perf: Annotate perf_event_read_group() vs perf_event_release_kernel()
[safe/jmp/linux-2.6] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 /*
39  * Each CPU has a list of per CPU events:
40  */
41 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
42
43 int perf_max_events __read_mostly = 1;
44 static int perf_reserved_percpu __read_mostly;
45 static int perf_overcommit __read_mostly = 1;
46
47 static atomic_t nr_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
51
52 /*
53  * perf event paranoia level:
54  *  -1 - not paranoid at all
55  *   0 - disallow raw tracepoint access for unpriv
56  *   1 - disallow cpu events for unpriv
57  *   2 - disallow kernel profiling for unpriv
58  */
59 int sysctl_perf_event_paranoid __read_mostly = 1;
60
61 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62
63 /*
64  * max perf event sample rate
65  */
66 int sysctl_perf_event_sample_rate __read_mostly = 100000;
67
68 static atomic64_t perf_event_id;
69
70 /*
71  * Lock for (sysadmin-configurable) event reservations:
72  */
73 static DEFINE_SPINLOCK(perf_resource_lock);
74
75 /*
76  * Architecture provided APIs - weak aliases:
77  */
78 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79 {
80         return NULL;
81 }
82
83 void __weak hw_perf_disable(void)               { barrier(); }
84 void __weak hw_perf_enable(void)                { barrier(); }
85
86 int __weak
87 hw_perf_group_sched_in(struct perf_event *group_leader,
88                struct perf_cpu_context *cpuctx,
89                struct perf_event_context *ctx)
90 {
91         return 0;
92 }
93
94 void __weak perf_event_print_debug(void)        { }
95
96 static DEFINE_PER_CPU(int, perf_disable_count);
97
98 void perf_disable(void)
99 {
100         if (!__get_cpu_var(perf_disable_count)++)
101                 hw_perf_disable();
102 }
103
104 void perf_enable(void)
105 {
106         if (!--__get_cpu_var(perf_disable_count))
107                 hw_perf_enable();
108 }
109
110 static void get_ctx(struct perf_event_context *ctx)
111 {
112         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
113 }
114
115 static void free_ctx(struct rcu_head *head)
116 {
117         struct perf_event_context *ctx;
118
119         ctx = container_of(head, struct perf_event_context, rcu_head);
120         kfree(ctx);
121 }
122
123 static void put_ctx(struct perf_event_context *ctx)
124 {
125         if (atomic_dec_and_test(&ctx->refcount)) {
126                 if (ctx->parent_ctx)
127                         put_ctx(ctx->parent_ctx);
128                 if (ctx->task)
129                         put_task_struct(ctx->task);
130                 call_rcu(&ctx->rcu_head, free_ctx);
131         }
132 }
133
134 static void unclone_ctx(struct perf_event_context *ctx)
135 {
136         if (ctx->parent_ctx) {
137                 put_ctx(ctx->parent_ctx);
138                 ctx->parent_ctx = NULL;
139         }
140 }
141
142 /*
143  * If we inherit events we want to return the parent event id
144  * to userspace.
145  */
146 static u64 primary_event_id(struct perf_event *event)
147 {
148         u64 id = event->id;
149
150         if (event->parent)
151                 id = event->parent->id;
152
153         return id;
154 }
155
156 /*
157  * Get the perf_event_context for a task and lock it.
158  * This has to cope with with the fact that until it is locked,
159  * the context could get moved to another task.
160  */
161 static struct perf_event_context *
162 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
163 {
164         struct perf_event_context *ctx;
165
166         rcu_read_lock();
167  retry:
168         ctx = rcu_dereference(task->perf_event_ctxp);
169         if (ctx) {
170                 /*
171                  * If this context is a clone of another, it might
172                  * get swapped for another underneath us by
173                  * perf_event_task_sched_out, though the
174                  * rcu_read_lock() protects us from any context
175                  * getting freed.  Lock the context and check if it
176                  * got swapped before we could get the lock, and retry
177                  * if so.  If we locked the right context, then it
178                  * can't get swapped on us any more.
179                  */
180                 raw_spin_lock_irqsave(&ctx->lock, *flags);
181                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
182                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
183                         goto retry;
184                 }
185
186                 if (!atomic_inc_not_zero(&ctx->refcount)) {
187                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
188                         ctx = NULL;
189                 }
190         }
191         rcu_read_unlock();
192         return ctx;
193 }
194
195 /*
196  * Get the context for a task and increment its pin_count so it
197  * can't get swapped to another task.  This also increments its
198  * reference count so that the context can't get freed.
199  */
200 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
201 {
202         struct perf_event_context *ctx;
203         unsigned long flags;
204
205         ctx = perf_lock_task_context(task, &flags);
206         if (ctx) {
207                 ++ctx->pin_count;
208                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
209         }
210         return ctx;
211 }
212
213 static void perf_unpin_context(struct perf_event_context *ctx)
214 {
215         unsigned long flags;
216
217         raw_spin_lock_irqsave(&ctx->lock, flags);
218         --ctx->pin_count;
219         raw_spin_unlock_irqrestore(&ctx->lock, flags);
220         put_ctx(ctx);
221 }
222
223 static inline u64 perf_clock(void)
224 {
225         return cpu_clock(raw_smp_processor_id());
226 }
227
228 /*
229  * Update the record of the current time in a context.
230  */
231 static void update_context_time(struct perf_event_context *ctx)
232 {
233         u64 now = perf_clock();
234
235         ctx->time += now - ctx->timestamp;
236         ctx->timestamp = now;
237 }
238
239 /*
240  * Update the total_time_enabled and total_time_running fields for a event.
241  */
242 static void update_event_times(struct perf_event *event)
243 {
244         struct perf_event_context *ctx = event->ctx;
245         u64 run_end;
246
247         if (event->state < PERF_EVENT_STATE_INACTIVE ||
248             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
249                 return;
250
251         if (ctx->is_active)
252                 run_end = ctx->time;
253         else
254                 run_end = event->tstamp_stopped;
255
256         event->total_time_enabled = run_end - event->tstamp_enabled;
257
258         if (event->state == PERF_EVENT_STATE_INACTIVE)
259                 run_end = event->tstamp_stopped;
260         else
261                 run_end = ctx->time;
262
263         event->total_time_running = run_end - event->tstamp_running;
264 }
265
266 static struct list_head *
267 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
268 {
269         if (event->attr.pinned)
270                 return &ctx->pinned_groups;
271         else
272                 return &ctx->flexible_groups;
273 }
274
275 /*
276  * Add a event from the lists for its context.
277  * Must be called with ctx->mutex and ctx->lock held.
278  */
279 static void
280 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
281 {
282         struct perf_event *group_leader = event->group_leader;
283
284         /*
285          * Depending on whether it is a standalone or sibling event,
286          * add it straight to the context's event list, or to the group
287          * leader's sibling list:
288          */
289         if (group_leader == event) {
290                 struct list_head *list;
291
292                 if (is_software_event(event))
293                         event->group_flags |= PERF_GROUP_SOFTWARE;
294
295                 list = ctx_group_list(event, ctx);
296                 list_add_tail(&event->group_entry, list);
297         } else {
298                 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
299                     !is_software_event(event))
300                         group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
301
302                 list_add_tail(&event->group_entry, &group_leader->sibling_list);
303                 group_leader->nr_siblings++;
304         }
305
306         list_add_rcu(&event->event_entry, &ctx->event_list);
307         ctx->nr_events++;
308         if (event->attr.inherit_stat)
309                 ctx->nr_stat++;
310 }
311
312 /*
313  * Remove a event from the lists for its context.
314  * Must be called with ctx->mutex and ctx->lock held.
315  */
316 static void
317 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
318 {
319         struct perf_event *sibling, *tmp;
320
321         if (list_empty(&event->group_entry))
322                 return;
323         ctx->nr_events--;
324         if (event->attr.inherit_stat)
325                 ctx->nr_stat--;
326
327         list_del_init(&event->group_entry);
328         list_del_rcu(&event->event_entry);
329
330         if (event->group_leader != event)
331                 event->group_leader->nr_siblings--;
332
333         update_event_times(event);
334
335         /*
336          * If event was in error state, then keep it
337          * that way, otherwise bogus counts will be
338          * returned on read(). The only way to get out
339          * of error state is by explicit re-enabling
340          * of the event
341          */
342         if (event->state > PERF_EVENT_STATE_OFF)
343                 event->state = PERF_EVENT_STATE_OFF;
344
345         if (event->state > PERF_EVENT_STATE_FREE)
346                 return;
347
348         /*
349          * If this was a group event with sibling events then
350          * upgrade the siblings to singleton events by adding them
351          * to the context list directly:
352          */
353         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
354                 struct list_head *list;
355
356                 list = ctx_group_list(event, ctx);
357                 list_move_tail(&sibling->group_entry, list);
358                 sibling->group_leader = sibling;
359
360                 /* Inherit group flags from the previous leader */
361                 sibling->group_flags = event->group_flags;
362         }
363 }
364
365 static void
366 event_sched_out(struct perf_event *event,
367                   struct perf_cpu_context *cpuctx,
368                   struct perf_event_context *ctx)
369 {
370         if (event->state != PERF_EVENT_STATE_ACTIVE)
371                 return;
372
373         event->state = PERF_EVENT_STATE_INACTIVE;
374         if (event->pending_disable) {
375                 event->pending_disable = 0;
376                 event->state = PERF_EVENT_STATE_OFF;
377         }
378         event->tstamp_stopped = ctx->time;
379         event->pmu->disable(event);
380         event->oncpu = -1;
381
382         if (!is_software_event(event))
383                 cpuctx->active_oncpu--;
384         ctx->nr_active--;
385         if (event->attr.exclusive || !cpuctx->active_oncpu)
386                 cpuctx->exclusive = 0;
387 }
388
389 static void
390 group_sched_out(struct perf_event *group_event,
391                 struct perf_cpu_context *cpuctx,
392                 struct perf_event_context *ctx)
393 {
394         struct perf_event *event;
395
396         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
397                 return;
398
399         event_sched_out(group_event, cpuctx, ctx);
400
401         /*
402          * Schedule out siblings (if any):
403          */
404         list_for_each_entry(event, &group_event->sibling_list, group_entry)
405                 event_sched_out(event, cpuctx, ctx);
406
407         if (group_event->attr.exclusive)
408                 cpuctx->exclusive = 0;
409 }
410
411 /*
412  * Cross CPU call to remove a performance event
413  *
414  * We disable the event on the hardware level first. After that we
415  * remove it from the context list.
416  */
417 static void __perf_event_remove_from_context(void *info)
418 {
419         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
420         struct perf_event *event = info;
421         struct perf_event_context *ctx = event->ctx;
422
423         /*
424          * If this is a task context, we need to check whether it is
425          * the current task context of this cpu. If not it has been
426          * scheduled out before the smp call arrived.
427          */
428         if (ctx->task && cpuctx->task_ctx != ctx)
429                 return;
430
431         raw_spin_lock(&ctx->lock);
432         /*
433          * Protect the list operation against NMI by disabling the
434          * events on a global level.
435          */
436         perf_disable();
437
438         event_sched_out(event, cpuctx, ctx);
439
440         list_del_event(event, ctx);
441
442         if (!ctx->task) {
443                 /*
444                  * Allow more per task events with respect to the
445                  * reservation:
446                  */
447                 cpuctx->max_pertask =
448                         min(perf_max_events - ctx->nr_events,
449                             perf_max_events - perf_reserved_percpu);
450         }
451
452         perf_enable();
453         raw_spin_unlock(&ctx->lock);
454 }
455
456
457 /*
458  * Remove the event from a task's (or a CPU's) list of events.
459  *
460  * Must be called with ctx->mutex held.
461  *
462  * CPU events are removed with a smp call. For task events we only
463  * call when the task is on a CPU.
464  *
465  * If event->ctx is a cloned context, callers must make sure that
466  * every task struct that event->ctx->task could possibly point to
467  * remains valid.  This is OK when called from perf_release since
468  * that only calls us on the top-level context, which can't be a clone.
469  * When called from perf_event_exit_task, it's OK because the
470  * context has been detached from its task.
471  */
472 static void perf_event_remove_from_context(struct perf_event *event)
473 {
474         struct perf_event_context *ctx = event->ctx;
475         struct task_struct *task = ctx->task;
476
477         if (!task) {
478                 /*
479                  * Per cpu events are removed via an smp call and
480                  * the removal is always successful.
481                  */
482                 smp_call_function_single(event->cpu,
483                                          __perf_event_remove_from_context,
484                                          event, 1);
485                 return;
486         }
487
488 retry:
489         task_oncpu_function_call(task, __perf_event_remove_from_context,
490                                  event);
491
492         raw_spin_lock_irq(&ctx->lock);
493         /*
494          * If the context is active we need to retry the smp call.
495          */
496         if (ctx->nr_active && !list_empty(&event->group_entry)) {
497                 raw_spin_unlock_irq(&ctx->lock);
498                 goto retry;
499         }
500
501         /*
502          * The lock prevents that this context is scheduled in so we
503          * can remove the event safely, if the call above did not
504          * succeed.
505          */
506         if (!list_empty(&event->group_entry))
507                 list_del_event(event, ctx);
508         raw_spin_unlock_irq(&ctx->lock);
509 }
510
511 /*
512  * Update total_time_enabled and total_time_running for all events in a group.
513  */
514 static void update_group_times(struct perf_event *leader)
515 {
516         struct perf_event *event;
517
518         update_event_times(leader);
519         list_for_each_entry(event, &leader->sibling_list, group_entry)
520                 update_event_times(event);
521 }
522
523 /*
524  * Cross CPU call to disable a performance event
525  */
526 static void __perf_event_disable(void *info)
527 {
528         struct perf_event *event = info;
529         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
530         struct perf_event_context *ctx = event->ctx;
531
532         /*
533          * If this is a per-task event, need to check whether this
534          * event's task is the current task on this cpu.
535          */
536         if (ctx->task && cpuctx->task_ctx != ctx)
537                 return;
538
539         raw_spin_lock(&ctx->lock);
540
541         /*
542          * If the event is on, turn it off.
543          * If it is in error state, leave it in error state.
544          */
545         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
546                 update_context_time(ctx);
547                 update_group_times(event);
548                 if (event == event->group_leader)
549                         group_sched_out(event, cpuctx, ctx);
550                 else
551                         event_sched_out(event, cpuctx, ctx);
552                 event->state = PERF_EVENT_STATE_OFF;
553         }
554
555         raw_spin_unlock(&ctx->lock);
556 }
557
558 /*
559  * Disable a event.
560  *
561  * If event->ctx is a cloned context, callers must make sure that
562  * every task struct that event->ctx->task could possibly point to
563  * remains valid.  This condition is satisifed when called through
564  * perf_event_for_each_child or perf_event_for_each because they
565  * hold the top-level event's child_mutex, so any descendant that
566  * goes to exit will block in sync_child_event.
567  * When called from perf_pending_event it's OK because event->ctx
568  * is the current context on this CPU and preemption is disabled,
569  * hence we can't get into perf_event_task_sched_out for this context.
570  */
571 void perf_event_disable(struct perf_event *event)
572 {
573         struct perf_event_context *ctx = event->ctx;
574         struct task_struct *task = ctx->task;
575
576         if (!task) {
577                 /*
578                  * Disable the event on the cpu that it's on
579                  */
580                 smp_call_function_single(event->cpu, __perf_event_disable,
581                                          event, 1);
582                 return;
583         }
584
585  retry:
586         task_oncpu_function_call(task, __perf_event_disable, event);
587
588         raw_spin_lock_irq(&ctx->lock);
589         /*
590          * If the event is still active, we need to retry the cross-call.
591          */
592         if (event->state == PERF_EVENT_STATE_ACTIVE) {
593                 raw_spin_unlock_irq(&ctx->lock);
594                 goto retry;
595         }
596
597         /*
598          * Since we have the lock this context can't be scheduled
599          * in, so we can change the state safely.
600          */
601         if (event->state == PERF_EVENT_STATE_INACTIVE) {
602                 update_group_times(event);
603                 event->state = PERF_EVENT_STATE_OFF;
604         }
605
606         raw_spin_unlock_irq(&ctx->lock);
607 }
608
609 static int
610 event_sched_in(struct perf_event *event,
611                  struct perf_cpu_context *cpuctx,
612                  struct perf_event_context *ctx)
613 {
614         if (event->state <= PERF_EVENT_STATE_OFF)
615                 return 0;
616
617         event->state = PERF_EVENT_STATE_ACTIVE;
618         event->oncpu = smp_processor_id();
619         /*
620          * The new state must be visible before we turn it on in the hardware:
621          */
622         smp_wmb();
623
624         if (event->pmu->enable(event)) {
625                 event->state = PERF_EVENT_STATE_INACTIVE;
626                 event->oncpu = -1;
627                 return -EAGAIN;
628         }
629
630         event->tstamp_running += ctx->time - event->tstamp_stopped;
631
632         if (!is_software_event(event))
633                 cpuctx->active_oncpu++;
634         ctx->nr_active++;
635
636         if (event->attr.exclusive)
637                 cpuctx->exclusive = 1;
638
639         return 0;
640 }
641
642 static int
643 group_sched_in(struct perf_event *group_event,
644                struct perf_cpu_context *cpuctx,
645                struct perf_event_context *ctx)
646 {
647         struct perf_event *event, *partial_group;
648         int ret;
649
650         if (group_event->state == PERF_EVENT_STATE_OFF)
651                 return 0;
652
653         ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
654         if (ret)
655                 return ret < 0 ? ret : 0;
656
657         if (event_sched_in(group_event, cpuctx, ctx))
658                 return -EAGAIN;
659
660         /*
661          * Schedule in siblings as one group (if any):
662          */
663         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
664                 if (event_sched_in(event, cpuctx, ctx)) {
665                         partial_group = event;
666                         goto group_error;
667                 }
668         }
669
670         return 0;
671
672 group_error:
673         /*
674          * Groups can be scheduled in as one unit only, so undo any
675          * partial group before returning:
676          */
677         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
678                 if (event == partial_group)
679                         break;
680                 event_sched_out(event, cpuctx, ctx);
681         }
682         event_sched_out(group_event, cpuctx, ctx);
683
684         return -EAGAIN;
685 }
686
687 /*
688  * Work out whether we can put this event group on the CPU now.
689  */
690 static int group_can_go_on(struct perf_event *event,
691                            struct perf_cpu_context *cpuctx,
692                            int can_add_hw)
693 {
694         /*
695          * Groups consisting entirely of software events can always go on.
696          */
697         if (event->group_flags & PERF_GROUP_SOFTWARE)
698                 return 1;
699         /*
700          * If an exclusive group is already on, no other hardware
701          * events can go on.
702          */
703         if (cpuctx->exclusive)
704                 return 0;
705         /*
706          * If this group is exclusive and there are already
707          * events on the CPU, it can't go on.
708          */
709         if (event->attr.exclusive && cpuctx->active_oncpu)
710                 return 0;
711         /*
712          * Otherwise, try to add it if all previous groups were able
713          * to go on.
714          */
715         return can_add_hw;
716 }
717
718 static void add_event_to_ctx(struct perf_event *event,
719                                struct perf_event_context *ctx)
720 {
721         list_add_event(event, ctx);
722         event->tstamp_enabled = ctx->time;
723         event->tstamp_running = ctx->time;
724         event->tstamp_stopped = ctx->time;
725 }
726
727 /*
728  * Cross CPU call to install and enable a performance event
729  *
730  * Must be called with ctx->mutex held
731  */
732 static void __perf_install_in_context(void *info)
733 {
734         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
735         struct perf_event *event = info;
736         struct perf_event_context *ctx = event->ctx;
737         struct perf_event *leader = event->group_leader;
738         int err;
739
740         /*
741          * If this is a task context, we need to check whether it is
742          * the current task context of this cpu. If not it has been
743          * scheduled out before the smp call arrived.
744          * Or possibly this is the right context but it isn't
745          * on this cpu because it had no events.
746          */
747         if (ctx->task && cpuctx->task_ctx != ctx) {
748                 if (cpuctx->task_ctx || ctx->task != current)
749                         return;
750                 cpuctx->task_ctx = ctx;
751         }
752
753         raw_spin_lock(&ctx->lock);
754         ctx->is_active = 1;
755         update_context_time(ctx);
756
757         /*
758          * Protect the list operation against NMI by disabling the
759          * events on a global level. NOP for non NMI based events.
760          */
761         perf_disable();
762
763         add_event_to_ctx(event, ctx);
764
765         if (event->cpu != -1 && event->cpu != smp_processor_id())
766                 goto unlock;
767
768         /*
769          * Don't put the event on if it is disabled or if
770          * it is in a group and the group isn't on.
