Merge branch 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[safe/jmp/linux-2.6] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
33
34 #include <asm/irq_regs.h>
35
36 /*
37  * Each CPU has a list of per CPU events:
38  */
39 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
40
41 int perf_max_events __read_mostly = 1;
42 static int perf_reserved_percpu __read_mostly;
43 static int perf_overcommit __read_mostly = 1;
44
45 static atomic_t nr_events __read_mostly;
46 static atomic_t nr_mmap_events __read_mostly;
47 static atomic_t nr_comm_events __read_mostly;
48 static atomic_t nr_task_events __read_mostly;
49
50 /*
51  * perf event paranoia level:
52  *  -1 - not paranoid at all
53  *   0 - disallow raw tracepoint access for unpriv
54  *   1 - disallow cpu events for unpriv
55  *   2 - disallow kernel profiling for unpriv
56  */
57 int sysctl_perf_event_paranoid __read_mostly = 1;
58
59 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
60
61 /*
62  * max perf event sample rate
63  */
64 int sysctl_perf_event_sample_rate __read_mostly = 100000;
65
66 static atomic64_t perf_event_id;
67
68 /*
69  * Lock for (sysadmin-configurable) event reservations:
70  */
71 static DEFINE_SPINLOCK(perf_resource_lock);
72
73 /*
74  * Architecture provided APIs - weak aliases:
75  */
76 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
77 {
78         return NULL;
79 }
80
81 void __weak hw_perf_disable(void)               { barrier(); }
82 void __weak hw_perf_enable(void)                { barrier(); }
83
84 void __weak hw_perf_event_setup(int cpu)        { barrier(); }
85 void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
86 void __weak hw_perf_event_setup_offline(int cpu)        { barrier(); }
87
88 int __weak
89 hw_perf_group_sched_in(struct perf_event *group_leader,
90                struct perf_cpu_context *cpuctx,
91                struct perf_event_context *ctx)
92 {
93         return 0;
94 }
95
96 void __weak perf_event_print_debug(void)        { }
97
98 static DEFINE_PER_CPU(int, perf_disable_count);
99
100 void __perf_disable(void)
101 {
102         __get_cpu_var(perf_disable_count)++;
103 }
104
105 bool __perf_enable(void)
106 {
107         return !--__get_cpu_var(perf_disable_count);
108 }
109
110 void perf_disable(void)
111 {
112         __perf_disable();
113         hw_perf_disable();
114 }
115
116 void perf_enable(void)
117 {
118         if (__perf_enable())
119                 hw_perf_enable();
120 }
121
122 static void get_ctx(struct perf_event_context *ctx)
123 {
124         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
125 }
126
127 static void free_ctx(struct rcu_head *head)
128 {
129         struct perf_event_context *ctx;
130
131         ctx = container_of(head, struct perf_event_context, rcu_head);
132         kfree(ctx);
133 }
134
135 static void put_ctx(struct perf_event_context *ctx)
136 {
137         if (atomic_dec_and_test(&ctx->refcount)) {
138                 if (ctx->parent_ctx)
139                         put_ctx(ctx->parent_ctx);
140                 if (ctx->task)
141                         put_task_struct(ctx->task);
142                 call_rcu(&ctx->rcu_head, free_ctx);
143         }
144 }
145
146 static void unclone_ctx(struct perf_event_context *ctx)
147 {
148         if (ctx->parent_ctx) {
149                 put_ctx(ctx->parent_ctx);
150                 ctx->parent_ctx = NULL;
151         }
152 }
153
154 /*
155  * If we inherit events we want to return the parent event id
156  * to userspace.
157  */
158 static u64 primary_event_id(struct perf_event *event)
159 {
160         u64 id = event->id;
161
162         if (event->parent)
163                 id = event->parent->id;
164
165         return id;
166 }
167
168 /*
169  * Get the perf_event_context for a task and lock it.
170  * This has to cope with with the fact that until it is locked,
171  * the context could get moved to another task.
172  */
173 static struct perf_event_context *
174 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
175 {
176         struct perf_event_context *ctx;
177
178         rcu_read_lock();
179  retry:
180         ctx = rcu_dereference(task->perf_event_ctxp);
181         if (ctx) {
182                 /*
183                  * If this context is a clone of another, it might
184                  * get swapped for another underneath us by
185                  * perf_event_task_sched_out, though the
186                  * rcu_read_lock() protects us from any context
187                  * getting freed.  Lock the context and check if it
188                  * got swapped before we could get the lock, and retry
189                  * if so.  If we locked the right context, then it
190                  * can't get swapped on us any more.
