perf: Optimize buffer placement by allocating buffers NUMA aware
[safe/jmp/linux-2.6] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 /*
39  * Each CPU has a list of per CPU events:
40  */
41 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
42
43 int perf_max_events __read_mostly = 1;
44 static int perf_reserved_percpu __read_mostly;
45 static int perf_overcommit __read_mostly = 1;
46
47 static atomic_t nr_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
51
52 /*
53  * perf event paranoia level:
54  *  -1 - not paranoid at all
55  *   0 - disallow raw tracepoint access for unpriv
56  *   1 - disallow cpu events for unpriv
57  *   2 - disallow kernel profiling for unpriv
58  */
59 int sysctl_perf_event_paranoid __read_mostly = 1;
60
61 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62
63 /*
64  * max perf event sample rate
65  */
66 int sysctl_perf_event_sample_rate __read_mostly = 100000;
67
68 static atomic64_t perf_event_id;
69
70 /*
71  * Lock for (sysadmin-configurable) event reservations:
72  */
73 static DEFINE_SPINLOCK(perf_resource_lock);
74
75 /*
76  * Architecture provided APIs - weak aliases:
77  */
78 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79 {
80         return NULL;
81 }
82
83 void __weak hw_perf_disable(void)               { barrier(); }
84 void __weak hw_perf_enable(void)                { barrier(); }
85
86 void __weak perf_event_print_debug(void)        { }
87
88 static DEFINE_PER_CPU(int, perf_disable_count);
89
90 void perf_disable(void)
91 {
92         if (!__get_cpu_var(perf_disable_count)++)
93                 hw_perf_disable();
94 }
95
96 void perf_enable(void)
97 {
98         if (!--__get_cpu_var(perf_disable_count))
99                 hw_perf_enable();
100 }
101
102 static void get_ctx(struct perf_event_context *ctx)
103 {
104         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105 }
106
107 static void free_ctx(struct rcu_head *head)
108 {
109         struct perf_event_context *ctx;
110
111         ctx = container_of(head, struct perf_event_context, rcu_head);
112         kfree(ctx);
113 }
114
115 static void put_ctx(struct perf_event_context *ctx)
116 {
117         if (atomic_dec_and_test(&ctx->refcount)) {
118                 if (ctx->parent_ctx)
119                         put_ctx(ctx->parent_ctx);
120                 if (ctx->task)
121                         put_task_struct(ctx->task);
122                 call_rcu(&ctx->rcu_head, free_ctx);
123         }
124 }
125
126 static void unclone_ctx(struct perf_event_context *ctx)
127 {
128         if (ctx->parent_ctx) {
129                 put_ctx(ctx->parent_ctx);
130                 ctx->parent_ctx = NULL;
131         }
132 }
133
134 /*
135  * If we inherit events we want to return the parent event id
136  * to userspace.
137  */
138 static u64 primary_event_id(struct perf_event *event)
139 {
140         u64 id = event->id;
141
142         if (event->parent)
143                 id = event->parent->id;
144
145         return id;
146 }
147
148 /*
149  * Get the perf_event_context for a task and lock it.
150  * This has to cope with with the fact that until it is locked,
151  * the context could get moved to another task.
152  */
153 static struct perf_event_context *
154 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155 {
156         struct perf_event_context *ctx;
157
158         rcu_read_lock();
159  retry:
160         ctx = rcu_dereference(task->perf_event_ctxp);
161         if (ctx) {
162                 /*
163                  * If this context is a clone of another, it might
164                  * get swapped for another underneath us by
165                  * perf_event_task_sched_out, though the
166                  * rcu_read_lock() protects us from any context
167                  * getting freed.  Lock the context and check if it
168                  * got swapped before we could get the lock, and retry
169                  * if so.  If we locked the right context, then it
170                  * can't get swapped on us any more.
171                  */
172                 raw_spin_lock_irqsave(&ctx->lock, *flags);
173                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175                         goto retry;
176                 }
177
178                 if (!atomic_inc_not_zero(&ctx->refcount)) {
179                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180                         ctx = NULL;
181                 }
182         }
183         rcu_read_unlock();
184         return ctx;
185 }
186
187 /*
188  * Get the context for a task and increment its pin_count so it
189  * can't get swapped to another task.  This also increments its
190  * reference count so that the context can't get freed.
191  */
192 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193 {
194         struct perf_event_context *ctx;
195         unsigned long flags;
196
197         ctx = perf_lock_task_context(task, &flags);
198         if (ctx) {
199                 ++ctx->pin_count;
200                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
201         }
202         return ctx;
203 }
204
205 static void perf_unpin_context(struct perf_event_context *ctx)
206 {
207         unsigned long flags;
208
209         raw_spin_lock_irqsave(&ctx->lock, flags);
210         --ctx->pin_count;
211         raw_spin_unlock_irqrestore(&ctx->lock, flags);
212         put_ctx(ctx);
213 }
214
215 static inline u64 perf_clock(void)
216 {
217         return cpu_clock(raw_smp_processor_id());
218 }
219
220 /*
221  * Update the record of the current time in a context.
222  */
223 static void update_context_time(struct perf_event_context *ctx)
224 {
225         u64 now = perf_clock();
226
227         ctx->time += now - ctx->timestamp;
228         ctx->timestamp = now;
229 }
230
231 /*
232  * Update the total_time_enabled and total_time_running fields for a event.
233  */
234 static void update_event_times(struct perf_event *event)
235 {
236         struct perf_event_context *ctx = event->ctx;
237         u64 run_end;
238
239         if (event->state < PERF_EVENT_STATE_INACTIVE ||
240             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
241                 return;
242
243         if (ctx->is_active)
244                 run_end = ctx->time;
245         else
246                 run_end = event->tstamp_stopped;
247
248         event->total_time_enabled = run_end - event->tstamp_enabled;
249
250         if (event->state == PERF_EVENT_STATE_INACTIVE)
251                 run_end = event->tstamp_stopped;
252         else
253                 run_end = ctx->time;
254
255         event->total_time_running = run_end - event->tstamp_running;
256 }
257
258 /*
259  * Update total_time_enabled and total_time_running for all events in a group.
260  */
261 static void update_group_times(struct perf_event *leader)
262 {
263         struct perf_event *event;
264
265         update_event_times(leader);
266         list_for_each_entry(event, &leader->sibling_list, group_entry)
267                 update_event_times(event);
268 }
269
270 static struct list_head *
271 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
272 {
273         if (event->attr.pinned)
274                 return &ctx->pinned_groups;
275         else
276                 return &ctx->flexible_groups;
277 }
278
279 /*
280  * Add a event from the lists for its context.
281  * Must be called with ctx->mutex and ctx->lock held.
282  */
283 static void
284 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
285 {
286         struct perf_event *group_leader = event->group_leader;
287
288         /*
289          * Depending on whether it is a standalone or sibling event,
290          * add it straight to the context's event list, or to the group
291          * leader's sibling list:
292          */
293         if (group_leader == event) {
294                 struct list_head *list;
295
296                 if (is_software_event(event))
297                         event->group_flags |= PERF_GROUP_SOFTWARE;
298
299                 list = ctx_group_list(event, ctx);
300                 list_add_tail(&event->group_entry, list);
301         } else {
302                 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
303                     !is_software_event(event))
304                         group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
305
306                 list_add_tail(&event->group_entry, &group_leader->sibling_list);
307                 group_leader->nr_siblings++;
308         }
309
310         list_add_rcu(&event->event_entry, &ctx->event_list);
311         ctx->nr_events++;
312         if (event->attr.inherit_stat)
313                 ctx->nr_stat++;
314 }
315
316 /*
317  * Remove a event from the lists for its context.
318  * Must be called with ctx->mutex and ctx->lock held.
319  */
320 static void
321 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
322 {
323         if (list_empty(&event->group_entry))
324                 return;
325         ctx->nr_events--;
326         if (event->attr.inherit_stat)
327                 ctx->nr_stat--;
328
329         list_del_init(&event->group_entry);
330         list_del_rcu(&event->event_entry);
331
332         if (event->group_leader != event)
333                 event->group_leader->nr_siblings--;
334
335         update_group_times(event);
336
337         /*
338          * If event was in error state, then keep it
339          * that way, otherwise bogus counts will be
340          * returned on read(). The only way to get out
341          * of error state is by explicit re-enabling
342          * of the event
343          */
344         if (event->state > PERF_EVENT_STATE_OFF)
345                 event->state = PERF_EVENT_STATE_OFF;
346 }
347
348 static void
349 perf_destroy_group(struct perf_event *event, struct perf_event_context *ctx)
350 {
351         struct perf_event *sibling, *tmp;
352
353         /*
354          * If this was a group event with sibling events then
355          * upgrade the siblings to singleton events by adding them
356          * to the context list directly:
357          */
358         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
359                 struct list_head *list;
360
361                 list = ctx_group_list(event, ctx);
362                 list_move_tail(&sibling->group_entry, list);
363                 sibling->group_leader = sibling;
364
365                 /* Inherit group flags from the previous leader */
366                 sibling->group_flags = event->group_flags;
367         }
368 }
369
370 static void
371 event_sched_out(struct perf_event *event,
372                   struct perf_cpu_context *cpuctx,
373                   struct perf_event_context *ctx)
374 {
375         if (event->state != PERF_EVENT_STATE_ACTIVE)
376                 return;
377
378         event->state = PERF_EVENT_STATE_INACTIVE;
379         if (event->pending_disable) {
380                 event->pending_disable = 0;
381                 event->state = PERF_EVENT_STATE_OFF;
382         }
383         event->tstamp_stopped = ctx->time;
384         event->pmu->disable(event);
385         event->oncpu = -1;
386
387         if (!is_software_event(event))
388                 cpuctx->active_oncpu--;
389         ctx->nr_active--;
390         if (event->attr.exclusive || !cpuctx->active_oncpu)
391                 cpuctx->exclusive = 0;
392 }
393
394 static void
395 group_sched_out(struct perf_event *group_event,
396                 struct perf_cpu_context *cpuctx,
397                 struct perf_event_context *ctx)
398 {
399         struct perf_event *event;
400
401         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
402                 return;
403
404         event_sched_out(group_event, cpuctx, ctx);
405
406         /*
407          * Schedule out siblings (if any):
408          */
409         list_for_each_entry(event, &group_event->sibling_list, group_entry)
410                 event_sched_out(event, cpuctx, ctx);
411
412         if (group_event->attr.exclusive)
413                 cpuctx->exclusive = 0;
414 }
415
416 /*
417  * Cross CPU call to remove a performance event
418  *
419  * We disable the event on the hardware level first. After that we
420  * remove it from the context list.
421  */
422 static void __perf_event_remove_from_context(void *info)
423 {
424         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
425         struct perf_event *event = info;
426         struct perf_event_context *ctx = event->ctx;
427
428         /*
429          * If this is a task context, we need to check whether it is
430          * the current task context of this cpu. If not it has been
431          * scheduled out before the smp call arrived.
432          */
433         if (ctx->task && cpuctx->task_ctx != ctx)
434                 return;
435
436         raw_spin_lock(&ctx->lock);
437         /*
438          * Protect the list operation against NMI by disabling the
439          * events on a global level.
440          */
441         perf_disable();
442
443         event_sched_out(event, cpuctx, ctx);
444
445         list_del_event(event, ctx);
446
447         if (!ctx->task) {
448                 /*
449                  * Allow more per task events with respect to the
450                  * reservation:
451                  */
452                 cpuctx->max_pertask =
453                         min(perf_max_events - ctx->nr_events,
454                             perf_max_events - perf_reserved_percpu);
455         }
456
457         perf_enable();
458         raw_spin_unlock(&ctx->lock);
459 }
460
461
462 /*
463  * Remove the event from a task's (or a CPU's) list of events.
464  *
465  * Must be called with ctx->mutex held.
466  *
467  * CPU events are removed with a smp call. For task events we only
468  * call when the task is on a CPU.
469  *
470  * If event->ctx is a cloned context, callers must make sure that
471  * every task struct that event->ctx->task could possibly point to
472  * remains valid.  This is OK when called from perf_release since
473  * that only calls us on the top-level context, which can't be a clone.
474  * When called from perf_event_exit_task, it's OK because the
475  * context has been detached from its task.
476  */
477 static void perf_event_remove_from_context(struct perf_event *event)
478 {
479         struct perf_event_context *ctx = event->ctx;
480         struct task_struct *task = ctx->task;
481
482         if (!task) {
483                 /*
484                  * Per cpu events are removed via an smp call and
485                  * the removal is always successful.
486                  */
487                 smp_call_function_single(event->cpu,
488                                          __perf_event_remove_from_context,
489                                          event, 1);
490                 return;
491         }
492
493 retry:
494         task_oncpu_function_call(task, __perf_event_remove_from_context,
495                                  event);
496
497         raw_spin_lock_irq(&ctx->lock);
498         /*
499          * If the context is active we need to retry the smp call.
500          */
501         if (ctx->nr_active && !list_empty(&event->group_entry)) {
502                 raw_spin_unlock_irq(&ctx->lock);
503                 goto retry;
504         }
505
506         /*
507          * The lock prevents that this context is scheduled in so we
508          * can remove the event safely, if the call above did not
509          * succeed.
510          */
511         if (!list_empty(&event->group_entry))
512                 list_del_event(event, ctx);
513         raw_spin_unlock_irq(&ctx->lock);
514 }
515
516 /*
517  * Cross CPU call to disable a performance event
518  */
519 static void __perf_event_disable(void *info)
520 {
521         struct perf_event *event = info;
522         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
523         struct perf_event_context *ctx = event->ctx;
524
525         /*
526          * If this is a per-task event, need to check whether this
527          * event's task is the current task on this cpu.
528          */
529         if (ctx->task && cpuctx->task_ctx != ctx)
530                 return;
531
532         raw_spin_lock(&ctx->lock);
533
534         /*
535          * If the event is on, turn it off.
536          * If it is in error state, leave it in error state.
537          */
538         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
539                 update_context_time(ctx);
540                 update_group_times(event);
541                 if (event == event->group_leader)
542                         group_sched_out(event, cpuctx, ctx);
543                 else
544                         event_sched_out(event, cpuctx, ctx);
545                 event->state = PERF_EVENT_STATE_OFF;
546         }
547
548         raw_spin_unlock(&ctx->lock);
549 }
550
551 /*
552  * Disable a event.
553  *
554  * If event->ctx is a cloned context, callers must make sure that
555  * every task struct that event->ctx->task could possibly point to
556  * remains valid.  This condition is satisifed when called through
557  * perf_event_for_each_child or perf_event_for_each because they
558  * hold the top-level event's child_mutex, so any descendant that
559  * goes to exit will block in sync_child_event.
560  * When called from perf_pending_event it's OK because event->ctx
561  * is the current context on this CPU and preemption is disabled,
562  * hence we can't get into perf_event_task_sched_out for this context.
563  */
564 void perf_event_disable(struct perf_event *event)
565 {
566         struct perf_event_context *ctx = event->ctx;
567         struct task_struct *task = ctx->task;
568
569         if (!task) {
570                 /*
571                  * Disable the event on the cpu that it's on
572                  */
573                 smp_call_function_single(event->cpu, __perf_event_disable,
574                                          event, 1);
575                 return;
576         }
577
578  retry:
579         task_oncpu_function_call(task, __perf_event_disable, event);
580
581         raw_spin_lock_irq(&ctx->lock);
582         /*
583          * If the event is still active, we need to retry the cross-call.
584          */
585         if (event->state == PERF_EVENT_STATE_ACTIVE) {
586                 raw_spin_unlock_irq(&ctx->lock);
587                 goto retry;
588         }
589
590         /*
591          * Since we have the lock this context can't be scheduled
592          * in, so we can change the state safely.
593          */
594         if (event->state == PERF_EVENT_STATE_INACTIVE) {
595                 update_group_times(event);
596                 event->state = PERF_EVENT_STATE_OFF;
597         }
598
599         raw_spin_unlock_irq(&ctx->lock);
600 }
601
602 static int
603 event_sched_in(struct perf_event *event,
604                  struct perf_cpu_context *cpuctx,
605                  struct perf_event_context *ctx)
606 {
607         if (event->state <= PERF_EVENT_STATE_OFF)
608                 return 0;
609
610         event->state = PERF_EVENT_STATE_ACTIVE;
611         event->oncpu = smp_processor_id();
612         /*
613          * The new state must be visible before we turn it on in the hardware:
614          */
615         smp_wmb();
616
617         if (event->pmu->enable(event)) {
618                 event->state = PERF_EVENT_STATE_INACTIVE;
619                 event->oncpu = -1;
620                 return -EAGAIN;
621         }
622
623         event->tstamp_running += ctx->time - event->tstamp_stopped;
624
625         if (!is_software_event(event))
626                 cpuctx->active_oncpu++;
627         ctx->nr_active++;
628
629         if (event->attr.exclusive)
630                 cpuctx->exclusive = 1;
631
632         return 0;
633 }
634
635 static int
636 group_sched_in(struct perf_event *group_event,
637                struct perf_cpu_context *cpuctx,
638                struct perf_event_context *ctx)
639 {
640         struct perf_event *event, *partial_group = NULL;
641         const struct pmu *pmu = group_event->pmu;
642         bool txn = false;
643         int ret;
644
645         if (group_event->state == PERF_EVENT_STATE_OFF)
646                 return 0;
647
648         /* Check if group transaction availabe */
649         if (pmu->start_txn)
650                 txn = true;
651
652         if (txn)
653                 pmu->start_txn(pmu);
654
655         if (event_sched_in(group_event, cpuctx, ctx))
656                 return -EAGAIN;
657
658         /*
659          * Schedule in siblings as one group (if any):
660          */
661         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
662                 if (event_sched_in(event, cpuctx, ctx)) {
663                         partial_group = event;
664                         goto group_error;
665                 }
666         }
667
668         if (!txn)
669                 return 0;
670
671         ret = pmu->commit_txn(pmu);
672         if (!ret) {
673                 pmu->cancel_txn(pmu);
674                 return 0;
675         }
676
677 group_error:
678         if (txn)
679                 pmu->cancel_txn(pmu);
680
681         /*
682          * Groups can be scheduled in as one unit only, so undo any
683          * partial group before returning:
684          */
685         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
686                 if (event == partial_group)
687                         break;
688                 event_sched_out(event, cpuctx, ctx);
689         }
690         event_sched_out(group_event, cpuctx, ctx);
691
692         return -EAGAIN;
693 }
694
695 /*
696  * Work out whether we can put this event group on the CPU now.
697  */
698 static int group_can_go_on(struct perf_event *event,
699                            struct perf_cpu_context *cpuctx,
700                            int can_add_hw)
701 {
702         /*
703          * Groups consisting entirely of software events can always go on.
704          */
705         if (event->group_flags & PERF_GROUP_SOFTWARE)
706                 return 1;
707         /*
708          * If an exclusive group is already on, no other hardware
709          * events can go on.
710          */
711         if (cpuctx->exclusive)
712                 return 0;
713         /*
714          * If this group is exclusive and there are already
715          * events on the CPU, it can't go on.
716          */
717         if (event->attr.exclusive && cpuctx->active_oncpu)
718                 return 0;
719         /*
720          * Otherwise, try to add it if all previous groups were able
721          * to go on.
722          */
723         return can_add_hw;
724 }
725
726 static void add_event_to_ctx(struct perf_event *event,
727                                struct perf_event_context *ctx)
728 {
729         list_add_event(event, ctx);
730         event->tstamp_enabled = ctx->time;
731         event->tstamp_running = ctx->time;
732         event->tstamp_stopped = ctx->time;
733 }
734
735 /*
736  * Cross CPU call to install and enable a performance event
737  *
738  * Must be called with ctx->mutex held
739  */
740 static void __perf_install_in_context(void *info)
741 {
742         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
743         struct perf_event *event = info;
744         struct perf_event_context *ctx = event->ctx;
745         struct perf_event *leader = event->group_leader;
746         int err;
747
748         /*
749          * If this is a task context, we need to check whether it is
750          * the current task context of this cpu. If not it has been
751          * scheduled out before the smp call arrived.
752          * Or possibly this is the right context but it isn't
753          * on this cpu because it had no events.
754          */
755         if (ctx->task && cpuctx->task_ctx != ctx) {
756                 if (cpuctx->task_ctx || ctx->task != current)
757                         return;
758                 cpuctx->task_ctx = ctx;
759         }
760
761         raw_spin_lock(&ctx->lock);
762         ctx->is_active = 1;
763         update_context_time(ctx);
764
765         /*
766          * Protect the list operation against NMI by disabling the
767          * events on a global level. NOP for non NMI based events.
768          */
769         perf_disable();
770
771         add_event_to_ctx(event, ctx);
772
773         if (event->cpu != -1 && event->cpu != smp_processor_id())
774                 goto unlock;
775
776         /*
777          * Don't put the event on if it is disabled or if
778          * it is in a group and the group isn't on.