771          */
772         if (event->state != PERF_EVENT_STATE_INACTIVE ||
773             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
774                 goto unlock;
775
776         /*
777          * An exclusive event can't go on if there are already active
778          * hardware events, and no hardware event can go on if there
779          * is already an exclusive event on.
780          */
781         if (!group_can_go_on(event, cpuctx, 1))
782                 err = -EEXIST;
783         else
784                 err = event_sched_in(event, cpuctx, ctx);
785
786         if (err) {
787                 /*
788                  * This event couldn't go on.  If it is in a group
789                  * then we have to pull the whole group off.
790                  * If the event group is pinned then put it in error state.
791                  */
792                 if (leader != event)
793                         group_sched_out(leader, cpuctx, ctx);
794                 if (leader->attr.pinned) {
795                         update_group_times(leader);
796                         leader->state = PERF_EVENT_STATE_ERROR;
797                 }
798         }
799
800         if (!err && !ctx->task && cpuctx->max_pertask)
801                 cpuctx->max_pertask--;
802
803  unlock:
804         perf_enable();
805
806         raw_spin_unlock(&ctx->lock);
807 }
808
809 /*
810  * Attach a performance event to a context
811  *
812  * First we add the event to the list with the hardware enable bit
813  * in event->hw_config cleared.
814  *
815  * If the event is attached to a task which is on a CPU we use a smp
816  * call to enable it in the task context. The task might have been
817  * scheduled away, but we check this in the smp call again.
818  *
819  * Must be called with ctx->mutex held.
820  */
821 static void
822 perf_install_in_context(struct perf_event_context *ctx,
823                         struct perf_event *event,
824                         int cpu)
825 {
826         struct task_struct *task = ctx->task;
827
828         if (!task) {
829                 /*
830                  * Per cpu events are installed via an smp call and
831                  * the install is always successful.
832                  */
833                 smp_call_function_single(cpu, __perf_install_in_context,
834                                          event, 1);
835                 return;
836         }
837
838 retry:
839         task_oncpu_function_call(task, __perf_install_in_context,
840                                  event);
841
842         raw_spin_lock_irq(&ctx->lock);
843         /*
844          * we need to retry the smp call.
845          */
846         if (ctx->is_active && list_empty(&event->group_entry)) {
847                 raw_spin_unlock_irq(&ctx->lock);
848                 goto retry;
849         }
850
851         /*
852          * The lock prevents that this context is scheduled in so we
853          * can add the event safely, if it the call above did not
854          * succeed.
855          */
856         if (list_empty(&event->group_entry))
857                 add_event_to_ctx(event, ctx);
858         raw_spin_unlock_irq(&ctx->lock);
859 }
860
861 /*
862  * Put a event into inactive state and update time fields.
863  * Enabling the leader of a group effectively enables all
864  * the group members that aren't explicitly disabled, so we
865  * have to update their ->tstamp_enabled also.
866  * Note: this works for group members as well as group leaders
867  * since the non-leader members' sibling_lists will be empty.
868  */
869 static void __perf_event_mark_enabled(struct perf_event *event,
870                                         struct perf_event_context *ctx)
871 {
872         struct perf_event *sub;
873
874         event->state = PERF_EVENT_STATE_INACTIVE;
875         event->tstamp_enabled = ctx->time - event->total_time_enabled;
876         list_for_each_entry(sub, &event->sibling_list, group_entry)
877                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
878                         sub->tstamp_enabled =
879                                 ctx->time - sub->total_time_enabled;
880 }
881
882 /*
883  * Cross CPU call to enable a performance event
884  */
885 static void __perf_event_enable(void *info)
886 {
887         struct perf_event *event = info;
888         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
889         struct perf_event_context *ctx = event->ctx;
890         struct perf_event *leader = event->group_leader;
891         int err;
892
893         /*
894          * If this is a per-task event, need to check whether this
895          * event's task is the current task on this cpu.
896          */
897         if (ctx->task && cpuctx->task_ctx != ctx) {
898                 if (cpuctx->task_ctx || ctx->task != current)
899                         return;
900                 cpuctx->task_ctx = ctx;
901         }
902
903         raw_spin_lock(&ctx->lock);
904         ctx->is_active = 1;
905         update_context_time(ctx);
906
907         if (event->state >= PERF_EVENT_STATE_INACTIVE)
908                 goto unlock;
909         __perf_event_mark_enabled(event, ctx);
910
911         if (event->cpu != -1 && event->cpu != smp_processor_id())
912                 goto unlock;
913
914         /*
915          * If the event is in a group and isn't the group leader,
916          * then don't put it on unless the group is on.
917          */
918         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
919                 goto unlock;
920
921         if (!group_can_go_on(event, cpuctx, 1)) {
922                 err = -EEXIST;
923         } else {
924                 perf_disable();
925                 if (event == leader)
926                         err = group_sched_in(event, cpuctx, ctx);
927                 else
928                         err = event_sched_in(event, cpuctx, ctx);
929                 perf_enable();
930         }
931
932         if (err) {
933                 /*
934                  * If this event can't go on and it's part of a
935                  * group, then the whole group has to come off.
936                  */
937                 if (leader != event)
938                         group_sched_out(leader, cpuctx, ctx);
939                 if (leader->attr.pinned) {
940                         update_group_times(leader);
941                         leader->state = PERF_EVENT_STATE_ERROR;
942                 }
943         }
944
945  unlock:
946         raw_spin_unlock(&ctx->lock);
947 }
948
949 /*
950  * Enable a event.
951  *
952  * If event->ctx is a cloned context, callers must make sure that
953  * every task struct that event->ctx->task could possibly point to
954  * remains valid.  This condition is satisfied when called through
955  * perf_event_for_each_child or perf_event_for_each as described
956  * for perf_event_disable.
957  */
958 void perf_event_enable(struct perf_event *event)
959 {
960         struct perf_event_context *ctx = event->ctx;
961         struct task_struct *task = ctx->task;
962
963         if (!task) {
964                 /*
965                  * Enable the event on the cpu that it's on
966                  */
967                 smp_call_function_single(event->cpu, __perf_event_enable,
968                                          event, 1);
969                 return;
970         }
971
972         raw_spin_lock_irq(&ctx->lock);
973         if (event->state >= PERF_EVENT_STATE_INACTIVE)
974                 goto out;
975
976         /*
977          * If the event is in error state, clear that first.
978          * That way, if we see the event in error state below, we
979          * know that it has gone back into error state, as distinct
980          * from the task having been scheduled away before the
981          * cross-call arrived.
982          */
983         if (event->state == PERF_EVENT_STATE_ERROR)
984                 event->state = PERF_EVENT_STATE_OFF;
985
986  retry:
987         raw_spin_unlock_irq(&ctx->lock);
988         task_oncpu_function_call(task, __perf_event_enable, event);
989
990         raw_spin_lock_irq(&ctx->lock);
991
992         /*
993          * If the context is active and the event is still off,
994          * we need to retry the cross-call.
995          */
996         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
997                 goto retry;
998
999         /*
1000          * Since we have the lock this context can't be scheduled
1001          * in, so we can change the state safely.
1002          */
1003         if (event->state == PERF_EVENT_STATE_OFF)
1004                 __perf_event_mark_enabled(event, ctx);
1005
1006  out:
1007         raw_spin_unlock_irq(&ctx->lock);
1008 }
1009
1010 static int perf_event_refresh(struct perf_event *event, int refresh)
1011 {
1012         /*
1013          * not supported on inherited events
1014          */
1015         if (event->attr.inherit)
1016                 return -EINVAL;
1017
1018         atomic_add(refresh, &event->event_limit);
1019         perf_event_enable(event);
1020
1021         return 0;
1022 }
1023
1024 enum event_type_t {
1025         EVENT_FLEXIBLE = 0x1,
1026         EVENT_PINNED = 0x2,
1027         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1028 };
1029
1030 static void ctx_sched_out(struct perf_event_context *ctx,
1031                           struct perf_cpu_context *cpuctx,
1032                           enum event_type_t event_type)
1033 {
1034         struct perf_event *event;
1035
1036         raw_spin_lock(&ctx->lock);
1037         ctx->is_active = 0;
1038         if (likely(!ctx->nr_events))
1039                 goto out;
1040         update_context_time(ctx);
1041
1042         perf_disable();
1043         if (!ctx->nr_active)
1044                 goto out_enable;
1045
1046         if (event_type & EVENT_PINNED)
1047                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1048                         group_sched_out(event, cpuctx, ctx);
1049
1050         if (event_type & EVENT_FLEXIBLE)
1051                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1052                         group_sched_out(event, cpuctx, ctx);
1053
1054  out_enable:
1055         perf_enable();
1056  out:
1057         raw_spin_unlock(&ctx->lock);
1058 }
1059
1060 /*
1061  * Test whether two contexts are equivalent, i.e. whether they
1062  * have both been cloned from the same version of the same context
1063  * and they both have the same number of enabled events.
1064  * If the number of enabled events is the same, then the set
1065  * of enabled events should be the same, because these are both
1066  * inherited contexts, therefore we can't access individual events
1067  * in them directly with an fd; we can only enable/disable all
1068  * events via prctl, or enable/disable all events in a family
1069  * via ioctl, which will have the same effect on both contexts.
1070  */
1071 static int context_equiv(struct perf_event_context *ctx1,
1072                          struct perf_event_context *ctx2)
1073 {
1074         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1075                 && ctx1->parent_gen == ctx2->parent_gen
1076                 && !ctx1->pin_count && !ctx2->pin_count;
1077 }
1078
1079 static void __perf_event_sync_stat(struct perf_event *event,
1080                                      struct perf_event *next_event)
1081 {
1082         u64 value;
1083
1084         if (!event->attr.inherit_stat)
1085                 return;
1086
1087         /*
1088          * Update the event value, we cannot use perf_event_read()
1089          * because we're in the middle of a context switch and have IRQs
1090          * disabled, which upsets smp_call_function_single(), however
1091          * we know the event must be on the current CPU, therefore we
1092          * don't need to use it.
1093          */
1094         switch (event->state) {
1095         case PERF_EVENT_STATE_ACTIVE:
1096                 event->pmu->read(event);
1097                 /* fall-through */
1098
1099         case PERF_EVENT_STATE_INACTIVE:
1100                 update_event_times(event);
1101                 break;
1102
1103         default:
1104                 break;
1105         }
1106
1107         /*
1108          * In order to keep per-task stats reliable we need to flip the event
1109          * values when we flip the contexts.
1110          */
1111         value = atomic64_read(&next_event->count);
1112         value = atomic64_xchg(&event->count, value);
1113         atomic64_set(&next_event->count, value);
1114
1115         swap(event->total_time_enabled, next_event->total_time_enabled);
1116         swap(event->total_time_running, next_event->total_time_running);
1117
1118         /*
1119          * Since we swizzled the values, update the user visible data too.
1120          */
1121         perf_event_update_userpage(event);
1122         perf_event_update_userpage(next_event);
1123 }
1124
1125 #define list_next_entry(pos, member) \
1126         list_entry(pos->member.next, typeof(*pos), member)
1127
1128 static void perf_event_sync_stat(struct perf_event_context *ctx,
1129                                    struct perf_event_context *next_ctx)
1130 {
1131         struct perf_event *event, *next_event;
1132
1133         if (!ctx->nr_stat)
1134                 return;
1135
1136         update_context_time(ctx);
1137
1138         event = list_first_entry(&ctx->event_list,
1139                                    struct perf_event, event_entry);
1140
1141         next_event = list_first_entry(&next_ctx->event_list,
1142                                         struct perf_event, event_entry);
1143
1144         while (&event->event_entry != &ctx->event_list &&
1145                &next_event->event_entry != &next_ctx->event_list) {
1146
1147                 __perf_event_sync_stat(event, next_event);
1148
1149                 event = list_next_entry(event, event_entry);
1150                 next_event = list_next_entry(next_event, event_entry);
1151         }
1152 }
1153
1154 /*
1155  * Called from scheduler to remove the events of the current task,
1156  * with interrupts disabled.
1157  *
1158  * We stop each event and update the event value in event->count.
1159  *
1160  * This does not protect us against NMI, but disable()
1161  * sets the disabled bit in the control field of event _before_
1162  * accessing the event control register. If a NMI hits, then it will
1163  * not restart the event.
1164  */
1165 void perf_event_task_sched_out(struct task_struct *task,
1166                                  struct task_struct *next)
1167 {
1168         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1169         struct perf_event_context *ctx = task->perf_event_ctxp;
1170         struct perf_event_context *next_ctx;
1171         struct perf_event_context *parent;
1172         int do_switch = 1;
1173
1174         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1175
1176         if (likely(!ctx || !cpuctx->task_ctx))
1177                 return;
1178
1179         rcu_read_lock();
1180         parent = rcu_dereference(ctx->parent_ctx);
1181         next_ctx = next->perf_event_ctxp;
1182         if (parent && next_ctx &&
1183             rcu_dereference(next_ctx->parent_ctx) == parent) {
1184                 /*
1185                  * Looks like the two contexts are clones, so we might be
1186                  * able to optimize the context switch.  We lock both
1187                  * contexts and check that they are clones under the
1188                  * lock (including re-checking that neither has been
1189                  * uncloned in the meantime).  It doesn't matter which
1190                  * order we take the locks because no other cpu could
1191                  * be trying to lock both of these tasks.
1192                  */
1193                 raw_spin_lock(&ctx->lock);
1194                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1195                 if (context_equiv(ctx, next_ctx)) {
1196                         /*
1197                          * XXX do we need a memory barrier of sorts
1198                          * wrt to rcu_dereference() of perf_event_ctxp
1199                          */
1200                         task->perf_event_ctxp = next_ctx;
1201                         next->perf_event_ctxp = ctx;
1202                         ctx->task = next;
1203                         next_ctx->task = task;
1204                         do_switch = 0;
1205
1206                         perf_event_sync_stat(ctx, next_ctx);
1207                 }
1208                 raw_spin_unlock(&next_ctx->lock);
1209                 raw_spin_unlock(&ctx->lock);
1210         }
1211         rcu_read_unlock();
1212
1213         if (do_switch) {
1214                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1215                 cpuctx->task_ctx = NULL;
1216         }
1217 }
1218
1219 static void task_ctx_sched_out(struct perf_event_context *ctx,
1220                                enum event_type_t event_type)
1221 {
1222         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1223
1224         if (!cpuctx->task_ctx)
1225                 return;
1226
1227         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1228                 return;
1229
1230         ctx_sched_out(ctx, cpuctx, event_type);
1231         cpuctx->task_ctx = NULL;
1232 }
1233
1234 /*
1235  * Called with IRQs disabled
1236  */
1237 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1238 {
1239         task_ctx_sched_out(ctx, EVENT_ALL);
1240 }
1241
1242 /*
1243  * Called with IRQs disabled
1244  */
1245 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1246                               enum event_type_t event_type)
1247 {
1248         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1249 }
1250
1251 static void
1252 ctx_pinned_sched_in(struct perf_event_context *ctx,
1253                     struct perf_cpu_context *cpuctx)
1254 {
1255         struct perf_event *event;
1256
1257         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1258                 if (event->state <= PERF_EVENT_STATE_OFF)
1259                         continue;
1260                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1261                         continue;
1262
1263                 if (group_can_go_on(event, cpuctx, 1))
1264                         group_sched_in(event, cpuctx, ctx);
1265
1266                 /*
1267                  * If this pinned group hasn't been scheduled,
1268                  * put it in error state.
1269                  */
1270                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1271                         update_group_times(event);
1272                         event->state = PERF_EVENT_STATE_ERROR;
1273                 }
1274         }
1275 }
1276
1277 static void
1278 ctx_flexible_sched_in(struct perf_event_context *ctx,
1279                       struct perf_cpu_context *cpuctx)
1280 {
1281         struct perf_event *event;
1282         int can_add_hw = 1;
1283
1284         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1285                 /* Ignore events in OFF or ERROR state */
1286                 if (event->state <= PERF_EVENT_STATE_OFF)
1287                         continue;
1288                 /*
1289                  * Listen to the 'cpu' scheduling filter constraint
1290                  * of events:
1291                  */
1292                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1293                         continue;
1294
1295                 if (group_can_go_on(event, cpuctx, can_add_hw))
1296                         if (group_sched_in(event, cpuctx, ctx))
1297                                 can_add_hw = 0;
1298         }
1299 }
1300
1301 static void
1302 ctx_sched_in(struct perf_event_context *ctx,
1303              struct perf_cpu_context *cpuctx,
1304              enum event_type_t event_type)
1305 {
1306         raw_spin_lock(&ctx->lock);
1307         ctx->is_active = 1;
1308         if (likely(!ctx->nr_events))
1309                 goto out;
1310
1311         ctx->timestamp = perf_clock();
1312
1313         perf_disable();
1314
1315         /*
1316          * First go through the list and put on any pinned groups
1317          * in order to give them the best chance of going on.
1318          */
1319         if (event_type & EVENT_PINNED)
1320                 ctx_pinned_sched_in(ctx, cpuctx);
1321
1322         /* Then walk through the lower prio flexible groups */
1323         if (event_type & EVENT_FLEXIBLE)
1324                 ctx_flexible_sched_in(ctx, cpuctx);
1325
1326         perf_enable();
1327  out:
1328         raw_spin_unlock(&ctx->lock);
1329 }
1330
1331 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1332                              enum event_type_t event_type)
1333 {
1334         struct perf_event_context *ctx = &cpuctx->ctx;
1335
1336         ctx_sched_in(ctx, cpuctx, event_type);
1337 }
1338
1339 static void task_ctx_sched_in(struct task_struct *task,
1340                               enum event_type_t event_type)
1341 {
1342         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1343         struct perf_event_context *ctx = task->perf_event_ctxp;
1344
1345         if (likely(!ctx))
1346                 return;
1347         if (cpuctx->task_ctx == ctx)
1348                 return;
1349         ctx_sched_in(ctx, cpuctx, event_type);
1350         cpuctx->task_ctx = ctx;
1351 }
1352 /*
1353  * Called from scheduler to add the events of the current task
1354  * with interrupts disabled.
1355  *
1356  * We restore the event value and then enable it.
1357  *
1358  * This does not protect us against NMI, but enable()
1359  * sets the enabled bit in the control field of event _before_
1360  * accessing the event control register. If a NMI hits, then it will
1361  * keep the event running.
1362  */
1363 void perf_event_task_sched_in(struct task_struct *task)
1364 {
1365         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1366         struct perf_event_context *ctx = task->perf_event_ctxp;
1367
1368         if (likely(!ctx))
1369                 return;
1370
1371         if (cpuctx->task_ctx == ctx)
1372                 return;
1373
1374         perf_disable();
1375
1376         /*
1377          * We want to keep the following priority order:
1378          * cpu pinned (that don't need to move), task pinned,
1379          * cpu flexible, task flexible.
1380          */
1381         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1382
1383         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1384         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1385         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1386
1387         cpuctx->task_ctx = ctx;
1388
1389         perf_enable();
1390 }
1391
1392 #define MAX_INTERRUPTS (~0ULL)
1393
1394 static void perf_log_throttle(struct perf_event *event, int enable);
1395
1396 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1397 {
1398         u64 frequency = event->attr.sample_freq;
1399         u64 sec = NSEC_PER_SEC;
1400         u64 divisor, dividend;
1401
1402         int count_fls, nsec_fls, frequency_fls, sec_fls;
1403
1404         count_fls = fls64(count);
1405         nsec_fls = fls64(nsec);
1406         frequency_fls = fls64(frequency);
1407         sec_fls = 30;
1408
1409         /*
1410          * We got @count in @nsec, with a target of sample_freq HZ
1411          * the target period becomes:
1412          *
1413          *             @count * 10^9
1414          * period = -------------------
1415          *          @nsec * sample_freq
1416          *
1417          */
1418
1419         /*
1420          * Reduce accuracy by one bit such that @a and @b converge
1421          * to a similar magnitude.
1422          */
1423 #define REDUCE_FLS(a, b)                \
1424 do {                                    \
1425         if (a##_fls > b##_fls) {        \
1426                 a >>= 1;                \
1427                 a##_fls--;              \
1428         } else {                        \
1429                 b >>= 1;                \
1430                 b##_fls--;              \
1431         }                               \
1432 } while (0)
1433
1434         /*
1435          * Reduce accuracy until either term fits in a u64, then proceed with
1436          * the other, so that finally we can do a u64/u64 division.