191                  */
192                 raw_spin_lock_irqsave(&ctx->lock, *flags);
193                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
194                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
195                         goto retry;
196                 }
197
198                 if (!atomic_inc_not_zero(&ctx->refcount)) {
199                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
200                         ctx = NULL;
201                 }
202         }
203         rcu_read_unlock();
204         return ctx;
205 }
206
207 /*
208  * Get the context for a task and increment its pin_count so it
209  * can't get swapped to another task.  This also increments its
210  * reference count so that the context can't get freed.
211  */
212 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
213 {
214         struct perf_event_context *ctx;
215         unsigned long flags;
216
217         ctx = perf_lock_task_context(task, &flags);
218         if (ctx) {
219                 ++ctx->pin_count;
220                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
221         }
222         return ctx;
223 }
224
225 static void perf_unpin_context(struct perf_event_context *ctx)
226 {
227         unsigned long flags;
228
229         raw_spin_lock_irqsave(&ctx->lock, flags);
230         --ctx->pin_count;
231         raw_spin_unlock_irqrestore(&ctx->lock, flags);
232         put_ctx(ctx);
233 }
234
235 static inline u64 perf_clock(void)
236 {
237         return cpu_clock(raw_smp_processor_id());
238 }
239
240 /*
241  * Update the record of the current time in a context.
242  */
243 static void update_context_time(struct perf_event_context *ctx)
244 {
245         u64 now = perf_clock();
246
247         ctx->time += now - ctx->timestamp;
248         ctx->timestamp = now;
249 }
250
251 /*
252  * Update the total_time_enabled and total_time_running fields for a event.
253  */
254 static void update_event_times(struct perf_event *event)
255 {
256         struct perf_event_context *ctx = event->ctx;
257         u64 run_end;
258
259         if (event->state < PERF_EVENT_STATE_INACTIVE ||
260             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
261                 return;
262
263         if (ctx->is_active)
264                 run_end = ctx->time;
265         else
266                 run_end = event->tstamp_stopped;
267
268         event->total_time_enabled = run_end - event->tstamp_enabled;
269
270         if (event->state == PERF_EVENT_STATE_INACTIVE)
271                 run_end = event->tstamp_stopped;
272         else
273                 run_end = ctx->time;
274
275         event->total_time_running = run_end - event->tstamp_running;
276 }
277
278 static struct list_head *
279 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
280 {
281         if (event->attr.pinned)
282                 return &ctx->pinned_groups;
283         else
284                 return &ctx->flexible_groups;
285 }
286
287 /*
288  * Add a event from the lists for its context.
289  * Must be called with ctx->mutex and ctx->lock held.
290  */
291 static void
292 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
293 {
294         struct perf_event *group_leader = event->group_leader;
295
296         /*
297          * Depending on whether it is a standalone or sibling event,
298          * add it straight to the context's event list, or to the group
299          * leader's sibling list:
300          */
301         if (group_leader == event) {
302                 struct list_head *list;
303
304                 if (is_software_event(event))
305                         event->group_flags |= PERF_GROUP_SOFTWARE;
306
307                 list = ctx_group_list(event, ctx);
308                 list_add_tail(&event->group_entry, list);
309         } else {
310                 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
311                     !is_software_event(event))
312                         group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
313
314                 list_add_tail(&event->group_entry, &group_leader->sibling_list);
315                 group_leader->nr_siblings++;
316         }
317
318         list_add_rcu(&event->event_entry, &ctx->event_list);
319         ctx->nr_events++;
320         if (event->attr.inherit_stat)
321                 ctx->nr_stat++;
322 }
323
324 /*
325  * Remove a event from the lists for its context.
326  * Must be called with ctx->mutex and ctx->lock held.