779          */
780         if (event->state != PERF_EVENT_STATE_INACTIVE ||
781             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
782                 goto unlock;
783
784         /*
785          * An exclusive event can't go on if there are already active
786          * hardware events, and no hardware event can go on if there
787          * is already an exclusive event on.
788          */
789         if (!group_can_go_on(event, cpuctx, 1))
790                 err = -EEXIST;
791         else
792                 err = event_sched_in(event, cpuctx, ctx);
793
794         if (err) {
795                 /*
796                  * This event couldn't go on.  If it is in a group
797                  * then we have to pull the whole group off.
798                  * If the event group is pinned then put it in error state.
799                  */
800                 if (leader != event)
801                         group_sched_out(leader, cpuctx, ctx);
802                 if (leader->attr.pinned) {
803                         update_group_times(leader);
804                         leader->state = PERF_EVENT_STATE_ERROR;
805                 }
806         }
807
808         if (!err && !ctx->task && cpuctx->max_pertask)
809                 cpuctx->max_pertask--;
810
811  unlock:
812         perf_enable();
813
814         raw_spin_unlock(&ctx->lock);
815 }
816
817 /*
818  * Attach a performance event to a context
819  *
820  * First we add the event to the list with the hardware enable bit
821  * in event->hw_config cleared.
822  *
823  * If the event is attached to a task which is on a CPU we use a smp
824  * call to enable it in the task context. The task might have been
825  * scheduled away, but we check this in the smp call again.
826  *
827  * Must be called with ctx->mutex held.
828  */
829 static void
830 perf_install_in_context(struct perf_event_context *ctx,
831                         struct perf_event *event,
832                         int cpu)
833 {
834         struct task_struct *task = ctx->task;
835
836         if (!task) {
837                 /*
838                  * Per cpu events are installed via an smp call and
839                  * the install is always successful.
840                  */
841                 smp_call_function_single(cpu, __perf_install_in_context,
842                                          event, 1);
843                 return;
844         }
845
846 retry:
847         task_oncpu_function_call(task, __perf_install_in_context,
848                                  event);
849
850         raw_spin_lock_irq(&ctx->lock);
851         /*
852          * we need to retry the smp call.
853          */
854         if (ctx->is_active && list_empty(&event->group_entry)) {
855                 raw_spin_unlock_irq(&ctx->lock);
856                 goto retry;
857         }
858
859         /*
860          * The lock prevents that this context is scheduled in so we
861          * can add the event safely, if it the call above did not
862          * succeed.
863          */
864         if (list_empty(&event->group_entry))
865                 add_event_to_ctx(event, ctx);
866         raw_spin_unlock_irq(&ctx->lock);
867 }
868
869 /*
870  * Put a event into inactive state and update time fields.
871  * Enabling the leader of a group effectively enables all
872  * the group members that aren't explicitly disabled, so we
873  * have to update their ->tstamp_enabled also.
874  * Note: this works for group members as well as group leaders
875  * since the non-leader members' sibling_lists will be empty.
876  */
877 static void __perf_event_mark_enabled(struct perf_event *event,
878                                         struct perf_event_context *ctx)
879 {
880         struct perf_event *sub;
881
882         event->state = PERF_EVENT_STATE_INACTIVE;
883         event->tstamp_enabled = ctx->time - event->total_time_enabled;
884         list_for_each_entry(sub, &event->sibling_list, group_entry)
885                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
886                         sub->tstamp_enabled =
887                                 ctx->time - sub->total_time_enabled;
888 }
889
890 /*
891  * Cross CPU call to enable a performance event
892  */
893 static void __perf_event_enable(void *info)
894 {
895         struct perf_event *event = info;
896         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
897         struct perf_event_context *ctx = event->ctx;
898         struct perf_event *leader = event->group_leader;
899         int err;
900
901         /*
902          * If this is a per-task event, need to check whether this
903          * event's task is the current task on this cpu.
904          */
905         if (ctx->task && cpuctx->task_ctx != ctx) {
906                 if (cpuctx->task_ctx || ctx->task != current)
907                         return;
908                 cpuctx->task_ctx = ctx;
909         }
910
911         raw_spin_lock(&ctx->lock);
912         ctx->is_active = 1;
913         update_context_time(ctx);
914
915         if (event->state >= PERF_EVENT_STATE_INACTIVE)
916                 goto unlock;
917         __perf_event_mark_enabled(event, ctx);
918
919         if (event->cpu != -1 && event->cpu != smp_processor_id())
920                 goto unlock;
921
922         /*
923          * If the event is in a group and isn't the group leader,
924          * then don't put it on unless the group is on.
925          */
926         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
927                 goto unlock;
928
929         if (!group_can_go_on(event, cpuctx, 1)) {
930                 err = -EEXIST;
931         } else {
932                 perf_disable();
933                 if (event == leader)
934                         err = group_sched_in(event, cpuctx, ctx);
935                 else
936                         err = event_sched_in(event, cpuctx, ctx);
937                 perf_enable();
938         }
939
940         if (err) {
941                 /*
942                  * If this event can't go on and it's part of a
943                  * group, then the whole group has to come off.
944                  */
945                 if (leader != event)
946                         group_sched_out(leader, cpuctx, ctx);
947                 if (leader->attr.pinned) {
948                         update_group_times(leader);
949                         leader->state = PERF_EVENT_STATE_ERROR;
950                 }
951         }
952
953  unlock:
954         raw_spin_unlock(&ctx->lock);
955 }
956
957 /*
958  * Enable a event.
959  *
960  * If event->ctx is a cloned context, callers must make sure that
961  * every task struct that event->ctx->task could possibly point to
962  * remains valid.  This condition is satisfied when called through
963  * perf_event_for_each_child or perf_event_for_each as described
964  * for perf_event_disable.
965  */
966 void perf_event_enable(struct perf_event *event)
967 {
968         struct perf_event_context *ctx = event->ctx;
969         struct task_struct *task = ctx->task;
970
971         if (!task) {
972                 /*
973                  * Enable the event on the cpu that it's on
974                  */
975                 smp_call_function_single(event->cpu, __perf_event_enable,
976                                          event, 1);
977                 return;
978         }
979
980         raw_spin_lock_irq(&ctx->lock);
981         if (event->state >= PERF_EVENT_STATE_INACTIVE)
982                 goto out;
983
984         /*
985          * If the event is in error state, clear that first.
986          * That way, if we see the event in error state below, we
987          * know that it has gone back into error state, as distinct
988          * from the task having been scheduled away before the
989          * cross-call arrived.
990          */
991         if (event->state == PERF_EVENT_STATE_ERROR)
992                 event->state = PERF_EVENT_STATE_OFF;
993
994  retry:
995         raw_spin_unlock_irq(&ctx->lock);
996         task_oncpu_function_call(task, __perf_event_enable, event);
997
998         raw_spin_lock_irq(&ctx->lock);
999
1000         /*
1001          * If the context is active and the event is still off,
1002          * we need to retry the cross-call.
1003          */
1004         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1005                 goto retry;
1006
1007         /*
1008          * Since we have the lock this context can't be scheduled
1009          * in, so we can change the state safely.
1010          */
1011         if (event->state == PERF_EVENT_STATE_OFF)
1012                 __perf_event_mark_enabled(event, ctx);
1013
1014  out:
1015         raw_spin_unlock_irq(&ctx->lock);
1016 }
1017
1018 static int perf_event_refresh(struct perf_event *event, int refresh)
1019 {
1020         /*
1021          * not supported on inherited events
1022          */
1023         if (event->attr.inherit)
1024                 return -EINVAL;
1025
1026         atomic_add(refresh, &event->event_limit);
1027         perf_event_enable(event);
1028
1029         return 0;
1030 }
1031
1032 enum event_type_t {
1033         EVENT_FLEXIBLE = 0x1,
1034         EVENT_PINNED = 0x2,
1035         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1036 };
1037
1038 static void ctx_sched_out(struct perf_event_context *ctx,
1039                           struct perf_cpu_context *cpuctx,
1040                           enum event_type_t event_type)
1041 {
1042         struct perf_event *event;
1043
1044         raw_spin_lock(&ctx->lock);
1045         ctx->is_active = 0;
1046         if (likely(!ctx->nr_events))
1047                 goto out;
1048         update_context_time(ctx);
1049
1050         perf_disable();
1051         if (!ctx->nr_active)
1052                 goto out_enable;
1053
1054         if (event_type & EVENT_PINNED)
1055                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1056                         group_sched_out(event, cpuctx, ctx);
1057
1058         if (event_type & EVENT_FLEXIBLE)
1059                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1060                         group_sched_out(event, cpuctx, ctx);
1061
1062  out_enable:
1063         perf_enable();
1064  out:
1065         raw_spin_unlock(&ctx->lock);
1066 }
1067
1068 /*
1069  * Test whether two contexts are equivalent, i.e. whether they
1070  * have both been cloned from the same version of the same context
1071  * and they both have the same number of enabled events.
1072  * If the number of enabled events is the same, then the set
1073  * of enabled events should be the same, because these are both
1074  * inherited contexts, therefore we can't access individual events
1075  * in them directly with an fd; we can only enable/disable all
1076  * events via prctl, or enable/disable all events in a family
1077  * via ioctl, which will have the same effect on both contexts.
1078  */
1079 static int context_equiv(struct perf_event_context *ctx1,
1080                          struct perf_event_context *ctx2)
1081 {
1082         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1083                 && ctx1->parent_gen == ctx2->parent_gen
1084                 && !ctx1->pin_count && !ctx2->pin_count;
1085 }
1086
1087 static void __perf_event_sync_stat(struct perf_event *event,
1088                                      struct perf_event *next_event)
1089 {
1090         u64 value;
1091
1092         if (!event->attr.inherit_stat)
1093                 return;
1094
1095         /*
1096          * Update the event value, we cannot use perf_event_read()
1097          * because we're in the middle of a context switch and have IRQs
1098          * disabled, which upsets smp_call_function_single(), however
1099          * we know the event must be on the current CPU, therefore we
1100          * don't need to use it.
1101          */
1102         switch (event->state) {
1103         case PERF_EVENT_STATE_ACTIVE:
1104                 event->pmu->read(event);
1105                 /* fall-through */
1106
1107         case PERF_EVENT_STATE_INACTIVE:
1108                 update_event_times(event);
1109                 break;
1110
1111         default:
1112                 break;
1113         }
1114
1115         /*
1116          * In order to keep per-task stats reliable we need to flip the event
1117          * values when we flip the contexts.
1118          */
1119         value = atomic64_read(&next_event->count);
1120         value = atomic64_xchg(&event->count, value);
1121         atomic64_set(&next_event->count, value);
1122
1123         swap(event->total_time_enabled, next_event->total_time_enabled);
1124         swap(event->total_time_running, next_event->total_time_running);
1125
1126         /*
1127          * Since we swizzled the values, update the user visible data too.
1128          */
1129         perf_event_update_userpage(event);
1130         perf_event_update_userpage(next_event);
1131 }
1132
1133 #define list_next_entry(pos, member) \
1134         list_entry(pos->member.next, typeof(*pos), member)
1135
1136 static void perf_event_sync_stat(struct perf_event_context *ctx,
1137                                    struct perf_event_context *next_ctx)
1138 {
1139         struct perf_event *event, *next_event;
1140
1141         if (!ctx->nr_stat)
1142                 return;
1143
1144         update_context_time(ctx);
1145
1146         event = list_first_entry(&ctx->event_list,
1147                                    struct perf_event, event_entry);
1148
1149         next_event = list_first_entry(&next_ctx->event_list,
1150                                         struct perf_event, event_entry);
1151
1152         while (&event->event_entry != &ctx->event_list &&
1153                &next_event->event_entry != &next_ctx->event_list) {
1154
1155                 __perf_event_sync_stat(event, next_event);
1156
1157                 event = list_next_entry(event, event_entry);
1158                 next_event = list_next_entry(next_event, event_entry);
1159         }
1160 }
1161
1162 /*
1163  * Called from scheduler to remove the events of the current task,
1164  * with interrupts disabled.
1165  *
1166  * We stop each event and update the event value in event->count.
1167  *
1168  * This does not protect us against NMI, but disable()
1169  * sets the disabled bit in the control field of event _before_
1170  * accessing the event control register. If a NMI hits, then it will
1171  * not restart the event.
1172  */
1173 void perf_event_task_sched_out(struct task_struct *task,
1174                                  struct task_struct *next)
1175 {
1176         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1177         struct perf_event_context *ctx = task->perf_event_ctxp;
1178         struct perf_event_context *next_ctx;
1179         struct perf_event_context *parent;
1180         int do_switch = 1;
1181
1182         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1183
1184         if (likely(!ctx || !cpuctx->task_ctx))
1185                 return;
1186
1187         rcu_read_lock();
1188         parent = rcu_dereference(ctx->parent_ctx);
1189         next_ctx = next->perf_event_ctxp;
1190         if (parent && next_ctx &&
1191             rcu_dereference(next_ctx->parent_ctx) == parent) {
1192                 /*
1193                  * Looks like the two contexts are clones, so we might be
1194                  * able to optimize the context switch.  We lock both
1195                  * contexts and check that they are clones under the
1196                  * lock (including re-checking that neither has been
1197                  * uncloned in the meantime).  It doesn't matter which
1198                  * order we take the locks because no other cpu could
1199                  * be trying to lock both of these tasks.
1200                  */
1201                 raw_spin_lock(&ctx->lock);
1202                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1203                 if (context_equiv(ctx, next_ctx)) {
1204                         /*
1205                          * XXX do we need a memory barrier of sorts
1206                          * wrt to rcu_dereference() of perf_event_ctxp
1207                          */
1208                         task->perf_event_ctxp = next_ctx;
1209                         next->perf_event_ctxp = ctx;
1210                         ctx->task = next;
1211                         next_ctx->task = task;
1212                         do_switch = 0;
1213
1214                         perf_event_sync_stat(ctx, next_ctx);
1215                 }
1216                 raw_spin_unlock(&next_ctx->lock);
1217                 raw_spin_unlock(&ctx->lock);
1218         }
1219         rcu_read_unlock();
1220
1221         if (do_switch) {
1222                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1223                 cpuctx->task_ctx = NULL;
1224         }
1225 }
1226
1227 static void task_ctx_sched_out(struct perf_event_context *ctx,
1228                                enum event_type_t event_type)
1229 {
1230         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1231
1232         if (!cpuctx->task_ctx)
1233                 return;
1234
1235         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1236                 return;
1237
1238         ctx_sched_out(ctx, cpuctx, event_type);
1239         cpuctx->task_ctx = NULL;
1240 }
1241
1242 /*
1243  * Called with IRQs disabled
1244  */
1245 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1246 {
1247         task_ctx_sched_out(ctx, EVENT_ALL);
1248 }
1249
1250 /*
1251  * Called with IRQs disabled
1252  */
1253 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1254                               enum event_type_t event_type)
1255 {
1256         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1257 }
1258
1259 static void
1260 ctx_pinned_sched_in(struct perf_event_context *ctx,
1261                     struct perf_cpu_context *cpuctx)
1262 {
1263         struct perf_event *event;
1264
1265         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1266                 if (event->state <= PERF_EVENT_STATE_OFF)
1267                         continue;
1268                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1269                         continue;
1270
1271                 if (group_can_go_on(event, cpuctx, 1))
1272                         group_sched_in(event, cpuctx, ctx);
1273
1274                 /*
1275                  * If this pinned group hasn't been scheduled,
1276                  * put it in error state.
1277                  */
1278                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1279                         update_group_times(event);
1280                         event->state = PERF_EVENT_STATE_ERROR;
1281                 }
1282         }
1283 }
1284
1285 static void
1286 ctx_flexible_sched_in(struct perf_event_context *ctx,
1287                       struct perf_cpu_context *cpuctx)
1288 {
1289         struct perf_event *event;
1290         int can_add_hw = 1;
1291
1292         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1293                 /* Ignore events in OFF or ERROR state */
1294                 if (event->state <= PERF_EVENT_STATE_OFF)
1295                         continue;
1296                 /*
1297                  * Listen to the 'cpu' scheduling filter constraint
1298                  * of events:
1299                  */
1300                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1301                         continue;
1302
1303                 if (group_can_go_on(event, cpuctx, can_add_hw))
1304                         if (group_sched_in(event, cpuctx, ctx))
1305                                 can_add_hw = 0;
1306         }
1307 }
1308
1309 static void
1310 ctx_sched_in(struct perf_event_context *ctx,
1311              struct perf_cpu_context *cpuctx,
1312              enum event_type_t event_type)
1313 {
1314         raw_spin_lock(&ctx->lock);
1315         ctx->is_active = 1;
1316         if (likely(!ctx->nr_events))
1317                 goto out;
1318
1319         ctx->timestamp = perf_clock();
1320
1321         perf_disable();
1322
1323         /*
1324          * First go through the list and put on any pinned groups
1325          * in order to give them the best chance of going on.
1326          */
1327         if (event_type & EVENT_PINNED)
1328                 ctx_pinned_sched_in(ctx, cpuctx);
1329
1330         /* Then walk through the lower prio flexible groups */
1331         if (event_type & EVENT_FLEXIBLE)
1332                 ctx_flexible_sched_in(ctx, cpuctx);
1333
1334         perf_enable();
1335  out:
1336         raw_spin_unlock(&ctx->lock);
1337 }
1338
1339 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1340                              enum event_type_t event_type)
1341 {
1342         struct perf_event_context *ctx = &cpuctx->ctx;
1343
1344         ctx_sched_in(ctx, cpuctx, event_type);
1345 }
1346
1347 static void task_ctx_sched_in(struct task_struct *task,
1348                               enum event_type_t event_type)
1349 {
1350         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1351         struct perf_event_context *ctx = task->perf_event_ctxp;
1352
1353         if (likely(!ctx))
1354                 return;
1355         if (cpuctx->task_ctx == ctx)
1356                 return;
1357         ctx_sched_in(ctx, cpuctx, event_type);
1358         cpuctx->task_ctx = ctx;
1359 }
1360 /*
1361  * Called from scheduler to add the events of the current task
1362  * with interrupts disabled.
1363  *
1364  * We restore the event value and then enable it.
1365  *
1366  * This does not protect us against NMI, but enable()
1367  * sets the enabled bit in the control field of event _before_
1368  * accessing the event control register. If a NMI hits, then it will
1369  * keep the event running.
1370  */
1371 void perf_event_task_sched_in(struct task_struct *task)
1372 {
1373         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1374         struct perf_event_context *ctx = task->perf_event_ctxp;
1375
1376         if (likely(!ctx))
1377                 return;
1378
1379         if (cpuctx->task_ctx == ctx)
1380                 return;
1381
1382         perf_disable();
1383
1384         /*
1385          * We want to keep the following priority order:
1386          * cpu pinned (that don't need to move), task pinned,
1387          * cpu flexible, task flexible.
1388          */
1389         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1390
1391         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1392         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1393         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1394
1395         cpuctx->task_ctx = ctx;
1396
1397         perf_enable();
1398 }
1399
1400 #define MAX_INTERRUPTS (~0ULL)
1401
1402 static void perf_log_throttle(struct perf_event *event, int enable);
1403
1404 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1405 {
1406         u64 frequency = event->attr.sample_freq;
1407         u64 sec = NSEC_PER_SEC;
1408         u64 divisor, dividend;
1409
1410         int count_fls, nsec_fls, frequency_fls, sec_fls;
1411
1412         count_fls = fls64(count);
1413         nsec_fls = fls64(nsec);
1414         frequency_fls = fls64(frequency);
1415         sec_fls = 30;
1416
1417         /*
1418          * We got @count in @nsec, with a target of sample_freq HZ
1419          * the target period becomes:
1420          *
1421          *             @count * 10^9
1422          * period = -------------------
1423          *          @nsec * sample_freq
1424          *
1425          */
1426
1427         /*
1428          * Reduce accuracy by one bit such that @a and @b converge
1429          * to a similar magnitude.
1430          */
1431 #define REDUCE_FLS(a, b)                \
1432 do {                                    \
1433         if (a##_fls > b##_fls) {        \
1434                 a >>= 1;                \
1435                 a##_fls--;              \
1436         } else {                        \
1437                 b >>= 1;                \
1438                 b##_fls--;              \
1439         }                               \
1440 } while (0)
1441
1442         /*
1443          * Reduce accuracy until either term fits in a u64, then proceed with
1444          * the other, so that finally we can do a u64/u64 division.