1437          */
1438         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1439                 REDUCE_FLS(nsec, frequency);
1440                 REDUCE_FLS(sec, count);
1441         }
1442
1443         if (count_fls + sec_fls > 64) {
1444                 divisor = nsec * frequency;
1445
1446                 while (count_fls + sec_fls > 64) {
1447                         REDUCE_FLS(count, sec);
1448                         divisor >>= 1;
1449                 }
1450
1451                 dividend = count * sec;
1452         } else {
1453                 dividend = count * sec;
1454
1455                 while (nsec_fls + frequency_fls > 64) {
1456                         REDUCE_FLS(nsec, frequency);
1457                         dividend >>= 1;
1458                 }
1459
1460                 divisor = nsec * frequency;
1461         }
1462
1463         return div64_u64(dividend, divisor);
1464 }
1465
1466 static void perf_event_stop(struct perf_event *event)
1467 {
1468         if (!event->pmu->stop)
1469                 return event->pmu->disable(event);
1470
1471         return event->pmu->stop(event);
1472 }
1473
1474 static int perf_event_start(struct perf_event *event)
1475 {
1476         if (!event->pmu->start)
1477                 return event->pmu->enable(event);
1478
1479         return event->pmu->start(event);
1480 }
1481
1482 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1483 {
1484         struct hw_perf_event *hwc = &event->hw;
1485         u64 period, sample_period;
1486         s64 delta;
1487
1488         period = perf_calculate_period(event, nsec, count);
1489
1490         delta = (s64)(period - hwc->sample_period);
1491         delta = (delta + 7) / 8; /* low pass filter */
1492
1493         sample_period = hwc->sample_period + delta;
1494
1495         if (!sample_period)
1496                 sample_period = 1;
1497
1498         hwc->sample_period = sample_period;
1499
1500         if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1501                 perf_disable();
1502                 perf_event_stop(event);
1503                 atomic64_set(&hwc->period_left, 0);
1504                 perf_event_start(event);
1505                 perf_enable();
1506         }
1507 }
1508
1509 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1510 {
1511         struct perf_event *event;
1512         struct hw_perf_event *hwc;
1513         u64 interrupts, now;
1514         s64 delta;
1515
1516         raw_spin_lock(&ctx->lock);
1517         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1518                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1519                         continue;
1520
1521                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1522                         continue;
1523
1524                 hwc = &event->hw;
1525
1526                 interrupts = hwc->interrupts;
1527                 hwc->interrupts = 0;
1528
1529                 /*
1530                  * unthrottle events on the tick
1531                  */
1532                 if (interrupts == MAX_INTERRUPTS) {
1533                         perf_log_throttle(event, 1);
1534                         perf_disable();
1535                         event->pmu->unthrottle(event);
1536                         perf_enable();
1537                 }
1538
1539                 if (!event->attr.freq || !event->attr.sample_freq)
1540                         continue;
1541
1542                 perf_disable();
1543                 event->pmu->read(event);
1544                 now = atomic64_read(&event->count);
1545                 delta = now - hwc->freq_count_stamp;
1546                 hwc->freq_count_stamp = now;
1547
1548                 if (delta > 0)
1549                         perf_adjust_period(event, TICK_NSEC, delta);
1550                 perf_enable();
1551         }
1552         raw_spin_unlock(&ctx->lock);
1553 }
1554
1555 /*
1556  * Round-robin a context's events:
1557  */
1558 static void rotate_ctx(struct perf_event_context *ctx)
1559 {
1560         raw_spin_lock(&ctx->lock);
1561
1562         /* Rotate the first entry last of non-pinned groups */
1563         list_rotate_left(&ctx->flexible_groups);
1564
1565         raw_spin_unlock(&ctx->lock);
1566 }
1567
1568 void perf_event_task_tick(struct task_struct *curr)
1569 {
1570         struct perf_cpu_context *cpuctx;
1571         struct perf_event_context *ctx;
1572         int rotate = 0;
1573
1574         if (!atomic_read(&nr_events))
1575                 return;
1576
1577         cpuctx = &__get_cpu_var(perf_cpu_context);
1578         if (cpuctx->ctx.nr_events &&
1579             cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1580                 rotate = 1;
1581
1582         ctx = curr->perf_event_ctxp;
1583         if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1584                 rotate = 1;
1585
1586         perf_ctx_adjust_freq(&cpuctx->ctx);
1587         if (ctx)
1588                 perf_ctx_adjust_freq(ctx);
1589
1590         if (!rotate)
1591                 return;
1592
1593         perf_disable();
1594         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1595         if (ctx)
1596                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1597
1598         rotate_ctx(&cpuctx->ctx);
1599         if (ctx)
1600                 rotate_ctx(ctx);
1601
1602         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1603         if (ctx)
1604                 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1605         perf_enable();
1606 }
1607
1608 static int event_enable_on_exec(struct perf_event *event,
1609                                 struct perf_event_context *ctx)
1610 {
1611         if (!event->attr.enable_on_exec)
1612                 return 0;
1613
1614         event->attr.enable_on_exec = 0;
1615         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1616                 return 0;
1617
1618         __perf_event_mark_enabled(event, ctx);
1619
1620         return 1;
1621 }
1622
1623 /*
1624  * Enable all of a task's events that have been marked enable-on-exec.
1625  * This expects task == current.
1626  */
1627 static void perf_event_enable_on_exec(struct task_struct *task)
1628 {
1629         struct perf_event_context *ctx;
1630         struct perf_event *event;
1631         unsigned long flags;
1632         int enabled = 0;
1633         int ret;
1634
1635         local_irq_save(flags);
1636         ctx = task->perf_event_ctxp;
1637         if (!ctx || !ctx->nr_events)
1638                 goto out;
1639
1640         __perf_event_task_sched_out(ctx);
1641
1642         raw_spin_lock(&ctx->lock);
1643
1644         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1645                 ret = event_enable_on_exec(event, ctx);
1646                 if (ret)
1647                         enabled = 1;
1648         }
1649
1650         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1651                 ret = event_enable_on_exec(event, ctx);
1652                 if (ret)
1653                         enabled = 1;
1654         }
1655
1656         /*
1657          * Unclone this context if we enabled any event.
1658          */
1659         if (enabled)
1660                 unclone_ctx(ctx);
1661
1662         raw_spin_unlock(&ctx->lock);
1663
1664         perf_event_task_sched_in(task);
1665  out:
1666         local_irq_restore(flags);
1667 }
1668
1669 /*
1670  * Cross CPU call to read the hardware event
1671  */
1672 static void __perf_event_read(void *info)
1673 {
1674         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1675         struct perf_event *event = info;
1676         struct perf_event_context *ctx = event->ctx;
1677
1678         /*
1679          * If this is a task context, we need to check whether it is
1680          * the current task context of this cpu.  If not it has been
1681          * scheduled out before the smp call arrived.  In that case
1682          * event->count would have been updated to a recent sample
1683          * when the event was scheduled out.
1684          */
1685         if (ctx->task && cpuctx->task_ctx != ctx)
1686                 return;
1687
1688         raw_spin_lock(&ctx->lock);
1689         update_context_time(ctx);
1690         update_event_times(event);
1691         raw_spin_unlock(&ctx->lock);
1692
1693         event->pmu->read(event);
1694 }
1695
1696 static u64 perf_event_read(struct perf_event *event)
1697 {
1698         /*
1699          * If event is enabled and currently active on a CPU, update the
1700          * value in the event structure:
1701          */
1702         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1703                 smp_call_function_single(event->oncpu,
1704                                          __perf_event_read, event, 1);
1705         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1706                 struct perf_event_context *ctx = event->ctx;
1707                 unsigned long flags;
1708
1709                 raw_spin_lock_irqsave(&ctx->lock, flags);
1710                 update_context_time(ctx);
1711                 update_event_times(event);
1712                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1713         }
1714
1715         return atomic64_read(&event->count);
1716 }
1717
1718 /*
1719  * Initialize the perf_event context in a task_struct:
1720  */
1721 static void
1722 __perf_event_init_context(struct perf_event_context *ctx,
1723                             struct task_struct *task)
1724 {
1725         raw_spin_lock_init(&ctx->lock);
1726         mutex_init(&ctx->mutex);
1727         INIT_LIST_HEAD(&ctx->pinned_groups);
1728         INIT_LIST_HEAD(&ctx->flexible_groups);
1729         INIT_LIST_HEAD(&ctx->event_list);
1730         atomic_set(&ctx->refcount, 1);
1731         ctx->task = task;
1732 }
1733
1734 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1735 {
1736         struct perf_event_context *ctx;
1737         struct perf_cpu_context *cpuctx;
1738         struct task_struct *task;
1739         unsigned long flags;
1740         int err;
1741
1742         if (pid == -1 && cpu != -1) {
1743                 /* Must be root to operate on a CPU event: */
1744                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1745                         return ERR_PTR(-EACCES);
1746
1747                 if (cpu < 0 || cpu >= nr_cpumask_bits)
1748                         return ERR_PTR(-EINVAL);
1749
1750                 /*
1751                  * We could be clever and allow to attach a event to an
1752                  * offline CPU and activate it when the CPU comes up, but
1753                  * that's for later.
1754                  */
1755                 if (!cpu_online(cpu))
1756                         return ERR_PTR(-ENODEV);
1757
1758                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1759                 ctx = &cpuctx->ctx;
1760                 get_ctx(ctx);
1761
1762                 return ctx;
1763         }
1764
1765         rcu_read_lock();
1766         if (!pid)
1767                 task = current;
1768         else
1769                 task = find_task_by_vpid(pid);
1770         if (task)
1771                 get_task_struct(task);
1772         rcu_read_unlock();
1773
1774         if (!task)
1775                 return ERR_PTR(-ESRCH);
1776
1777         /*
1778          * Can't attach events to a dying task.
1779          */
1780         err = -ESRCH;
1781         if (task->flags & PF_EXITING)
1782                 goto errout;
1783
1784         /* Reuse ptrace permission checks for now. */
1785         err = -EACCES;
1786         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1787                 goto errout;
1788
1789  retry:
1790         ctx = perf_lock_task_context(task, &flags);
1791         if (ctx) {
1792                 unclone_ctx(ctx);
1793                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1794         }
1795
1796         if (!ctx) {
1797                 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1798                 err = -ENOMEM;
1799                 if (!ctx)
1800                         goto errout;
1801                 __perf_event_init_context(ctx, task);
1802                 get_ctx(ctx);
1803                 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1804                         /*
1805                          * We raced with some other task; use
1806                          * the context they set.
1807                          */
1808                         kfree(ctx);
1809                         goto retry;
1810                 }
1811                 get_task_struct(task);
1812         }
1813
1814         put_task_struct(task);
1815         return ctx;
1816
1817  errout:
1818         put_task_struct(task);
1819         return ERR_PTR(err);
1820 }
1821
1822 static void perf_event_free_filter(struct perf_event *event);
1823
1824 static void free_event_rcu(struct rcu_head *head)
1825 {
1826         struct perf_event *event;
1827
1828         event = container_of(head, struct perf_event, rcu_head);
1829         if (event->ns)
1830                 put_pid_ns(event->ns);
1831         perf_event_free_filter(event);
1832         kfree(event);
1833 }
1834
1835 static void perf_pending_sync(struct perf_event *event);
1836
1837 static void free_event(struct perf_event *event)
1838 {
1839         perf_pending_sync(event);
1840
1841         if (!event->parent) {
1842                 atomic_dec(&nr_events);
1843                 if (event->attr.mmap)
1844                         atomic_dec(&nr_mmap_events);
1845                 if (event->attr.comm)
1846                         atomic_dec(&nr_comm_events);
1847                 if (event->attr.task)
1848                         atomic_dec(&nr_task_events);
1849         }
1850
1851         if (event->output) {
1852                 fput(event->output->filp);
1853                 event->output = NULL;
1854         }
1855
1856         if (event->destroy)
1857                 event->destroy(event);
1858
1859         put_ctx(event->ctx);
1860         call_rcu(&event->rcu_head, free_event_rcu);
1861 }
1862
1863 int perf_event_release_kernel(struct perf_event *event)
1864 {
1865         struct perf_event_context *ctx = event->ctx;
1866
1867         event->state = PERF_EVENT_STATE_FREE;
1868
1869         WARN_ON_ONCE(ctx->parent_ctx);
1870         /*
1871          * There are two ways this annotation is useful:
1872          *
1873          *  1) there is a lock recursion from perf_event_exit_task
1874          *     see the comment there.
1875          *
1876          *  2) there is a lock-inversion with mmap_sem through
1877          *     perf_event_read_group(), which takes faults while
1878          *     holding ctx->mutex, however this is called after
1879          *     the last filedesc died, so there is no possibility
1880          *     to trigger the AB-BA case.
1881          */
1882         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1883         perf_event_remove_from_context(event);
1884         mutex_unlock(&ctx->mutex);
1885
1886         mutex_lock(&event->owner->perf_event_mutex);
1887         list_del_init(&event->owner_entry);
1888         mutex_unlock(&event->owner->perf_event_mutex);
1889         put_task_struct(event->owner);
1890
1891         free_event(event);
1892
1893         return 0;
1894 }
1895 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1896
1897 /*
1898  * Called when the last reference to the file is gone.
1899  */
1900 static int perf_release(struct inode *inode, struct file *file)
1901 {
1902         struct perf_event *event = file->private_data;
1903
1904         file->private_data = NULL;
1905
1906         return perf_event_release_kernel(event);
1907 }
1908
1909 static int perf_event_read_size(struct perf_event *event)
1910 {
1911         int entry = sizeof(u64); /* value */
1912         int size = 0;
1913         int nr = 1;
1914
1915         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1916                 size += sizeof(u64);
1917
1918         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1919                 size += sizeof(u64);
1920
1921         if (event->attr.read_format & PERF_FORMAT_ID)
1922                 entry += sizeof(u64);
1923
1924         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1925                 nr += event->group_leader->nr_siblings;
1926                 size += sizeof(u64);
1927         }
1928
1929         size += entry * nr;
1930
1931         return size;
1932 }
1933
1934 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1935 {
1936         struct perf_event *child;
1937         u64 total = 0;
1938
1939         *enabled = 0;
1940         *running = 0;
1941
1942         mutex_lock(&event->child_mutex);
1943         total += perf_event_read(event);
1944         *enabled += event->total_time_enabled +
1945                         atomic64_read(&event->child_total_time_enabled);
1946         *running += event->total_time_running +
1947                         atomic64_read(&event->child_total_time_running);
1948
1949         list_for_each_entry(child, &event->child_list, child_list) {
1950                 total += perf_event_read(child);
1951                 *enabled += child->total_time_enabled;
1952                 *running += child->total_time_running;
1953         }
1954         mutex_unlock(&event->child_mutex);
1955
1956         return total;
1957 }
1958 EXPORT_SYMBOL_GPL(perf_event_read_value);
1959
1960 static int perf_event_read_group(struct perf_event *event,
1961                                    u64 read_format, char __user *buf)
1962 {
1963         struct perf_event *leader = event->group_leader, *sub;
1964         int n = 0, size = 0, ret = -EFAULT;
1965         struct perf_event_context *ctx = leader->ctx;
1966         u64 values[5];
1967         u64 count, enabled, running;
1968
1969         mutex_lock(&ctx->mutex);
1970         count = perf_event_read_value(leader, &enabled, &running);
1971
1972         values[n++] = 1 + leader->nr_siblings;
1973         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1974                 values[n++] = enabled;
1975         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1976                 values[n++] = running;
1977         values[n++] = count;
1978         if (read_format & PERF_FORMAT_ID)
1979                 values[n++] = primary_event_id(leader);
1980
1981         size = n * sizeof(u64);
1982
1983         if (copy_to_user(buf, values, size))
1984                 goto unlock;
1985
1986         ret = size;
1987
1988         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1989                 n = 0;
1990
1991                 values[n++] = perf_event_read_value(sub, &enabled, &running);
1992                 if (read_format & PERF_FORMAT_ID)
1993                         values[n++] = primary_event_id(sub);
1994
1995                 size = n * sizeof(u64);
1996
1997                 if (copy_to_user(buf + ret, values, size)) {
1998                         ret = -EFAULT;
1999                         goto unlock;
2000                 }
2001
2002                 ret += size;
2003         }
2004 unlock:
2005         mutex_unlock(&ctx->mutex);
2006
2007         return ret;
2008 }
2009
2010 static int perf_event_read_one(struct perf_event *event,
2011                                  u64 read_format, char __user *buf)
2012 {
2013         u64 enabled, running;
2014         u64 values[4];
2015         int n = 0;
2016
2017         values[n++] = perf_event_read_value(event, &enabled, &running);
2018         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2019                 values[n++] = enabled;
2020         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2021                 values[n++] = running;
2022         if (read_format & PERF_FORMAT_ID)
2023                 values[n++] = primary_event_id(event);
2024
2025         if (copy_to_user(buf, values, n * sizeof(u64)))
2026                 return -EFAULT;
2027
2028         return n * sizeof(u64);
2029 }
2030
2031 /*
2032  * Read the performance event - simple non blocking version for now
2033  */
2034 static ssize_t
2035 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2036 {
2037         u64 read_format = event->attr.read_format;
2038         int ret;
2039
2040         /*
2041          * Return end-of-file for a read on a event that is in
2042          * error state (i.e. because it was pinned but it couldn't be
2043          * scheduled on to the CPU at some point).
2044          */
2045         if (event->state == PERF_EVENT_STATE_ERROR)
2046                 return 0;
2047
2048         if (count < perf_event_read_size(event))
2049                 return -ENOSPC;
2050
2051         WARN_ON_ONCE(event->ctx->parent_ctx);
2052         if (read_format & PERF_FORMAT_GROUP)
2053                 ret = perf_event_read_group(event, read_format, buf);
2054         else
2055                 ret = perf_event_read_one(event, read_format, buf);
2056
2057         return ret;
2058 }
2059
2060 static ssize_t
2061 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2062 {
2063         struct perf_event *event = file->private_data;
2064
2065         return perf_read_hw(event, buf, count);
2066 }
2067
2068 static unsigned int perf_poll(struct file *file, poll_table *wait)
2069 {
2070         struct perf_event *event = file->private_data;
2071         struct perf_mmap_data *data;
2072         unsigned int events = POLL_HUP;
2073
2074         rcu_read_lock();
2075         data = rcu_dereference(event->data);
2076         if (data)
2077                 events = atomic_xchg(&data->poll, 0);
2078         rcu_read_unlock();
2079
2080         poll_wait(file, &event->waitq, wait);
2081
2082         return events;
2083 }
2084
2085 static void perf_event_reset(struct perf_event *event)
2086 {
2087         (void)perf_event_read(event);
2088         atomic64_set(&event->count, 0);
2089         perf_event_update_userpage(event);
2090 }
2091
2092 /*
2093  * Holding the top-level event's child_mutex means that any
2094  * descendant process that has inherited this event will block
2095  * in sync_child_event if it goes to exit, thus satisfying the
2096  * task existence requirements of perf_event_enable/disable.
