosettime,
1699                 .timer_create = process_cpu_timer_create,
1700                 .nsleep = process_cpu_nsleep,
1701                 .nsleep_restart = process_cpu_nsleep_restart,
1702         };
1703         struct k_clock thread = {
1704                 .clock_getres = thread_cpu_clock_getres,
1705                 .clock_get = thread_cpu_clock_get,
1706                 .clock_set = do_posix_clock_nosettime,
1707                 .timer_create = thread_cpu_timer_create,
1708                 .nsleep = thread_cpu_nsleep,
1709                 .nsleep_restart = thread_cpu_nsleep_restart,
1710         };
1711         struct timespec ts;
1712
1713         register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1714         register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1715
1716         cputime_to_timespec(cputime_one_jiffy, &ts);
1717         onecputick = ts.tv_nsec;
1718         WARN_ON(ts.tv_sec != 0);
1719
1720         return 0;
1721 }
1722 __initcall(init_posix_cpu_timers);