1445          */
1446         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1447                 REDUCE_FLS(nsec, frequency);
1448                 REDUCE_FLS(sec, count);
1449         }
1450
1451         if (count_fls + sec_fls > 64) {
1452                 divisor = nsec * frequency;
1453
1454                 while (count_fls + sec_fls > 64) {
1455                         REDUCE_FLS(count, sec);
1456                         divisor >>= 1;
1457                 }
1458
1459                 dividend = count * sec;
1460         } else {
1461                 dividend = count * sec;
1462
1463                 while (nsec_fls + frequency_fls > 64) {
1464                         REDUCE_FLS(nsec, frequency);
1465                         dividend >>= 1;
1466                 }
1467
1468                 divisor = nsec * frequency;
1469         }
1470
1471         return div64_u64(dividend, divisor);
1472 }
1473
1474 static void perf_event_stop(struct perf_event *event)
1475 {
1476         if (!event->pmu->stop)
1477                 return event->pmu->disable(event);
1478
1479         return event->pmu->stop(event);
1480 }
1481
1482 static int perf_event_start(struct perf_event *event)
1483 {
1484         if (!event->pmu->start)
1485                 return event->pmu->enable(event);
1486
1487         return event->pmu->start(event);
1488 }
1489
1490 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1491 {
1492         struct hw_perf_event *hwc = &event->hw;
1493         u64 period, sample_period;
1494         s64 delta;
1495
1496         period = perf_calculate_period(event, nsec, count);
1497
1498         delta = (s64)(period - hwc->sample_period);
1499         delta = (delta + 7) / 8; /* low pass filter */
1500
1501         sample_period = hwc->sample_period + delta;
1502
1503         if (!sample_period)
1504                 sample_period = 1;
1505
1506         hwc->sample_period = sample_period;
1507
1508         if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1509                 perf_disable();
1510                 perf_event_stop(event);
1511                 atomic64_set(&hwc->period_left, 0);
1512                 perf_event_start(event);
1513                 perf_enable();
1514         }
1515 }
1516
1517 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1518 {
1519         struct perf_event *event;
1520         struct hw_perf_event *hwc;
1521         u64 interrupts, now;
1522         s64 delta;
1523
1524         raw_spin_lock(&ctx->lock);
1525         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1526                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1527                         continue;
1528
1529                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1530                         continue;
1531
1532                 hwc = &event->hw;
1533
1534                 interrupts = hwc->interrupts;
1535                 hwc->interrupts = 0;
1536
1537                 /*
1538                  * unthrottle events on the tick
1539                  */
1540                 if (interrupts == MAX_INTERRUPTS) {
1541                         perf_log_throttle(event, 1);
1542                         perf_disable();
1543                         event->pmu->unthrottle(event);
1544                         perf_enable();
1545                 }
1546
1547                 if (!event->attr.freq || !event->attr.sample_freq)
1548                         continue;
1549
1550                 perf_disable();
1551                 event->pmu->read(event);
1552                 now = atomic64_read(&event->count);
1553                 delta = now - hwc->freq_count_stamp;
1554                 hwc->freq_count_stamp = now;
1555
1556                 if (delta > 0)
1557                         perf_adjust_period(event, TICK_NSEC, delta);
1558                 perf_enable();
1559         }
1560         raw_spin_unlock(&ctx->lock);
1561 }
1562
1563 /*
1564  * Round-robin a context's events:
1565  */
1566 static void rotate_ctx(struct perf_event_context *ctx)
1567 {
1568         raw_spin_lock(&ctx->lock);
1569
1570         /* Rotate the first entry last of non-pinned groups */
1571         list_rotate_left(&ctx->flexible_groups);
1572
1573         raw_spin_unlock(&ctx->lock);
1574 }
1575
1576 void perf_event_task_tick(struct task_struct *curr)
1577 {
1578         struct perf_cpu_context *cpuctx;
1579         struct perf_event_context *ctx;
1580         int rotate = 0;
1581
1582         if (!atomic_read(&nr_events))
1583                 return;
1584
1585         cpuctx = &__get_cpu_var(perf_cpu_context);
1586         if (cpuctx->ctx.nr_events &&
1587             cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1588                 rotate = 1;
1589
1590         ctx = curr->perf_event_ctxp;
1591         if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1592                 rotate = 1;
1593
1594         perf_ctx_adjust_freq(&cpuctx->ctx);
1595         if (ctx)
1596                 perf_ctx_adjust_freq(ctx);
1597
1598         if (!rotate)
1599                 return;
1600
1601         perf_disable();
1602         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1603         if (ctx)
1604                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1605
1606         rotate_ctx(&cpuctx->ctx);
1607         if (ctx)
1608                 rotate_ctx(ctx);
1609
1610         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1611         if (ctx)
1612                 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1613         perf_enable();
1614 }
1615
1616 static int event_enable_on_exec(struct perf_event *event,
1617                                 struct perf_event_context *ctx)
1618 {
1619         if (!event->attr.enable_on_exec)
1620                 return 0;
1621
1622         event->attr.enable_on_exec = 0;
1623         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1624                 return 0;
1625
1626         __perf_event_mark_enabled(event, ctx);
1627
1628         return 1;
1629 }
1630
1631 /*
1632  * Enable all of a task's events that have been marked enable-on-exec.
1633  * This expects task == current.
1634  */
1635 static void perf_event_enable_on_exec(struct task_struct *task)
1636 {
1637         struct perf_event_context *ctx;
1638         struct perf_event *event;
1639         unsigned long flags;
1640         int enabled = 0;
1641         int ret;
1642
1643         local_irq_save(flags);
1644         ctx = task->perf_event_ctxp;
1645         if (!ctx || !ctx->nr_events)
1646                 goto out;
1647
1648         __perf_event_task_sched_out(ctx);
1649
1650         raw_spin_lock(&ctx->lock);
1651
1652         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1653                 ret = event_enable_on_exec(event, ctx);
1654                 if (ret)
1655                         enabled = 1;
1656         }
1657
1658         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1659                 ret = event_enable_on_exec(event, ctx);
1660                 if (ret)
1661                         enabled = 1;
1662         }
1663
1664         /*
1665          * Unclone this context if we enabled any event.
1666          */
1667         if (enabled)
1668                 unclone_ctx(ctx);
1669
1670         raw_spin_unlock(&ctx->lock);
1671
1672         perf_event_task_sched_in(task);
1673  out:
1674         local_irq_restore(flags);
1675 }
1676
1677 /*
1678  * Cross CPU call to read the hardware event
1679  */
1680 static void __perf_event_read(void *info)
1681 {
1682         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1683         struct perf_event *event = info;
1684         struct perf_event_context *ctx = event->ctx;
1685
1686         /*
1687          * If this is a task context, we need to check whether it is
1688          * the current task context of this cpu.  If not it has been
1689          * scheduled out before the smp call arrived.  In that case
1690          * event->count would have been updated to a recent sample
1691          * when the event was scheduled out.
1692          */
1693         if (ctx->task && cpuctx->task_ctx != ctx)
1694                 return;
1695
1696         raw_spin_lock(&ctx->lock);
1697         update_context_time(ctx);
1698         update_event_times(event);
1699         raw_spin_unlock(&ctx->lock);
1700
1701         event->pmu->read(event);
1702 }
1703
1704 static u64 perf_event_read(struct perf_event *event)
1705 {
1706         /*
1707          * If event is enabled and currently active on a CPU, update the
1708          * value in the event structure:
1709          */
1710         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1711                 smp_call_function_single(event->oncpu,
1712                                          __perf_event_read, event, 1);
1713         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1714                 struct perf_event_context *ctx = event->ctx;
1715                 unsigned long flags;
1716
1717                 raw_spin_lock_irqsave(&ctx->lock, flags);
1718                 update_context_time(ctx);
1719                 update_event_times(event);
1720                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1721         }
1722
1723         return atomic64_read(&event->count);
1724 }
1725
1726 /*
1727  * Initialize the perf_event context in a task_struct:
1728  */
1729 static void
1730 __perf_event_init_context(struct perf_event_context *ctx,
1731                             struct task_struct *task)
1732 {
1733         raw_spin_lock_init(&ctx->lock);
1734         mutex_init(&ctx->mutex);
1735         INIT_LIST_HEAD(&ctx->pinned_groups);
1736         INIT_LIST_HEAD(&ctx->flexible_groups);
1737         INIT_LIST_HEAD(&ctx->event_list);
1738         atomic_set(&ctx->refcount, 1);
1739         ctx->task = task;
1740 }
1741
1742 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1743 {
1744         struct perf_event_context *ctx;
1745         struct perf_cpu_context *cpuctx;
1746         struct task_struct *task;
1747         unsigned long flags;
1748         int err;
1749
1750         if (pid == -1 && cpu != -1) {
1751                 /* Must be root to operate on a CPU event: */
1752                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1753                         return ERR_PTR(-EACCES);
1754
1755                 if (cpu < 0 || cpu >= nr_cpumask_bits)
1756                         return ERR_PTR(-EINVAL);
1757
1758                 /*
1759                  * We could be clever and allow to attach a event to an
1760                  * offline CPU and activate it when the CPU comes up, but
1761                  * that's for later.
1762                  */
1763                 if (!cpu_online(cpu))
1764                         return ERR_PTR(-ENODEV);
1765
1766                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1767                 ctx = &cpuctx->ctx;
1768                 get_ctx(ctx);
1769
1770                 return ctx;
1771         }
1772
1773         rcu_read_lock();
1774         if (!pid)
1775                 task = current;
1776         else
1777                 task = find_task_by_vpid(pid);
1778         if (task)
1779                 get_task_struct(task);
1780         rcu_read_unlock();
1781
1782         if (!task)
1783                 return ERR_PTR(-ESRCH);
1784
1785         /*
1786          * Can't attach events to a dying task.
1787          */
1788         err = -ESRCH;
1789         if (task->flags & PF_EXITING)
1790                 goto errout;
1791
1792         /* Reuse ptrace permission checks for now. */
1793         err = -EACCES;
1794         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1795                 goto errout;
1796
1797  retry:
1798         ctx = perf_lock_task_context(task, &flags);
1799         if (ctx) {
1800                 unclone_ctx(ctx);
1801                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1802         }
1803
1804         if (!ctx) {
1805                 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1806                 err = -ENOMEM;
1807                 if (!ctx)
1808                         goto errout;
1809                 __perf_event_init_context(ctx, task);
1810                 get_ctx(ctx);
1811                 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1812                         /*
1813                          * We raced with some other task; use
1814                          * the context they set.
1815                          */
1816                         kfree(ctx);
1817                         goto retry;
1818                 }
1819                 get_task_struct(task);
1820         }
1821
1822         put_task_struct(task);
1823         return ctx;
1824
1825  errout:
1826         put_task_struct(task);
1827         return ERR_PTR(err);
1828 }
1829
1830 static void perf_event_free_filter(struct perf_event *event);
1831
1832 static void free_event_rcu(struct rcu_head *head)
1833 {
1834         struct perf_event *event;
1835
1836         event = container_of(head, struct perf_event, rcu_head);
1837         if (event->ns)
1838                 put_pid_ns(event->ns);
1839         perf_event_free_filter(event);
1840         kfree(event);
1841 }
1842
1843 static void perf_pending_sync(struct perf_event *event);
1844
1845 static void free_event(struct perf_event *event)
1846 {
1847         perf_pending_sync(event);
1848
1849         if (!event->parent) {
1850                 atomic_dec(&nr_events);
1851                 if (event->attr.mmap)
1852                         atomic_dec(&nr_mmap_events);
1853                 if (event->attr.comm)
1854                         atomic_dec(&nr_comm_events);
1855                 if (event->attr.task)
1856                         atomic_dec(&nr_task_events);
1857         }
1858
1859         if (event->output) {
1860                 fput(event->output->filp);
1861                 event->output = NULL;
1862         }
1863
1864         if (event->destroy)
1865                 event->destroy(event);
1866
1867         put_ctx(event->ctx);
1868         call_rcu(&event->rcu_head, free_event_rcu);
1869 }
1870
1871 int perf_event_release_kernel(struct perf_event *event)
1872 {
1873         struct perf_event_context *ctx = event->ctx;
1874
1875         /*
1876          * Remove from the PMU, can't get re-enabled since we got
1877          * here because the last ref went.
1878          */
1879         perf_event_disable(event);
1880
1881         WARN_ON_ONCE(ctx->parent_ctx);
1882         /*
1883          * There are two ways this annotation is useful:
1884          *
1885          *  1) there is a lock recursion from perf_event_exit_task
1886          *     see the comment there.
1887          *
1888          *  2) there is a lock-inversion with mmap_sem through
1889          *     perf_event_read_group(), which takes faults while
1890          *     holding ctx->mutex, however this is called after
1891          *     the last filedesc died, so there is no possibility
1892          *     to trigger the AB-BA case.
1893          */
1894         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1895         raw_spin_lock_irq(&ctx->lock);
1896         list_del_event(event, ctx);
1897         perf_destroy_group(event, ctx);
1898         raw_spin_unlock_irq(&ctx->lock);
1899         mutex_unlock(&ctx->mutex);
1900
1901         mutex_lock(&event->owner->perf_event_mutex);
1902         list_del_init(&event->owner_entry);
1903         mutex_unlock(&event->owner->perf_event_mutex);
1904         put_task_struct(event->owner);
1905
1906         free_event(event);
1907
1908         return 0;
1909 }
1910 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1911
1912 /*
1913  * Called when the last reference to the file is gone.
1914  */
1915 static int perf_release(struct inode *inode, struct file *file)
1916 {
1917         struct perf_event *event = file->private_data;
1918
1919         file->private_data = NULL;
1920
1921         return perf_event_release_kernel(event);
1922 }
1923
1924 static int perf_event_read_size(struct perf_event *event)
1925 {
1926         int entry = sizeof(u64); /* value */
1927         int size = 0;
1928         int nr = 1;
1929
1930         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1931                 size += sizeof(u64);
1932
1933         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1934                 size += sizeof(u64);
1935
1936         if (event->attr.read_format & PERF_FORMAT_ID)
1937                 entry += sizeof(u64);
1938
1939         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1940                 nr += event->group_leader->nr_siblings;
1941                 size += sizeof(u64);
1942         }
1943
1944         size += entry * nr;
1945
1946         return size;
1947 }
1948
1949 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1950 {
1951         struct perf_event *child;
1952         u64 total = 0;
1953
1954         *enabled = 0;
1955         *running = 0;
1956
1957         mutex_lock(&event->child_mutex);
1958         total += perf_event_read(event);
1959         *enabled += event->total_time_enabled +
1960                         atomic64_read(&event->child_total_time_enabled);
1961         *running += event->total_time_running +
1962                         atomic64_read(&event->child_total_time_running);
1963
1964         list_for_each_entry(child, &event->child_list, child_list) {
1965                 total += perf_event_read(child);
1966                 *enabled += child->total_time_enabled;
1967                 *running += child->total_time_running;
1968         }
1969         mutex_unlock(&event->child_mutex);
1970
1971         return total;
1972 }
1973 EXPORT_SYMBOL_GPL(perf_event_read_value);
1974
1975 static int perf_event_read_group(struct perf_event *event,
1976                                    u64 read_format, char __user *buf)
1977 {
1978         struct perf_event *leader = event->group_leader, *sub;
1979         int n = 0, size = 0, ret = -EFAULT;
1980         struct perf_event_context *ctx = leader->ctx;
1981         u64 values[5];
1982         u64 count, enabled, running;
1983
1984         mutex_lock(&ctx->mutex);
1985         count = perf_event_read_value(leader, &enabled, &running);
1986
1987         values[n++] = 1 + leader->nr_siblings;
1988         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1989                 values[n++] = enabled;
1990         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1991                 values[n++] = running;
1992         values[n++] = count;
1993         if (read_format & PERF_FORMAT_ID)
1994                 values[n++] = primary_event_id(leader);
1995
1996         size = n * sizeof(u64);
1997
1998         if (copy_to_user(buf, values, size))
1999                 goto unlock;
2000
2001         ret = size;
2002
2003         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2004                 n = 0;
2005
2006                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2007                 if (read_format & PERF_FORMAT_ID)
2008                         values[n++] = primary_event_id(sub);
2009
2010                 size = n * sizeof(u64);
2011
2012                 if (copy_to_user(buf + ret, values, size)) {
2013                         ret = -EFAULT;
2014                         goto unlock;
2015                 }
2016
2017                 ret += size;
2018         }
2019 unlock:
2020         mutex_unlock(&ctx->mutex);
2021
2022         return ret;
2023 }
2024
2025 static int perf_event_read_one(struct perf_event *event,
2026                                  u64 read_format, char __user *buf)
2027 {
2028         u64 enabled, running;
2029         u64 values[4];
2030         int n = 0;
2031
2032         values[n++] = perf_event_read_value(event, &enabled, &running);
2033         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2034                 values[n++] = enabled;
2035         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2036                 values[n++] = running;
2037         if (read_format & PERF_FORMAT_ID)
2038                 values[n++] = primary_event_id(event);
2039
2040         if (copy_to_user(buf, values, n * sizeof(u64)))
2041                 return -EFAULT;
2042
2043         return n * sizeof(u64);
2044 }
2045
2046 /*
2047  * Read the performance event - simple non blocking version for now
2048  */
2049 static ssize_t
2050 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2051 {
2052         u64 read_format = event->attr.read_format;
2053         int ret;
2054
2055         /*
2056          * Return end-of-file for a read on a event that is in
2057          * error state (i.e. because it was pinned but it couldn't be
2058          * scheduled on to the CPU at some point).
2059          */
2060         if (event->state == PERF_EVENT_STATE_ERROR)
2061                 return 0;
2062
2063         if (count < perf_event_read_size(event))
2064                 return -ENOSPC;
2065
2066         WARN_ON_ONCE(event->ctx->parent_ctx);
2067         if (read_format & PERF_FORMAT_GROUP)
2068                 ret = perf_event_read_group(event, read_format, buf);
2069         else
2070                 ret = perf_event_read_one(event, read_format, buf);
2071
2072         return ret;
2073 }
2074
2075 static ssize_t
2076 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2077 {
2078         struct perf_event *event = file->private_data;
2079
2080         return perf_read_hw(event, buf, count);
2081 }
2082
2083 static unsigned int perf_poll(struct file *file, poll_table *wait)
2084 {
2085         struct perf_event *event = file->private_data;
2086         struct perf_mmap_data *data;
2087         unsigned int events = POLL_HUP;
2088
2089         rcu_read_lock();
2090         data = rcu_dereference(event->data);
2091         if (data)
2092                 events = atomic_xchg(&data->poll, 0);
2093         rcu_read_unlock();
2094
2095         poll_wait(file, &event->waitq, wait);
2096
2097         return events;
2098 }
2099
2100 static void perf_event_reset(struct perf_event *event)
2101 {
2102         (void)perf_event_read(event);
2103         atomic64_set(&event->count, 0);
2104         perf_event_update_userpage(event);
2105 }
2106
2107 /*
2108  * Holding the top-level event's child_mutex means that any
2109  * descendant process that has inherited this event will block
2110  * in sync_child_event if it goes to exit, thus satisfying the
2111  * task existence requirements of perf_event_enable/disable.