2097  */
2098 static void perf_event_for_each_child(struct perf_event *event,
2099                                         void (*func)(struct perf_event *))
2100 {
2101         struct perf_event *child;
2102
2103         WARN_ON_ONCE(event->ctx->parent_ctx);
2104         mutex_lock(&event->child_mutex);
2105         func(event);
2106         list_for_each_entry(child, &event->child_list, child_list)
2107                 func(child);
2108         mutex_unlock(&event->child_mutex);
2109 }
2110
2111 static void perf_event_for_each(struct perf_event *event,
2112                                   void (*func)(struct perf_event *))
2113 {
2114         struct perf_event_context *ctx = event->ctx;
2115         struct perf_event *sibling;
2116
2117         WARN_ON_ONCE(ctx->parent_ctx);
2118         mutex_lock(&ctx->mutex);
2119         event = event->group_leader;
2120
2121         perf_event_for_each_child(event, func);
2122         func(event);
2123         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2124                 perf_event_for_each_child(event, func);
2125         mutex_unlock(&ctx->mutex);
2126 }
2127
2128 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2129 {
2130         struct perf_event_context *ctx = event->ctx;
2131         unsigned long size;
2132         int ret = 0;
2133         u64 value;
2134
2135         if (!event->attr.sample_period)
2136                 return -EINVAL;
2137
2138         size = copy_from_user(&value, arg, sizeof(value));
2139         if (size != sizeof(value))
2140                 return -EFAULT;
2141
2142         if (!value)
2143                 return -EINVAL;
2144
2145         raw_spin_lock_irq(&ctx->lock);
2146         if (event->attr.freq) {
2147                 if (value > sysctl_perf_event_sample_rate) {
2148                         ret = -EINVAL;
2149                         goto unlock;
2150                 }
2151
2152                 event->attr.sample_freq = value;
2153         } else {
2154                 event->attr.sample_period = value;
2155                 event->hw.sample_period = value;
2156         }
2157 unlock:
2158         raw_spin_unlock_irq(&ctx->lock);
2159
2160         return ret;
2161 }
2162
2163 static int perf_event_set_output(struct perf_event *event, int output_fd);
2164 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2165
2166 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2167 {
2168         struct perf_event *event = file->private_data;
2169         void (*func)(struct perf_event *);
2170         u32 flags = arg;
2171
2172         switch (cmd) {
2173         case PERF_EVENT_IOC_ENABLE:
2174                 func = perf_event_enable;
2175                 break;
2176         case PERF_EVENT_IOC_DISABLE:
2177                 func = perf_event_disable;
2178                 break;
2179         case PERF_EVENT_IOC_RESET:
2180                 func = perf_event_reset;
2181                 break;
2182
2183         case PERF_EVENT_IOC_REFRESH:
2184                 return perf_event_refresh(event, arg);
2185
2186         case PERF_EVENT_IOC_PERIOD:
2187                 return perf_event_period(event, (u64 __user *)arg);
2188
2189         case PERF_EVENT_IOC_SET_OUTPUT:
2190                 return perf_event_set_output(event, arg);
2191
2192         case PERF_EVENT_IOC_SET_FILTER:
2193                 return perf_event_set_filter(event, (void __user *)arg);
2194
2195         default:
2196                 return -ENOTTY;
2197         }
2198
2199         if (flags & PERF_IOC_FLAG_GROUP)
2200                 perf_event_for_each(event, func);
2201         else
2202                 perf_event_for_each_child(event, func);
2203
2204         return 0;
2205 }
2206
2207 int perf_event_task_enable(void)
2208 {
2209         struct perf_event *event;
2210
2211         mutex_lock(&current->perf_event_mutex);
2212         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2213                 perf_event_for_each_child(event, perf_event_enable);
2214         mutex_unlock(&current->perf_event_mutex);
2215
2216         return 0;
2217 }
2218
2219 int perf_event_task_disable(void)
2220 {
2221         struct perf_event *event;
2222
2223         mutex_lock(&current->perf_event_mutex);
2224         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2225                 perf_event_for_each_child(event, perf_event_disable);
2226         mutex_unlock(&current->perf_event_mutex);
2227
2228         return 0;
2229 }
2230
2231 #ifndef PERF_EVENT_INDEX_OFFSET
2232 # define PERF_EVENT_INDEX_OFFSET 0
2233 #endif
2234
2235 static int perf_event_index(struct perf_event *event)
2236 {
2237         if (event->state != PERF_EVENT_STATE_ACTIVE)
2238                 return 0;
2239
2240         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2241 }
2242
2243 /*
2244  * Callers need to ensure there can be no nesting of this function, otherwise
2245  * the seqlock logic goes bad. We can not serialize this because the arch
2246  * code calls this from NMI context.
2247  */
2248 void perf_event_update_userpage(struct perf_event *event)
2249 {
2250         struct perf_event_mmap_page *userpg;
2251         struct perf_mmap_data *data;
2252
2253         rcu_read_lock();
2254         data = rcu_dereference(event->data);
2255         if (!data)
2256                 goto unlock;
2257
2258         userpg = data->user_page;
2259
2260         /*
2261          * Disable preemption so as to not let the corresponding user-space
2262          * spin too long if we get preempted.
2263          */
2264         preempt_disable();
2265         ++userpg->lock;
2266         barrier();
2267         userpg->index = perf_event_index(event);
2268         userpg->offset = atomic64_read(&event->count);
2269         if (event->state == PERF_EVENT_STATE_ACTIVE)
2270                 userpg->offset -= atomic64_read(&event->hw.prev_count);
2271
2272         userpg->time_enabled = event->total_time_enabled +
2273                         atomic64_read(&event->child_total_time_enabled);
2274
2275         userpg->time_running = event->total_time_running +
2276                         atomic64_read(&event->child_total_time_running);
2277
2278         barrier();
2279         ++userpg->lock;
2280         preempt_enable();
2281 unlock:
2282         rcu_read_unlock();
2283 }
2284
2285 static unsigned long perf_data_size(struct perf_mmap_data *data)
2286 {
2287         return data->nr_pages << (PAGE_SHIFT + data->data_order);
2288 }
2289
2290 #ifndef CONFIG_PERF_USE_VMALLOC
2291
2292 /*
2293  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2294  */
2295
2296 static struct page *
2297 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2298 {
2299         if (pgoff > data->nr_pages)
2300                 return NULL;
2301
2302         if (pgoff == 0)
2303                 return virt_to_page(data->user_page);
2304
2305         return virt_to_page(data->data_pages[pgoff - 1]);
2306 }
2307
2308 static struct perf_mmap_data *
2309 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2310 {
2311         struct perf_mmap_data *data;
2312         unsigned long size;
2313         int i;
2314
2315         WARN_ON(atomic_read(&event->mmap_count));
2316
2317         size = sizeof(struct perf_mmap_data);
2318         size += nr_pages * sizeof(void *);
2319
2320         data = kzalloc(size, GFP_KERNEL);
2321         if (!data)
2322                 goto fail;
2323
2324         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2325         if (!data->user_page)
2326                 goto fail_user_page;
2327
2328         for (i = 0; i < nr_pages; i++) {
2329                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2330                 if (!data->data_pages[i])
2331                         goto fail_data_pages;
2332         }
2333
2334         data->data_order = 0;
2335         data->nr_pages = nr_pages;
2336
2337         return data;
2338
2339 fail_data_pages:
2340         for (i--; i >= 0; i--)
2341                 free_page((unsigned long)data->data_pages[i]);
2342
2343         free_page((unsigned long)data->user_page);
2344
2345 fail_user_page:
2346         kfree(data);
2347
2348 fail:
2349         return NULL;
2350 }
2351
2352 static void perf_mmap_free_page(unsigned long addr)
2353 {
2354         struct page *page = virt_to_page((void *)addr);
2355
2356         page->mapping = NULL;
2357         __free_page(page);
2358 }
2359
2360 static void perf_mmap_data_free(struct perf_mmap_data *data)
2361 {
2362         int i;
2363
2364         perf_mmap_free_page((unsigned long)data->user_page);
2365         for (i = 0; i < data->nr_pages; i++)
2366                 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2367         kfree(data);
2368 }
2369
2370 #else
2371
2372 /*
2373  * Back perf_mmap() with vmalloc memory.
2374  *
2375  * Required for architectures that have d-cache aliasing issues.
2376  */
2377
2378 static struct page *
2379 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2380 {
2381         if (pgoff > (1UL << data->data_order))
2382                 return NULL;
2383
2384         return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2385 }
2386
2387 static void perf_mmap_unmark_page(void *addr)
2388 {
2389         struct page *page = vmalloc_to_page(addr);
2390
2391         page->mapping = NULL;
2392 }
2393
2394 static void perf_mmap_data_free_work(struct work_struct *work)
2395 {
2396         struct perf_mmap_data *data;
2397         void *base;
2398         int i, nr;
2399
2400         data = container_of(work, struct perf_mmap_data, work);
2401         nr = 1 << data->data_order;
2402
2403         base = data->user_page;
2404         for (i = 0; i < nr + 1; i++)
2405                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2406
2407         vfree(base);
2408         kfree(data);
2409 }
2410
2411 static void perf_mmap_data_free(struct perf_mmap_data *data)
2412 {
2413         schedule_work(&data->work);
2414 }
2415
2416 static struct perf_mmap_data *
2417 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2418 {
2419         struct perf_mmap_data *data;
2420         unsigned long size;
2421         void *all_buf;
2422
2423         WARN_ON(atomic_read(&event->mmap_count));
2424
2425         size = sizeof(struct perf_mmap_data);
2426         size += sizeof(void *);
2427
2428         data = kzalloc(size, GFP_KERNEL);
2429         if (!data)
2430                 goto fail;
2431
2432         INIT_WORK(&data->work, perf_mmap_data_free_work);
2433
2434         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2435         if (!all_buf)
2436                 goto fail_all_buf;
2437
2438         data->user_page = all_buf;
2439         data->data_pages[0] = all_buf + PAGE_SIZE;
2440         data->data_order = ilog2(nr_pages);
2441         data->nr_pages = 1;
2442
2443         return data;
2444
2445 fail_all_buf:
2446         kfree(data);
2447
2448 fail:
2449         return NULL;
2450 }
2451
2452 #endif
2453
2454 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2455 {
2456         struct perf_event *event = vma->vm_file->private_data;
2457         struct perf_mmap_data *data;
2458         int ret = VM_FAULT_SIGBUS;
2459
2460         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2461                 if (vmf->pgoff == 0)
2462                         ret = 0;
2463                 return ret;
2464         }
2465
2466         rcu_read_lock();
2467         data = rcu_dereference(event->data);
2468         if (!data)
2469                 goto unlock;
2470
2471         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2472                 goto unlock;
2473
2474         vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2475         if (!vmf->page)
2476                 goto unlock;
2477
2478         get_page(vmf->page);
2479         vmf->page->mapping = vma->vm_file->f_mapping;
2480         vmf->page->index   = vmf->pgoff;
2481
2482         ret = 0;
2483 unlock:
2484         rcu_read_unlock();
2485
2486         return ret;
2487 }
2488
2489 static void
2490 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2491 {
2492         long max_size = perf_data_size(data);
2493
2494         atomic_set(&data->lock, -1);
2495
2496         if (event->attr.watermark) {
2497                 data->watermark = min_t(long, max_size,
2498                                         event->attr.wakeup_watermark);
2499         }
2500
2501         if (!data->watermark)
2502                 data->watermark = max_size / 2;
2503
2504
2505         rcu_assign_pointer(event->data, data);
2506 }
2507
2508 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2509 {
2510         struct perf_mmap_data *data;
2511
2512         data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2513         perf_mmap_data_free(data);
2514 }
2515
2516 static void perf_mmap_data_release(struct perf_event *event)
2517 {
2518         struct perf_mmap_data *data = event->data;
2519
2520         WARN_ON(atomic_read(&event->mmap_count));
2521
2522         rcu_assign_pointer(event->data, NULL);
2523         call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2524 }
2525
2526 static void perf_mmap_open(struct vm_area_struct *vma)
2527 {
2528         struct perf_event *event = vma->vm_file->private_data;
2529
2530         atomic_inc(&event->mmap_count);
2531 }
2532
2533 static void perf_mmap_close(struct vm_area_struct *vma)
2534 {
2535         struct perf_event *event = vma->vm_file->private_data;
2536
2537         WARN_ON_ONCE(event->ctx->parent_ctx);
2538         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2539                 unsigned long size = perf_data_size(event->data);
2540                 struct user_struct *user = current_user();
2541
2542                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2543                 vma->vm_mm->locked_vm -= event->data->nr_locked;
2544                 perf_mmap_data_release(event);
2545                 mutex_unlock(&event->mmap_mutex);
2546         }
2547 }
2548
2549 static const struct vm_operations_struct perf_mmap_vmops = {
2550         .open           = perf_mmap_open,
2551         .close          = perf_mmap_close,
2552         .fault          = perf_mmap_fault,
2553         .page_mkwrite   = perf_mmap_fault,
2554 };
2555
2556 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2557 {
2558         struct perf_event *event = file->private_data;
2559         unsigned long user_locked, user_lock_limit;
2560         struct user_struct *user = current_user();
2561         unsigned long locked, lock_limit;
2562         struct perf_mmap_data *data;
2563         unsigned long vma_size;
2564         unsigned long nr_pages;
2565         long user_extra, extra;
2566         int ret = 0;
2567
2568         if (!(vma->vm_flags & VM_SHARED))
2569                 return -EINVAL;
2570
2571         vma_size = vma->vm_end - vma->vm_start;
2572         nr_pages = (vma_size / PAGE_SIZE) - 1;
2573
2574         /*
2575          * If we have data pages ensure they're a power-of-two number, so we
2576          * can do bitmasks instead of modulo.
2577          */
2578         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2579                 return -EINVAL;
2580
2581         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2582                 return -EINVAL;
2583
2584         if (vma->vm_pgoff != 0)
2585                 return -EINVAL;
2586
2587         WARN_ON_ONCE(event->ctx->parent_ctx);
2588         mutex_lock(&event->mmap_mutex);
2589         if (event->output) {
2590                 ret = -EINVAL;
2591                 goto unlock;
2592         }
2593
2594         if (atomic_inc_not_zero(&event->mmap_count)) {
2595                 if (nr_pages != event->data->nr_pages)
2596                         ret = -EINVAL;
2597                 goto unlock;
2598         }
2599
2600         user_extra = nr_pages + 1;
2601         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2602
2603         /*
2604          * Increase the limit linearly with more CPUs:
2605          */
2606         user_lock_limit *= num_online_cpus();
2607
2608         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2609
2610         extra = 0;
2611         if (user_locked > user_lock_limit)
2612                 extra = user_locked - user_lock_limit;
2613
2614         lock_limit = rlimit(RLIMIT_MEMLOCK);
2615         lock_limit >>= PAGE_SHIFT;
2616         locked = vma->vm_mm->locked_vm + extra;
2617
2618         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2619                 !capable(CAP_IPC_LOCK)) {
2620                 ret = -EPERM;
2621                 goto unlock;
2622         }
2623
2624         WARN_ON(event->data);
2625
2626         data = perf_mmap_data_alloc(event, nr_pages);
2627         ret = -ENOMEM;
2628         if (!data)
2629                 goto unlock;
2630
2631         ret = 0;
2632         perf_mmap_data_init(event, data);
2633
2634         atomic_set(&event->mmap_count, 1);
2635         atomic_long_add(user_extra, &user->locked_vm);
2636         vma->vm_mm->locked_vm += extra;
2637         event->data->nr_locked = extra;
2638         if (vma->vm_flags & VM_WRITE)
2639                 event->data->writable = 1;
2640
2641 unlock:
2642         mutex_unlock(&event->mmap_mutex);
2643
2644         vma->vm_flags |= VM_RESERVED;
2645         vma->vm_ops = &perf_mmap_vmops;
2646
2647         return ret;
2648 }
2649
2650 static int perf_fasync(int fd, struct file *filp, int on)
2651 {
2652         struct inode *inode = filp->f_path.dentry->d_inode;
2653         struct perf_event *event = filp->private_data;
2654         int retval;
2655
2656         mutex_lock(&inode->i_mutex);
2657         retval = fasync_helper(fd, filp, on, &event->fasync);
2658         mutex_unlock(&inode->i_mutex);
2659
2660         if (retval < 0)
2661                 return retval;
2662
2663         return 0;
2664 }
2665
2666 static const struct file_operations perf_fops = {
2667         .llseek                 = no_llseek,
2668         .release                = perf_release,
2669         .read                   = perf_read,
2670         .poll                   = perf_poll,
2671         .unlocked_ioctl         = perf_ioctl,
2672         .compat_ioctl           = perf_ioctl,
2673         .mmap                   = perf_mmap,
2674         .fasync                 = perf_fasync,
2675 };
2676
2677 /*
2678  * Perf event wakeup
2679  *
2680  * If there's data, ensure we set the poll() state and publish everything
2681  * to user-space before waking everybody up.
2682  */
2683
2684 void perf_event_wakeup(struct perf_event *event)
2685 {
2686         wake_up_all(&event->waitq);
2687
2688         if (event->pending_kill) {
2689                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2690                 event->pending_kill = 0;
2691         }
2692 }
2693
2694 /*
2695  * Pending wakeups
2696  *
2697  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2698  *
2699  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2700  * single linked list and use cmpxchg() to add entries lockless.
2701  */
2702
2703 static void perf_pending_event(struct perf_pending_entry *entry)
2704 {
2705         struct perf_event *event = container_of(entry,
2706                         struct perf_event, pending);
2707
2708         if (event->pending_disable) {
2709                 event->pending_disable = 0;
2710                 __perf_event_disable(event);
2711         }
2712
2713         if (event->pending_wakeup) {
2714                 event->pending_wakeup = 0;
2715                 perf_event_wakeup(event);
2716         }
2717 }
2718
2719 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2720
2721 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2722         PENDING_TAIL,
2723 };
2724
2725 static void perf_pending_queue(struct perf_pending_entry *entry,
2726                                void (*func)(struct perf_pending_entry *))
2727 {
2728         struct perf_pending_entry **head;
2729
2730         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2731                 return;
2732
2733         entry->func = func;
2734
2735         head = &get_cpu_var(perf_pending_head);
2736
2737         do {
2738                 entry->next = *head;
2739         } while (cmpxchg(head, entry->next, entry) != entry->next);
2740
2741         set_perf_event_pending();
2742
2743         put_cpu_var(perf_pending_head);
2744 }
2745
2746 static int __perf_pending_run(void)
2747 {
2748         struct perf_pending_entry *list;
2749         int nr = 0;
2750
2751         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2752         while (list != PENDING_TAIL) {
2753                 void (*func)(struct perf_pending_entry *);
2754                 struct perf_pending_entry *entry = list;
2755
2756                 list = list->next;
2757
2758                 func = entry->func;
2759                 entry->next = NULL;
2760                 /*
2761                  * Ensure we observe the unqueue before we issue the wakeup,
2762                  * so that we won't be waiting forever.
2763                  * -- see perf_not_pending().
2764                  */
2765                 smp_wmb();
2766
2767                 func(entry);
2768                 nr++;
2769         }
2770
2771         return nr;
2772 }
2773
2774 static inline int perf_not_pending(struct perf_event *event)
2775 {
2776         /*
2777          * If we flush on whatever cpu we run, there is a chance we don't
2778          * need to wait.
2779          */
2780         get_cpu();
2781         __perf_pending_run();
2782         put_cpu();
2783
2784         /*
2785          * Ensure we see the proper queue state before going to sleep
2786          * so that we do not miss the wakeup. -- see perf_pending_handle()
2787          */
2788         smp_rmb();
2789         return event->pending.next == NULL;
2790 }
2791
2792 static void perf_pending_sync(struct perf_event *event)
2793 {
2794         wait_event(event->waitq, perf_not_pending(event));
2795 }
2796
2797 void perf_event_do_pending(void)
2798 {
2799         __perf_pending_run();
2800 }
2801
2802 /*
2803  * Callchain support -- arch specific
2804  */
2805
2806 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2807 {
2808         return NULL;
2809 }
2810
2811 __weak
2812 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2813 {
2814 }
2815
2816
2817 /*
2818  * We assume there is only KVM supporting the callbacks.
2819  * Later on, we might change it to a list if there is
2820  * another virtualization implementation supporting the callbacks.
2821  */
2822 struct perf_guest_info_callbacks *perf_guest_cbs;
2823
2824 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2825 {
2826         perf_guest_cbs = cbs;
2827         return 0;
2828 }
2829 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
2830
2831 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2832 {
2833         perf_guest_cbs = NULL;
2834         return 0;
2835 }
2836 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2837
2838 /*
2839  * Output
2840  */
2841 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2842                               unsigned long offset, unsigned long head)
2843 {
2844         unsigned long mask;
2845
2846         if (!data->writable)
2847                 return true;
2848
2849         mask = perf_data_size(data) - 1;
2850
2851         offset = (offset - tail) & mask;
2852         head   = (head   - tail) & mask;
2853
2854         if ((int)(head - offset) < 0)
2855                 return false;
2856
2857         return true;
2858 }
2859
2860 static void perf_output_wakeup(struct perf_output_handle *handle)
2861 {
2862         atomic_set(&handle->data->poll, POLL_IN);
2863
2864         if (handle->nmi) {
2865                 handle->event->pending_wakeup = 1;
2866                 perf_pending_queue(&handle->event->pending,
2867                                    perf_pending_event);
2868         } else
2869                 perf_event_wakeup(handle->event);
2870 }
2871
2872 /*
2873  * Curious locking construct.
2874  *
2875  * We need to ensure a later event_id doesn't publish a head when a former
2876  * event_id isn't done writing. However since we need to deal with NMIs we
2877  * cannot fully serialize things.
2878  *
2879  * What we do is serialize between CPUs so we only have to deal with NMI
2880  * nesting on a single CPU.
2881  *
2882  * We only publish the head (and generate a wakeup) when the outer-most
2883  * event_id completes.
2884  */
2885 static void perf_output_lock(struct perf_output_handle *handle)
2886 {
2887         struct perf_mmap_data *data = handle->data;
2888         int cur, cpu = get_cpu();
2889
2890         handle->locked = 0;
2891
2892         for (;;) {
2893                 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2894                 if (cur == -1) {
2895                         handle->locked = 1;
2896                         break;
2897                 }
2898                 if (cur == cpu)
2899                         break;
2900
2901                 cpu_relax();
2902         }
2903 }
2904
2905 static void perf_output_unlock(struct perf_output_handle *handle)
2906 {
2907         struct perf_mmap_data *data = handle->data;
2908         unsigned long head;
2909         int cpu;
2910
2911         data->done_head = data->head;
2912
2913         if (!handle->locked)
2914                 goto out;
2915
2916 again:
2917         /*
2918          * The xchg implies a full barrier that ensures all writes are done
2919          * before we publish the new head, matched by a rmb() in userspace when
2920          * reading this position.