327  */
328 static void
329 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
330 {
331         struct perf_event *sibling, *tmp;
332
333         if (list_empty(&event->group_entry))
334                 return;
335         ctx->nr_events--;
336         if (event->attr.inherit_stat)
337                 ctx->nr_stat--;
338
339         list_del_init(&event->group_entry);
340         list_del_rcu(&event->event_entry);
341
342         if (event->group_leader != event)
343                 event->group_leader->nr_siblings--;
344
345         update_event_times(event);
346
347         /*
348          * If event was in error state, then keep it
349          * that way, otherwise bogus counts will be
350          * returned on read(). The only way to get out
351          * of error state is by explicit re-enabling
352          * of the event
353          */
354         if (event->state > PERF_EVENT_STATE_OFF)
355                 event->state = PERF_EVENT_STATE_OFF;
356
357         /*
358          * If this was a group event with sibling events then
359          * upgrade the siblings to singleton events by adding them
360          * to the context list directly:
361          */
362         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
363                 struct list_head *list;
364
365                 list = ctx_group_list(event, ctx);
366                 list_move_tail(&sibling->group_entry, list);
367                 sibling->group_leader = sibling;
368
369                 /* Inherit group flags from the previous leader */
370                 sibling->group_flags = event->group_flags;
371         }
372 }
373
374 static void
375 event_sched_out(struct perf_event *event,
376                   struct perf_cpu_context *cpuctx,
377                   struct perf_event_context *ctx)
378 {
379         if (event->state != PERF_EVENT_STATE_ACTIVE)
380                 return;
381
382         event->state = PERF_EVENT_STATE_INACTIVE;
383         if (event->pending_disable) {
384                 event->pending_disable = 0;
385                 event->state = PERF_EVENT_STATE_OFF;
386         }
387         event->tstamp_stopped = ctx->time;
388         event->pmu->disable(event);
389         event->oncpu = -1;
390
391         if (!is_software_event(event))
392                 cpuctx->active_oncpu--;
393         ctx->nr_active--;
394         if (event->attr.exclusive || !cpuctx->active_oncpu)
395                 cpuctx->exclusive = 0;
396 }
397
398 static void
399 group_sched_out(struct perf_event *group_event,
400                 struct perf_cpu_context *cpuctx,
401                 struct perf_event_context *ctx)
402 {
403         struct perf_event *event;
404
405         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
406                 return;
407
408         event_sched_out(group_event, cpuctx, ctx);
409
410         /*
411          * Schedule out siblings (if any):
412          */
413         list_for_each_entry(event, &group_event->sibling_list, group_entry)
414                 event_sched_out(event, cpuctx, ctx);
415
416         if (group_event->attr.exclusive)
417                 cpuctx->exclusive = 0;
418 }
419
420 /*
421  * Cross CPU call to remove a performance event
422  *
423  * We disable the event on the hardware level first. After that we
424  * remove it from the context list.
425  */
426 static void __perf_event_remove_from_context(void *info)
427 {
428         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
429         struct perf_event *event = info;
430         struct perf_event_context *ctx = event->ctx;
431
432         /*
433          * If this is a task context, we need to check whether it is
434          * the current task context of this cpu. If not it has been
435          * scheduled out before the smp call arrived.
436          */
437         if (ctx->task && cpuctx->task_ctx != ctx)
438                 return;
439
440         raw_spin_lock(&ctx->lock);
441         /*
442          * Protect the list operation against NMI by disabling the
443          * events on a global level.
444          */
445         perf_disable();
446
447         event_sched_out(event, cpuctx, ctx);
448
449         list_del_event(event, ctx);
450
451         if (!ctx->task) {
452                 /*
453                  * Allow more per task events with respect to the
454                  * reservation:
455                  */
456                 cpuctx->max_pertask =
457                         min(perf_max_events - ctx->nr_events,
458                             perf_max_events - perf_reserved_percpu);
459         }
460
461         perf_enable();
462         raw_spin_unlock(&ctx->lock);
463 }
464
465
466 /*
467  * Remove the event from a task's (or a CPU's) list of events.
468  *
469  * Must be called with ctx->mutex held.
470  *
471  * CPU events are removed with a smp call. For task events we only
472  * call when the task is on a CPU.
473  *
474  * If event->ctx is a cloned context, callers must make sure that
475  * every task struct that event->ctx->task could possibly point to
476  * remains valid.  This is OK when called from perf_release since
477  * that only calls us on the top-level context, which can't be a clone.
478  * When called from perf_event_exit_task, it's OK because the
479  * context has been detached from its task.
480  */
481 static void perf_event_remove_from_context(struct perf_event *event)
482 {
483         struct perf_event_context *ctx = event->ctx;
484         struct task_struct *task = ctx->task;
485
486         if (!task) {
487                 /*
488                  * Per cpu events are removed via an smp call and
489                  * the removal is always successful.
490                  */
491                 smp_call_function_single(event->cpu,
492                                          __perf_event_remove_from_context,
493                                          event, 1);
494                 return;
495         }
496
497 retry:
498         task_oncpu_function_call(task, __perf_event_remove_from_context,
499                                  event);
500
501         raw_spin_lock_irq(&ctx->lock);
502         /*
503          * If the context is active we need to retry the smp call.
504          */
505         if (ctx->nr_active && !list_empty(&event->group_entry)) {
506                 raw_spin_unlock_irq(&ctx->lock);
507                 goto retry;
508         }
509
510         /*
511          * The lock prevents that this context is scheduled in so we
512          * can remove the event safely, if the call above did not
513          * succeed.
514          */
515         if (!list_empty(&event->group_entry))
516                 list_del_event(event, ctx);
517         raw_spin_unlock_irq(&ctx->lock);
518 }
519
520 /*
521  * Update total_time_enabled and total_time_running for all events in a group.