2112  */
2113 static void perf_event_for_each_child(struct perf_event *event,
2114                                         void (*func)(struct perf_event *))
2115 {
2116         struct perf_event *child;
2117
2118         WARN_ON_ONCE(event->ctx->parent_ctx);
2119         mutex_lock(&event->child_mutex);
2120         func(event);
2121         list_for_each_entry(child, &event->child_list, child_list)
2122                 func(child);
2123         mutex_unlock(&event->child_mutex);
2124 }
2125
2126 static void perf_event_for_each(struct perf_event *event,
2127                                   void (*func)(struct perf_event *))
2128 {
2129         struct perf_event_context *ctx = event->ctx;
2130         struct perf_event *sibling;
2131
2132         WARN_ON_ONCE(ctx->parent_ctx);
2133         mutex_lock(&ctx->mutex);
2134         event = event->group_leader;
2135
2136         perf_event_for_each_child(event, func);
2137         func(event);
2138         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2139                 perf_event_for_each_child(event, func);
2140         mutex_unlock(&ctx->mutex);
2141 }
2142
2143 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2144 {
2145         struct perf_event_context *ctx = event->ctx;
2146         unsigned long size;
2147         int ret = 0;
2148         u64 value;
2149
2150         if (!event->attr.sample_period)
2151                 return -EINVAL;
2152
2153         size = copy_from_user(&value, arg, sizeof(value));
2154         if (size != sizeof(value))
2155                 return -EFAULT;
2156
2157         if (!value)
2158                 return -EINVAL;
2159
2160         raw_spin_lock_irq(&ctx->lock);
2161         if (event->attr.freq) {
2162                 if (value > sysctl_perf_event_sample_rate) {
2163                         ret = -EINVAL;
2164                         goto unlock;
2165                 }
2166
2167                 event->attr.sample_freq = value;
2168         } else {
2169                 event->attr.sample_period = value;
2170                 event->hw.sample_period = value;
2171         }
2172 unlock:
2173         raw_spin_unlock_irq(&ctx->lock);
2174
2175         return ret;
2176 }
2177
2178 static int perf_event_set_output(struct perf_event *event, int output_fd);
2179 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2180
2181 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2182 {
2183         struct perf_event *event = file->private_data;
2184         void (*func)(struct perf_event *);
2185         u32 flags = arg;
2186
2187         switch (cmd) {
2188         case PERF_EVENT_IOC_ENABLE:
2189                 func = perf_event_enable;
2190                 break;
2191         case PERF_EVENT_IOC_DISABLE:
2192                 func = perf_event_disable;
2193                 break;
2194         case PERF_EVENT_IOC_RESET:
2195                 func = perf_event_reset;
2196                 break;
2197
2198         case PERF_EVENT_IOC_REFRESH:
2199                 return perf_event_refresh(event, arg);
2200
2201         case PERF_EVENT_IOC_PERIOD:
2202                 return perf_event_period(event, (u64 __user *)arg);
2203
2204         case PERF_EVENT_IOC_SET_OUTPUT:
2205                 return perf_event_set_output(event, arg);
2206
2207         case PERF_EVENT_IOC_SET_FILTER:
2208                 return perf_event_set_filter(event, (void __user *)arg);
2209
2210         default:
2211                 return -ENOTTY;
2212         }
2213
2214         if (flags & PERF_IOC_FLAG_GROUP)
2215                 perf_event_for_each(event, func);
2216         else
2217                 perf_event_for_each_child(event, func);
2218
2219         return 0;
2220 }
2221
2222 int perf_event_task_enable(void)
2223 {
2224         struct perf_event *event;
2225
2226         mutex_lock(&current->perf_event_mutex);
2227         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2228                 perf_event_for_each_child(event, perf_event_enable);
2229         mutex_unlock(&current->perf_event_mutex);
2230
2231         return 0;
2232 }
2233
2234 int perf_event_task_disable(void)
2235 {
2236         struct perf_event *event;
2237
2238         mutex_lock(&current->perf_event_mutex);
2239         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2240                 perf_event_for_each_child(event, perf_event_disable);
2241         mutex_unlock(&current->perf_event_mutex);
2242
2243         return 0;
2244 }
2245
2246 #ifndef PERF_EVENT_INDEX_OFFSET
2247 # define PERF_EVENT_INDEX_OFFSET 0
2248 #endif
2249
2250 static int perf_event_index(struct perf_event *event)
2251 {
2252         if (event->state != PERF_EVENT_STATE_ACTIVE)
2253                 return 0;
2254
2255         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2256 }
2257
2258 /*
2259  * Callers need to ensure there can be no nesting of this function, otherwise
2260  * the seqlock logic goes bad. We can not serialize this because the arch
2261  * code calls this from NMI context.
2262  */
2263 void perf_event_update_userpage(struct perf_event *event)
2264 {
2265         struct perf_event_mmap_page *userpg;
2266         struct perf_mmap_data *data;
2267
2268         rcu_read_lock();
2269         data = rcu_dereference(event->data);
2270         if (!data)
2271                 goto unlock;
2272
2273         userpg = data->user_page;
2274
2275         /*
2276          * Disable preemption so as to not let the corresponding user-space
2277          * spin too long if we get preempted.
2278          */
2279         preempt_disable();
2280         ++userpg->lock;
2281         barrier();
2282         userpg->index = perf_event_index(event);
2283         userpg->offset = atomic64_read(&event->count);
2284         if (event->state == PERF_EVENT_STATE_ACTIVE)
2285                 userpg->offset -= atomic64_read(&event->hw.prev_count);
2286
2287         userpg->time_enabled = event->total_time_enabled +
2288                         atomic64_read(&event->child_total_time_enabled);
2289
2290         userpg->time_running = event->total_time_running +
2291                         atomic64_read(&event->child_total_time_running);
2292
2293         barrier();
2294         ++userpg->lock;
2295         preempt_enable();
2296 unlock:
2297         rcu_read_unlock();
2298 }
2299
2300 static unsigned long perf_data_size(struct perf_mmap_data *data)
2301 {
2302         return data->nr_pages << (PAGE_SHIFT + data->data_order);
2303 }
2304
2305 #ifndef CONFIG_PERF_USE_VMALLOC
2306
2307 /*
2308  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2309  */
2310
2311 static struct page *
2312 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2313 {
2314         if (pgoff > data->nr_pages)
2315                 return NULL;
2316
2317         if (pgoff == 0)
2318                 return virt_to_page(data->user_page);
2319
2320         return virt_to_page(data->data_pages[pgoff - 1]);
2321 }
2322
2323 static void *perf_mmap_alloc_page(int cpu)
2324 {
2325         struct page *page;
2326         int node;
2327
2328         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2329         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2330         if (!page)
2331                 return NULL;
2332
2333         return page_address(page);
2334 }
2335
2336 static struct perf_mmap_data *
2337 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2338 {
2339         struct perf_mmap_data *data;
2340         unsigned long size;
2341         int i;
2342
2343         WARN_ON(atomic_read(&event->mmap_count));
2344
2345         size = sizeof(struct perf_mmap_data);
2346         size += nr_pages * sizeof(void *);
2347
2348         data = kzalloc(size, GFP_KERNEL);
2349         if (!data)
2350                 goto fail;
2351
2352         data->user_page = perf_mmap_alloc_page(event->cpu);
2353         if (!data->user_page)
2354                 goto fail_user_page;
2355
2356         for (i = 0; i < nr_pages; i++) {
2357                 data->data_pages[i] = perf_mmap_alloc_page(event->cpu);
2358                 if (!data->data_pages[i])
2359                         goto fail_data_pages;
2360         }
2361
2362         data->data_order = 0;
2363         data->nr_pages = nr_pages;
2364
2365         return data;
2366
2367 fail_data_pages:
2368         for (i--; i >= 0; i--)
2369                 free_page((unsigned long)data->data_pages[i]);
2370
2371         free_page((unsigned long)data->user_page);
2372
2373 fail_user_page:
2374         kfree(data);
2375
2376 fail:
2377         return NULL;
2378 }
2379
2380 static void perf_mmap_free_page(unsigned long addr)
2381 {
2382         struct page *page = virt_to_page((void *)addr);
2383
2384         page->mapping = NULL;
2385         __free_page(page);
2386 }
2387
2388 static void perf_mmap_data_free(struct perf_mmap_data *data)
2389 {
2390         int i;
2391
2392         perf_mmap_free_page((unsigned long)data->user_page);
2393         for (i = 0; i < data->nr_pages; i++)
2394                 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2395         kfree(data);
2396 }
2397
2398 #else
2399
2400 /*
2401  * Back perf_mmap() with vmalloc memory.
2402  *
2403  * Required for architectures that have d-cache aliasing issues.
2404  */
2405
2406 static struct page *
2407 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2408 {
2409         if (pgoff > (1UL << data->data_order))
2410                 return NULL;
2411
2412         return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2413 }
2414
2415 static void perf_mmap_unmark_page(void *addr)
2416 {
2417         struct page *page = vmalloc_to_page(addr);
2418
2419         page->mapping = NULL;
2420 }
2421
2422 static void perf_mmap_data_free_work(struct work_struct *work)
2423 {
2424         struct perf_mmap_data *data;
2425         void *base;
2426         int i, nr;
2427
2428         data = container_of(work, struct perf_mmap_data, work);
2429         nr = 1 << data->data_order;
2430
2431         base = data->user_page;
2432         for (i = 0; i < nr + 1; i++)
2433                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2434
2435         vfree(base);
2436         kfree(data);
2437 }
2438
2439 static void perf_mmap_data_free(struct perf_mmap_data *data)
2440 {
2441         schedule_work(&data->work);
2442 }
2443
2444 static struct perf_mmap_data *
2445 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2446 {
2447         struct perf_mmap_data *data;
2448         unsigned long size;
2449         void *all_buf;
2450
2451         WARN_ON(atomic_read(&event->mmap_count));
2452
2453         size = sizeof(struct perf_mmap_data);
2454         size += sizeof(void *);
2455
2456         data = kzalloc(size, GFP_KERNEL);
2457         if (!data)
2458                 goto fail;
2459
2460         INIT_WORK(&data->work, perf_mmap_data_free_work);
2461
2462         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2463         if (!all_buf)
2464                 goto fail_all_buf;
2465
2466         data->user_page = all_buf;
2467         data->data_pages[0] = all_buf + PAGE_SIZE;
2468         data->data_order = ilog2(nr_pages);
2469         data->nr_pages = 1;
2470
2471         return data;
2472
2473 fail_all_buf:
2474         kfree(data);
2475
2476 fail:
2477         return NULL;
2478 }
2479
2480 #endif
2481
2482 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2483 {
2484         struct perf_event *event = vma->vm_file->private_data;
2485         struct perf_mmap_data *data;
2486         int ret = VM_FAULT_SIGBUS;
2487
2488         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2489                 if (vmf->pgoff == 0)
2490                         ret = 0;
2491                 return ret;
2492         }
2493
2494         rcu_read_lock();
2495         data = rcu_dereference(event->data);
2496         if (!data)
2497                 goto unlock;
2498
2499         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2500                 goto unlock;
2501
2502         vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2503         if (!vmf->page)
2504                 goto unlock;
2505
2506         get_page(vmf->page);
2507         vmf->page->mapping = vma->vm_file->f_mapping;
2508         vmf->page->index   = vmf->pgoff;
2509
2510         ret = 0;
2511 unlock:
2512         rcu_read_unlock();
2513
2514         return ret;
2515 }
2516
2517 static void
2518 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2519 {
2520         long max_size = perf_data_size(data);
2521
2522         atomic_set(&data->lock, -1);
2523
2524         if (event->attr.watermark) {
2525                 data->watermark = min_t(long, max_size,
2526                                         event->attr.wakeup_watermark);
2527         }
2528
2529         if (!data->watermark)
2530                 data->watermark = max_size / 2;
2531
2532
2533         rcu_assign_pointer(event->data, data);
2534 }
2535
2536 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2537 {
2538         struct perf_mmap_data *data;
2539
2540         data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2541         perf_mmap_data_free(data);
2542 }
2543
2544 static void perf_mmap_data_release(struct perf_event *event)
2545 {
2546         struct perf_mmap_data *data = event->data;
2547
2548         WARN_ON(atomic_read(&event->mmap_count));
2549
2550         rcu_assign_pointer(event->data, NULL);
2551         call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2552 }
2553
2554 static void perf_mmap_open(struct vm_area_struct *vma)
2555 {
2556         struct perf_event *event = vma->vm_file->private_data;
2557
2558         atomic_inc(&event->mmap_count);
2559 }
2560
2561 static void perf_mmap_close(struct vm_area_struct *vma)
2562 {
2563         struct perf_event *event = vma->vm_file->private_data;
2564
2565         WARN_ON_ONCE(event->ctx->parent_ctx);
2566         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2567                 unsigned long size = perf_data_size(event->data);
2568                 struct user_struct *user = current_user();
2569
2570                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2571                 vma->vm_mm->locked_vm -= event->data->nr_locked;
2572                 perf_mmap_data_release(event);
2573                 mutex_unlock(&event->mmap_mutex);
2574         }
2575 }
2576
2577 static const struct vm_operations_struct perf_mmap_vmops = {
2578         .open           = perf_mmap_open,
2579         .close          = perf_mmap_close,
2580         .fault          = perf_mmap_fault,
2581         .page_mkwrite   = perf_mmap_fault,
2582 };
2583
2584 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2585 {
2586         struct perf_event *event = file->private_data;
2587         unsigned long user_locked, user_lock_limit;
2588         struct user_struct *user = current_user();
2589         unsigned long locked, lock_limit;
2590         struct perf_mmap_data *data;
2591         unsigned long vma_size;
2592         unsigned long nr_pages;
2593         long user_extra, extra;
2594         int ret = 0;
2595
2596         if (!(vma->vm_flags & VM_SHARED))
2597                 return -EINVAL;
2598
2599         vma_size = vma->vm_end - vma->vm_start;
2600         nr_pages = (vma_size / PAGE_SIZE) - 1;
2601
2602         /*
2603          * If we have data pages ensure they're a power-of-two number, so we
2604          * can do bitmasks instead of modulo.
2605          */
2606         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2607                 return -EINVAL;
2608
2609         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2610                 return -EINVAL;
2611
2612         if (vma->vm_pgoff != 0)
2613                 return -EINVAL;
2614
2615         WARN_ON_ONCE(event->ctx->parent_ctx);
2616         mutex_lock(&event->mmap_mutex);
2617         if (event->output) {
2618                 ret = -EINVAL;
2619                 goto unlock;
2620         }
2621
2622         if (atomic_inc_not_zero(&event->mmap_count)) {
2623                 if (nr_pages != event->data->nr_pages)
2624                         ret = -EINVAL;
2625                 goto unlock;
2626         }
2627
2628         user_extra = nr_pages + 1;
2629         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2630
2631         /*
2632          * Increase the limit linearly with more CPUs:
2633          */
2634         user_lock_limit *= num_online_cpus();
2635
2636         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2637
2638         extra = 0;
2639         if (user_locked > user_lock_limit)
2640                 extra = user_locked - user_lock_limit;
2641
2642         lock_limit = rlimit(RLIMIT_MEMLOCK);
2643         lock_limit >>= PAGE_SHIFT;
2644         locked = vma->vm_mm->locked_vm + extra;
2645
2646         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2647                 !capable(CAP_IPC_LOCK)) {
2648                 ret = -EPERM;
2649                 goto unlock;
2650         }
2651
2652         WARN_ON(event->data);
2653
2654         data = perf_mmap_data_alloc(event, nr_pages);
2655         ret = -ENOMEM;
2656         if (!data)
2657                 goto unlock;
2658
2659         ret = 0;
2660         perf_mmap_data_init(event, data);
2661
2662         atomic_set(&event->mmap_count, 1);
2663         atomic_long_add(user_extra, &user->locked_vm);
2664         vma->vm_mm->locked_vm += extra;
2665         event->data->nr_locked = extra;
2666         if (vma->vm_flags & VM_WRITE)
2667                 event->data->writable = 1;
2668
2669 unlock:
2670         mutex_unlock(&event->mmap_mutex);
2671
2672         vma->vm_flags |= VM_RESERVED;
2673         vma->vm_ops = &perf_mmap_vmops;
2674
2675         return ret;
2676 }
2677
2678 static int perf_fasync(int fd, struct file *filp, int on)
2679 {
2680         struct inode *inode = filp->f_path.dentry->d_inode;
2681         struct perf_event *event = filp->private_data;
2682         int retval;
2683
2684         mutex_lock(&inode->i_mutex);
2685         retval = fasync_helper(fd, filp, on, &event->fasync);
2686         mutex_unlock(&inode->i_mutex);
2687
2688         if (retval < 0)
2689                 return retval;
2690
2691         return 0;
2692 }
2693
2694 static const struct file_operations perf_fops = {
2695         .llseek                 = no_llseek,
2696         .release                = perf_release,
2697         .read                   = perf_read,
2698         .poll                   = perf_poll,
2699         .unlocked_ioctl         = perf_ioctl,
2700         .compat_ioctl           = perf_ioctl,
2701         .mmap                   = perf_mmap,
2702         .fasync                 = perf_fasync,
2703 };
2704
2705 /*
2706  * Perf event wakeup
2707  *
2708  * If there's data, ensure we set the poll() state and publish everything
2709  * to user-space before waking everybody up.
2710  */
2711
2712 void perf_event_wakeup(struct perf_event *event)
2713 {
2714         wake_up_all(&event->waitq);
2715
2716         if (event->pending_kill) {
2717                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2718                 event->pending_kill = 0;
2719         }
2720 }
2721
2722 /*
2723  * Pending wakeups
2724  *
2725  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2726  *
2727  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2728  * single linked list and use cmpxchg() to add entries lockless.
2729  */
2730
2731 static void perf_pending_event(struct perf_pending_entry *entry)
2732 {
2733         struct perf_event *event = container_of(entry,
2734                         struct perf_event, pending);
2735
2736         if (event->pending_disable) {
2737                 event->pending_disable = 0;
2738                 __perf_event_disable(event);
2739         }
2740
2741         if (event->pending_wakeup) {
2742                 event->pending_wakeup = 0;
2743                 perf_event_wakeup(event);
2744         }
2745 }
2746
2747 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2748
2749 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2750         PENDING_TAIL,
2751 };
2752
2753 static void perf_pending_queue(struct perf_pending_entry *entry,
2754                                void (*func)(struct perf_pending_entry *))
2755 {
2756         struct perf_pending_entry **head;
2757
2758         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2759                 return;
2760
2761         entry->func = func;
2762
2763         head = &get_cpu_var(perf_pending_head);
2764
2765         do {
2766                 entry->next = *head;
2767         } while (cmpxchg(head, entry->next, entry) != entry->next);
2768
2769         set_perf_event_pending();
2770
2771         put_cpu_var(perf_pending_head);
2772 }
2773
2774 static int __perf_pending_run(void)
2775 {
2776         struct perf_pending_entry *list;
2777         int nr = 0;
2778
2779         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2780         while (list != PENDING_TAIL) {
2781                 void (*func)(struct perf_pending_entry *);
2782                 struct perf_pending_entry *entry = list;
2783
2784                 list = list->next;
2785
2786                 func = entry->func;
2787                 entry->next = NULL;
2788                 /*
2789                  * Ensure we observe the unqueue before we issue the wakeup,
2790                  * so that we won't be waiting forever.
2791                  * -- see perf_not_pending().
2792                  */
2793                 smp_wmb();
2794
2795                 func(entry);
2796                 nr++;
2797         }
2798
2799         return nr;
2800 }
2801
2802 static inline int perf_not_pending(struct perf_event *event)
2803 {
2804         /*
2805          * If we flush on whatever cpu we run, there is a chance we don't
2806          * need to wait.
2807          */
2808         get_cpu();
2809         __perf_pending_run();
2810         put_cpu();
2811
2812         /*
2813          * Ensure we see the proper queue state before going to sleep
2814          * so that we do not miss the wakeup. -- see perf_pending_handle()
2815          */
2816         smp_rmb();
2817         return event->pending.next == NULL;
2818 }
2819
2820 static void perf_pending_sync(struct perf_event *event)
2821 {
2822         wait_event(event->waitq, perf_not_pending(event));
2823 }
2824
2825 void perf_event_do_pending(void)
2826 {
2827         __perf_pending_run();
2828 }
2829
2830 /*
2831  * Callchain support -- arch specific
2832  */
2833
2834 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2835 {
2836         return NULL;
2837 }
2838
2839 __weak
2840 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2841 {
2842 }
2843
2844
2845 /*
2846  * We assume there is only KVM supporting the callbacks.
2847  * Later on, we might change it to a list if there is
2848  * another virtualization implementation supporting the callbacks.
2849  */
2850 struct perf_guest_info_callbacks *perf_guest_cbs;
2851
2852 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2853 {
2854         perf_guest_cbs = cbs;
2855         return 0;
2856 }
2857 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
2858
2859 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2860 {
2861         perf_guest_cbs = NULL;
2862         return 0;
2863 }
2864 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2865
2866 /*
2867  * Output
2868  */
2869 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2870                               unsigned long offset, unsigned long head)
2871 {
2872         unsigned long mask;
2873
2874         if (!data->writable)
2875                 return true;
2876
2877         mask = perf_data_size(data) - 1;
2878
2879         offset = (offset - tail) & mask;
2880         head   = (head   - tail) & mask;
2881
2882         if ((int)(head - offset) < 0)
2883                 return false;
2884
2885         return true;
2886 }
2887
2888 static void perf_output_wakeup(struct perf_output_handle *handle)
2889 {
2890         atomic_set(&handle->data->poll, POLL_IN);
2891
2892         if (handle->nmi) {
2893                 handle->event->pending_wakeup = 1;
2894                 perf_pending_queue(&handle->event->pending,
2895                                    perf_pending_event);
2896         } else
2897                 perf_event_wakeup(handle->event);
2898 }
2899
2900 /*
2901  * Curious locking construct.
2902  *
2903  * We need to ensure a later event_id doesn't publish a head when a former
2904  * event_id isn't done writing. However since we need to deal with NMIs we
2905  * cannot fully serialize things.
2906  *
2907  * What we do is serialize between CPUs so we only have to deal with NMI
2908  * nesting on a single CPU.
2909  *
2910  * We only publish the head (and generate a wakeup) when the outer-most
2911  * event_id completes.