2921          */
2922         while ((head = atomic_long_xchg(&data->done_head, 0)))
2923                 data->user_page->data_head = head;
2924
2925         /*
2926          * NMI can happen here, which means we can miss a done_head update.
2927          */
2928
2929         cpu = atomic_xchg(&data->lock, -1);
2930         WARN_ON_ONCE(cpu != smp_processor_id());
2931
2932         /*
2933          * Therefore we have to validate we did not indeed do so.
2934          */
2935         if (unlikely(atomic_long_read(&data->done_head))) {
2936                 /*
2937                  * Since we had it locked, we can lock it again.
2938                  */
2939                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2940                         cpu_relax();
2941
2942                 goto again;
2943         }
2944
2945         if (atomic_xchg(&data->wakeup, 0))
2946                 perf_output_wakeup(handle);
2947 out:
2948         put_cpu();
2949 }
2950
2951 void perf_output_copy(struct perf_output_handle *handle,
2952                       const void *buf, unsigned int len)
2953 {
2954         unsigned int pages_mask;
2955         unsigned long offset;
2956         unsigned int size;
2957         void **pages;
2958
2959         offset          = handle->offset;
2960         pages_mask      = handle->data->nr_pages - 1;
2961         pages           = handle->data->data_pages;
2962
2963         do {
2964                 unsigned long page_offset;
2965                 unsigned long page_size;
2966                 int nr;
2967
2968                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2969                 page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
2970                 page_offset = offset & (page_size - 1);
2971                 size        = min_t(unsigned int, page_size - page_offset, len);
2972
2973                 memcpy(pages[nr] + page_offset, buf, size);
2974
2975                 len         -= size;
2976                 buf         += size;
2977                 offset      += size;
2978         } while (len);
2979
2980         handle->offset = offset;
2981
2982         /*
2983          * Check we didn't copy past our reservation window, taking the
2984          * possible unsigned int wrap into account.
2985          */
2986         WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2987 }
2988
2989 int perf_output_begin(struct perf_output_handle *handle,
2990                       struct perf_event *event, unsigned int size,
2991                       int nmi, int sample)
2992 {
2993         struct perf_event *output_event;
2994         struct perf_mmap_data *data;
2995         unsigned long tail, offset, head;
2996         int have_lost;
2997         struct {
2998                 struct perf_event_header header;
2999                 u64                      id;
3000                 u64                      lost;
3001         } lost_event;
3002
3003         rcu_read_lock();
3004         /*
3005          * For inherited events we send all the output towards the parent.
3006          */
3007         if (event->parent)
3008                 event = event->parent;
3009
3010         output_event = rcu_dereference(event->output);
3011         if (output_event)
3012                 event = output_event;
3013
3014         data = rcu_dereference(event->data);
3015         if (!data)
3016                 goto out;
3017
3018         handle->data    = data;
3019         handle->event   = event;
3020         handle->nmi     = nmi;
3021         handle->sample  = sample;
3022
3023         if (!data->nr_pages)
3024                 goto fail;
3025
3026         have_lost = atomic_read(&data->lost);
3027         if (have_lost)
3028                 size += sizeof(lost_event);
3029
3030         perf_output_lock(handle);
3031
3032         do {
3033                 /*
3034                  * Userspace could choose to issue a mb() before updating the
3035                  * tail pointer. So that all reads will be completed before the
3036                  * write is issued.
3037                  */
3038                 tail = ACCESS_ONCE(data->user_page->data_tail);
3039                 smp_rmb();
3040                 offset = head = atomic_long_read(&data->head);
3041                 head += size;
3042                 if (unlikely(!perf_output_space(data, tail, offset, head)))
3043                         goto fail;
3044         } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3045
3046         handle->offset  = offset;
3047         handle->head    = head;
3048
3049         if (head - tail > data->watermark)
3050                 atomic_set(&data->wakeup, 1);
3051
3052         if (have_lost) {
3053                 lost_event.header.type = PERF_RECORD_LOST;
3054                 lost_event.header.misc = 0;
3055                 lost_event.header.size = sizeof(lost_event);
3056                 lost_event.id          = event->id;
3057                 lost_event.lost        = atomic_xchg(&data->lost, 0);
3058
3059                 perf_output_put(handle, lost_event);
3060         }
3061
3062         return 0;
3063
3064 fail:
3065         atomic_inc(&data->lost);
3066         perf_output_unlock(handle);
3067 out:
3068         rcu_read_unlock();
3069
3070         return -ENOSPC;
3071 }
3072
3073 void perf_output_end(struct perf_output_handle *handle)
3074 {
3075         struct perf_event *event = handle->event;
3076         struct perf_mmap_data *data = handle->data;
3077
3078         int wakeup_events = event->attr.wakeup_events;
3079
3080         if (handle->sample && wakeup_events) {
3081                 int events = atomic_inc_return(&data->events);
3082                 if (events >= wakeup_events) {
3083                         atomic_sub(wakeup_events, &data->events);
3084                         atomic_set(&data->wakeup, 1);
3085                 }
3086         }
3087
3088         perf_output_unlock(handle);
3089         rcu_read_unlock();
3090 }
3091
3092 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3093 {
3094         /*
3095          * only top level events have the pid namespace they were created in
3096          */
3097         if (event->parent)
3098                 event = event->parent;
3099
3100         return task_tgid_nr_ns(p, event->ns);
3101 }
3102
3103 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3104 {
3105         /*
3106          * only top level events have the pid namespace they were created in
3107          */
3108         if (event->parent)
3109                 event = event->parent;
3110
3111         return task_pid_nr_ns(p, event->ns);
3112 }
3113
3114 static void perf_output_read_one(struct perf_output_handle *handle,
3115                                  struct perf_event *event)
3116 {
3117         u64 read_format = event->attr.read_format;
3118         u64 values[4];
3119         int n = 0;
3120
3121         values[n++] = atomic64_read(&event->count);
3122         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3123                 values[n++] = event->total_time_enabled +
3124                         atomic64_read(&event->child_total_time_enabled);
3125         }
3126         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3127                 values[n++] = event->total_time_running +
3128                         atomic64_read(&event->child_total_time_running);
3129         }
3130         if (read_format & PERF_FORMAT_ID)
3131                 values[n++] = primary_event_id(event);
3132
3133         perf_output_copy(handle, values, n * sizeof(u64));
3134 }
3135
3136 /*
3137  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3138  */
3139 static void perf_output_read_group(struct perf_output_handle *handle,
3140                             struct perf_event *event)
3141 {
3142         struct perf_event *leader = event->group_leader, *sub;
3143         u64 read_format = event->attr.read_format;
3144         u64 values[5];
3145         int n = 0;
3146
3147         values[n++] = 1 + leader->nr_siblings;
3148
3149         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3150                 values[n++] = leader->total_time_enabled;
3151
3152         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3153                 values[n++] = leader->total_time_running;
3154
3155         if (leader != event)
3156                 leader->pmu->read(leader);
3157
3158         values[n++] = atomic64_read(&leader->count);
3159         if (read_format & PERF_FORMAT_ID)
3160                 values[n++] = primary_event_id(leader);
3161
3162         perf_output_copy(handle, values, n * sizeof(u64));
3163
3164         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3165                 n = 0;
3166
3167                 if (sub != event)
3168                         sub->pmu->read(sub);
3169
3170                 values[n++] = atomic64_read(&sub->count);
3171                 if (read_format & PERF_FORMAT_ID)
3172                         values[n++] = primary_event_id(sub);
3173
3174                 perf_output_copy(handle, values, n * sizeof(u64));
3175         }
3176 }
3177
3178 static void perf_output_read(struct perf_output_handle *handle,
3179                              struct perf_event *event)
3180 {
3181         if (event->attr.read_format & PERF_FORMAT_GROUP)
3182                 perf_output_read_group(handle, event);
3183         else
3184                 perf_output_read_one(handle, event);
3185 }
3186
3187 void perf_output_sample(struct perf_output_handle *handle,
3188                         struct perf_event_header *header,
3189                         struct perf_sample_data *data,
3190                         struct perf_event *event)
3191 {
3192         u64 sample_type = data->type;
3193
3194         perf_output_put(handle, *header);
3195
3196         if (sample_type & PERF_SAMPLE_IP)
3197                 perf_output_put(handle, data->ip);
3198
3199         if (sample_type & PERF_SAMPLE_TID)
3200                 perf_output_put(handle, data->tid_entry);
3201
3202         if (sample_type & PERF_SAMPLE_TIME)
3203                 perf_output_put(handle, data->time);
3204
3205         if (sample_type & PERF_SAMPLE_ADDR)
3206                 perf_output_put(handle, data->addr);
3207
3208         if (sample_type & PERF_SAMPLE_ID)
3209                 perf_output_put(handle, data->id);
3210
3211         if (sample_type & PERF_SAMPLE_STREAM_ID)
3212                 perf_output_put(handle, data->stream_id);
3213
3214         if (sample_type & PERF_SAMPLE_CPU)
3215                 perf_output_put(handle, data->cpu_entry);
3216
3217         if (sample_type & PERF_SAMPLE_PERIOD)
3218                 perf_output_put(handle, data->period);
3219
3220         if (sample_type & PERF_SAMPLE_READ)
3221                 perf_output_read(handle, event);
3222
3223         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3224                 if (data->callchain) {
3225                         int size = 1;
3226
3227                         if (data->callchain)
3228                                 size += data->callchain->nr;
3229
3230                         size *= sizeof(u64);
3231
3232                         perf_output_copy(handle, data->callchain, size);
3233                 } else {
3234                         u64 nr = 0;
3235                         perf_output_put(handle, nr);
3236                 }
3237         }
3238
3239         if (sample_type & PERF_SAMPLE_RAW) {
3240                 if (data->raw) {
3241                         perf_output_put(handle, data->raw->size);
3242                         perf_output_copy(handle, data->raw->data,
3243                                          data->raw->size);
3244                 } else {
3245                         struct {
3246                                 u32     size;
3247                                 u32     data;
3248                         } raw = {
3249                                 .size = sizeof(u32),
3250                                 .data = 0,
3251                         };
3252                         perf_output_put(handle, raw);
3253                 }
3254         }
3255 }
3256
3257 void perf_prepare_sample(struct perf_event_header *header,
3258                          struct perf_sample_data *data,
3259                          struct perf_event *event,
3260                          struct pt_regs *regs)
3261 {
3262         u64 sample_type = event->attr.sample_type;
3263
3264         data->type = sample_type;
3265
3266         header->type = PERF_RECORD_SAMPLE;
3267         header->size = sizeof(*header);
3268
3269         header->misc = 0;
3270         header->misc |= perf_misc_flags(regs);
3271
3272         if (sample_type & PERF_SAMPLE_IP) {
3273                 data->ip = perf_instruction_pointer(regs);
3274
3275                 header->size += sizeof(data->ip);
3276         }
3277
3278         if (sample_type & PERF_SAMPLE_TID) {
3279                 /* namespace issues */
3280                 data->tid_entry.pid = perf_event_pid(event, current);
3281                 data->tid_entry.tid = perf_event_tid(event, current);
3282
3283                 header->size += sizeof(data->tid_entry);
3284         }
3285
3286         if (sample_type & PERF_SAMPLE_TIME) {
3287                 data->time = perf_clock();
3288
3289                 header->size += sizeof(data->time);
3290         }
3291
3292         if (sample_type & PERF_SAMPLE_ADDR)
3293                 header->size += sizeof(data->addr);
3294
3295         if (sample_type & PERF_SAMPLE_ID) {
3296                 data->id = primary_event_id(event);
3297
3298                 header->size += sizeof(data->id);
3299         }
3300
3301         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3302                 data->stream_id = event->id;
3303
3304                 header->size += sizeof(data->stream_id);
3305         }
3306
3307         if (sample_type & PERF_SAMPLE_CPU) {
3308                 data->cpu_entry.cpu             = raw_smp_processor_id();
3309                 data->cpu_entry.reserved        = 0;
3310
3311                 header->size += sizeof(data->cpu_entry);
3312         }
3313
3314         if (sample_type & PERF_SAMPLE_PERIOD)
3315                 header->size += sizeof(data->period);
3316
3317         if (sample_type & PERF_SAMPLE_READ)
3318                 header->size += perf_event_read_size(event);
3319
3320         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3321                 int size = 1;
3322
3323                 data->callchain = perf_callchain(regs);
3324
3325                 if (data->callchain)
3326                         size += data->callchain->nr;
3327
3328                 header->size += size * sizeof(u64);
3329         }
3330
3331         if (sample_type & PERF_SAMPLE_RAW) {
3332                 int size = sizeof(u32);
3333
3334                 if (data->raw)
3335                         size += data->raw->size;
3336                 else
3337                         size += sizeof(u32);
3338
3339                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3340                 header->size += size;
3341         }
3342 }
3343
3344 static void perf_event_output(struct perf_event *event, int nmi,
3345                                 struct perf_sample_data *data,
3346                                 struct pt_regs *regs)
3347 {
3348         struct perf_output_handle handle;
3349         struct perf_event_header header;
3350
3351         perf_prepare_sample(&header, data, event, regs);
3352
3353         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3354                 return;
3355
3356         perf_output_sample(&handle, &header, data, event);
3357
3358         perf_output_end(&handle);
3359 }
3360
3361 /*
3362  * read event_id
3363  */
3364
3365 struct perf_read_event {
3366         struct perf_event_header        header;
3367
3368         u32                             pid;
3369         u32                             tid;
3370 };
3371
3372 static void
3373 perf_event_read_event(struct perf_event *event,
3374                         struct task_struct *task)
3375 {
3376         struct perf_output_handle handle;
3377         struct perf_read_event read_event = {
3378                 .header = {
3379                         .type = PERF_RECORD_READ,
3380                         .misc = 0,
3381                         .size = sizeof(read_event) + perf_event_read_size(event),
3382                 },
3383                 .pid = perf_event_pid(event, task),
3384                 .tid = perf_event_tid(event, task),
3385         };
3386         int ret;
3387
3388         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3389         if (ret)
3390                 return;
3391
3392         perf_output_put(&handle, read_event);
3393         perf_output_read(&handle, event);
3394
3395         perf_output_end(&handle);
3396 }
3397
3398 /*
3399  * task tracking -- fork/exit
3400  *
3401  * enabled by: attr.comm | attr.mmap | attr.task
3402  */
3403
3404 struct perf_task_event {
3405         struct task_struct              *task;
3406         struct perf_event_context       *task_ctx;
3407
3408         struct {
3409                 struct perf_event_header        header;
3410
3411                 u32                             pid;
3412                 u32                             ppid;
3413                 u32                             tid;
3414                 u32                             ptid;
3415                 u64                             time;
3416         } event_id;
3417 };
3418
3419 static void perf_event_task_output(struct perf_event *event,
3420                                      struct perf_task_event *task_event)
3421 {
3422         struct perf_output_handle handle;
3423         struct task_struct *task = task_event->task;
3424         unsigned long flags;
3425         int size, ret;
3426
3427         /*
3428          * If this CPU attempts to acquire an rq lock held by a CPU spinning
3429          * in perf_output_lock() from interrupt context, it's game over.
3430          */
3431         local_irq_save(flags);
3432
3433         size  = task_event->event_id.header.size;
3434         ret = perf_output_begin(&handle, event, size, 0, 0);
3435
3436         if (ret) {
3437                 local_irq_restore(flags);
3438                 return;
3439         }
3440
3441         task_event->event_id.pid = perf_event_pid(event, task);
3442         task_event->event_id.ppid = perf_event_pid(event, current);
3443
3444         task_event->event_id.tid = perf_event_tid(event, task);
3445         task_event->event_id.ptid = perf_event_tid(event, current);
3446
3447         perf_output_put(&handle, task_event->event_id);
3448
3449         perf_output_end(&handle);
3450         local_irq_restore(flags);
3451 }
3452
3453 static int perf_event_task_match(struct perf_event *event)
3454 {
3455         if (event->state < PERF_EVENT_STATE_INACTIVE)
3456                 return 0;
3457
3458         if (event->cpu != -1 && event->cpu != smp_processor_id())
3459                 return 0;
3460
3461         if (event->attr.comm || event->attr.mmap || event->attr.task)
3462                 return 1;
3463
3464         return 0;
3465 }
3466
3467 static void perf_event_task_ctx(struct perf_event_context *ctx,
3468                                   struct perf_task_event *task_event)
3469 {
3470         struct perf_event *event;
3471
3472         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3473                 if (perf_event_task_match(event))
3474                         perf_event_task_output(event, task_event);
3475         }
3476 }
3477
3478 static void perf_event_task_event(struct perf_task_event *task_event)
3479 {
3480         struct perf_cpu_context *cpuctx;
3481         struct perf_event_context *ctx = task_event->task_ctx;
3482
3483         rcu_read_lock();
3484         cpuctx = &get_cpu_var(perf_cpu_context);
3485         perf_event_task_ctx(&cpuctx->ctx, task_event);
3486         if (!ctx)
3487                 ctx = rcu_dereference(current->perf_event_ctxp);
3488         if (ctx)
3489                 perf_event_task_ctx(ctx, task_event);
3490         put_cpu_var(perf_cpu_context);
3491         rcu_read_unlock();
3492 }
3493
3494 static void perf_event_task(struct task_struct *task,
3495                               struct perf_event_context *task_ctx,
3496                               int new)
3497 {
3498         struct perf_task_event task_event;
3499
3500         if (!atomic_read(&nr_comm_events) &&
3501             !atomic_read(&nr_mmap_events) &&
3502             !atomic_read(&nr_task_events))
3503                 return;
3504
3505         task_event = (struct perf_task_event){
3506                 .task     = task,
3507                 .task_ctx = task_ctx,
3508                 .event_id    = {
3509                         .header = {
3510                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3511                                 .misc = 0,
3512                                 .size = sizeof(task_event.event_id),
3513                         },
3514                         /* .pid  */
3515                         /* .ppid */
3516                         /* .tid  */
3517                         /* .ptid */
3518                         .time = perf_clock(),
3519                 },
3520         };
3521
3522         perf_event_task_event(&task_event);
3523 }
3524
3525 void perf_event_fork(struct task_struct *task)
3526 {
3527         perf_event_task(task, NULL, 1);
3528 }
3529
3530 /*
3531  * comm tracking
3532  */
3533
3534 struct perf_comm_event {
3535         struct task_struct      *task;
3536         char                    *comm;
3537         int                     comm_size;
3538
3539         struct {
3540                 struct perf_event_header        header;
3541
3542                 u32                             pid;
3543                 u32                             tid;
3544         } event_id;
3545 };
3546
3547 static void perf_event_comm_output(struct perf_event *event,
3548                                      struct perf_comm_event *comm_event)
3549 {
3550         struct perf_output_handle handle;
3551         int size = comm_event->event_id.header.size;
3552         int ret = perf_output_begin(&handle, event, size, 0, 0);
3553
3554         if (ret)
3555                 return;
3556
3557         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3558         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3559
3560         perf_output_put(&handle, comm_event->event_id);
3561         perf_output_copy(&handle, comm_event->comm,
3562                                    comm_event->comm_size);
3563         perf_output_end(&handle);
3564 }
3565
3566 static int perf_event_comm_match(struct perf_event *event)
3567 {
3568         if (event->state < PERF_EVENT_STATE_INACTIVE)
3569                 return 0;
3570
3571         if (event->cpu != -1 && event->cpu != smp_processor_id())
3572                 return 0;
3573
3574         if (event->attr.comm)
3575                 return 1;
3576
3577         return 0;
3578 }
3579
3580 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3581                                   struct perf_comm_event *comm_event)
3582 {
3583         struct perf_event *event;
3584
3585         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3586                 if (perf_event_comm_match(event))
3587                         perf_event_comm_output(event, comm_event);
3588         }
3589 }
3590
3591 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3592 {
3593         struct perf_cpu_context *cpuctx;
3594         struct perf_event_context *ctx;
3595         unsigned int size;
3596         char comm[TASK_COMM_LEN];
3597
3598         memset(comm, 0, sizeof(comm));
3599         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3600         size = ALIGN(strlen(comm)+1, sizeof(u64));
3601
3602         comm_event->comm = comm;
3603         comm_event->comm_size = size;
3604
3605         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3606
3607         rcu_read_lock();
3608         cpuctx = &get_cpu_var(perf_cpu_context);
3609         perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3610         ctx = rcu_dereference(current->perf_event_ctxp);
3611         if (ctx)
3612                 perf_event_comm_ctx(ctx, comm_event);
3613         put_cpu_var(perf_cpu_context);
3614         rcu_read_unlock();
3615 }
3616
3617 void perf_event_comm(struct task_struct *task)
3618 {
3619         struct perf_comm_event comm_event;
3620
3621         if (task->perf_event_ctxp)
3622                 perf_event_enable_on_exec(task);
3623
3624         if (!atomic_read(&nr_comm_events))
3625                 return;
3626
3627         comm_event = (struct perf_comm_event){
3628                 .task   = task,
3629                 /* .comm      */
3630                 /* .comm_size */
3631                 .event_id  = {
3632                         .header = {
3633                                 .type = PERF_RECORD_COMM,
3634                                 .misc = 0,
3635                                 /* .size */
3636                         },
3637                         /* .pid */
3638                         /* .tid */
3639                 },
3640         };
3641
3642         perf_event_comm_event(&comm_event);
3643 }
3644
3645 /*
3646  * mmap tracking
3647  */
3648
3649 struct perf_mmap_event {
3650         struct vm_area_struct   *vma;
3651
3652         const char              *file_name;
3653         int                     file_size;
3654
3655         struct {
3656                 struct perf_event_header        header;
3657
3658                 u32                             pid;
3659                 u32                             tid;
3660                 u64                             start;
3661                 u64                             len;
3662                 u64                             pgoff;
3663         } event_id;
3664 };
3665
3666 static void perf_event_mmap_output(struct perf_event *event,
3667                                      struct perf_mmap_event *mmap_event)
3668 {
3669         struct perf_output_handle handle;
3670         int size = mmap_event->event_id.header.size;
3671         int ret = perf_output_begin(&handle, event, size, 0, 0);
3672
3673         if (ret)
3674                 return;
3675
3676         mmap_event->event_id.pid = perf_event_pid(event, current);
3677         mmap_event->event_id.tid = perf_event_tid(event, current);
3678
3679         perf_output_put(&handle, mmap_event->event_id);
3680         perf_output_copy(&handle, mmap_event->file_name,
3681                                    mmap_event->file_size);
3682         perf_output_end(&handle);
3683 }
3684
3685 static int perf_event_mmap_match(struct perf_event *event,
3686                                    struct perf_mmap_event *mmap_event)
3687 {
3688         if (event->state < PERF_EVENT_STATE_INACTIVE)
3689                 return 0;
3690
3691         if (event->cpu != -1 && event->cpu != smp_processor_id())
3692                 return 0;
3693
3694         if (event->attr.mmap)
3695                 return 1;
3696
3697         return 0;
3698 }
3699
3700 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3701                                   struct perf_mmap_event *mmap_event)
3702 {
3703         struct perf_event *event;
3704
3705         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3706                 if (perf_event_mmap_match(event, mmap_event))
3707                         perf_event_mmap_output(event, mmap_event);
3708         }
3709 }
3710
3711 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3712 {
3713         struct perf_cpu_context *cpuctx;
3714         struct perf_event_context *ctx;
3715         struct vm_area_struct *vma = mmap_event->vma;
3716         struct file *file = vma->vm_file;
3717         unsigned int size;
3718         char tmp[16];
3719         char *buf = NULL;
3720         const char *name;
3721
3722         memset(tmp, 0, sizeof(tmp));
3723
3724         if (file) {
3725                 /*
3726                  * d_path works from the end of the buffer backwards, so we
3727                  * need to add enough zero bytes after the string to handle
3728                  * the 64bit alignment we do later.