522  */
523 static void update_group_times(struct perf_event *leader)
524 {
525         struct perf_event *event;
526
527         update_event_times(leader);
528         list_for_each_entry(event, &leader->sibling_list, group_entry)
529                 update_event_times(event);
530 }
531
532 /*
533  * Cross CPU call to disable a performance event
534  */
535 static void __perf_event_disable(void *info)
536 {
537         struct perf_event *event = info;
538         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
539         struct perf_event_context *ctx = event->ctx;
540
541         /*
542          * If this is a per-task event, need to check whether this
543          * event's task is the current task on this cpu.
544          */
545         if (ctx->task && cpuctx->task_ctx != ctx)
546                 return;
547
548         raw_spin_lock(&ctx->lock);
549
550         /*
551          * If the event is on, turn it off.
552          * If it is in error state, leave it in error state.
553          */
554         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
555                 update_context_time(ctx);
556                 update_group_times(event);
557                 if (event == event->group_leader)
558                         group_sched_out(event, cpuctx, ctx);
559                 else
560                         event_sched_out(event, cpuctx, ctx);
561                 event->state = PERF_EVENT_STATE_OFF;
562         }
563
564         raw_spin_unlock(&ctx->lock);
565 }
566
567 /*
568  * Disable a event.
569  *
570  * If event->ctx is a cloned context, callers must make sure that
571  * every task struct that event->ctx->task could possibly point to
572  * remains valid.  This condition is satisifed when called through
573  * perf_event_for_each_child or perf_event_for_each because they
574  * hold the top-level event's child_mutex, so any descendant that
575  * goes to exit will block in sync_child_event.
576  * When called from perf_pending_event it's OK because event->ctx
577  * is the current context on this CPU and preemption is disabled,
578  * hence we can't get into perf_event_task_sched_out for this context.
579  */
580 void perf_event_disable(struct perf_event *event)
581 {
582         struct perf_event_context *ctx = event->ctx;
583         struct task_struct *task = ctx->task;
584
585         if (!task) {
586                 /*
587                  * Disable the event on the cpu that it's on
588                  */
589                 smp_call_function_single(event->cpu, __perf_event_disable,
590                                          event, 1);
591                 return;
592         }
593
594  retry:
595         task_oncpu_function_call(task, __perf_event_disable, event);
596
597         raw_spin_lock_irq(&ctx->lock);
598         /*
599          * If the event is still active, we need to retry the cross-call.
600          */
601         if (event->state == PERF_EVENT_STATE_ACTIVE) {
602                 raw_spin_unlock_irq(&ctx->lock);
603                 goto retry;
604         }
605
606         /*
607          * Since we have the lock this context can't be scheduled
608          * in, so we can change the state safely.
609          */
610         if (event->state == PERF_EVENT_STATE_INACTIVE) {
611                 update_group_times(event);
612                 event->state = PERF_EVENT_STATE_OFF;
613         }
614
615         raw_spin_unlock_irq(&ctx->lock);
616 }
617
618 static int
619 event_sched_in(struct perf_event *event,
620                  struct perf_cpu_context *cpuctx,
621                  struct perf_event_context *ctx)
622 {
623         if (event->state <= PERF_EVENT_STATE_OFF)
624                 return 0;
625
626         event->state = PERF_EVENT_STATE_ACTIVE;
627         event->oncpu = smp_processor_id();
628         /*
629          * The new state must be visible before we turn it on in the hardware:
630          */
631         smp_wmb();
632
633         if (event->pmu->enable(event)) {
634                 event->state = PERF_EVENT_STATE_INACTIVE;
635                 event->oncpu = -1;
636                 return -EAGAIN;
637         }
638
639         event->tstamp_running += ctx->time - event->tstamp_stopped;
640
641         if (!is_software_event(event))
642                 cpuctx->active_oncpu++;
643         ctx->nr_active++;
644
645         if (event->attr.exclusive)
646                 cpuctx->exclusive = 1;
647
648         return 0;
649 }
650
651 static int
652 group_sched_in(struct perf_event *group_event,
653                struct perf_cpu_context *cpuctx,
654                struct perf_event_context *ctx)
655 {
656         struct perf_event *event, *partial_group;
657         int ret;
658
659         if (group_event->state == PERF_EVENT_STATE_OFF)
660                 return 0;
661
662         ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
663         if (ret)
664                 return ret < 0 ? ret : 0;
665
666         if (event_sched_in(group_event, cpuctx, ctx))
667                 return -EAGAIN;
668
669         /*
670          * Schedule in siblings as one group (if any):
671          */
672         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
673                 if (event_sched_in(event, cpuctx, ctx)) {
674                         partial_group = event;
675                         goto group_error;
676                 }
677         }
678
679         return 0;
680
681 group_error:
682         /*
683          * Groups can be scheduled in as one unit only, so undo any
684          * partial group before returning:
685          */
686         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
687                 if (event == partial_group)
688                         break;
689                 event_sched_out(event, cpuctx, ctx);
690         }
691         event_sched_out(group_event, cpuctx, ctx);
692
693         return -EAGAIN;
694 }
695
696 /*
697  * Work out whether we can put this event group on the CPU now.