2912  */
2913 static void perf_output_lock(struct perf_output_handle *handle)
2914 {
2915         struct perf_mmap_data *data = handle->data;
2916         int cur, cpu = get_cpu();
2917
2918         handle->locked = 0;
2919
2920         for (;;) {
2921                 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2922                 if (cur == -1) {
2923                         handle->locked = 1;
2924                         break;
2925                 }
2926                 if (cur == cpu)
2927                         break;
2928
2929                 cpu_relax();
2930         }
2931 }
2932
2933 static void perf_output_unlock(struct perf_output_handle *handle)
2934 {
2935         struct perf_mmap_data *data = handle->data;
2936         unsigned long head;
2937         int cpu;
2938
2939         data->done_head = data->head;
2940
2941         if (!handle->locked)
2942                 goto out;
2943
2944 again:
2945         /*
2946          * The xchg implies a full barrier that ensures all writes are done
2947          * before we publish the new head, matched by a rmb() in userspace when
2948          * reading this position.
2949          */
2950         while ((head = atomic_long_xchg(&data->done_head, 0)))
2951                 data->user_page->data_head = head;
2952
2953         /*
2954          * NMI can happen here, which means we can miss a done_head update.
2955          */
2956
2957         cpu = atomic_xchg(&data->lock, -1);
2958         WARN_ON_ONCE(cpu != smp_processor_id());
2959
2960         /*
2961          * Therefore we have to validate we did not indeed do so.
2962          */
2963         if (unlikely(atomic_long_read(&data->done_head))) {
2964                 /*
2965                  * Since we had it locked, we can lock it again.
2966                  */
2967                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2968                         cpu_relax();
2969
2970                 goto again;
2971         }
2972
2973         if (atomic_xchg(&data->wakeup, 0))
2974                 perf_output_wakeup(handle);
2975 out:
2976         put_cpu();
2977 }
2978
2979 void perf_output_copy(struct perf_output_handle *handle,
2980                       const void *buf, unsigned int len)
2981 {
2982         unsigned int pages_mask;
2983         unsigned long offset;
2984         unsigned int size;
2985         void **pages;
2986
2987         offset          = handle->offset;
2988         pages_mask      = handle->data->nr_pages - 1;
2989         pages           = handle->data->data_pages;
2990
2991         do {
2992                 unsigned long page_offset;
2993                 unsigned long page_size;
2994                 int nr;
2995
2996                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2997                 page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
2998                 page_offset = offset & (page_size - 1);
2999                 size        = min_t(unsigned int, page_size - page_offset, len);
3000
3001                 memcpy(pages[nr] + page_offset, buf, size);
3002
3003                 len         -= size;
3004                 buf         += size;
3005                 offset      += size;
3006         } while (len);
3007
3008         handle->offset = offset;
3009
3010         /*
3011          * Check we didn't copy past our reservation window, taking the
3012          * possible unsigned int wrap into account.
3013          */
3014         WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
3015 }
3016
3017 int perf_output_begin(struct perf_output_handle *handle,
3018                       struct perf_event *event, unsigned int size,
3019                       int nmi, int sample)
3020 {
3021         struct perf_event *output_event;
3022         struct perf_mmap_data *data;
3023         unsigned long tail, offset, head;
3024         int have_lost;
3025         struct {
3026                 struct perf_event_header header;
3027                 u64                      id;
3028                 u64                      lost;
3029         } lost_event;
3030
3031         rcu_read_lock();
3032         /*
3033          * For inherited events we send all the output towards the parent.
3034          */
3035         if (event->parent)
3036                 event = event->parent;
3037
3038         output_event = rcu_dereference(event->output);
3039         if (output_event)
3040                 event = output_event;
3041
3042         data = rcu_dereference(event->data);
3043         if (!data)
3044                 goto out;
3045
3046         handle->data    = data;
3047         handle->event   = event;
3048         handle->nmi     = nmi;
3049         handle->sample  = sample;
3050
3051         if (!data->nr_pages)
3052                 goto out;
3053
3054         have_lost = atomic_read(&data->lost);
3055         if (have_lost)
3056                 size += sizeof(lost_event);
3057
3058         perf_output_lock(handle);
3059
3060         do {
3061                 /*
3062                  * Userspace could choose to issue a mb() before updating the
3063                  * tail pointer. So that all reads will be completed before the
3064                  * write is issued.
3065                  */
3066                 tail = ACCESS_ONCE(data->user_page->data_tail);
3067                 smp_rmb();
3068                 offset = head = atomic_long_read(&data->head);
3069                 head += size;
3070                 if (unlikely(!perf_output_space(data, tail, offset, head)))
3071                         goto fail;
3072         } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3073
3074         handle->offset  = offset;
3075         handle->head    = head;
3076
3077         if (head - tail > data->watermark)
3078                 atomic_set(&data->wakeup, 1);
3079
3080         if (have_lost) {
3081                 lost_event.header.type = PERF_RECORD_LOST;
3082                 lost_event.header.misc = 0;
3083                 lost_event.header.size = sizeof(lost_event);
3084                 lost_event.id          = event->id;
3085                 lost_event.lost        = atomic_xchg(&data->lost, 0);
3086
3087                 perf_output_put(handle, lost_event);
3088         }
3089
3090         return 0;
3091
3092 fail:
3093         atomic_inc(&data->lost);
3094         perf_output_unlock(handle);
3095 out:
3096         rcu_read_unlock();
3097
3098         return -ENOSPC;
3099 }
3100
3101 void perf_output_end(struct perf_output_handle *handle)
3102 {
3103         struct perf_event *event = handle->event;
3104         struct perf_mmap_data *data = handle->data;
3105
3106         int wakeup_events = event->attr.wakeup_events;
3107
3108         if (handle->sample && wakeup_events) {
3109                 int events = atomic_inc_return(&data->events);
3110                 if (events >= wakeup_events) {
3111                         atomic_sub(wakeup_events, &data->events);
3112                         atomic_set(&data->wakeup, 1);
3113                 }
3114         }
3115
3116         perf_output_unlock(handle);
3117         rcu_read_unlock();
3118 }
3119
3120 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3121 {
3122         /*
3123          * only top level events have the pid namespace they were created in
3124          */
3125         if (event->parent)
3126                 event = event->parent;
3127
3128         return task_tgid_nr_ns(p, event->ns);
3129 }
3130
3131 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3132 {
3133         /*
3134          * only top level events have the pid namespace they were created in
3135          */
3136         if (event->parent)
3137                 event = event->parent;
3138
3139         return task_pid_nr_ns(p, event->ns);
3140 }
3141
3142 static void perf_output_read_one(struct perf_output_handle *handle,
3143                                  struct perf_event *event)
3144 {
3145         u64 read_format = event->attr.read_format;
3146         u64 values[4];
3147         int n = 0;
3148
3149         values[n++] = atomic64_read(&event->count);
3150         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3151                 values[n++] = event->total_time_enabled +
3152                         atomic64_read(&event->child_total_time_enabled);
3153         }
3154         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3155                 values[n++] = event->total_time_running +
3156                         atomic64_read(&event->child_total_time_running);
3157         }
3158         if (read_format & PERF_FORMAT_ID)
3159                 values[n++] = primary_event_id(event);
3160
3161         perf_output_copy(handle, values, n * sizeof(u64));
3162 }
3163
3164 /*
3165  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3166  */
3167 static void perf_output_read_group(struct perf_output_handle *handle,
3168                             struct perf_event *event)
3169 {
3170         struct perf_event *leader = event->group_leader, *sub;
3171         u64 read_format = event->attr.read_format;
3172         u64 values[5];
3173         int n = 0;
3174
3175         values[n++] = 1 + leader->nr_siblings;
3176
3177         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3178                 values[n++] = leader->total_time_enabled;
3179
3180         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3181                 values[n++] = leader->total_time_running;
3182
3183         if (leader != event)
3184                 leader->pmu->read(leader);
3185
3186         values[n++] = atomic64_read(&leader->count);
3187         if (read_format & PERF_FORMAT_ID)
3188                 values[n++] = primary_event_id(leader);
3189
3190         perf_output_copy(handle, values, n * sizeof(u64));
3191
3192         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3193                 n = 0;
3194
3195                 if (sub != event)
3196                         sub->pmu->read(sub);
3197
3198                 values[n++] = atomic64_read(&sub->count);
3199                 if (read_format & PERF_FORMAT_ID)
3200                         values[n++] = primary_event_id(sub);
3201
3202                 perf_output_copy(handle, values, n * sizeof(u64));
3203         }
3204 }
3205
3206 static void perf_output_read(struct perf_output_handle *handle,
3207                              struct perf_event *event)
3208 {
3209         if (event->attr.read_format & PERF_FORMAT_GROUP)
3210                 perf_output_read_group(handle, event);
3211         else
3212                 perf_output_read_one(handle, event);
3213 }
3214
3215 void perf_output_sample(struct perf_output_handle *handle,
3216                         struct perf_event_header *header,
3217                         struct perf_sample_data *data,
3218                         struct perf_event *event)
3219 {
3220         u64 sample_type = data->type;
3221
3222         perf_output_put(handle, *header);
3223
3224         if (sample_type & PERF_SAMPLE_IP)
3225                 perf_output_put(handle, data->ip);
3226
3227         if (sample_type & PERF_SAMPLE_TID)
3228                 perf_output_put(handle, data->tid_entry);
3229
3230         if (sample_type & PERF_SAMPLE_TIME)
3231                 perf_output_put(handle, data->time);
3232
3233         if (sample_type & PERF_SAMPLE_ADDR)
3234                 perf_output_put(handle, data->addr);
3235
3236         if (sample_type & PERF_SAMPLE_ID)
3237                 perf_output_put(handle, data->id);
3238
3239         if (sample_type & PERF_SAMPLE_STREAM_ID)
3240                 perf_output_put(handle, data->stream_id);
3241
3242         if (sample_type & PERF_SAMPLE_CPU)
3243                 perf_output_put(handle, data->cpu_entry);
3244
3245         if (sample_type & PERF_SAMPLE_PERIOD)
3246                 perf_output_put(handle, data->period);
3247
3248         if (sample_type & PERF_SAMPLE_READ)
3249                 perf_output_read(handle, event);
3250
3251         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3252                 if (data->callchain) {
3253                         int size = 1;
3254
3255                         if (data->callchain)
3256                                 size += data->callchain->nr;
3257
3258                         size *= sizeof(u64);
3259
3260                         perf_output_copy(handle, data->callchain, size);
3261                 } else {
3262                         u64 nr = 0;
3263                         perf_output_put(handle, nr);
3264                 }
3265         }
3266
3267         if (sample_type & PERF_SAMPLE_RAW) {
3268                 if (data->raw) {
3269                         perf_output_put(handle, data->raw->size);
3270                         perf_output_copy(handle, data->raw->data,
3271                                          data->raw->size);
3272                 } else {
3273                         struct {
3274                                 u32     size;
3275                                 u32     data;
3276                         } raw = {
3277                                 .size = sizeof(u32),
3278                                 .data = 0,
3279                         };
3280                         perf_output_put(handle, raw);
3281                 }
3282         }
3283 }
3284
3285 void perf_prepare_sample(struct perf_event_header *header,
3286                          struct perf_sample_data *data,
3287                          struct perf_event *event,
3288                          struct pt_regs *regs)
3289 {
3290         u64 sample_type = event->attr.sample_type;
3291
3292         data->type = sample_type;
3293
3294         header->type = PERF_RECORD_SAMPLE;
3295         header->size = sizeof(*header);
3296
3297         header->misc = 0;
3298         header->misc |= perf_misc_flags(regs);
3299
3300         if (sample_type & PERF_SAMPLE_IP) {
3301                 data->ip = perf_instruction_pointer(regs);
3302
3303                 header->size += sizeof(data->ip);
3304         }
3305
3306         if (sample_type & PERF_SAMPLE_TID) {
3307                 /* namespace issues */
3308                 data->tid_entry.pid = perf_event_pid(event, current);
3309                 data->tid_entry.tid = perf_event_tid(event, current);
3310
3311                 header->size += sizeof(data->tid_entry);
3312         }
3313
3314         if (sample_type & PERF_SAMPLE_TIME) {
3315                 data->time = perf_clock();
3316
3317                 header->size += sizeof(data->time);
3318         }
3319
3320         if (sample_type & PERF_SAMPLE_ADDR)
3321                 header->size += sizeof(data->addr);
3322
3323         if (sample_type & PERF_SAMPLE_ID) {
3324                 data->id = primary_event_id(event);
3325
3326                 header->size += sizeof(data->id);
3327         }
3328
3329         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3330                 data->stream_id = event->id;
3331
3332                 header->size += sizeof(data->stream_id);
3333         }
3334
3335         if (sample_type & PERF_SAMPLE_CPU) {
3336                 data->cpu_entry.cpu             = raw_smp_processor_id();
3337                 data->cpu_entry.reserved        = 0;
3338
3339                 header->size += sizeof(data->cpu_entry);
3340         }
3341
3342         if (sample_type & PERF_SAMPLE_PERIOD)
3343                 header->size += sizeof(data->period);
3344
3345         if (sample_type & PERF_SAMPLE_READ)
3346                 header->size += perf_event_read_size(event);
3347
3348         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3349                 int size = 1;
3350
3351                 data->callchain = perf_callchain(regs);
3352
3353                 if (data->callchain)
3354                         size += data->callchain->nr;
3355
3356                 header->size += size * sizeof(u64);
3357         }
3358
3359         if (sample_type & PERF_SAMPLE_RAW) {
3360                 int size = sizeof(u32);
3361
3362                 if (data->raw)
3363                         size += data->raw->size;
3364                 else
3365                         size += sizeof(u32);
3366
3367                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3368                 header->size += size;
3369         }
3370 }
3371
3372 static void perf_event_output(struct perf_event *event, int nmi,
3373                                 struct perf_sample_data *data,
3374                                 struct pt_regs *regs)
3375 {
3376         struct perf_output_handle handle;
3377         struct perf_event_header header;
3378
3379         perf_prepare_sample(&header, data, event, regs);
3380
3381         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3382                 return;
3383
3384         perf_output_sample(&handle, &header, data, event);
3385
3386         perf_output_end(&handle);
3387 }
3388
3389 /*
3390  * read event_id
3391  */
3392
3393 struct perf_read_event {
3394         struct perf_event_header        header;
3395
3396         u32                             pid;
3397         u32                             tid;
3398 };
3399
3400 static void
3401 perf_event_read_event(struct perf_event *event,
3402                         struct task_struct *task)
3403 {
3404         struct perf_output_handle handle;
3405         struct perf_read_event read_event = {
3406                 .header = {
3407                         .type = PERF_RECORD_READ,
3408                         .misc = 0,
3409                         .size = sizeof(read_event) + perf_event_read_size(event),
3410                 },
3411                 .pid = perf_event_pid(event, task),
3412                 .tid = perf_event_tid(event, task),
3413         };
3414         int ret;
3415
3416         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3417         if (ret)
3418                 return;
3419
3420         perf_output_put(&handle, read_event);
3421         perf_output_read(&handle, event);
3422
3423         perf_output_end(&handle);
3424 }
3425
3426 /*
3427  * task tracking -- fork/exit
3428  *
3429  * enabled by: attr.comm | attr.mmap | attr.task
3430  */
3431
3432 struct perf_task_event {
3433         struct task_struct              *task;
3434         struct perf_event_context       *task_ctx;
3435
3436         struct {
3437                 struct perf_event_header        header;
3438
3439                 u32                             pid;
3440                 u32                             ppid;
3441                 u32                             tid;
3442                 u32                             ptid;
3443                 u64                             time;
3444         } event_id;
3445 };
3446
3447 static void perf_event_task_output(struct perf_event *event,
3448                                      struct perf_task_event *task_event)
3449 {
3450         struct perf_output_handle handle;
3451         struct task_struct *task = task_event->task;
3452         unsigned long flags;
3453         int size, ret;
3454
3455         /*
3456          * If this CPU attempts to acquire an rq lock held by a CPU spinning
3457          * in perf_output_lock() from interrupt context, it's game over.
3458          */
3459         local_irq_save(flags);
3460
3461         size  = task_event->event_id.header.size;
3462         ret = perf_output_begin(&handle, event, size, 0, 0);
3463
3464         if (ret) {
3465                 local_irq_restore(flags);
3466                 return;
3467         }
3468
3469         task_event->event_id.pid = perf_event_pid(event, task);
3470         task_event->event_id.ppid = perf_event_pid(event, current);
3471
3472         task_event->event_id.tid = perf_event_tid(event, task);
3473         task_event->event_id.ptid = perf_event_tid(event, current);
3474
3475         perf_output_put(&handle, task_event->event_id);
3476
3477         perf_output_end(&handle);
3478         local_irq_restore(flags);
3479 }
3480
3481 static int perf_event_task_match(struct perf_event *event)
3482 {
3483         if (event->state < PERF_EVENT_STATE_INACTIVE)
3484                 return 0;
3485
3486         if (event->cpu != -1 && event->cpu != smp_processor_id())
3487                 return 0;
3488
3489         if (event->attr.comm || event->attr.mmap || event->attr.task)
3490                 return 1;
3491
3492         return 0;
3493 }
3494
3495 static void perf_event_task_ctx(struct perf_event_context *ctx,
3496                                   struct perf_task_event *task_event)
3497 {
3498         struct perf_event *event;
3499
3500         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3501                 if (perf_event_task_match(event))
3502                         perf_event_task_output(event, task_event);
3503         }
3504 }
3505
3506 static void perf_event_task_event(struct perf_task_event *task_event)
3507 {
3508         struct perf_cpu_context *cpuctx;
3509         struct perf_event_context *ctx = task_event->task_ctx;
3510
3511         rcu_read_lock();
3512         cpuctx = &get_cpu_var(perf_cpu_context);
3513         perf_event_task_ctx(&cpuctx->ctx, task_event);
3514         if (!ctx)
3515                 ctx = rcu_dereference(current->perf_event_ctxp);
3516         if (ctx)
3517                 perf_event_task_ctx(ctx, task_event);
3518         put_cpu_var(perf_cpu_context);
3519         rcu_read_unlock();
3520 }
3521
3522 static void perf_event_task(struct task_struct *task,
3523                               struct perf_event_context *task_ctx,
3524                               int new)
3525 {
3526         struct perf_task_event task_event;
3527
3528         if (!atomic_read(&nr_comm_events) &&
3529             !atomic_read(&nr_mmap_events) &&
3530             !atomic_read(&nr_task_events))
3531                 return;
3532
3533         task_event = (struct perf_task_event){
3534                 .task     = task,
3535                 .task_ctx = task_ctx,
3536                 .event_id    = {
3537                         .header = {
3538                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3539                                 .misc = 0,
3540                                 .size = sizeof(task_event.event_id),
3541                         },
3542                         /* .pid  */
3543                         /* .ppid */
3544                         /* .tid  */
3545                         /* .ptid */
3546                         .time = perf_clock(),
3547                 },
3548         };
3549
3550         perf_event_task_event(&task_event);
3551 }
3552
3553 void perf_event_fork(struct task_struct *task)
3554 {
3555         perf_event_task(task, NULL, 1);
3556 }
3557
3558 /*
3559  * comm tracking
3560  */
3561
3562 struct perf_comm_event {
3563         struct task_struct      *task;
3564         char                    *comm;
3565         int                     comm_size;
3566
3567         struct {
3568                 struct perf_event_header        header;
3569
3570                 u32                             pid;
3571                 u32                             tid;
3572         } event_id;
3573 };
3574
3575 static void perf_event_comm_output(struct perf_event *event,
3576                                      struct perf_comm_event *comm_event)
3577 {
3578         struct perf_output_handle handle;
3579         int size = comm_event->event_id.header.size;
3580         int ret = perf_output_begin(&handle, event, size, 0, 0);
3581
3582         if (ret)
3583                 return;
3584
3585         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3586         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3587
3588         perf_output_put(&handle, comm_event->event_id);
3589         perf_output_copy(&handle, comm_event->comm,
3590                                    comm_event->comm_size);
3591         perf_output_end(&handle);
3592 }
3593
3594 static int perf_event_comm_match(struct perf_event *event)
3595 {
3596         if (event->state < PERF_EVENT_STATE_INACTIVE)
3597                 return 0;
3598
3599         if (event->cpu != -1 && event->cpu != smp_processor_id())
3600                 return 0;
3601
3602         if (event->attr.comm)
3603                 return 1;
3604
3605         return 0;
3606 }
3607
3608 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3609                                   struct perf_comm_event *comm_event)
3610 {
3611         struct perf_event *event;
3612
3613         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3614                 if (perf_event_comm_match(event))
3615                         perf_event_comm_output(event, comm_event);
3616         }
3617 }
3618
3619 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3620 {
3621         struct perf_cpu_context *cpuctx;
3622         struct perf_event_context *ctx;
3623         unsigned int size;
3624         char comm[TASK_COMM_LEN];
3625
3626         memset(comm, 0, sizeof(comm));
3627         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3628         size = ALIGN(strlen(comm)+1, sizeof(u64));
3629
3630         comm_event->comm = comm;
3631         comm_event->comm_size = size;
3632
3633         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3634
3635         rcu_read_lock();
3636         cpuctx = &get_cpu_var(perf_cpu_context);
3637         perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3638         ctx = rcu_dereference(current->perf_event_ctxp);
3639         if (ctx)
3640                 perf_event_comm_ctx(ctx, comm_event);
3641         put_cpu_var(perf_cpu_context);
3642         rcu_read_unlock();
3643 }
3644
3645 void perf_event_comm(struct task_struct *task)
3646 {
3647         struct perf_comm_event comm_event;
3648
3649         if (task->perf_event_ctxp)
3650                 perf_event_enable_on_exec(task);
3651
3652         if (!atomic_read(&nr_comm_events))
3653                 return;
3654
3655         comm_event = (struct perf_comm_event){
3656                 .task   = task,
3657                 /* .comm      */
3658                 /* .comm_size */
3659                 .event_id  = {
3660                         .header = {
3661                                 .type = PERF_RECORD_COMM,
3662                                 .misc = 0,
3663                                 /* .size */
3664                         },
3665                         /* .pid */
3666                         /* .tid */
3667                 },
3668         };
3669
3670         perf_event_comm_event(&comm_event);
3671 }
3672
3673 /*
3674  * mmap tracking
3675  */
3676
3677 struct perf_mmap_event {
3678         struct vm_area_struct   *vma;
3679
3680         const char              *file_name;
3681         int                     file_size;
3682
3683         struct {
3684                 struct perf_event_header        header;
3685
3686                 u32                             pid;
3687                 u32                             tid;
3688                 u64                             start;
3689                 u64                             len;
3690                 u64                             pgoff;
3691         } event_id;
3692 };
3693
3694 static void perf_event_mmap_output(struct perf_event *event,
3695                                      struct perf_mmap_event *mmap_event)
3696 {
3697         struct perf_output_handle handle;
3698         int size = mmap_event->event_id.header.size;
3699         int ret = perf_output_begin(&handle, event, size, 0, 0);
3700
3701         if (ret)
3702                 return;
3703
3704         mmap_event->event_id.pid = perf_event_pid(event, current);
3705         mmap_event->event_id.tid = perf_event_tid(event, current);
3706
3707         perf_output_put(&handle, mmap_event->event_id);
3708         perf_output_copy(&handle, mmap_event->file_name,
3709                                    mmap_event->file_size);
3710         perf_output_end(&handle);
3711 }
3712
3713 static int perf_event_mmap_match(struct perf_event *event,
3714                                    struct perf_mmap_event *mmap_event)
3715 {
3716         if (event->state < PERF_EVENT_STATE_INACTIVE)
3717                 return 0;
3718
3719         if (event->cpu != -1 && event->cpu != smp_processor_id())
3720                 return 0;
3721
3722         if (event->attr.mmap)
3723                 return 1;
3724
3725         return 0;
3726 }
3727
3728 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3729                                   struct perf_mmap_event *mmap_event)
3730 {
3731         struct perf_event *event;
3732
3733         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3734                 if (perf_event_mmap_match(event, mmap_event))
3735                         perf_event_mmap_output(event, mmap_event);
3736         }
3737 }
3738
3739 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3740 {
3741         struct perf_cpu_context *cpuctx;
3742         struct perf_event_context *ctx;
3743         struct vm_area_struct *vma = mmap_event->vma;
3744         struct file *file = vma->vm_file;
3745         unsigned int size;
3746         char tmp[16];
3747         char *buf = NULL;
3748         const char *name;
3749
3750         memset(tmp, 0, sizeof(tmp));
3751
3752         if (file) {
3753                 /*
3754                  * d_path works from the end of the buffer backwards, so we
3755                  * need to add enough zero bytes after the string to handle
3756                  * the 64bit alignment we do later.