3729                  */
3730                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3731                 if (!buf) {
3732                         name = strncpy(tmp, "//enomem", sizeof(tmp));
3733                         goto got_name;
3734                 }
3735                 name = d_path(&file->f_path, buf, PATH_MAX);
3736                 if (IS_ERR(name)) {
3737                         name = strncpy(tmp, "//toolong", sizeof(tmp));
3738                         goto got_name;
3739                 }
3740         } else {
3741                 if (arch_vma_name(mmap_event->vma)) {
3742                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3743                                        sizeof(tmp));
3744                         goto got_name;
3745                 }
3746
3747                 if (!vma->vm_mm) {
3748                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
3749                         goto got_name;
3750                 }
3751
3752                 name = strncpy(tmp, "//anon", sizeof(tmp));
3753                 goto got_name;
3754         }
3755
3756 got_name:
3757         size = ALIGN(strlen(name)+1, sizeof(u64));
3758
3759         mmap_event->file_name = name;
3760         mmap_event->file_size = size;
3761
3762         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3763
3764         rcu_read_lock();
3765         cpuctx = &get_cpu_var(perf_cpu_context);
3766         perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3767         ctx = rcu_dereference(current->perf_event_ctxp);
3768         if (ctx)
3769                 perf_event_mmap_ctx(ctx, mmap_event);
3770         put_cpu_var(perf_cpu_context);
3771         rcu_read_unlock();
3772
3773         kfree(buf);
3774 }
3775
3776 void __perf_event_mmap(struct vm_area_struct *vma)
3777 {
3778         struct perf_mmap_event mmap_event;
3779
3780         if (!atomic_read(&nr_mmap_events))
3781                 return;
3782
3783         mmap_event = (struct perf_mmap_event){
3784                 .vma    = vma,
3785                 /* .file_name */
3786                 /* .file_size */
3787                 .event_id  = {
3788                         .header = {
3789                                 .type = PERF_RECORD_MMAP,
3790                                 .misc = PERF_RECORD_MISC_USER,
3791                                 /* .size */
3792                         },
3793                         /* .pid */
3794                         /* .tid */
3795                         .start  = vma->vm_start,
3796                         .len    = vma->vm_end - vma->vm_start,
3797                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3798                 },
3799         };
3800
3801         perf_event_mmap_event(&mmap_event);
3802 }
3803
3804 /*
3805  * IRQ throttle logging
3806  */
3807
3808 static void perf_log_throttle(struct perf_event *event, int enable)
3809 {
3810         struct perf_output_handle handle;
3811         int ret;
3812
3813         struct {
3814                 struct perf_event_header        header;
3815                 u64                             time;
3816                 u64                             id;
3817                 u64                             stream_id;
3818         } throttle_event = {
3819                 .header = {
3820                         .type = PERF_RECORD_THROTTLE,
3821                         .misc = 0,
3822                         .size = sizeof(throttle_event),
3823                 },
3824                 .time           = perf_clock(),
3825                 .id             = primary_event_id(event),
3826                 .stream_id      = event->id,
3827         };
3828
3829         if (enable)
3830                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3831
3832         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3833         if (ret)
3834                 return;
3835
3836         perf_output_put(&handle, throttle_event);
3837         perf_output_end(&handle);
3838 }
3839
3840 /*
3841  * Generic event overflow handling, sampling.
3842  */
3843
3844 static int __perf_event_overflow(struct perf_event *event, int nmi,
3845                                    int throttle, struct perf_sample_data *data,
3846                                    struct pt_regs *regs)
3847 {
3848         int events = atomic_read(&event->event_limit);
3849         struct hw_perf_event *hwc = &event->hw;
3850         int ret = 0;
3851
3852         throttle = (throttle && event->pmu->unthrottle != NULL);
3853
3854         if (!throttle) {
3855                 hwc->interrupts++;
3856         } else {
3857                 if (hwc->interrupts != MAX_INTERRUPTS) {
3858                         hwc->interrupts++;
3859                         if (HZ * hwc->interrupts >
3860                                         (u64)sysctl_perf_event_sample_rate) {
3861                                 hwc->interrupts = MAX_INTERRUPTS;
3862                                 perf_log_throttle(event, 0);
3863                                 ret = 1;
3864                         }
3865                 } else {
3866                         /*
3867                          * Keep re-disabling events even though on the previous
3868                          * pass we disabled it - just in case we raced with a
3869                          * sched-in and the event got enabled again:
3870                          */
3871                         ret = 1;
3872                 }
3873         }
3874
3875         if (event->attr.freq) {
3876                 u64 now = perf_clock();
3877                 s64 delta = now - hwc->freq_time_stamp;
3878
3879                 hwc->freq_time_stamp = now;
3880
3881                 if (delta > 0 && delta < 2*TICK_NSEC)
3882                         perf_adjust_period(event, delta, hwc->last_period);
3883         }
3884
3885         /*
3886          * XXX event_limit might not quite work as expected on inherited
3887          * events
3888          */
3889
3890         event->pending_kill = POLL_IN;
3891         if (events && atomic_dec_and_test(&event->event_limit)) {
3892                 ret = 1;
3893                 event->pending_kill = POLL_HUP;
3894                 if (nmi) {
3895                         event->pending_disable = 1;
3896                         perf_pending_queue(&event->pending,
3897                                            perf_pending_event);
3898                 } else
3899                         perf_event_disable(event);
3900         }
3901
3902         if (event->overflow_handler)
3903                 event->overflow_handler(event, nmi, data, regs);
3904         else
3905                 perf_event_output(event, nmi, data, regs);
3906
3907         return ret;
3908 }
3909
3910 int perf_event_overflow(struct perf_event *event, int nmi,
3911                           struct perf_sample_data *data,
3912                           struct pt_regs *regs)
3913 {
3914         return __perf_event_overflow(event, nmi, 1, data, regs);
3915 }
3916
3917 /*
3918  * Generic software event infrastructure
3919  */
3920
3921 /*
3922  * We directly increment event->count and keep a second value in
3923  * event->hw.period_left to count intervals. This period event
3924  * is kept in the range [-sample_period, 0] so that we can use the
3925  * sign as trigger.
3926  */
3927
3928 static u64 perf_swevent_set_period(struct perf_event *event)
3929 {
3930         struct hw_perf_event *hwc = &event->hw;
3931         u64 period = hwc->last_period;
3932         u64 nr, offset;
3933         s64 old, val;
3934
3935         hwc->last_period = hwc->sample_period;
3936
3937 again:
3938         old = val = atomic64_read(&hwc->period_left);
3939         if (val < 0)
3940                 return 0;
3941
3942         nr = div64_u64(period + val, period);
3943         offset = nr * period;
3944         val -= offset;
3945         if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3946                 goto again;
3947
3948         return nr;
3949 }
3950
3951 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3952                                     int nmi, struct perf_sample_data *data,
3953                                     struct pt_regs *regs)
3954 {
3955         struct hw_perf_event *hwc = &event->hw;
3956         int throttle = 0;
3957
3958         data->period = event->hw.last_period;
3959         if (!overflow)
3960                 overflow = perf_swevent_set_period(event);
3961
3962         if (hwc->interrupts == MAX_INTERRUPTS)
3963                 return;
3964
3965         for (; overflow; overflow--) {
3966                 if (__perf_event_overflow(event, nmi, throttle,
3967                                             data, regs)) {
3968                         /*
3969                          * We inhibit the overflow from happening when
3970                          * hwc->interrupts == MAX_INTERRUPTS.
3971                          */
3972                         break;
3973                 }
3974                 throttle = 1;
3975         }
3976 }
3977
3978 static void perf_swevent_unthrottle(struct perf_event *event)
3979 {
3980         /*
3981          * Nothing to do, we already reset hwc->interrupts.
3982          */
3983 }
3984
3985 static void perf_swevent_add(struct perf_event *event, u64 nr,
3986                                int nmi, struct perf_sample_data *data,
3987                                struct pt_regs *regs)
3988 {
3989         struct hw_perf_event *hwc = &event->hw;
3990
3991         atomic64_add(nr, &event->count);
3992
3993         if (!regs)
3994                 return;
3995
3996         if (!hwc->sample_period)
3997                 return;
3998
3999         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4000                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4001
4002         if (atomic64_add_negative(nr, &hwc->period_left))
4003                 return;
4004
4005         perf_swevent_overflow(event, 0, nmi, data, regs);
4006 }
4007
4008 static int perf_tp_event_match(struct perf_event *event,
4009                                 struct perf_sample_data *data);
4010
4011 static int perf_exclude_event(struct perf_event *event,
4012                               struct pt_regs *regs)
4013 {
4014         if (regs) {
4015                 if (event->attr.exclude_user && user_mode(regs))
4016                         return 1;
4017
4018                 if (event->attr.exclude_kernel && !user_mode(regs))
4019                         return 1;
4020         }
4021
4022         return 0;
4023 }
4024
4025 static int perf_swevent_match(struct perf_event *event,
4026                                 enum perf_type_id type,
4027                                 u32 event_id,
4028                                 struct perf_sample_data *data,
4029                                 struct pt_regs *regs)
4030 {
4031         if (event->attr.type != type)
4032                 return 0;
4033
4034         if (event->attr.config != event_id)
4035                 return 0;
4036
4037         if (perf_exclude_event(event, regs))
4038                 return 0;
4039
4040         if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4041             !perf_tp_event_match(event, data))
4042                 return 0;
4043
4044         return 1;
4045 }
4046
4047 static inline u64 swevent_hash(u64 type, u32 event_id)
4048 {
4049         u64 val = event_id | (type << 32);
4050
4051         return hash_64(val, SWEVENT_HLIST_BITS);
4052 }
4053
4054 static struct hlist_head *
4055 find_swevent_head(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4056 {
4057         u64 hash;
4058         struct swevent_hlist *hlist;
4059
4060         hash = swevent_hash(type, event_id);
4061
4062         hlist = rcu_dereference(ctx->swevent_hlist);
4063         if (!hlist)
4064                 return NULL;
4065
4066         return &hlist->heads[hash];
4067 }
4068
4069 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4070                                     u64 nr, int nmi,
4071                                     struct perf_sample_data *data,
4072                                     struct pt_regs *regs)
4073 {
4074         struct perf_cpu_context *cpuctx;
4075         struct perf_event *event;
4076         struct hlist_node *node;
4077         struct hlist_head *head;
4078
4079         cpuctx = &__get_cpu_var(perf_cpu_context);
4080
4081         rcu_read_lock();
4082
4083         head = find_swevent_head(cpuctx, type, event_id);
4084
4085         if (!head)
4086                 goto end;
4087
4088         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4089                 if (perf_swevent_match(event, type, event_id, data, regs))
4090                         perf_swevent_add(event, nr, nmi, data, regs);
4091         }
4092 end:
4093         rcu_read_unlock();
4094 }
4095
4096 int perf_swevent_get_recursion_context(void)
4097 {
4098         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4099         int rctx;
4100
4101         if (in_nmi())
4102                 rctx = 3;
4103         else if (in_irq())
4104                 rctx = 2;
4105         else if (in_softirq())
4106                 rctx = 1;
4107         else
4108                 rctx = 0;
4109
4110         if (cpuctx->recursion[rctx]) {
4111                 put_cpu_var(perf_cpu_context);
4112                 return -1;
4113         }
4114
4115         cpuctx->recursion[rctx]++;
4116         barrier();
4117
4118         return rctx;
4119 }
4120 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4121
4122 void perf_swevent_put_recursion_context(int rctx)
4123 {
4124         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4125         barrier();
4126         cpuctx->recursion[rctx]--;
4127         put_cpu_var(perf_cpu_context);
4128 }
4129 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4130
4131
4132 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4133                             struct pt_regs *regs, u64 addr)
4134 {
4135         struct perf_sample_data data;
4136         int rctx;
4137
4138         rctx = perf_swevent_get_recursion_context();
4139         if (rctx < 0)
4140                 return;
4141
4142         perf_sample_data_init(&data, addr);
4143
4144         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4145
4146         perf_swevent_put_recursion_context(rctx);
4147 }
4148
4149 static void perf_swevent_read(struct perf_event *event)
4150 {
4151 }
4152
4153 static int perf_swevent_enable(struct perf_event *event)
4154 {
4155         struct hw_perf_event *hwc = &event->hw;
4156         struct perf_cpu_context *cpuctx;
4157         struct hlist_head *head;
4158
4159         cpuctx = &__get_cpu_var(perf_cpu_context);
4160
4161         if (hwc->sample_period) {
4162                 hwc->last_period = hwc->sample_period;
4163                 perf_swevent_set_period(event);
4164         }
4165
4166         head = find_swevent_head(cpuctx, event->attr.type, event->attr.config);
4167         if (WARN_ON_ONCE(!head))
4168                 return -EINVAL;
4169
4170         hlist_add_head_rcu(&event->hlist_entry, head);
4171
4172         return 0;
4173 }
4174
4175 static void perf_swevent_disable(struct perf_event *event)
4176 {
4177         hlist_del_rcu(&event->hlist_entry);
4178 }
4179
4180 static const struct pmu perf_ops_generic = {
4181         .enable         = perf_swevent_enable,
4182         .disable        = perf_swevent_disable,
4183         .read           = perf_swevent_read,
4184         .unthrottle     = perf_swevent_unthrottle,
4185 };
4186
4187 /*
4188  * hrtimer based swevent callback
4189  */
4190
4191 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4192 {
4193         enum hrtimer_restart ret = HRTIMER_RESTART;
4194         struct perf_sample_data data;
4195         struct pt_regs *regs;
4196         struct perf_event *event;
4197         u64 period;
4198
4199         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4200         event->pmu->read(event);
4201
4202         perf_sample_data_init(&data, 0);
4203         data.period = event->hw.last_period;
4204         regs = get_irq_regs();
4205
4206         if (regs && !perf_exclude_event(event, regs)) {
4207                 if (!(event->attr.exclude_idle && current->pid == 0))
4208                         if (perf_event_overflow(event, 0, &data, regs))
4209                                 ret = HRTIMER_NORESTART;
4210         }
4211
4212         period = max_t(u64, 10000, event->hw.sample_period);
4213         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4214
4215         return ret;
4216 }
4217
4218 static void perf_swevent_start_hrtimer(struct perf_event *event)
4219 {
4220         struct hw_perf_event *hwc = &event->hw;
4221
4222         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4223         hwc->hrtimer.function = perf_swevent_hrtimer;
4224         if (hwc->sample_period) {
4225                 u64 period;
4226
4227                 if (hwc->remaining) {
4228                         if (hwc->remaining < 0)
4229                                 period = 10000;
4230                         else
4231                                 period = hwc->remaining;
4232                         hwc->remaining = 0;
4233                 } else {
4234                         period = max_t(u64, 10000, hwc->sample_period);
4235                 }
4236                 __hrtimer_start_range_ns(&hwc->hrtimer,
4237                                 ns_to_ktime(period), 0,
4238                                 HRTIMER_MODE_REL, 0);
4239         }
4240 }
4241
4242 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4243 {
4244         struct hw_perf_event *hwc = &event->hw;
4245
4246         if (hwc->sample_period) {
4247                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4248                 hwc->remaining = ktime_to_ns(remaining);
4249
4250                 hrtimer_cancel(&hwc->hrtimer);
4251         }
4252 }
4253
4254 /*
4255  * Software event: cpu wall time clock
4256  */
4257
4258 static void cpu_clock_perf_event_update(struct perf_event *event)
4259 {
4260         int cpu = raw_smp_processor_id();
4261         s64 prev;
4262         u64 now;
4263
4264         now = cpu_clock(cpu);
4265         prev = atomic64_xchg(&event->hw.prev_count, now);
4266         atomic64_add(now - prev, &event->count);
4267 }
4268
4269 static int cpu_clock_perf_event_enable(struct perf_event *event)
4270 {
4271         struct hw_perf_event *hwc = &event->hw;
4272         int cpu = raw_smp_processor_id();
4273
4274         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4275         perf_swevent_start_hrtimer(event);
4276
4277         return 0;
4278 }
4279
4280 static void cpu_clock_perf_event_disable(struct perf_event *event)
4281 {
4282         perf_swevent_cancel_hrtimer(event);
4283         cpu_clock_perf_event_update(event);
4284 }
4285
4286 static void cpu_clock_perf_event_read(struct perf_event *event)
4287 {
4288         cpu_clock_perf_event_update(event);
4289 }
4290
4291 static const struct pmu perf_ops_cpu_clock = {
4292         .enable         = cpu_clock_perf_event_enable,
4293         .disable        = cpu_clock_perf_event_disable,
4294         .read           = cpu_clock_perf_event_read,
4295 };
4296
4297 /*
4298  * Software event: task time clock
4299  */
4300
4301 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4302 {
4303         u64 prev;
4304         s64 delta;
4305
4306         prev = atomic64_xchg(&event->hw.prev_count, now);
4307         delta = now - prev;
4308         atomic64_add(delta, &event->count);
4309 }
4310
4311 static int task_clock_perf_event_enable(struct perf_event *event)
4312 {
4313         struct hw_perf_event *hwc = &event->hw;
4314         u64 now;
4315
4316         now = event->ctx->time;
4317
4318         atomic64_set(&hwc->prev_count, now);
4319
4320         perf_swevent_start_hrtimer(event);
4321
4322         return 0;
4323 }
4324
4325 static void task_clock_perf_event_disable(struct perf_event *event)
4326 {
4327         perf_swevent_cancel_hrtimer(event);
4328         task_clock_perf_event_update(event, event->ctx->time);
4329
4330 }
4331
4332 static void task_clock_perf_event_read(struct perf_event *event)
4333 {
4334         u64 time;
4335
4336         if (!in_nmi()) {
4337                 update_context_time(event->ctx);
4338                 time = event->ctx->time;
4339         } else {
4340                 u64 now = perf_clock();
4341                 u64 delta = now - event->ctx->timestamp;
4342                 time = event->ctx->time + delta;
4343         }
4344
4345         task_clock_perf_event_update(event, time);
4346 }
4347
4348 static const struct pmu perf_ops_task_clock = {
4349         .enable         = task_clock_perf_event_enable,
4350         .disable        = task_clock_perf_event_disable,
4351         .read           = task_clock_perf_event_read,
4352 };
4353
4354 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4355 {
4356         struct swevent_hlist *hlist;
4357
4358         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4359         kfree(hlist);
4360 }
4361
4362 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4363 {
4364         struct swevent_hlist *hlist;
4365
4366         if (!cpuctx->swevent_hlist)
4367                 return;
4368
4369         hlist = cpuctx->swevent_hlist;
4370         rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4371         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4372 }
4373
4374 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4375 {
4376         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4377
4378         mutex_lock(&cpuctx->hlist_mutex);
4379
4380         if (!--cpuctx->hlist_refcount)
4381                 swevent_hlist_release(cpuctx);
4382
4383         mutex_unlock(&cpuctx->hlist_mutex);
4384 }
4385
4386 static void swevent_hlist_put(struct perf_event *event)
4387 {
4388         int cpu;
4389
4390         if (event->cpu != -1) {
4391                 swevent_hlist_put_cpu(event, event->cpu);
4392                 return;
4393         }
4394
4395         for_each_possible_cpu(cpu)
4396                 swevent_hlist_put_cpu(event, cpu);
4397 }
4398
4399 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4400 {
4401         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4402         int err = 0;
4403
4404         mutex_lock(&cpuctx->hlist_mutex);
4405
4406         if (!cpuctx->swevent_hlist && cpu_online(cpu)) {
4407                 struct swevent_hlist *hlist;
4408
4409                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4410                 if (!hlist) {
4411                         err = -ENOMEM;
4412                         goto exit;
4413                 }
4414                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4415         }
4416         cpuctx->hlist_refcount++;
4417  exit:
4418         mutex_unlock(&cpuctx->hlist_mutex);
4419
4420         return err;
4421 }
4422
4423 static int swevent_hlist_get(struct perf_event *event)
4424 {
4425         int err;
4426         int cpu, failed_cpu;
4427
4428         if (event->cpu != -1)
4429                 return swevent_hlist_get_cpu(event, event->cpu);
4430
4431         get_online_cpus();
4432         for_each_possible_cpu(cpu) {
4433                 err = swevent_hlist_get_cpu(event, cpu);
4434                 if (err) {
4435                         failed_cpu = cpu;
4436                         goto fail;
4437                 }
4438         }
4439         put_online_cpus();
4440
4441         return 0;
4442  fail:
4443         for_each_possible_cpu(cpu) {
4444                 if (cpu == failed_cpu)
4445                         break;
4446                 swevent_hlist_put_cpu(event, cpu);
4447         }
4448
4449         put_online_cpus();
4450         return err;
4451 }
4452
4453 #ifdef CONFIG_EVENT_TRACING
4454
4455 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4456                    int entry_size, struct pt_regs *regs)
4457 {
4458         struct perf_sample_data data;
4459         struct perf_raw_record raw = {
4460                 .size = entry_size,
4461                 .data = record,
4462         };
4463
4464         perf_sample_data_init(&data, addr);
4465         data.raw = &raw;
4466
4467         /* Trace events already protected against recursion */
4468         do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4469                          &data, regs);
4470 }
4471 EXPORT_SYMBOL_GPL(perf_tp_event);
4472
4473 static int perf_tp_event_match(struct perf_event *event,
4474                                 struct perf_sample_data *data)
4475 {
4476         void *record = data->raw->data;
4477
4478         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4479                 return 1;
4480         return 0;
4481 }
4482
4483 static void tp_perf_event_destroy(struct perf_event *event)
4484 {
4485         perf_trace_disable(event->attr.config);
4486         swevent_hlist_put(event);
4487 }
4488
4489 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4490 {
4491         int err;
4492
4493         /*
4494          * Raw tracepoint data is a severe data leak, only allow root to
4495          * have these.