698  */
699 static int group_can_go_on(struct perf_event *event,
700                            struct perf_cpu_context *cpuctx,
701                            int can_add_hw)
702 {
703         /*
704          * Groups consisting entirely of software events can always go on.
705          */
706         if (event->group_flags & PERF_GROUP_SOFTWARE)
707                 return 1;
708         /*
709          * If an exclusive group is already on, no other hardware
710          * events can go on.
711          */
712         if (cpuctx->exclusive)
713                 return 0;
714         /*
715          * If this group is exclusive and there are already
716          * events on the CPU, it can't go on.
717          */
718         if (event->attr.exclusive && cpuctx->active_oncpu)
719                 return 0;
720         /*
721          * Otherwise, try to add it if all previous groups were able
722          * to go on.
723          */
724         return can_add_hw;
725 }
726
727 static void add_event_to_ctx(struct perf_event *event,
728                                struct perf_event_context *ctx)
729 {
730         list_add_event(event, ctx);
731         event->tstamp_enabled = ctx->time;
732         event->tstamp_running = ctx->time;
733         event->tstamp_stopped = ctx->time;
734 }
735
736 /*
737  * Cross CPU call to install and enable a performance event
738  *
739  * Must be called with ctx->mutex held
740  */
741 static void __perf_install_in_context(void *info)
742 {
743         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
744         struct perf_event *event = info;
745         struct perf_event_context *ctx = event->ctx;
746         struct perf_event *leader = event->group_leader;
747         int err;
748
749         /*
750          * If this is a task context, we need to check whether it is
751          * the current task context of this cpu. If not it has been
752          * scheduled out before the smp call arrived.
753          * Or possibly this is the right context but it isn't
754          * on this cpu because it had no events.
755          */
756         if (ctx->task && cpuctx->task_ctx != ctx) {
757                 if (cpuctx->task_ctx || ctx->task != current)
758                         return;
759                 cpuctx->task_ctx = ctx;
760         }
761
762         raw_spin_lock(&ctx->lock);
763         ctx->is_active = 1;
764         update_context_time(ctx);
765
766         /*
767          * Protect the list operation against NMI by disabling the
768          * events on a global level. NOP for non NMI based events.
769          */
770         perf_disable();
771
772         add_event_to_ctx(event, ctx);
773
774         if (event->cpu != -1 && event->cpu != smp_processor_id())
775                 goto unlock;
776
777         /*
778          * Don't put the event on if it is disabled or if
779          * it is in a group and the group isn't on.
780          */
781         if (event->state != PERF_EVENT_STATE_INACTIVE ||
782             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
783                 goto unlock;
784
785         /*
786          * An exclusive event can't go on if there are already active
787          * hardware events, and no hardware event can go on if there
788          * is already an exclusive event on.
789          */
790         if (!group_can_go_on(event, cpuctx, 1))
791                 err = -EEXIST;
792         else
793                 err = event_sched_in(event, cpuctx, ctx);
794
795         if (err) {
796                 /*
797                  * This event couldn't go on.  If it is in a group
798                  * then we have to pull the whole group off.
799                  * If the event group is pinned then put it in error state.
800                  */
801                 if (leader != event)
802                         group_sched_out(leader, cpuctx, ctx);
803                 if (leader->attr.pinned) {
804                         update_group_times(leader);
805                         leader->state = PERF_EVENT_STATE_ERROR;
806                 }
807         }
808
809         if (!err && !ctx->task && cpuctx->max_pertask)
810                 cpuctx->max_pertask--;
811
812  unlock:
813         perf_enable();
814
815         raw_spin_unlock(&ctx->lock);
816 }
817
818 /*
819  * Attach a performance event to a context
820  *
821  * First we add the event to the list with the hardware enable bit
822  * in event->hw_config cleared.
823  *
824  * If the event is attached to a task which is on a CPU we use a smp
825  * call to enable it in the task context. The task might have been
826  * scheduled away, but we check this in the smp call again.
827  *
828  * Must be called with ctx->mutex held.
829  */
830 static void
831 perf_install_in_context(struct perf_event_context *ctx,
832                         struct perf_event *event,
833                         int cpu)
834 {
835         struct task_struct *task = ctx->task;
836
837         if (!task) {
838                 /*
839                  * Per cpu events are installed via an smp call and
840                  * the install is always successful.