3757                  */
3758                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3759                 if (!buf) {
3760                         name = strncpy(tmp, "//enomem", sizeof(tmp));
3761                         goto got_name;
3762                 }
3763                 name = d_path(&file->f_path, buf, PATH_MAX);
3764                 if (IS_ERR(name)) {
3765                         name = strncpy(tmp, "//toolong", sizeof(tmp));
3766                         goto got_name;
3767                 }
3768         } else {
3769                 if (arch_vma_name(mmap_event->vma)) {
3770                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3771                                        sizeof(tmp));
3772                         goto got_name;
3773                 }
3774
3775                 if (!vma->vm_mm) {
3776                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
3777                         goto got_name;
3778                 }
3779
3780                 name = strncpy(tmp, "//anon", sizeof(tmp));
3781                 goto got_name;
3782         }
3783
3784 got_name:
3785         size = ALIGN(strlen(name)+1, sizeof(u64));
3786
3787         mmap_event->file_name = name;
3788         mmap_event->file_size = size;
3789
3790         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3791
3792         rcu_read_lock();
3793         cpuctx = &get_cpu_var(perf_cpu_context);
3794         perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3795         ctx = rcu_dereference(current->perf_event_ctxp);
3796         if (ctx)
3797                 perf_event_mmap_ctx(ctx, mmap_event);
3798         put_cpu_var(perf_cpu_context);
3799         rcu_read_unlock();
3800
3801         kfree(buf);
3802 }
3803
3804 void __perf_event_mmap(struct vm_area_struct *vma)
3805 {
3806         struct perf_mmap_event mmap_event;
3807
3808         if (!atomic_read(&nr_mmap_events))
3809                 return;
3810
3811         mmap_event = (struct perf_mmap_event){
3812                 .vma    = vma,
3813                 /* .file_name */
3814                 /* .file_size */
3815                 .event_id  = {
3816                         .header = {
3817                                 .type = PERF_RECORD_MMAP,
3818                                 .misc = PERF_RECORD_MISC_USER,
3819                                 /* .size */
3820                         },
3821                         /* .pid */
3822                         /* .tid */
3823                         .start  = vma->vm_start,
3824                         .len    = vma->vm_end - vma->vm_start,
3825                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3826                 },
3827         };
3828
3829         perf_event_mmap_event(&mmap_event);
3830 }
3831
3832 /*
3833  * IRQ throttle logging
3834  */
3835
3836 static void perf_log_throttle(struct perf_event *event, int enable)
3837 {
3838         struct perf_output_handle handle;
3839         int ret;
3840
3841         struct {
3842                 struct perf_event_header        header;
3843                 u64                             time;
3844                 u64                             id;
3845                 u64                             stream_id;
3846         } throttle_event = {
3847                 .header = {
3848                         .type = PERF_RECORD_THROTTLE,
3849                         .misc = 0,
3850                         .size = sizeof(throttle_event),
3851                 },
3852                 .time           = perf_clock(),
3853                 .id             = primary_event_id(event),
3854                 .stream_id      = event->id,
3855         };
3856
3857         if (enable)
3858                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3859
3860         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3861         if (ret)
3862                 return;
3863
3864         perf_output_put(&handle, throttle_event);
3865         perf_output_end(&handle);
3866 }
3867
3868 /*
3869  * Generic event overflow handling, sampling.
3870  */
3871
3872 static int __perf_event_overflow(struct perf_event *event, int nmi,
3873                                    int throttle, struct perf_sample_data *data,
3874                                    struct pt_regs *regs)
3875 {
3876         int events = atomic_read(&event->event_limit);
3877         struct hw_perf_event *hwc = &event->hw;
3878         int ret = 0;
3879
3880         throttle = (throttle && event->pmu->unthrottle != NULL);
3881
3882         if (!throttle) {
3883                 hwc->interrupts++;
3884         } else {
3885                 if (hwc->interrupts != MAX_INTERRUPTS) {
3886                         hwc->interrupts++;
3887                         if (HZ * hwc->interrupts >
3888                                         (u64)sysctl_perf_event_sample_rate) {
3889                                 hwc->interrupts = MAX_INTERRUPTS;
3890                                 perf_log_throttle(event, 0);
3891                                 ret = 1;
3892                         }
3893                 } else {
3894                         /*
3895                          * Keep re-disabling events even though on the previous
3896                          * pass we disabled it - just in case we raced with a
3897                          * sched-in and the event got enabled again:
3898                          */
3899                         ret = 1;
3900                 }
3901         }
3902
3903         if (event->attr.freq) {
3904                 u64 now = perf_clock();
3905                 s64 delta = now - hwc->freq_time_stamp;
3906
3907                 hwc->freq_time_stamp = now;
3908
3909                 if (delta > 0 && delta < 2*TICK_NSEC)
3910                         perf_adjust_period(event, delta, hwc->last_period);
3911         }
3912
3913         /*
3914          * XXX event_limit might not quite work as expected on inherited
3915          * events
3916          */
3917
3918         event->pending_kill = POLL_IN;
3919         if (events && atomic_dec_and_test(&event->event_limit)) {
3920                 ret = 1;
3921                 event->pending_kill = POLL_HUP;
3922                 if (nmi) {
3923                         event->pending_disable = 1;
3924                         perf_pending_queue(&event->pending,
3925                                            perf_pending_event);
3926                 } else
3927                         perf_event_disable(event);
3928         }
3929
3930         if (event->overflow_handler)
3931                 event->overflow_handler(event, nmi, data, regs);
3932         else
3933                 perf_event_output(event, nmi, data, regs);
3934
3935         return ret;
3936 }
3937
3938 int perf_event_overflow(struct perf_event *event, int nmi,
3939                           struct perf_sample_data *data,
3940                           struct pt_regs *regs)
3941 {
3942         return __perf_event_overflow(event, nmi, 1, data, regs);
3943 }
3944
3945 /*
3946  * Generic software event infrastructure
3947  */
3948
3949 /*
3950  * We directly increment event->count and keep a second value in
3951  * event->hw.period_left to count intervals. This period event
3952  * is kept in the range [-sample_period, 0] so that we can use the
3953  * sign as trigger.
3954  */
3955
3956 static u64 perf_swevent_set_period(struct perf_event *event)
3957 {
3958         struct hw_perf_event *hwc = &event->hw;
3959         u64 period = hwc->last_period;
3960         u64 nr, offset;
3961         s64 old, val;
3962
3963         hwc->last_period = hwc->sample_period;
3964
3965 again:
3966         old = val = atomic64_read(&hwc->period_left);
3967         if (val < 0)
3968                 return 0;
3969
3970         nr = div64_u64(period + val, period);
3971         offset = nr * period;
3972         val -= offset;
3973         if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3974                 goto again;
3975
3976         return nr;
3977 }
3978
3979 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3980                                     int nmi, struct perf_sample_data *data,
3981                                     struct pt_regs *regs)
3982 {
3983         struct hw_perf_event *hwc = &event->hw;
3984         int throttle = 0;
3985
3986         data->period = event->hw.last_period;
3987         if (!overflow)
3988                 overflow = perf_swevent_set_period(event);
3989
3990         if (hwc->interrupts == MAX_INTERRUPTS)
3991                 return;
3992
3993         for (; overflow; overflow--) {
3994                 if (__perf_event_overflow(event, nmi, throttle,
3995                                             data, regs)) {
3996                         /*
3997                          * We inhibit the overflow from happening when
3998                          * hwc->interrupts == MAX_INTERRUPTS.
3999                          */
4000                         break;
4001                 }
4002                 throttle = 1;
4003         }
4004 }
4005
4006 static void perf_swevent_unthrottle(struct perf_event *event)
4007 {
4008         /*
4009          * Nothing to do, we already reset hwc->interrupts.
4010          */
4011 }
4012
4013 static void perf_swevent_add(struct perf_event *event, u64 nr,
4014                                int nmi, struct perf_sample_data *data,
4015                                struct pt_regs *regs)
4016 {
4017         struct hw_perf_event *hwc = &event->hw;
4018
4019         atomic64_add(nr, &event->count);
4020
4021         if (!regs)
4022                 return;
4023
4024         if (!hwc->sample_period)
4025                 return;
4026
4027         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4028                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4029
4030         if (atomic64_add_negative(nr, &hwc->period_left))
4031                 return;
4032
4033         perf_swevent_overflow(event, 0, nmi, data, regs);
4034 }
4035
4036 static int perf_tp_event_match(struct perf_event *event,
4037                                 struct perf_sample_data *data);
4038
4039 static int perf_exclude_event(struct perf_event *event,
4040                               struct pt_regs *regs)
4041 {
4042         if (regs) {
4043                 if (event->attr.exclude_user && user_mode(regs))
4044                         return 1;
4045
4046                 if (event->attr.exclude_kernel && !user_mode(regs))
4047                         return 1;
4048         }
4049
4050         return 0;
4051 }
4052
4053 static int perf_swevent_match(struct perf_event *event,
4054                                 enum perf_type_id type,
4055                                 u32 event_id,
4056                                 struct perf_sample_data *data,
4057                                 struct pt_regs *regs)
4058 {
4059         if (event->attr.type != type)
4060                 return 0;
4061
4062         if (event->attr.config != event_id)
4063                 return 0;
4064
4065         if (perf_exclude_event(event, regs))
4066                 return 0;
4067
4068         if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4069             !perf_tp_event_match(event, data))
4070                 return 0;
4071
4072         return 1;
4073 }
4074
4075 static inline u64 swevent_hash(u64 type, u32 event_id)
4076 {
4077         u64 val = event_id | (type << 32);
4078
4079         return hash_64(val, SWEVENT_HLIST_BITS);
4080 }
4081
4082 static struct hlist_head *
4083 find_swevent_head(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4084 {
4085         u64 hash;
4086         struct swevent_hlist *hlist;
4087
4088         hash = swevent_hash(type, event_id);
4089
4090         hlist = rcu_dereference(ctx->swevent_hlist);
4091         if (!hlist)
4092                 return NULL;
4093
4094         return &hlist->heads[hash];
4095 }
4096
4097 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4098                                     u64 nr, int nmi,
4099                                     struct perf_sample_data *data,
4100                                     struct pt_regs *regs)
4101 {
4102         struct perf_cpu_context *cpuctx;
4103         struct perf_event *event;
4104         struct hlist_node *node;
4105         struct hlist_head *head;
4106
4107         cpuctx = &__get_cpu_var(perf_cpu_context);
4108
4109         rcu_read_lock();
4110
4111         head = find_swevent_head(cpuctx, type, event_id);
4112
4113         if (!head)
4114                 goto end;
4115
4116         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4117                 if (perf_swevent_match(event, type, event_id, data, regs))
4118                         perf_swevent_add(event, nr, nmi, data, regs);
4119         }
4120 end:
4121         rcu_read_unlock();
4122 }
4123
4124 int perf_swevent_get_recursion_context(void)
4125 {
4126         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4127         int rctx;
4128
4129         if (in_nmi())
4130                 rctx = 3;
4131         else if (in_irq())
4132                 rctx = 2;
4133         else if (in_softirq())
4134                 rctx = 1;
4135         else
4136                 rctx = 0;
4137
4138         if (cpuctx->recursion[rctx]) {
4139                 put_cpu_var(perf_cpu_context);
4140                 return -1;
4141         }
4142
4143         cpuctx->recursion[rctx]++;
4144         barrier();
4145
4146         return rctx;
4147 }
4148 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4149
4150 void perf_swevent_put_recursion_context(int rctx)
4151 {
4152         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4153         barrier();
4154         cpuctx->recursion[rctx]--;
4155         put_cpu_var(perf_cpu_context);
4156 }
4157 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4158
4159
4160 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4161                             struct pt_regs *regs, u64 addr)
4162 {
4163         struct perf_sample_data data;
4164         int rctx;
4165
4166         rctx = perf_swevent_get_recursion_context();
4167         if (rctx < 0)
4168                 return;
4169
4170         perf_sample_data_init(&data, addr);
4171
4172         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4173
4174         perf_swevent_put_recursion_context(rctx);
4175 }
4176
4177 static void perf_swevent_read(struct perf_event *event)
4178 {
4179 }
4180
4181 static int perf_swevent_enable(struct perf_event *event)
4182 {
4183         struct hw_perf_event *hwc = &event->hw;
4184         struct perf_cpu_context *cpuctx;
4185         struct hlist_head *head;
4186
4187         cpuctx = &__get_cpu_var(perf_cpu_context);
4188
4189         if (hwc->sample_period) {
4190                 hwc->last_period = hwc->sample_period;
4191                 perf_swevent_set_period(event);
4192         }
4193
4194         head = find_swevent_head(cpuctx, event->attr.type, event->attr.config);
4195         if (WARN_ON_ONCE(!head))
4196                 return -EINVAL;
4197
4198         hlist_add_head_rcu(&event->hlist_entry, head);
4199
4200         return 0;
4201 }
4202
4203 static void perf_swevent_disable(struct perf_event *event)
4204 {
4205         hlist_del_rcu(&event->hlist_entry);
4206 }
4207
4208 static const struct pmu perf_ops_generic = {
4209         .enable         = perf_swevent_enable,
4210         .disable        = perf_swevent_disable,
4211         .read           = perf_swevent_read,
4212         .unthrottle     = perf_swevent_unthrottle,
4213 };
4214
4215 /*
4216  * hrtimer based swevent callback
4217  */
4218
4219 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4220 {
4221         enum hrtimer_restart ret = HRTIMER_RESTART;
4222         struct perf_sample_data data;
4223         struct pt_regs *regs;
4224         struct perf_event *event;
4225         u64 period;
4226
4227         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4228         event->pmu->read(event);
4229
4230         perf_sample_data_init(&data, 0);
4231         data.period = event->hw.last_period;
4232         regs = get_irq_regs();
4233
4234         if (regs && !perf_exclude_event(event, regs)) {
4235                 if (!(event->attr.exclude_idle && current->pid == 0))
4236                         if (perf_event_overflow(event, 0, &data, regs))
4237                                 ret = HRTIMER_NORESTART;
4238         }
4239
4240         period = max_t(u64, 10000, event->hw.sample_period);
4241         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4242
4243         return ret;
4244 }
4245
4246 static void perf_swevent_start_hrtimer(struct perf_event *event)
4247 {
4248         struct hw_perf_event *hwc = &event->hw;
4249
4250         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4251         hwc->hrtimer.function = perf_swevent_hrtimer;
4252         if (hwc->sample_period) {
4253                 u64 period;
4254
4255                 if (hwc->remaining) {
4256                         if (hwc->remaining < 0)
4257                                 period = 10000;
4258                         else
4259                                 period = hwc->remaining;
4260                         hwc->remaining = 0;
4261                 } else {
4262                         period = max_t(u64, 10000, hwc->sample_period);
4263                 }
4264                 __hrtimer_start_range_ns(&hwc->hrtimer,
4265                                 ns_to_ktime(period), 0,
4266                                 HRTIMER_MODE_REL, 0);
4267         }
4268 }
4269
4270 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4271 {
4272         struct hw_perf_event *hwc = &event->hw;
4273
4274         if (hwc->sample_period) {
4275                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4276                 hwc->remaining = ktime_to_ns(remaining);
4277
4278                 hrtimer_cancel(&hwc->hrtimer);
4279         }
4280 }
4281
4282 /*
4283  * Software event: cpu wall time clock
4284  */
4285
4286 static void cpu_clock_perf_event_update(struct perf_event *event)
4287 {
4288         int cpu = raw_smp_processor_id();
4289         s64 prev;
4290         u64 now;
4291
4292         now = cpu_clock(cpu);
4293         prev = atomic64_xchg(&event->hw.prev_count, now);
4294         atomic64_add(now - prev, &event->count);
4295 }
4296
4297 static int cpu_clock_perf_event_enable(struct perf_event *event)
4298 {
4299         struct hw_perf_event *hwc = &event->hw;
4300         int cpu = raw_smp_processor_id();
4301
4302         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4303         perf_swevent_start_hrtimer(event);
4304
4305         return 0;
4306 }
4307
4308 static void cpu_clock_perf_event_disable(struct perf_event *event)
4309 {
4310         perf_swevent_cancel_hrtimer(event);
4311         cpu_clock_perf_event_update(event);
4312 }
4313
4314 static void cpu_clock_perf_event_read(struct perf_event *event)
4315 {
4316         cpu_clock_perf_event_update(event);
4317 }
4318
4319 static const struct pmu perf_ops_cpu_clock = {
4320         .enable         = cpu_clock_perf_event_enable,
4321         .disable        = cpu_clock_perf_event_disable,
4322         .read           = cpu_clock_perf_event_read,
4323 };
4324
4325 /*
4326  * Software event: task time clock
4327  */
4328
4329 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4330 {
4331         u64 prev;
4332         s64 delta;
4333
4334         prev = atomic64_xchg(&event->hw.prev_count, now);
4335         delta = now - prev;
4336         atomic64_add(delta, &event->count);
4337 }
4338
4339 static int task_clock_perf_event_enable(struct perf_event *event)
4340 {
4341         struct hw_perf_event *hwc = &event->hw;
4342         u64 now;
4343
4344         now = event->ctx->time;
4345
4346         atomic64_set(&hwc->prev_count, now);
4347
4348         perf_swevent_start_hrtimer(event);
4349
4350         return 0;
4351 }
4352
4353 static void task_clock_perf_event_disable(struct perf_event *event)
4354 {
4355         perf_swevent_cancel_hrtimer(event);
4356         task_clock_perf_event_update(event, event->ctx->time);
4357
4358 }
4359
4360 static void task_clock_perf_event_read(struct perf_event *event)
4361 {
4362         u64 time;
4363
4364         if (!in_nmi()) {
4365                 update_context_time(event->ctx);
4366                 time = event->ctx->time;
4367         } else {
4368                 u64 now = perf_clock();
4369                 u64 delta = now - event->ctx->timestamp;
4370                 time = event->ctx->time + delta;
4371         }
4372
4373         task_clock_perf_event_update(event, time);
4374 }
4375
4376 static const struct pmu perf_ops_task_clock = {
4377         .enable         = task_clock_perf_event_enable,
4378         .disable        = task_clock_perf_event_disable,
4379         .read           = task_clock_perf_event_read,
4380 };
4381
4382 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4383 {
4384         struct swevent_hlist *hlist;
4385
4386         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4387         kfree(hlist);
4388 }
4389
4390 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4391 {
4392         struct swevent_hlist *hlist;
4393
4394         if (!cpuctx->swevent_hlist)
4395                 return;
4396
4397         hlist = cpuctx->swevent_hlist;
4398         rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4399         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4400 }
4401
4402 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4403 {
4404         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4405
4406         mutex_lock(&cpuctx->hlist_mutex);
4407
4408         if (!--cpuctx->hlist_refcount)
4409                 swevent_hlist_release(cpuctx);
4410
4411         mutex_unlock(&cpuctx->hlist_mutex);
4412 }
4413
4414 static void swevent_hlist_put(struct perf_event *event)
4415 {
4416         int cpu;
4417
4418         if (event->cpu != -1) {
4419                 swevent_hlist_put_cpu(event, event->cpu);
4420                 return;
4421         }
4422
4423         for_each_possible_cpu(cpu)
4424                 swevent_hlist_put_cpu(event, cpu);
4425 }
4426
4427 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4428 {
4429         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4430         int err = 0;
4431
4432         mutex_lock(&cpuctx->hlist_mutex);
4433
4434         if (!cpuctx->swevent_hlist && cpu_online(cpu)) {
4435                 struct swevent_hlist *hlist;
4436
4437                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4438                 if (!hlist) {
4439                         err = -ENOMEM;
4440                         goto exit;
4441                 }
4442                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4443         }
4444         cpuctx->hlist_refcount++;
4445  exit:
4446         mutex_unlock(&cpuctx->hlist_mutex);
4447
4448         return err;
4449 }
4450
4451 static int swevent_hlist_get(struct perf_event *event)
4452 {
4453         int err;
4454         int cpu, failed_cpu;
4455
4456         if (event->cpu != -1)
4457                 return swevent_hlist_get_cpu(event, event->cpu);
4458
4459         get_online_cpus();
4460         for_each_possible_cpu(cpu) {
4461                 err = swevent_hlist_get_cpu(event, cpu);
4462                 if (err) {
4463                         failed_cpu = cpu;
4464                         goto fail;
4465                 }
4466         }
4467         put_online_cpus();
4468
4469         return 0;
4470  fail:
4471         for_each_possible_cpu(cpu) {
4472                 if (cpu == failed_cpu)
4473                         break;
4474                 swevent_hlist_put_cpu(event, cpu);
4475         }
4476
4477         put_online_cpus();
4478         return err;
4479 }
4480
4481 #ifdef CONFIG_EVENT_TRACING
4482
4483 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4484                    int entry_size, struct pt_regs *regs, void *event)
4485 {
4486         const int type = PERF_TYPE_TRACEPOINT;
4487         struct perf_sample_data data;
4488         struct perf_raw_record raw = {
4489                 .size = entry_size,
4490                 .data = record,
4491         };
4492
4493         perf_sample_data_init(&data, addr);
4494         data.raw = &raw;
4495
4496         if (!event) {
4497                 do_perf_sw_event(type, event_id, count, 1, &data, regs);
4498                 return;
4499         }
4500
4501         if (perf_swevent_match(event, type, event_id, &data, regs))
4502                 perf_swevent_add(event, count, 1, &data, regs);
4503 }
4504 EXPORT_SYMBOL_GPL(perf_tp_event);
4505
4506 static int perf_tp_event_match(struct perf_event *event,
4507                                 struct perf_sample_data *data)
4508 {
4509         void *record = data->raw->data;
4510
4511         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4512                 return 1;
4513         return 0;
4514 }
4515
4516 static void tp_perf_event_destroy(struct perf_event *event)
4517 {
4518         perf_trace_disable(event->attr.config);
4519         swevent_hlist_put(event);
4520 }
4521
4522 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4523 {
4524         int err;
4525
4526         /*
4527          * Raw tracepoint data is a severe data leak, only allow root to
4528          * have these.