4496          */
4497         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4498                         perf_paranoid_tracepoint_raw() &&
4499                         !capable(CAP_SYS_ADMIN))
4500                 return ERR_PTR(-EPERM);
4501
4502         if (perf_trace_enable(event->attr.config))
4503                 return NULL;
4504
4505         event->destroy = tp_perf_event_destroy;
4506         err = swevent_hlist_get(event);
4507         if (err) {
4508                 perf_trace_disable(event->attr.config);
4509                 return ERR_PTR(err);
4510         }
4511
4512         return &perf_ops_generic;
4513 }
4514
4515 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4516 {
4517         char *filter_str;
4518         int ret;
4519
4520         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4521                 return -EINVAL;
4522
4523         filter_str = strndup_user(arg, PAGE_SIZE);
4524         if (IS_ERR(filter_str))
4525                 return PTR_ERR(filter_str);
4526
4527         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4528
4529         kfree(filter_str);
4530         return ret;
4531 }
4532
4533 static void perf_event_free_filter(struct perf_event *event)
4534 {
4535         ftrace_profile_free_filter(event);
4536 }
4537
4538 #else
4539
4540 static int perf_tp_event_match(struct perf_event *event,
4541                                 struct perf_sample_data *data)
4542 {
4543         return 1;
4544 }
4545
4546 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4547 {
4548         return NULL;
4549 }
4550
4551 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4552 {
4553         return -ENOENT;
4554 }
4555
4556 static void perf_event_free_filter(struct perf_event *event)
4557 {
4558 }
4559
4560 #endif /* CONFIG_EVENT_TRACING */
4561
4562 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4563 static void bp_perf_event_destroy(struct perf_event *event)
4564 {
4565         release_bp_slot(event);
4566 }
4567
4568 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4569 {
4570         int err;
4571
4572         err = register_perf_hw_breakpoint(bp);
4573         if (err)
4574                 return ERR_PTR(err);
4575
4576         bp->destroy = bp_perf_event_destroy;
4577
4578         return &perf_ops_bp;
4579 }
4580
4581 void perf_bp_event(struct perf_event *bp, void *data)
4582 {
4583         struct perf_sample_data sample;
4584         struct pt_regs *regs = data;
4585
4586         perf_sample_data_init(&sample, bp->attr.bp_addr);
4587
4588         if (!perf_exclude_event(bp, regs))
4589                 perf_swevent_add(bp, 1, 1, &sample, regs);
4590 }
4591 #else
4592 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4593 {
4594         return NULL;
4595 }
4596
4597 void perf_bp_event(struct perf_event *bp, void *regs)
4598 {
4599 }
4600 #endif
4601
4602 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4603
4604 static void sw_perf_event_destroy(struct perf_event *event)
4605 {
4606         u64 event_id = event->attr.config;
4607
4608         WARN_ON(event->parent);
4609
4610         atomic_dec(&perf_swevent_enabled[event_id]);
4611         swevent_hlist_put(event);
4612 }
4613
4614 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4615 {
4616         const struct pmu *pmu = NULL;
4617         u64 event_id = event->attr.config;
4618
4619         /*
4620          * Software events (currently) can't in general distinguish
4621          * between user, kernel and hypervisor events.
4622          * However, context switches and cpu migrations are considered
4623          * to be kernel events, and page faults are never hypervisor
4624          * events.
4625          */
4626         switch (event_id) {
4627         case PERF_COUNT_SW_CPU_CLOCK:
4628                 pmu = &perf_ops_cpu_clock;
4629
4630                 break;
4631         case PERF_COUNT_SW_TASK_CLOCK:
4632                 /*
4633                  * If the user instantiates this as a per-cpu event,
4634                  * use the cpu_clock event instead.
4635                  */
4636                 if (event->ctx->task)
4637                         pmu = &perf_ops_task_clock;
4638                 else
4639                         pmu = &perf_ops_cpu_clock;
4640
4641                 break;
4642         case PERF_COUNT_SW_PAGE_FAULTS:
4643         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4644         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4645         case PERF_COUNT_SW_CONTEXT_SWITCHES:
4646         case PERF_COUNT_SW_CPU_MIGRATIONS:
4647         case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4648         case PERF_COUNT_SW_EMULATION_FAULTS:
4649                 if (!event->parent) {
4650                         int err;
4651
4652                         err = swevent_hlist_get(event);
4653                         if (err)
4654                                 return ERR_PTR(err);
4655
4656                         atomic_inc(&perf_swevent_enabled[event_id]);
4657                         event->destroy = sw_perf_event_destroy;
4658                 }
4659                 pmu = &perf_ops_generic;
4660                 break;
4661         }
4662
4663         return pmu;
4664 }
4665
4666 /*
4667  * Allocate and initialize a event structure
4668  */
4669 static struct perf_event *
4670 perf_event_alloc(struct perf_event_attr *attr,
4671                    int cpu,
4672                    struct perf_event_context *ctx,
4673                    struct perf_event *group_leader,
4674                    struct perf_event *parent_event,
4675                    perf_overflow_handler_t overflow_handler,
4676                    gfp_t gfpflags)
4677 {
4678         const struct pmu *pmu;
4679         struct perf_event *event;
4680         struct hw_perf_event *hwc;
4681         long err;
4682
4683         event = kzalloc(sizeof(*event), gfpflags);
4684         if (!event)
4685                 return ERR_PTR(-ENOMEM);
4686
4687         /*
4688          * Single events are their own group leaders, with an
4689          * empty sibling list:
4690          */
4691         if (!group_leader)
4692                 group_leader = event;
4693
4694         mutex_init(&event->child_mutex);
4695         INIT_LIST_HEAD(&event->child_list);
4696
4697         INIT_LIST_HEAD(&event->group_entry);
4698         INIT_LIST_HEAD(&event->event_entry);
4699         INIT_LIST_HEAD(&event->sibling_list);
4700         init_waitqueue_head(&event->waitq);
4701
4702         mutex_init(&event->mmap_mutex);
4703
4704         event->cpu              = cpu;
4705         event->attr             = *attr;
4706         event->group_leader     = group_leader;
4707         event->pmu              = NULL;
4708         event->ctx              = ctx;
4709         event->oncpu            = -1;
4710
4711         event->parent           = parent_event;
4712
4713         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
4714         event->id               = atomic64_inc_return(&perf_event_id);
4715
4716         event->state            = PERF_EVENT_STATE_INACTIVE;
4717
4718         if (!overflow_handler && parent_event)
4719                 overflow_handler = parent_event->overflow_handler;
4720         
4721         event->overflow_handler = overflow_handler;
4722
4723         if (attr->disabled)
4724                 event->state = PERF_EVENT_STATE_OFF;
4725
4726         pmu = NULL;
4727
4728         hwc = &event->hw;
4729         hwc->sample_period = attr->sample_period;
4730         if (attr->freq && attr->sample_freq)
4731                 hwc->sample_period = 1;
4732         hwc->last_period = hwc->sample_period;
4733
4734         atomic64_set(&hwc->period_left, hwc->sample_period);
4735
4736         /*
4737          * we currently do not support PERF_FORMAT_GROUP on inherited events
4738          */
4739         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4740                 goto done;
4741
4742         switch (attr->type) {
4743         case PERF_TYPE_RAW:
4744         case PERF_TYPE_HARDWARE:
4745         case PERF_TYPE_HW_CACHE:
4746                 pmu = hw_perf_event_init(event);
4747                 break;
4748
4749         case PERF_TYPE_SOFTWARE:
4750                 pmu = sw_perf_event_init(event);
4751                 break;
4752
4753         case PERF_TYPE_TRACEPOINT:
4754                 pmu = tp_perf_event_init(event);
4755                 break;
4756
4757         case PERF_TYPE_BREAKPOINT:
4758                 pmu = bp_perf_event_init(event);
4759                 break;
4760
4761
4762         default:
4763                 break;
4764         }
4765 done:
4766         err = 0;
4767         if (!pmu)
4768                 err = -EINVAL;
4769         else if (IS_ERR(pmu))
4770                 err = PTR_ERR(pmu);
4771
4772         if (err) {
4773                 if (event->ns)
4774                         put_pid_ns(event->ns);
4775                 kfree(event);
4776                 return ERR_PTR(err);
4777         }
4778
4779         event->pmu = pmu;
4780
4781         if (!event->parent) {
4782                 atomic_inc(&nr_events);
4783                 if (event->attr.mmap)
4784                         atomic_inc(&nr_mmap_events);
4785                 if (event->attr.comm)
4786                         atomic_inc(&nr_comm_events);
4787                 if (event->attr.task)
4788                         atomic_inc(&nr_task_events);
4789         }
4790
4791         return event;
4792 }
4793
4794 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4795                           struct perf_event_attr *attr)
4796 {
4797         u32 size;
4798         int ret;
4799
4800         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4801                 return -EFAULT;
4802
4803         /*
4804          * zero the full structure, so that a short copy will be nice.
4805          */
4806         memset(attr, 0, sizeof(*attr));
4807
4808         ret = get_user(size, &uattr->size);
4809         if (ret)
4810                 return ret;
4811
4812         if (size > PAGE_SIZE)   /* silly large */
4813                 goto err_size;
4814
4815         if (!size)              /* abi compat */
4816                 size = PERF_ATTR_SIZE_VER0;
4817
4818         if (size < PERF_ATTR_SIZE_VER0)
4819                 goto err_size;
4820
4821         /*
4822          * If we're handed a bigger struct than we know of,
4823          * ensure all the unknown bits are 0 - i.e. new
4824          * user-space does not rely on any kernel feature
4825          * extensions we dont know about yet.
4826          */
4827         if (size > sizeof(*attr)) {
4828                 unsigned char __user *addr;
4829                 unsigned char __user *end;
4830                 unsigned char val;
4831
4832                 addr = (void __user *)uattr + sizeof(*attr);
4833                 end  = (void __user *)uattr + size;
4834
4835                 for (; addr < end; addr++) {
4836                         ret = get_user(val, addr);
4837                         if (ret)
4838                                 return ret;
4839                         if (val)
4840                                 goto err_size;
4841                 }
4842                 size = sizeof(*attr);
4843         }
4844
4845         ret = copy_from_user(attr, uattr, size);
4846         if (ret)
4847                 return -EFAULT;
4848
4849         /*
4850          * If the type exists, the corresponding creation will verify
4851          * the attr->config.
4852          */
4853         if (attr->type >= PERF_TYPE_MAX)
4854                 return -EINVAL;
4855
4856         if (attr->__reserved_1)
4857                 return -EINVAL;
4858
4859         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4860                 return -EINVAL;
4861
4862         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4863                 return -EINVAL;
4864
4865 out:
4866         return ret;
4867
4868 err_size:
4869         put_user(sizeof(*attr), &uattr->size);
4870         ret = -E2BIG;
4871         goto out;
4872 }
4873
4874 static int perf_event_set_output(struct perf_event *event, int output_fd)
4875 {
4876         struct perf_event *output_event = NULL;
4877         struct file *output_file = NULL;
4878         struct perf_event *old_output;
4879         int fput_needed = 0;
4880         int ret = -EINVAL;
4881
4882         if (!output_fd)
4883                 goto set;
4884
4885         output_file = fget_light(output_fd, &fput_needed);
4886         if (!output_file)
4887                 return -EBADF;
4888
4889         if (output_file->f_op != &perf_fops)
4890                 goto out;
4891
4892         output_event = output_file->private_data;
4893
4894         /* Don't chain output fds */
4895         if (output_event->output)
4896                 goto out;
4897
4898         /* Don't set an output fd when we already have an output channel */
4899         if (event->data)
4900                 goto out;
4901
4902         atomic_long_inc(&output_file->f_count);
4903
4904 set:
4905         mutex_lock(&event->mmap_mutex);
4906         old_output = event->output;
4907         rcu_assign_pointer(event->output, output_event);
4908         mutex_unlock(&event->mmap_mutex);
4909
4910         if (old_output) {
4911                 /*
4912                  * we need to make sure no existing perf_output_*()
4913                  * is still referencing this event.
4914                  */
4915                 synchronize_rcu();
4916                 fput(old_output->filp);
4917         }
4918
4919         ret = 0;
4920 out:
4921         fput_light(output_file, fput_needed);
4922         return ret;
4923 }
4924
4925 /**
4926  * sys_perf_event_open - open a performance event, associate it to a task/cpu
4927  *
4928  * @attr_uptr:  event_id type attributes for monitoring/sampling
4929  * @pid:                target pid
4930  * @cpu:                target cpu
4931  * @group_fd:           group leader event fd
4932  */
4933 SYSCALL_DEFINE5(perf_event_open,
4934                 struct perf_event_attr __user *, attr_uptr,
4935                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4936 {
4937         struct perf_event *event, *group_leader;
4938         struct perf_event_attr attr;
4939         struct perf_event_context *ctx;
4940         struct file *event_file = NULL;
4941         struct file *group_file = NULL;
4942         int fput_needed = 0;
4943         int fput_needed2 = 0;
4944         int err;
4945
4946         /* for future expandability... */
4947         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4948                 return -EINVAL;
4949
4950         err = perf_copy_attr(attr_uptr, &attr);
4951         if (err)
4952                 return err;
4953
4954         if (!attr.exclude_kernel) {
4955                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4956                         return -EACCES;
4957         }
4958
4959         if (attr.freq) {
4960                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4961                         return -EINVAL;
4962         }
4963
4964         /*
4965          * Get the target context (task or percpu):
4966          */
4967         ctx = find_get_context(pid, cpu);
4968         if (IS_ERR(ctx))
4969                 return PTR_ERR(ctx);
4970
4971         /*
4972          * Look up the group leader (we will attach this event to it):
4973          */
4974         group_leader = NULL;
4975         if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4976                 err = -EINVAL;
4977                 group_file = fget_light(group_fd, &fput_needed);
4978                 if (!group_file)
4979                         goto err_put_context;
4980                 if (group_file->f_op != &perf_fops)
4981                         goto err_put_context;
4982
4983                 group_leader = group_file->private_data;
4984                 /*
4985                  * Do not allow a recursive hierarchy (this new sibling
4986                  * becoming part of another group-sibling):
4987                  */
4988                 if (group_leader->group_leader != group_leader)
4989                         goto err_put_context;
4990                 /*
4991                  * Do not allow to attach to a group in a different
4992                  * task or CPU context:
4993                  */
4994                 if (group_leader->ctx != ctx)
4995                         goto err_put_context;
4996                 /*
4997                  * Only a group leader can be exclusive or pinned
4998                  */
4999                 if (attr.exclusive || attr.pinned)
5000                         goto err_put_context;
5001         }
5002
5003         event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5004                                      NULL, NULL, GFP_KERNEL);
5005         err = PTR_ERR(event);
5006         if (IS_ERR(event))
5007                 goto err_put_context;
5008
5009         err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
5010         if (err < 0)
5011                 goto err_free_put_context;
5012
5013         event_file = fget_light(err, &fput_needed2);
5014         if (!event_file)
5015                 goto err_free_put_context;
5016
5017         if (flags & PERF_FLAG_FD_OUTPUT) {
5018                 err = perf_event_set_output(event, group_fd);
5019                 if (err)
5020                         goto err_fput_free_put_context;
5021         }
5022
5023         event->filp = event_file;
5024         WARN_ON_ONCE(ctx->parent_ctx);
5025         mutex_lock(&ctx->mutex);
5026         perf_install_in_context(ctx, event, cpu);
5027         ++ctx->generation;
5028         mutex_unlock(&ctx->mutex);
5029
5030         event->owner = current;
5031         get_task_struct(current);
5032         mutex_lock(&current->perf_event_mutex);
5033         list_add_tail(&event->owner_entry, &current->perf_event_list);
5034         mutex_unlock(&current->perf_event_mutex);
5035
5036 err_fput_free_put_context:
5037         fput_light(event_file, fput_needed2);
5038
5039 err_free_put_context:
5040         if (err < 0)
5041                 free_event(event);
5042
5043 err_put_context:
5044         if (err < 0)
5045                 put_ctx(ctx);
5046
5047         fput_light(group_file, fput_needed);
5048
5049         return err;
5050 }
5051
5052 /**
5053  * perf_event_create_kernel_counter
5054  *
5055  * @attr: attributes of the counter to create
5056  * @cpu: cpu in which the counter is bound
5057  * @pid: task to profile
5058  */
5059 struct perf_event *
5060 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5061                                  pid_t pid,
5062                                  perf_overflow_handler_t overflow_handler)
5063 {
5064         struct perf_event *event;
5065         struct perf_event_context *ctx;
5066         int err;
5067
5068         /*
5069          * Get the target context (task or percpu):
5070          */
5071
5072         ctx = find_get_context(pid, cpu);
5073         if (IS_ERR(ctx)) {
5074                 err = PTR_ERR(ctx);
5075                 goto err_exit;
5076         }
5077
5078         event = perf_event_alloc(attr, cpu, ctx, NULL,
5079                                  NULL, overflow_handler, GFP_KERNEL);
5080         if (IS_ERR(event)) {
5081                 err = PTR_ERR(event);
5082                 goto err_put_context;
5083         }
5084
5085         event->filp = NULL;
5086         WARN_ON_ONCE(ctx->parent_ctx);
5087         mutex_lock(&ctx->mutex);
5088         perf_install_in_context(ctx, event, cpu);
5089         ++ctx->generation;
5090         mutex_unlock(&ctx->mutex);
5091
5092         event->owner = current;
5093         get_task_struct(current);
5094         mutex_lock(&current->perf_event_mutex);
5095         list_add_tail(&event->owner_entry, &current->perf_event_list);
5096         mutex_unlock(&current->perf_event_mutex);
5097
5098         return event;
5099
5100  err_put_context:
5101         put_ctx(ctx);
5102  err_exit:
5103         return ERR_PTR(err);
5104 }
5105 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5106
5107 /*
5108  * inherit a event from parent task to child task:
5109  */
5110 static struct perf_event *
5111 inherit_event(struct perf_event *parent_event,
5112               struct task_struct *parent,
5113               struct perf_event_context *parent_ctx,
5114               struct task_struct *child,
5115               struct perf_event *group_leader,
5116               struct perf_event_context *child_ctx)
5117 {
5118         struct perf_event *child_event;
5119
5120         /*
5121          * Instead of creating recursive hierarchies of events,
5122          * we link inherited events back to the original parent,
5123          * which has a filp for sure, which we use as the reference
5124          * count:
5125          */
5126         if (parent_event->parent)
5127                 parent_event = parent_event->parent;
5128
5129         child_event = perf_event_alloc(&parent_event->attr,
5130                                            parent_event->cpu, child_ctx,
5131                                            group_leader, parent_event,
5132                                            NULL, GFP_KERNEL);
5133         if (IS_ERR(child_event))
5134                 return child_event;
5135         get_ctx(child_ctx);
5136
5137         /*
5138          * Make the child state follow the state of the parent event,
5139          * not its attr.disabled bit.  We hold the parent's mutex,
5140          * so we won't race with perf_event_{en, dis}able_family.