841                  */
842                 smp_call_function_single(cpu, __perf_install_in_context,
843                                          event, 1);
844                 return;
845         }
846
847 retry:
848         task_oncpu_function_call(task, __perf_install_in_context,
849                                  event);
850
851         raw_spin_lock_irq(&ctx->lock);
852         /*
853          * we need to retry the smp call.
854          */
855         if (ctx->is_active && list_empty(&event->group_entry)) {
856                 raw_spin_unlock_irq(&ctx->lock);
857                 goto retry;
858         }
859
860         /*
861          * The lock prevents that this context is scheduled in so we
862          * can add the event safely, if it the call above did not
863          * succeed.
864          */
865         if (list_empty(&event->group_entry))
866                 add_event_to_ctx(event, ctx);
867         raw_spin_unlock_irq(&ctx->lock);
868 }
869
870 /*
871  * Put a event into inactive state and update time fields.
872  * Enabling the leader of a group effectively enables all
873  * the group members that aren't explicitly disabled, so we
874  * have to update their ->tstamp_enabled also.
875  * Note: this works for group members as well as group leaders
876  * since the non-leader members' sibling_lists will be empty.
877  */
878 static void __perf_event_mark_enabled(struct perf_event *event,
879                                         struct perf_event_context *ctx)
880 {
881         struct perf_event *sub;
882
883         event->state = PERF_EVENT_STATE_INACTIVE;
884         event->tstamp_enabled = ctx->time - event->total_time_enabled;
885         list_for_each_entry(sub, &event->sibling_list, group_entry)
886                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
887                         sub->tstamp_enabled =
888                                 ctx->time - sub->total_time_enabled;
889 }
890
891 /*
892  * Cross CPU call to enable a performance event
893  */
894 static void __perf_event_enable(void *info)
895 {
896         struct perf_event *event = info;
897         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
898         struct perf_event_context *ctx = event->ctx;
899         struct perf_event *leader = event->group_leader;
900         int err;
901
902         /*
903          * If this is a per-task event, need to check whether this
904          * event's task is the current task on this cpu.
905          */
906         if (ctx->task && cpuctx->task_ctx != ctx) {
907                 if (cpuctx->task_ctx || ctx->task != current)
908                         return;
909                 cpuctx->task_ctx = ctx;
910         }
911
912         raw_spin_lock(&ctx->lock);
913         ctx->is_active = 1;
914         update_context_time(ctx);
915
916         if (event->state >= PERF_EVENT_STATE_INACTIVE)
917                 goto unlock;
918         __perf_event_mark_enabled(event, ctx);
919
920         if (event->cpu != -1 && event->cpu != smp_processor_id())
921                 goto unlock;
922
923         /*
924          * If the event is in a group and isn't the group leader,
925          * then don't put it on unless the group is on.
926          */
927         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
928                 goto unlock;
929
930         if (!group_can_go_on(event, cpuctx, 1)) {
931                 err = -EEXIST;
932         } else {
933                 perf_disable();
934                 if (event == leader)
935                         err = group_sched_in(event, cpuctx, ctx);
936                 else
937                         err = event_sched_in(event, cpuctx, ctx);
938                 perf_enable();
939         }
940
941         if (err) {
942                 /*
943                  * If this event can't go on and it's part of a
944                  * group, then the whole group has to come off.
945                  */
946                 if (leader != event)
947                         group_sched_out(leader, cpuctx, ctx);
948                 if (leader->attr.pinned) {
949                         update_group_times(leader);
950                         leader->state = PERF_EVENT_STATE_ERROR;
951                 }
952         }
953
954  unlock:
955         raw_spin_unlock(&ctx->lock);
956 }
957
958 /*
959  * Enable a event.
960  *
961  * If event->ctx is a cloned context, callers must make sure that
962  * every task struct that event->ctx->task could possibly point to
963  * remains valid.  This condition is satisfied when called through
964  * perf_event_for_each_child or perf_event_for_each as described
965  * for perf_event_disable.
966  */
967 void perf_event_enable(struct perf_event *event)
968 {
969         struct perf_event_context *ctx = event->ctx;
970         struct task_struct *task = ctx->task;
971
972         if (!task) {
973                 /*
974                  * Enable the event on the cpu that it's on
975                  */
976                 smp_call_function_single(event->cpu, __perf_event_enable,
977                                          event, 1);
978                 return;
979         }
980
981         raw_spin_lock_irq(&ctx->lock);
982         if (event->state >= PERF_EVENT_STATE_INACTIVE)
983                 goto out;
984
985         /*
986          * If the event is in error state, clear that first.
987          * That way, if we see the event in error state below, we
988          * know that it has gone back into error state, as distinct
989          * from the task having been scheduled away before the
990          * cross-call arrived.