4529          */
4530         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4531                         perf_paranoid_tracepoint_raw() &&
4532                         !capable(CAP_SYS_ADMIN))
4533                 return ERR_PTR(-EPERM);
4534
4535         if (perf_trace_enable(event->attr.config, event))
4536                 return NULL;
4537
4538         event->destroy = tp_perf_event_destroy;
4539         err = swevent_hlist_get(event);
4540         if (err) {
4541                 perf_trace_disable(event->attr.config);
4542                 return ERR_PTR(err);
4543         }
4544
4545         return &perf_ops_generic;
4546 }
4547
4548 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4549 {
4550         char *filter_str;
4551         int ret;
4552
4553         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4554                 return -EINVAL;
4555
4556         filter_str = strndup_user(arg, PAGE_SIZE);
4557         if (IS_ERR(filter_str))
4558                 return PTR_ERR(filter_str);
4559
4560         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4561
4562         kfree(filter_str);
4563         return ret;
4564 }
4565
4566 static void perf_event_free_filter(struct perf_event *event)
4567 {
4568         ftrace_profile_free_filter(event);
4569 }
4570
4571 #else
4572
4573 static int perf_tp_event_match(struct perf_event *event,
4574                                 struct perf_sample_data *data)
4575 {
4576         return 1;
4577 }
4578
4579 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4580 {
4581         return NULL;
4582 }
4583
4584 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4585 {
4586         return -ENOENT;
4587 }
4588
4589 static void perf_event_free_filter(struct perf_event *event)
4590 {
4591 }
4592
4593 #endif /* CONFIG_EVENT_TRACING */
4594
4595 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4596 static void bp_perf_event_destroy(struct perf_event *event)
4597 {
4598         release_bp_slot(event);
4599 }
4600
4601 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4602 {
4603         int err;
4604
4605         err = register_perf_hw_breakpoint(bp);
4606         if (err)
4607                 return ERR_PTR(err);
4608
4609         bp->destroy = bp_perf_event_destroy;
4610
4611         return &perf_ops_bp;
4612 }
4613
4614 void perf_bp_event(struct perf_event *bp, void *data)
4615 {
4616         struct perf_sample_data sample;
4617         struct pt_regs *regs = data;
4618
4619         perf_sample_data_init(&sample, bp->attr.bp_addr);
4620
4621         if (!perf_exclude_event(bp, regs))
4622                 perf_swevent_add(bp, 1, 1, &sample, regs);
4623 }
4624 #else
4625 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4626 {
4627         return NULL;
4628 }
4629
4630 void perf_bp_event(struct perf_event *bp, void *regs)
4631 {
4632 }
4633 #endif
4634
4635 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4636
4637 static void sw_perf_event_destroy(struct perf_event *event)
4638 {
4639         u64 event_id = event->attr.config;
4640
4641         WARN_ON(event->parent);
4642
4643         atomic_dec(&perf_swevent_enabled[event_id]);
4644         swevent_hlist_put(event);
4645 }
4646
4647 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4648 {
4649         const struct pmu *pmu = NULL;
4650         u64 event_id = event->attr.config;
4651
4652         /*
4653          * Software events (currently) can't in general distinguish
4654          * between user, kernel and hypervisor events.
4655          * However, context switches and cpu migrations are considered
4656          * to be kernel events, and page faults are never hypervisor
4657          * events.
4658          */
4659         switch (event_id) {
4660         case PERF_COUNT_SW_CPU_CLOCK:
4661                 pmu = &perf_ops_cpu_clock;
4662
4663                 break;
4664         case PERF_COUNT_SW_TASK_CLOCK:
4665                 /*
4666                  * If the user instantiates this as a per-cpu event,
4667                  * use the cpu_clock event instead.
4668                  */
4669                 if (event->ctx->task)
4670                         pmu = &perf_ops_task_clock;
4671                 else
4672                         pmu = &perf_ops_cpu_clock;
4673
4674                 break;
4675         case PERF_COUNT_SW_PAGE_FAULTS:
4676         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4677         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4678         case PERF_COUNT_SW_CONTEXT_SWITCHES:
4679         case PERF_COUNT_SW_CPU_MIGRATIONS:
4680         case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4681         case PERF_COUNT_SW_EMULATION_FAULTS:
4682                 if (!event->parent) {
4683                         int err;
4684
4685                         err = swevent_hlist_get(event);
4686                         if (err)
4687                                 return ERR_PTR(err);
4688
4689                         atomic_inc(&perf_swevent_enabled[event_id]);
4690                         event->destroy = sw_perf_event_destroy;
4691                 }
4692                 pmu = &perf_ops_generic;
4693                 break;
4694         }
4695
4696         return pmu;
4697 }
4698
4699 /*
4700  * Allocate and initialize a event structure
4701  */
4702 static struct perf_event *
4703 perf_event_alloc(struct perf_event_attr *attr,
4704                    int cpu,
4705                    struct perf_event_context *ctx,
4706                    struct perf_event *group_leader,
4707                    struct perf_event *parent_event,
4708                    perf_overflow_handler_t overflow_handler,
4709                    gfp_t gfpflags)
4710 {
4711         const struct pmu *pmu;
4712         struct perf_event *event;
4713         struct hw_perf_event *hwc;
4714         long err;
4715
4716         event = kzalloc(sizeof(*event), gfpflags);
4717         if (!event)
4718                 return ERR_PTR(-ENOMEM);
4719
4720         /*
4721          * Single events are their own group leaders, with an
4722          * empty sibling list:
4723          */
4724         if (!group_leader)
4725                 group_leader = event;
4726
4727         mutex_init(&event->child_mutex);
4728         INIT_LIST_HEAD(&event->child_list);
4729
4730         INIT_LIST_HEAD(&event->group_entry);
4731         INIT_LIST_HEAD(&event->event_entry);
4732         INIT_LIST_HEAD(&event->sibling_list);
4733         init_waitqueue_head(&event->waitq);
4734
4735         mutex_init(&event->mmap_mutex);
4736
4737         event->cpu              = cpu;
4738         event->attr             = *attr;
4739         event->group_leader     = group_leader;
4740         event->pmu              = NULL;
4741         event->ctx              = ctx;
4742         event->oncpu            = -1;
4743
4744         event->parent           = parent_event;
4745
4746         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
4747         event->id               = atomic64_inc_return(&perf_event_id);
4748
4749         event->state            = PERF_EVENT_STATE_INACTIVE;
4750
4751         if (!overflow_handler && parent_event)
4752                 overflow_handler = parent_event->overflow_handler;
4753         
4754         event->overflow_handler = overflow_handler;
4755
4756         if (attr->disabled)
4757                 event->state = PERF_EVENT_STATE_OFF;
4758
4759         pmu = NULL;
4760
4761         hwc = &event->hw;
4762         hwc->sample_period = attr->sample_period;
4763         if (attr->freq && attr->sample_freq)
4764                 hwc->sample_period = 1;
4765         hwc->last_period = hwc->sample_period;
4766
4767         atomic64_set(&hwc->period_left, hwc->sample_period);
4768
4769         /*
4770          * we currently do not support PERF_FORMAT_GROUP on inherited events
4771          */
4772         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4773                 goto done;
4774
4775         switch (attr->type) {
4776         case PERF_TYPE_RAW:
4777         case PERF_TYPE_HARDWARE:
4778         case PERF_TYPE_HW_CACHE:
4779                 pmu = hw_perf_event_init(event);
4780                 break;
4781
4782         case PERF_TYPE_SOFTWARE:
4783                 pmu = sw_perf_event_init(event);
4784                 break;
4785
4786         case PERF_TYPE_TRACEPOINT:
4787                 pmu = tp_perf_event_init(event);
4788                 break;
4789
4790         case PERF_TYPE_BREAKPOINT:
4791                 pmu = bp_perf_event_init(event);
4792                 break;
4793
4794
4795         default:
4796                 break;
4797         }
4798 done:
4799         err = 0;
4800         if (!pmu)
4801                 err = -EINVAL;
4802         else if (IS_ERR(pmu))
4803                 err = PTR_ERR(pmu);
4804
4805         if (err) {
4806                 if (event->ns)
4807                         put_pid_ns(event->ns);
4808                 kfree(event);
4809                 return ERR_PTR(err);
4810         }
4811
4812         event->pmu = pmu;
4813
4814         if (!event->parent) {
4815                 atomic_inc(&nr_events);
4816                 if (event->attr.mmap)
4817                         atomic_inc(&nr_mmap_events);
4818                 if (event->attr.comm)
4819                         atomic_inc(&nr_comm_events);
4820                 if (event->attr.task)
4821                         atomic_inc(&nr_task_events);
4822         }
4823
4824         return event;
4825 }
4826
4827 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4828                           struct perf_event_attr *attr)
4829 {
4830         u32 size;
4831         int ret;
4832
4833         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4834                 return -EFAULT;
4835
4836         /*
4837          * zero the full structure, so that a short copy will be nice.
4838          */
4839         memset(attr, 0, sizeof(*attr));
4840
4841         ret = get_user(size, &uattr->size);
4842         if (ret)
4843                 return ret;
4844
4845         if (size > PAGE_SIZE)   /* silly large */
4846                 goto err_size;
4847
4848         if (!size)              /* abi compat */
4849                 size = PERF_ATTR_SIZE_VER0;
4850
4851         if (size < PERF_ATTR_SIZE_VER0)
4852                 goto err_size;
4853
4854         /*
4855          * If we're handed a bigger struct than we know of,
4856          * ensure all the unknown bits are 0 - i.e. new
4857          * user-space does not rely on any kernel feature
4858          * extensions we dont know about yet.
4859          */
4860         if (size > sizeof(*attr)) {
4861                 unsigned char __user *addr;
4862                 unsigned char __user *end;
4863                 unsigned char val;
4864
4865                 addr = (void __user *)uattr + sizeof(*attr);
4866                 end  = (void __user *)uattr + size;
4867
4868                 for (; addr < end; addr++) {
4869                         ret = get_user(val, addr);
4870                         if (ret)
4871                                 return ret;
4872                         if (val)
4873                                 goto err_size;
4874                 }
4875                 size = sizeof(*attr);
4876         }
4877
4878         ret = copy_from_user(attr, uattr, size);
4879         if (ret)
4880                 return -EFAULT;
4881
4882         /*
4883          * If the type exists, the corresponding creation will verify
4884          * the attr->config.
4885          */
4886         if (attr->type >= PERF_TYPE_MAX)
4887                 return -EINVAL;
4888
4889         if (attr->__reserved_1)
4890                 return -EINVAL;
4891
4892         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4893                 return -EINVAL;
4894
4895         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4896                 return -EINVAL;
4897
4898 out:
4899         return ret;
4900
4901 err_size:
4902         put_user(sizeof(*attr), &uattr->size);
4903         ret = -E2BIG;
4904         goto out;
4905 }
4906
4907 static int perf_event_set_output(struct perf_event *event, int output_fd)
4908 {
4909         struct perf_event *output_event = NULL;
4910         struct file *output_file = NULL;
4911         struct perf_event *old_output;
4912         int fput_needed = 0;
4913         int ret = -EINVAL;
4914
4915         if (!output_fd)
4916                 goto set;
4917
4918         output_file = fget_light(output_fd, &fput_needed);
4919         if (!output_file)
4920                 return -EBADF;
4921
4922         if (output_file->f_op != &perf_fops)
4923                 goto out;
4924
4925         output_event = output_file->private_data;
4926
4927         /* Don't chain output fds */
4928         if (output_event->output)
4929                 goto out;
4930
4931         /* Don't set an output fd when we already have an output channel */
4932         if (event->data)
4933                 goto out;
4934
4935         atomic_long_inc(&output_file->f_count);
4936
4937 set:
4938         mutex_lock(&event->mmap_mutex);
4939         old_output = event->output;
4940         rcu_assign_pointer(event->output, output_event);
4941         mutex_unlock(&event->mmap_mutex);
4942
4943         if (old_output) {
4944                 /*
4945                  * we need to make sure no existing perf_output_*()
4946                  * is still referencing this event.
4947                  */
4948                 synchronize_rcu();
4949                 fput(old_output->filp);
4950         }
4951
4952         ret = 0;
4953 out:
4954         fput_light(output_file, fput_needed);
4955         return ret;
4956 }
4957
4958 /**
4959  * sys_perf_event_open - open a performance event, associate it to a task/cpu
4960  *
4961  * @attr_uptr:  event_id type attributes for monitoring/sampling
4962  * @pid:                target pid
4963  * @cpu:                target cpu
4964  * @group_fd:           group leader event fd
4965  */
4966 SYSCALL_DEFINE5(perf_event_open,
4967                 struct perf_event_attr __user *, attr_uptr,
4968                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4969 {
4970         struct perf_event *event, *group_leader;
4971         struct perf_event_attr attr;
4972         struct perf_event_context *ctx;
4973         struct file *event_file = NULL;
4974         struct file *group_file = NULL;
4975         int fput_needed = 0;
4976         int fput_needed2 = 0;
4977         int err;
4978
4979         /* for future expandability... */
4980         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4981                 return -EINVAL;
4982
4983         err = perf_copy_attr(attr_uptr, &attr);
4984         if (err)
4985                 return err;
4986
4987         if (!attr.exclude_kernel) {
4988                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4989                         return -EACCES;
4990         }
4991
4992         if (attr.freq) {
4993                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4994                         return -EINVAL;
4995         }
4996
4997         /*
4998          * Get the target context (task or percpu):
4999          */
5000         ctx = find_get_context(pid, cpu);
5001         if (IS_ERR(ctx))
5002                 return PTR_ERR(ctx);
5003
5004         /*
5005          * Look up the group leader (we will attach this event to it):
5006          */
5007         group_leader = NULL;
5008         if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
5009                 err = -EINVAL;
5010                 group_file = fget_light(group_fd, &fput_needed);
5011                 if (!group_file)
5012                         goto err_put_context;
5013                 if (group_file->f_op != &perf_fops)
5014                         goto err_put_context;
5015
5016                 group_leader = group_file->private_data;
5017                 /*
5018                  * Do not allow a recursive hierarchy (this new sibling
5019                  * becoming part of another group-sibling):
5020                  */
5021                 if (group_leader->group_leader != group_leader)
5022                         goto err_put_context;
5023                 /*
5024                  * Do not allow to attach to a group in a different
5025                  * task or CPU context:
5026                  */
5027                 if (group_leader->ctx != ctx)
5028                         goto err_put_context;
5029                 /*
5030                  * Only a group leader can be exclusive or pinned
5031                  */
5032                 if (attr.exclusive || attr.pinned)
5033                         goto err_put_context;
5034         }
5035
5036         event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5037                                      NULL, NULL, GFP_KERNEL);
5038         err = PTR_ERR(event);
5039         if (IS_ERR(event))
5040                 goto err_put_context;
5041
5042         err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
5043         if (err < 0)
5044                 goto err_free_put_context;
5045
5046         event_file = fget_light(err, &fput_needed2);
5047         if (!event_file)
5048                 goto err_free_put_context;
5049
5050         if (flags & PERF_FLAG_FD_OUTPUT) {
5051                 err = perf_event_set_output(event, group_fd);
5052                 if (err)
5053                         goto err_fput_free_put_context;
5054         }
5055
5056         event->filp = event_file;
5057         WARN_ON_ONCE(ctx->parent_ctx);
5058         mutex_lock(&ctx->mutex);
5059         perf_install_in_context(ctx, event, cpu);
5060         ++ctx->generation;
5061         mutex_unlock(&ctx->mutex);
5062
5063         event->owner = current;
5064         get_task_struct(current);
5065         mutex_lock(&current->perf_event_mutex);
5066         list_add_tail(&event->owner_entry, &current->perf_event_list);
5067         mutex_unlock(&current->perf_event_mutex);
5068
5069 err_fput_free_put_context:
5070         fput_light(event_file, fput_needed2);
5071
5072 err_free_put_context:
5073         if (err < 0)
5074                 free_event(event);
5075
5076 err_put_context:
5077         if (err < 0)
5078                 put_ctx(ctx);
5079
5080         fput_light(group_file, fput_needed);
5081
5082         return err;
5083 }
5084
5085 /**
5086  * perf_event_create_kernel_counter
5087  *
5088  * @attr: attributes of the counter to create
5089  * @cpu: cpu in which the counter is bound
5090  * @pid: task to profile
5091  */
5092 struct perf_event *
5093 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5094                                  pid_t pid,
5095                                  perf_overflow_handler_t overflow_handler)
5096 {
5097         struct perf_event *event;
5098         struct perf_event_context *ctx;
5099         int err;
5100
5101         /*
5102          * Get the target context (task or percpu):
5103          */
5104
5105         ctx = find_get_context(pid, cpu);
5106         if (IS_ERR(ctx)) {
5107                 err = PTR_ERR(ctx);
5108                 goto err_exit;
5109         }
5110
5111         event = perf_event_alloc(attr, cpu, ctx, NULL,
5112                                  NULL, overflow_handler, GFP_KERNEL);
5113         if (IS_ERR(event)) {
5114                 err = PTR_ERR(event);
5115                 goto err_put_context;
5116         }
5117
5118         event->filp = NULL;
5119         WARN_ON_ONCE(ctx->parent_ctx);
5120         mutex_lock(&ctx->mutex);
5121         perf_install_in_context(ctx, event, cpu);
5122         ++ctx->generation;
5123         mutex_unlock(&ctx->mutex);
5124
5125         event->owner = current;
5126         get_task_struct(current);
5127         mutex_lock(&current->perf_event_mutex);
5128         list_add_tail(&event->owner_entry, &current->perf_event_list);
5129         mutex_unlock(&current->perf_event_mutex);
5130
5131         return event;
5132
5133  err_put_context:
5134         put_ctx(ctx);
5135  err_exit:
5136         return ERR_PTR(err);
5137 }
5138 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5139
5140 /*
5141  * inherit a event from parent task to child task:
5142  */
5143 static struct perf_event *
5144 inherit_event(struct perf_event *parent_event,
5145               struct task_struct *parent,
5146               struct perf_event_context *parent_ctx,
5147               struct task_struct *child,
5148               struct perf_event *group_leader,
5149               struct perf_event_context *child_ctx)
5150 {
5151         struct perf_event *child_event;
5152
5153         /*
5154          * Instead of creating recursive hierarchies of events,
5155          * we link inherited events back to the original parent,
5156          * which has a filp for sure, which we use as the reference
5157          * count:
5158          */
5159         if (parent_event->parent)
5160                 parent_event = parent_event->parent;
5161
5162         child_event = perf_event_alloc(&parent_event->attr,
5163                                            parent_event->cpu, child_ctx,
5164                                            group_leader, parent_event,
5165                                            NULL, GFP_KERNEL);
5166         if (IS_ERR(child_event))
5167                 return child_event;
5168         get_ctx(child_ctx);
5169
5170         /*
5171          * Make the child state follow the state of the parent event,
5172          * not its attr.disabled bit.  We hold the parent's mutex,
5173          * so we won't race with perf_event_{en, dis}able_family.