5141          */
5142         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5143                 child_event->state = PERF_EVENT_STATE_INACTIVE;
5144         else
5145                 child_event->state = PERF_EVENT_STATE_OFF;
5146
5147         if (parent_event->attr.freq) {
5148                 u64 sample_period = parent_event->hw.sample_period;
5149                 struct hw_perf_event *hwc = &child_event->hw;
5150
5151                 hwc->sample_period = sample_period;
5152                 hwc->last_period   = sample_period;
5153
5154                 atomic64_set(&hwc->period_left, sample_period);
5155         }
5156
5157         child_event->overflow_handler = parent_event->overflow_handler;
5158
5159         /*
5160          * Link it up in the child's context:
5161          */
5162         add_event_to_ctx(child_event, child_ctx);
5163
5164         /*
5165          * Get a reference to the parent filp - we will fput it
5166          * when the child event exits. This is safe to do because
5167          * we are in the parent and we know that the filp still
5168          * exists and has a nonzero count:
5169          */
5170         atomic_long_inc(&parent_event->filp->f_count);
5171
5172         /*
5173          * Link this into the parent event's child list
5174          */
5175         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5176         mutex_lock(&parent_event->child_mutex);
5177         list_add_tail(&child_event->child_list, &parent_event->child_list);
5178         mutex_unlock(&parent_event->child_mutex);
5179
5180         return child_event;
5181 }
5182
5183 static int inherit_group(struct perf_event *parent_event,
5184               struct task_struct *parent,
5185               struct perf_event_context *parent_ctx,
5186               struct task_struct *child,
5187               struct perf_event_context *child_ctx)
5188 {
5189         struct perf_event *leader;
5190         struct perf_event *sub;
5191         struct perf_event *child_ctr;
5192
5193         leader = inherit_event(parent_event, parent, parent_ctx,
5194                                  child, NULL, child_ctx);
5195         if (IS_ERR(leader))
5196                 return PTR_ERR(leader);
5197         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5198                 child_ctr = inherit_event(sub, parent, parent_ctx,
5199                                             child, leader, child_ctx);
5200                 if (IS_ERR(child_ctr))
5201                         return PTR_ERR(child_ctr);
5202         }
5203         return 0;
5204 }
5205
5206 static void sync_child_event(struct perf_event *child_event,
5207                                struct task_struct *child)
5208 {
5209         struct perf_event *parent_event = child_event->parent;
5210         u64 child_val;
5211
5212         if (child_event->attr.inherit_stat)
5213                 perf_event_read_event(child_event, child);
5214
5215         child_val = atomic64_read(&child_event->count);
5216
5217         /*
5218          * Add back the child's count to the parent's count:
5219          */
5220         atomic64_add(child_val, &parent_event->count);
5221         atomic64_add(child_event->total_time_enabled,
5222                      &parent_event->child_total_time_enabled);
5223         atomic64_add(child_event->total_time_running,
5224                      &parent_event->child_total_time_running);
5225
5226         /*
5227          * Remove this event from the parent's list
5228          */
5229         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5230         mutex_lock(&parent_event->child_mutex);
5231         list_del_init(&child_event->child_list);
5232         mutex_unlock(&parent_event->child_mutex);
5233
5234         /*
5235          * Release the parent event, if this was the last
5236          * reference to it.
5237          */
5238         fput(parent_event->filp);
5239 }
5240
5241 static void
5242 __perf_event_exit_task(struct perf_event *child_event,
5243                          struct perf_event_context *child_ctx,
5244                          struct task_struct *child)
5245 {
5246         struct perf_event *parent_event;
5247
5248         perf_event_remove_from_context(child_event);
5249
5250         parent_event = child_event->parent;
5251         /*
5252          * It can happen that parent exits first, and has events
5253          * that are still around due to the child reference. These
5254          * events need to be zapped - but otherwise linger.
5255          */
5256         if (parent_event) {
5257                 sync_child_event(child_event, child);
5258                 free_event(child_event);
5259         }
5260 }
5261
5262 /*
5263  * When a child task exits, feed back event values to parent events.
5264  */
5265 void perf_event_exit_task(struct task_struct *child)
5266 {
5267         struct perf_event *child_event, *tmp;
5268         struct perf_event_context *child_ctx;
5269         unsigned long flags;
5270
5271         if (likely(!child->perf_event_ctxp)) {
5272                 perf_event_task(child, NULL, 0);
5273                 return;
5274         }
5275
5276         local_irq_save(flags);
5277         /*
5278          * We can't reschedule here because interrupts are disabled,
5279          * and either child is current or it is a task that can't be
5280          * scheduled, so we are now safe from rescheduling changing
5281          * our context.
5282          */
5283         child_ctx = child->perf_event_ctxp;
5284         __perf_event_task_sched_out(child_ctx);
5285
5286         /*
5287          * Take the context lock here so that if find_get_context is
5288          * reading child->perf_event_ctxp, we wait until it has
5289          * incremented the context's refcount before we do put_ctx below.
5290          */
5291         raw_spin_lock(&child_ctx->lock);
5292         child->perf_event_ctxp = NULL;
5293         /*
5294          * If this context is a clone; unclone it so it can't get
5295          * swapped to another process while we're removing all
5296          * the events from it.
5297          */
5298         unclone_ctx(child_ctx);
5299         update_context_time(child_ctx);
5300         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5301
5302         /*
5303          * Report the task dead after unscheduling the events so that we
5304          * won't get any samples after PERF_RECORD_EXIT. We can however still
5305          * get a few PERF_RECORD_READ events.
5306          */
5307         perf_event_task(child, child_ctx, 0);
5308
5309         /*
5310          * We can recurse on the same lock type through:
5311          *
5312          *   __perf_event_exit_task()
5313          *     sync_child_event()
5314          *       fput(parent_event->filp)
5315          *         perf_release()
5316          *           mutex_lock(&ctx->mutex)
5317          *
5318          * But since its the parent context it won't be the same instance.
5319          */
5320         mutex_lock(&child_ctx->mutex);
5321
5322 again:
5323         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5324                                  group_entry)
5325                 __perf_event_exit_task(child_event, child_ctx, child);
5326
5327         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5328                                  group_entry)
5329                 __perf_event_exit_task(child_event, child_ctx, child);
5330
5331         /*
5332          * If the last event was a group event, it will have appended all
5333          * its siblings to the list, but we obtained 'tmp' before that which
5334          * will still point to the list head terminating the iteration.
5335          */
5336         if (!list_empty(&child_ctx->pinned_groups) ||
5337             !list_empty(&child_ctx->flexible_groups))
5338                 goto again;
5339
5340         mutex_unlock(&child_ctx->mutex);
5341
5342         put_ctx(child_ctx);
5343 }
5344
5345 static void perf_free_event(struct perf_event *event,
5346                             struct perf_event_context *ctx)
5347 {
5348         struct perf_event *parent = event->parent;
5349
5350         if (WARN_ON_ONCE(!parent))
5351                 return;
5352
5353         mutex_lock(&parent->child_mutex);
5354         list_del_init(&event->child_list);
5355         mutex_unlock(&parent->child_mutex);
5356
5357         fput(parent->filp);
5358
5359         list_del_event(event, ctx);
5360         free_event(event);
5361 }
5362
5363 /*
5364  * free an unexposed, unused context as created by inheritance by
5365  * init_task below, used by fork() in case of fail.
5366  */
5367 void perf_event_free_task(struct task_struct *task)
5368 {
5369         struct perf_event_context *ctx = task->perf_event_ctxp;
5370         struct perf_event *event, *tmp;
5371
5372         if (!ctx)
5373                 return;
5374
5375         mutex_lock(&ctx->mutex);
5376 again:
5377         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5378                 perf_free_event(event, ctx);
5379
5380         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5381                                  group_entry)
5382                 perf_free_event(event, ctx);
5383
5384         if (!list_empty(&ctx->pinned_groups) ||
5385             !list_empty(&ctx->flexible_groups))
5386                 goto again;
5387
5388         mutex_unlock(&ctx->mutex);
5389
5390         put_ctx(ctx);
5391 }
5392
5393 static int
5394 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5395                    struct perf_event_context *parent_ctx,
5396                    struct task_struct *child,
5397                    int *inherited_all)
5398 {
5399         int ret;
5400         struct perf_event_context *child_ctx = child->perf_event_ctxp;
5401
5402         if (!event->attr.inherit) {
5403                 *inherited_all = 0;
5404                 return 0;
5405         }
5406
5407         if (!child_ctx) {
5408                 /*
5409                  * This is executed from the parent task context, so
5410                  * inherit events that have been marked for cloning.
5411                  * First allocate and initialize a context for the
5412                  * child.
5413                  */
5414
5415                 child_ctx = kzalloc(sizeof(struct perf_event_context),
5416                                     GFP_KERNEL);
5417                 if (!child_ctx)
5418                         return -ENOMEM;
5419
5420                 __perf_event_init_context(child_ctx, child);
5421                 child->perf_event_ctxp = child_ctx;
5422                 get_task_struct(child);
5423         }
5424
5425         ret = inherit_group(event, parent, parent_ctx,
5426                             child, child_ctx);
5427
5428         if (ret)
5429                 *inherited_all = 0;
5430
5431         return ret;
5432 }
5433
5434
5435 /*
5436  * Initialize the perf_event context in task_struct
5437  */
5438 int perf_event_init_task(struct task_struct *child)
5439 {
5440         struct perf_event_context *child_ctx, *parent_ctx;
5441         struct perf_event_context *cloned_ctx;
5442         struct perf_event *event;
5443         struct task_struct *parent = current;
5444         int inherited_all = 1;
5445         int ret = 0;
5446
5447         child->perf_event_ctxp = NULL;
5448
5449         mutex_init(&child->perf_event_mutex);
5450         INIT_LIST_HEAD(&child->perf_event_list);
5451
5452         if (likely(!parent->perf_event_ctxp))
5453                 return 0;
5454
5455         /*
5456          * If the parent's context is a clone, pin it so it won't get
5457          * swapped under us.
5458          */
5459         parent_ctx = perf_pin_task_context(parent);
5460
5461         /*
5462          * No need to check if parent_ctx != NULL here; since we saw
5463          * it non-NULL earlier, the only reason for it to become NULL
5464          * is if we exit, and since we're currently in the middle of
5465          * a fork we can't be exiting at the same time.
5466          */
5467
5468         /*
5469          * Lock the parent list. No need to lock the child - not PID
5470          * hashed yet and not running, so nobody can access it.
5471          */
5472         mutex_lock(&parent_ctx->mutex);
5473
5474         /*
5475          * We dont have to disable NMIs - we are only looking at
5476          * the list, not manipulating it:
5477          */
5478         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5479                 ret = inherit_task_group(event, parent, parent_ctx, child,
5480                                          &inherited_all);
5481                 if (ret)
5482                         break;
5483         }
5484
5485         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5486                 ret = inherit_task_group(event, parent, parent_ctx, child,
5487                                          &inherited_all);
5488                 if (ret)
5489                         break;
5490         }
5491
5492         child_ctx = child->perf_event_ctxp;
5493
5494         if (child_ctx && inherited_all) {
5495                 /*
5496                  * Mark the child context as a clone of the parent
5497                  * context, or of whatever the parent is a clone of.
5498                  * Note that if the parent is a clone, it could get
5499                  * uncloned at any point, but that doesn't matter
5500                  * because the list of events and the generation
5501                  * count can't have changed since we took the mutex.
5502                  */
5503                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5504                 if (cloned_ctx) {
5505                         child_ctx->parent_ctx = cloned_ctx;
5506                         child_ctx->parent_gen = parent_ctx->parent_gen;
5507                 } else {
5508                         child_ctx->parent_ctx = parent_ctx;
5509                         child_ctx->parent_gen = parent_ctx->generation;
5510                 }
5511                 get_ctx(child_ctx->parent_ctx);
5512         }
5513
5514         mutex_unlock(&parent_ctx->mutex);
5515
5516         perf_unpin_context(parent_ctx);
5517
5518         return ret;
5519 }
5520
5521 static void __init perf_event_init_all_cpus(void)
5522 {
5523         int cpu;
5524         struct perf_cpu_context *cpuctx;
5525
5526         for_each_possible_cpu(cpu) {
5527                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5528                 mutex_init(&cpuctx->hlist_mutex);
5529                 __perf_event_init_context(&cpuctx->ctx, NULL);
5530         }
5531 }
5532
5533 static void __cpuinit perf_event_init_cpu(int cpu)
5534 {
5535         struct perf_cpu_context *cpuctx;
5536
5537         cpuctx = &per_cpu(perf_cpu_context, cpu);
5538
5539         spin_lock(&perf_resource_lock);
5540         cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5541         spin_unlock(&perf_resource_lock);
5542
5543         mutex_lock(&cpuctx->hlist_mutex);
5544         if (cpuctx->hlist_refcount > 0) {
5545                 struct swevent_hlist *hlist;
5546
5547                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5548                 WARN_ON_ONCE(!hlist);
5549                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5550         }
5551         mutex_unlock(&cpuctx->hlist_mutex);
5552 }
5553
5554 #ifdef CONFIG_HOTPLUG_CPU
5555 static void __perf_event_exit_cpu(void *info)
5556 {
5557         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5558         struct perf_event_context *ctx = &cpuctx->ctx;
5559         struct perf_event *event, *tmp;
5560
5561         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5562                 __perf_event_remove_from_context(event);
5563         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5564                 __perf_event_remove_from_context(event);
5565 }
5566 static void perf_event_exit_cpu(int cpu)
5567 {
5568         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5569         struct perf_event_context *ctx = &cpuctx->ctx;
5570
5571         mutex_lock(&cpuctx->hlist_mutex);
5572         swevent_hlist_release(cpuctx);
5573         mutex_unlock(&cpuctx->hlist_mutex);
5574
5575         mutex_lock(&ctx->mutex);
5576         smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5577         mutex_unlock(&ctx->mutex);
5578 }
5579 #else
5580 static inline void perf_event_exit_cpu(int cpu) { }
5581 #endif
5582
5583 static int __cpuinit
5584 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5585 {
5586         unsigned int cpu = (long)hcpu;
5587
5588         switch (action) {
5589
5590         case CPU_UP_PREPARE:
5591         case CPU_UP_PREPARE_FROZEN:
5592                 perf_event_init_cpu(cpu);
5593                 break;
5594
5595         case CPU_DOWN_PREPARE:
5596         case CPU_DOWN_PREPARE_FROZEN:
5597                 perf_event_exit_cpu(cpu);
5598                 break;
5599
5600         default:
5601                 break;
5602         }
5603
5604         return NOTIFY_OK;
5605 }
5606
5607 /*
5608  * This has to have a higher priority than migration_notifier in sched.c.
5609  */
5610 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5611         .notifier_call          = perf_cpu_notify,
5612         .priority               = 20,
5613 };
5614
5615 void __init perf_event_init(void)
5616 {
5617         perf_event_init_all_cpus();
5618         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5619                         (void *)(long)smp_processor_id());
5620         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5621                         (void *)(long)smp_processor_id());
5622         register_cpu_notifier(&perf_cpu_nb);
5623 }
5624
5625 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5626                                         struct sysdev_class_attribute *attr,
5627                                         char *buf)
5628 {
5629         return sprintf(buf, "%d\n", perf_reserved_percpu);
5630 }
5631
5632 static ssize_t
5633 perf_set_reserve_percpu(struct sysdev_class *class,
5634                         struct sysdev_class_attribute *attr,
5635                         const char *buf,
5636                         size_t count)
5637 {
5638         struct perf_cpu_context *cpuctx;
5639         unsigned long val;
5640         int err, cpu, mpt;
5641
5642         err = strict_strtoul(buf, 10, &val);
5643         if (err)
5644                 return err;
5645         if (val > perf_max_events)
5646                 return -EINVAL;
5647
5648         spin_lock(&perf_resource_lock);
5649         perf_reserved_percpu = val;
5650         for_each_online_cpu(cpu) {
5651                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5652                 raw_spin_lock_irq(&cpuctx->ctx.lock);
5653                 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5654                           perf_max_events - perf_reserved_percpu);
5655                 cpuctx->max_pertask = mpt;
5656                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5657         }
5658         spin_unlock(&perf_resource_lock);
5659
5660         return count;
5661 }
5662
5663 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5664                                     struct sysdev_class_attribute *attr,
5665                                     char *buf)
5666 {
5667         return sprintf(buf, "%d\n", perf_overcommit);
5668 }
5669
5670 static ssize_t
5671 perf_set_overcommit(struct sysdev_class *class,
5672                     struct sysdev_class_attribute *attr,
5673                     const char *buf, size_t count)
5674 {
5675         unsigned long val;
5676         int err;
5677
5678         err = strict_strtoul(buf, 10, &val);
5679         if (err)
5680                 return err;
5681         if (val > 1)
5682                 return -EINVAL;
5683
5684         spin_lock(&perf_resource_lock);
5685         perf_overcommit = val;
5686         spin_unlock(&perf_resource_lock);
5687
5688         return count;
5689 }
5690
5691 static SYSDEV_CLASS_ATTR(
5692                                 reserve_percpu,
5693                                 0644,
5694                                 perf_show_reserve_percpu,
5695                                 perf_set_reserve_percpu
5696                         );
5697
5698 static SYSDEV_CLASS_ATTR(
5699                                 overcommit,
5700                                 0644,
5701                                 perf_show_overcommit,
5702                                 perf_set_overcommit
5703                         );
5704
5705 static struct attribute *perfclass_attrs[] = {
5706         &attr_reserve_percpu.attr,
5707         &attr_overcommit.attr,
5708         NULL
5709 };
5710
5711 static struct attribute_group perfclass_attr_group = {
5712         .attrs                  = perfclass_attrs,
5713         .name                   = "perf_events",
5714 };
5715
5716 static int __init perf_event_sysfs_init(void)
5717 {
5718         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5719                                   &perfclass_attr_group);
5720 }
5721 device_initcall(perf_event_sysfs_init);