991          */
992         if (event->state == PERF_EVENT_STATE_ERROR)
993                 event->state = PERF_EVENT_STATE_OFF;
994
995  retry:
996         raw_spin_unlock_irq(&ctx->lock);
997         task_oncpu_function_call(task, __perf_event_enable, event);
998
999         raw_spin_lock_irq(&ctx->lock);
1000
1001         /*
1002          * If the context is active and the event is still off,
1003          * we need to retry the cross-call.
1004          */
1005         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1006                 goto retry;
1007
1008         /*
1009          * Since we have the lock this context can't be scheduled
1010          * in, so we can change the state safely.
1011          */
1012         if (event->state == PERF_EVENT_STATE_OFF)
1013                 __perf_event_mark_enabled(event, ctx);
1014
1015  out:
1016         raw_spin_unlock_irq(&ctx->lock);
1017 }
1018
1019 static int perf_event_refresh(struct perf_event *event, int refresh)
1020 {
1021         /*
1022          * not supported on inherited events
1023          */
1024         if (event->attr.inherit)
1025                 return -EINVAL;
1026
1027         atomic_add(refresh, &event->event_limit);
1028         perf_event_enable(event);
1029
1030         return 0;
1031 }
1032
1033 enum event_type_t {
1034         EVENT_FLEXIBLE = 0x1,
1035         EVENT_PINNED = 0x2,
1036         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1037 };
1038
1039 static void ctx_sched_out(struct perf_event_context *ctx,
1040                           struct perf_cpu_context *cpuctx,
1041                           enum event_type_t event_type)
1042 {
1043         struct perf_event *event;
1044
1045         raw_spin_lock(&ctx->lock);
1046         ctx->is_active = 0;
1047         if (likely(!ctx->nr_events))
1048                 goto out;
1049         update_context_time(ctx);
1050
1051         perf_disable();
1052         if (!ctx->nr_active)
1053                 goto out_enable;
1054
1055         if (event_type & EVENT_PINNED)
1056                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1057                         group_sched_out(event, cpuctx, ctx);
1058
1059         if (event_type & EVENT_FLEXIBLE)
1060                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1061                         group_sched_out(event, cpuctx, ctx);
1062
1063  out_enable:
1064         perf_enable();
1065  out:
1066         raw_spin_unlock(&ctx->lock);
1067 }
1068
1069 /*
1070  * Test whether two contexts are equivalent, i.e. whether they
1071  * have both been cloned from the same version of the same context
1072  * and they both have the same number of enabled events.
1073  * If the number of enabled events is the same, then the set
1074  * of enabled events should be the same, because these are both
1075  * inherited contexts, therefore we can't access individual events
1076  * in them directly with an fd; we can only enable/disable all
1077  * events via prctl, or enable/disable all events in a family
1078  * via ioctl, which will have the same effect on both contexts.
1079  */
1080 static int context_equiv(struct perf_event_context *ctx1,
1081                          struct perf_event_context *ctx2)
1082 {
1083         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1084                 && ctx1->parent_gen == ctx2->parent_gen
1085                 && !ctx1->pin_count && !ctx2->pin_count;
1086 }
1087
1088 static void __perf_event_sync_stat(struct perf_event *event,
1089                                      struct perf_event *next_event)
1090 {
1091         u64 value;
1092
1093         if (!event->attr.inherit_stat)
1094                 return;
1095
1096         /*
1097          * Update the event value, we cannot use perf_event_read()
1098          * because we're in the middle of a context switch and have IRQs
1099          * disabled, which upsets smp_call_function_single(), however
1100          * we know the event must be on the current CPU, therefore we
1101          * don't need to use it.
1102          */
1103         switch (event->state) {
1104         case PERF_EVENT_STATE_ACTIVE:
1105                 event->pmu->read(event);
1106                 /* fall-through */
1107
1108         case PERF_EVENT_STATE_INACTIVE:
1109                 update_event_times(event);
1110                 break;
1111
1112         default:
1113                 break;
1114         }
1115
1116         /*
1117          * In order to keep per-task stats reliable we need to flip the event
1118          * values when we flip the contexts.
1119          */
1120         value = atomic64_read(&next_event->count);
1121         value = atomic64_xchg(&event->count, value);
1122         atomic64_set(&next_event->count, value);
1123
1124         swap(event->total_time_enabled, next_event->total_time_enabled);
1125         swap(event->total_time_running, next_event->total_time_running);
1126
1127         /*
1128          * Since we swizzled the values, update the user visible data too.