5174          */
5175         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5176                 child_event->state = PERF_EVENT_STATE_INACTIVE;
5177         else
5178                 child_event->state = PERF_EVENT_STATE_OFF;
5179
5180         if (parent_event->attr.freq) {
5181                 u64 sample_period = parent_event->hw.sample_period;
5182                 struct hw_perf_event *hwc = &child_event->hw;
5183
5184                 hwc->sample_period = sample_period;
5185                 hwc->last_period   = sample_period;
5186
5187                 atomic64_set(&hwc->period_left, sample_period);
5188         }
5189
5190         child_event->overflow_handler = parent_event->overflow_handler;
5191
5192         /*
5193          * Link it up in the child's context:
5194          */
5195         add_event_to_ctx(child_event, child_ctx);
5196
5197         /*
5198          * Get a reference to the parent filp - we will fput it
5199          * when the child event exits. This is safe to do because
5200          * we are in the parent and we know that the filp still
5201          * exists and has a nonzero count:
5202          */
5203         atomic_long_inc(&parent_event->filp->f_count);
5204
5205         /*
5206          * Link this into the parent event's child list
5207          */
5208         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5209         mutex_lock(&parent_event->child_mutex);
5210         list_add_tail(&child_event->child_list, &parent_event->child_list);
5211         mutex_unlock(&parent_event->child_mutex);
5212
5213         return child_event;
5214 }
5215
5216 static int inherit_group(struct perf_event *parent_event,
5217               struct task_struct *parent,
5218               struct perf_event_context *parent_ctx,
5219               struct task_struct *child,
5220               struct perf_event_context *child_ctx)
5221 {
5222         struct perf_event *leader;
5223         struct perf_event *sub;
5224         struct perf_event *child_ctr;
5225
5226         leader = inherit_event(parent_event, parent, parent_ctx,
5227                                  child, NULL, child_ctx);
5228         if (IS_ERR(leader))
5229                 return PTR_ERR(leader);
5230         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5231                 child_ctr = inherit_event(sub, parent, parent_ctx,
5232                                             child, leader, child_ctx);
5233                 if (IS_ERR(child_ctr))
5234                         return PTR_ERR(child_ctr);
5235         }
5236         return 0;
5237 }
5238
5239 static void sync_child_event(struct perf_event *child_event,
5240                                struct task_struct *child)
5241 {
5242         struct perf_event *parent_event = child_event->parent;
5243         u64 child_val;
5244
5245         if (child_event->attr.inherit_stat)
5246                 perf_event_read_event(child_event, child);
5247
5248         child_val = atomic64_read(&child_event->count);
5249
5250         /*
5251          * Add back the child's count to the parent's count:
5252          */
5253         atomic64_add(child_val, &parent_event->count);
5254         atomic64_add(child_event->total_time_enabled,
5255                      &parent_event->child_total_time_enabled);
5256         atomic64_add(child_event->total_time_running,
5257                      &parent_event->child_total_time_running);
5258
5259         /*
5260          * Remove this event from the parent's list
5261          */
5262         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5263         mutex_lock(&parent_event->child_mutex);
5264         list_del_init(&child_event->child_list);
5265         mutex_unlock(&parent_event->child_mutex);
5266
5267         /*
5268          * Release the parent event, if this was the last
5269          * reference to it.
5270          */
5271         fput(parent_event->filp);
5272 }
5273
5274 static void
5275 __perf_event_exit_task(struct perf_event *child_event,
5276                          struct perf_event_context *child_ctx,
5277                          struct task_struct *child)
5278 {
5279         struct perf_event *parent_event;
5280
5281         perf_event_remove_from_context(child_event);
5282
5283         parent_event = child_event->parent;
5284         /*
5285          * It can happen that parent exits first, and has events
5286          * that are still around due to the child reference. These
5287          * events need to be zapped - but otherwise linger.
5288          */
5289         if (parent_event) {
5290                 sync_child_event(child_event, child);
5291                 free_event(child_event);
5292         }
5293 }
5294
5295 /*
5296  * When a child task exits, feed back event values to parent events.
5297  */
5298 void perf_event_exit_task(struct task_struct *child)
5299 {
5300         struct perf_event *child_event, *tmp;
5301         struct perf_event_context *child_ctx;
5302         unsigned long flags;
5303
5304         if (likely(!child->perf_event_ctxp)) {
5305                 perf_event_task(child, NULL, 0);
5306                 return;
5307         }
5308
5309         local_irq_save(flags);
5310         /*
5311          * We can't reschedule here because interrupts are disabled,
5312          * and either child is current or it is a task that can't be
5313          * scheduled, so we are now safe from rescheduling changing
5314          * our context.
5315          */
5316         child_ctx = child->perf_event_ctxp;
5317         __perf_event_task_sched_out(child_ctx);
5318
5319         /*
5320          * Take the context lock here so that if find_get_context is
5321          * reading child->perf_event_ctxp, we wait until it has
5322          * incremented the context's refcount before we do put_ctx below.
5323          */
5324         raw_spin_lock(&child_ctx->lock);
5325         child->perf_event_ctxp = NULL;
5326         /*
5327          * If this context is a clone; unclone it so it can't get
5328          * swapped to another process while we're removing all
5329          * the events from it.
5330          */
5331         unclone_ctx(child_ctx);
5332         update_context_time(child_ctx);
5333         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5334
5335         /*
5336          * Report the task dead after unscheduling the events so that we
5337          * won't get any samples after PERF_RECORD_EXIT. We can however still
5338          * get a few PERF_RECORD_READ events.
5339          */
5340         perf_event_task(child, child_ctx, 0);
5341
5342         /*
5343          * We can recurse on the same lock type through:
5344          *
5345          *   __perf_event_exit_task()
5346          *     sync_child_event()
5347          *       fput(parent_event->filp)
5348          *         perf_release()
5349          *           mutex_lock(&ctx->mutex)
5350          *
5351          * But since its the parent context it won't be the same instance.
5352          */
5353         mutex_lock(&child_ctx->mutex);
5354
5355 again:
5356         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5357                                  group_entry)
5358                 __perf_event_exit_task(child_event, child_ctx, child);
5359
5360         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5361                                  group_entry)
5362                 __perf_event_exit_task(child_event, child_ctx, child);
5363
5364         /*
5365          * If the last event was a group event, it will have appended all
5366          * its siblings to the list, but we obtained 'tmp' before that which
5367          * will still point to the list head terminating the iteration.
5368          */
5369         if (!list_empty(&child_ctx->pinned_groups) ||
5370             !list_empty(&child_ctx->flexible_groups))
5371                 goto again;
5372
5373         mutex_unlock(&child_ctx->mutex);
5374
5375         put_ctx(child_ctx);
5376 }
5377
5378 static void perf_free_event(struct perf_event *event,
5379                             struct perf_event_context *ctx)
5380 {
5381         struct perf_event *parent = event->parent;
5382
5383         if (WARN_ON_ONCE(!parent))
5384                 return;
5385
5386         mutex_lock(&parent->child_mutex);
5387         list_del_init(&event->child_list);
5388         mutex_unlock(&parent->child_mutex);
5389
5390         fput(parent->filp);
5391
5392         list_del_event(event, ctx);
5393         free_event(event);
5394 }
5395
5396 /*
5397  * free an unexposed, unused context as created by inheritance by
5398  * init_task below, used by fork() in case of fail.
5399  */
5400 void perf_event_free_task(struct task_struct *task)
5401 {
5402         struct perf_event_context *ctx = task->perf_event_ctxp;
5403         struct perf_event *event, *tmp;
5404
5405         if (!ctx)
5406                 return;
5407
5408         mutex_lock(&ctx->mutex);
5409 again:
5410         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5411                 perf_free_event(event, ctx);
5412
5413         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5414                                  group_entry)
5415                 perf_free_event(event, ctx);
5416
5417         if (!list_empty(&ctx->pinned_groups) ||
5418             !list_empty(&ctx->flexible_groups))
5419                 goto again;
5420
5421         mutex_unlock(&ctx->mutex);
5422
5423         put_ctx(ctx);
5424 }
5425
5426 static int
5427 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5428                    struct perf_event_context *parent_ctx,
5429                    struct task_struct *child,
5430                    int *inherited_all)
5431 {
5432         int ret;
5433         struct perf_event_context *child_ctx = child->perf_event_ctxp;
5434
5435         if (!event->attr.inherit) {
5436                 *inherited_all = 0;
5437                 return 0;
5438         }
5439
5440         if (!child_ctx) {
5441                 /*
5442                  * This is executed from the parent task context, so
5443                  * inherit events that have been marked for cloning.
5444                  * First allocate and initialize a context for the
5445                  * child.
5446                  */
5447
5448                 child_ctx = kzalloc(sizeof(struct perf_event_context),
5449                                     GFP_KERNEL);
5450                 if (!child_ctx)
5451                         return -ENOMEM;
5452
5453                 __perf_event_init_context(child_ctx, child);
5454                 child->perf_event_ctxp = child_ctx;
5455                 get_task_struct(child);
5456         }
5457
5458         ret = inherit_group(event, parent, parent_ctx,
5459                             child, child_ctx);
5460
5461         if (ret)
5462                 *inherited_all = 0;
5463
5464         return ret;
5465 }
5466
5467
5468 /*
5469  * Initialize the perf_event context in task_struct
5470  */
5471 int perf_event_init_task(struct task_struct *child)
5472 {
5473         struct perf_event_context *child_ctx, *parent_ctx;
5474         struct perf_event_context *cloned_ctx;
5475         struct perf_event *event;
5476         struct task_struct *parent = current;
5477         int inherited_all = 1;
5478         int ret = 0;
5479
5480         child->perf_event_ctxp = NULL;
5481
5482         mutex_init(&child->perf_event_mutex);
5483         INIT_LIST_HEAD(&child->perf_event_list);
5484
5485         if (likely(!parent->perf_event_ctxp))
5486                 return 0;
5487
5488         /*
5489          * If the parent's context is a clone, pin it so it won't get
5490          * swapped under us.
5491          */
5492         parent_ctx = perf_pin_task_context(parent);
5493
5494         /*
5495          * No need to check if parent_ctx != NULL here; since we saw
5496          * it non-NULL earlier, the only reason for it to become NULL
5497          * is if we exit, and since we're currently in the middle of
5498          * a fork we can't be exiting at the same time.
5499          */
5500
5501         /*
5502          * Lock the parent list. No need to lock the child - not PID
5503          * hashed yet and not running, so nobody can access it.
5504          */
5505         mutex_lock(&parent_ctx->mutex);
5506
5507         /*
5508          * We dont have to disable NMIs - we are only looking at
5509          * the list, not manipulating it:
5510          */
5511         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5512                 ret = inherit_task_group(event, parent, parent_ctx, child,
5513                                          &inherited_all);
5514                 if (ret)
5515                         break;
5516         }
5517
5518         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5519                 ret = inherit_task_group(event, parent, parent_ctx, child,
5520                                          &inherited_all);
5521                 if (ret)
5522                         break;
5523         }
5524
5525         child_ctx = child->perf_event_ctxp;
5526
5527         if (child_ctx && inherited_all) {
5528                 /*
5529                  * Mark the child context as a clone of the parent
5530                  * context, or of whatever the parent is a clone of.
5531                  * Note that if the parent is a clone, it could get
5532                  * uncloned at any point, but that doesn't matter
5533                  * because the list of events and the generation
5534                  * count can't have changed since we took the mutex.
5535                  */
5536                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5537                 if (cloned_ctx) {
5538                         child_ctx->parent_ctx = cloned_ctx;
5539                         child_ctx->parent_gen = parent_ctx->parent_gen;
5540                 } else {
5541                         child_ctx->parent_ctx = parent_ctx;
5542                         child_ctx->parent_gen = parent_ctx->generation;
5543                 }
5544                 get_ctx(child_ctx->parent_ctx);
5545         }
5546
5547         mutex_unlock(&parent_ctx->mutex);
5548
5549         perf_unpin_context(parent_ctx);
5550
5551         return ret;
5552 }
5553
5554 static void __init perf_event_init_all_cpus(void)
5555 {
5556         int cpu;
5557         struct perf_cpu_context *cpuctx;
5558
5559         for_each_possible_cpu(cpu) {
5560                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5561                 mutex_init(&cpuctx->hlist_mutex);
5562                 __perf_event_init_context(&cpuctx->ctx, NULL);
5563         }
5564 }
5565
5566 static void __cpuinit perf_event_init_cpu(int cpu)
5567 {
5568         struct perf_cpu_context *cpuctx;
5569
5570         cpuctx = &per_cpu(perf_cpu_context, cpu);
5571
5572         spin_lock(&perf_resource_lock);
5573         cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5574         spin_unlock(&perf_resource_lock);
5575
5576         mutex_lock(&cpuctx->hlist_mutex);
5577         if (cpuctx->hlist_refcount > 0) {
5578                 struct swevent_hlist *hlist;
5579
5580                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5581                 WARN_ON_ONCE(!hlist);
5582                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5583         }
5584         mutex_unlock(&cpuctx->hlist_mutex);
5585 }
5586
5587 #ifdef CONFIG_HOTPLUG_CPU
5588 static void __perf_event_exit_cpu(void *info)
5589 {
5590         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5591         struct perf_event_context *ctx = &cpuctx->ctx;
5592         struct perf_event *event, *tmp;
5593
5594         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5595                 __perf_event_remove_from_context(event);
5596         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5597                 __perf_event_remove_from_context(event);
5598 }
5599 static void perf_event_exit_cpu(int cpu)
5600 {
5601         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5602         struct perf_event_context *ctx = &cpuctx->ctx;
5603
5604         mutex_lock(&cpuctx->hlist_mutex);
5605         swevent_hlist_release(cpuctx);
5606         mutex_unlock(&cpuctx->hlist_mutex);
5607
5608         mutex_lock(&ctx->mutex);
5609         smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5610         mutex_unlock(&ctx->mutex);
5611 }
5612 #else
5613 static inline void perf_event_exit_cpu(int cpu) { }
5614 #endif
5615
5616 static int __cpuinit
5617 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5618 {
5619         unsigned int cpu = (long)hcpu;
5620
5621         switch (action) {
5622
5623         case CPU_UP_PREPARE:
5624         case CPU_UP_PREPARE_FROZEN:
5625                 perf_event_init_cpu(cpu);
5626                 break;
5627
5628         case CPU_DOWN_PREPARE:
5629         case CPU_DOWN_PREPARE_FROZEN:
5630                 perf_event_exit_cpu(cpu);
5631                 break;
5632
5633         default:
5634                 break;
5635         }
5636
5637         return NOTIFY_OK;
5638 }
5639
5640 /*
5641  * This has to have a higher priority than migration_notifier in sched.c.
5642  */
5643 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5644         .notifier_call          = perf_cpu_notify,
5645         .priority               = 20,
5646 };
5647
5648 void __init perf_event_init(void)
5649 {
5650         perf_event_init_all_cpus();
5651         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5652                         (void *)(long)smp_processor_id());
5653         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5654                         (void *)(long)smp_processor_id());
5655         register_cpu_notifier(&perf_cpu_nb);
5656 }
5657
5658 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5659                                         struct sysdev_class_attribute *attr,
5660                                         char *buf)
5661 {
5662         return sprintf(buf, "%d\n", perf_reserved_percpu);
5663 }
5664
5665 static ssize_t
5666 perf_set_reserve_percpu(struct sysdev_class *class,
5667                         struct sysdev_class_attribute *attr,
5668                         const char *buf,
5669                         size_t count)
5670 {
5671         struct perf_cpu_context *cpuctx;
5672         unsigned long val;
5673         int err, cpu, mpt;
5674
5675         err = strict_strtoul(buf, 10, &val);
5676         if (err)
5677                 return err;
5678         if (val > perf_max_events)
5679                 return -EINVAL;
5680
5681         spin_lock(&perf_resource_lock);
5682         perf_reserved_percpu = val;
5683         for_each_online_cpu(cpu) {
5684                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5685                 raw_spin_lock_irq(&cpuctx->ctx.lock);
5686                 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5687                           perf_max_events - perf_reserved_percpu);
5688                 cpuctx->max_pertask = mpt;
5689                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5690         }
5691         spin_unlock(&perf_resource_lock);
5692
5693         return count;
5694 }
5695
5696 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5697                                     struct sysdev_class_attribute *attr,
5698                                     char *buf)
5699 {
5700         return sprintf(buf, "%d\n", perf_overcommit);
5701 }
5702
5703 static ssize_t
5704 perf_set_overcommit(struct sysdev_class *class,
5705                     struct sysdev_class_attribute *attr,
5706                     const char *buf, size_t count)
5707 {
5708         unsigned long val;
5709         int err;
5710
5711         err = strict_strtoul(buf, 10, &val);
5712         if (err)
5713                 return err;
5714         if (val > 1)
5715                 return -EINVAL;
5716
5717         spin_lock(&perf_resource_lock);
5718         perf_overcommit = val;
5719         spin_unlock(&perf_resource_lock);
5720
5721         return count;
5722 }
5723
5724 static SYSDEV_CLASS_ATTR(
5725                                 reserve_percpu,
5726                                 0644,
5727                                 perf_show_reserve_percpu,
5728                                 perf_set_reserve_percpu
5729                         );
5730
5731 static SYSDEV_CLASS_ATTR(
5732                                 overcommit,
5733                                 0644,
5734                                 perf_show_overcommit,
5735                                 perf_set_overcommit
5736                         );
5737
5738 static struct attribute *perfclass_attrs[] = {
5739         &attr_reserve_percpu.attr,
5740         &attr_overcommit.attr,
5741         NULL
5742 };
5743
5744 static struct attribute_group perfclass_attr_group = {
5745         .attrs                  = perfclass_attrs,
5746         .name                   = "perf_events",
5747 };
5748
5749 static int __init perf_event_sysfs_init(void)
5750 {
5751         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5752                                   &perfclass_attr_group);
5753 }
5754 device_initcall(perf_event_sysfs_init);