1129          */
1130         perf_event_update_userpage(event);
1131         perf_event_update_userpage(next_event);
1132 }
1133
1134 #define list_next_entry(pos, member) \
1135         list_entry(pos->member.next, typeof(*pos), member)
1136
1137 static void perf_event_sync_stat(struct perf_event_context *ctx,
1138                                    struct perf_event_context *next_ctx)
1139 {
1140         struct perf_event *event, *next_event;
1141
1142         if (!ctx->nr_stat)
1143                 return;
1144
1145         update_context_time(ctx);
1146
1147         event = list_first_entry(&ctx->event_list,
1148                                    struct perf_event, event_entry);
1149
1150         next_event = list_first_entry(&next_ctx->event_list,
1151                                         struct perf_event, event_entry);
1152
1153         while (&event->event_entry != &ctx->event_list &&
1154                &next_event->event_entry != &next_ctx->event_list) {
1155
1156                 __perf_event_sync_stat(event, next_event);
1157
1158                 event = list_next_entry(event, event_entry);
1159                 next_event = list_next_entry(next_event, event_entry);
1160         }
1161 }
1162
1163 /*
1164  * Called from scheduler to remove the events of the current task,
1165  * with interrupts disabled.
1166  *
1167  * We stop each event and update the event value in event->count.
1168  *
1169  * This does not protect us against NMI, but disable()
1170  * sets the disabled bit in the control field of event _before_
1171  * accessing the event control register. If a NMI hits, then it will
1172  * not restart the event.
1173  */
1174 void perf_event_task_sched_out(struct task_struct *task,
1175                                  struct task_struct *next)
1176 {
1177         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1178         struct perf_event_context *ctx = task->perf_event_ctxp;
1179         struct perf_event_context *next_ctx;
1180         struct perf_event_context *parent;
1181         struct pt_regs *regs;
1182         int do_switch = 1;
1183
1184         regs = task_pt_regs(task);
1185         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1186
1187         if (likely(!ctx || !cpuctx->task_ctx))
1188                 return;
1189
1190         rcu_read_lock();
1191         parent = rcu_dereference(ctx->parent_ctx);
1192         next_ctx = next->perf_event_ctxp;
1193         if (parent && next_ctx &&
1194             rcu_dereference(next_ctx->parent_ctx) == parent) {
1195                 /*
1196                  * Looks like the two contexts are clones, so we might be
1197                  * able to optimize the context switch.  We lock both
1198                  * contexts and check that they are clones under the
1199                  * lock (including re-checking that neither has been
1200                  * uncloned in the meantime).  It doesn't matter which
1201                  * order we take the locks because no other cpu could
1202                  * be trying to lock both of these tasks.
1203                  */
1204                 raw_spin_lock(&ctx->lock);
1205                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1206                 if (context_equiv(ctx, next_ctx)) {
1207                         /*
1208                          * XXX do we need a memory barrier of sorts
1209                          * wrt to rcu_dereference() of perf_event_ctxp
1210                          */
1211                         task->perf_event_ctxp = next_ctx;
1212                         next->perf_event_ctxp = ctx;
1213                         ctx->task = next;
1214                         next_ctx->task = task;
1215                         do_switch = 0;
1216
1217                         perf_event_sync_stat(ctx, next_ctx);
1218                 }
1219                 raw_spin_unlock(&next_ctx->lock);
1220                 raw_spin_unlock(&ctx->lock);
1221         }
1222         rcu_read_unlock();
1223
1224         if (do_switch) {
1225                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1226                 cpuctx->task_ctx = NULL;
1227         }
1228 }
1229
1230 static void task_ctx_sched_out(struct perf_event_context *ctx,
1231                                enum event_type_t event_type)
1232 {
1233         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1234
1235         if (!cpuctx->task_ctx)
1236                 return;
1237
1238         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1239                 return;
1240
1241         ctx_sched_out(ctx, cpuctx, event_type);
1242         cpuctx->task_ctx = NULL;
1243 }
1244
1245 /*
1246  * Called with IRQs disabled
1247  */
1248 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1249 {
1250         task_ctx_sched_out(ctx, EVENT_ALL);
1251 }
1252
1253 /*
1254  * Called with IRQs disabled
1255  */
1256 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1257                               enum event_type_t event_type)
1258 {
1259         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1260 }
1261
1262 static void
1263 ctx_pinned_sched_in(struct perf_event_context *ctx,
1264                     struct perf_cpu_context *cpuctx)
1265 {
1266         struct perf_event *event;
1267
1268         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1269                 if (event->state <= PERF_EVENT_STATE_OFF)
1270                         continue;
1271                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1272                         continue;
1273
1274                 if (group_can_go_on(event, cpuctx, 1))
1275                         group_sched_in(event, cpuctx, ctx);
1276
1277                 /*
1278                  * If this pinned group hasn't been scheduled,
1279                  * put it in error state.
1280                  */
1281                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1282                         update_group_times(event);
1283                         event->state = PERF_EVENT_STATE_ERROR;
1284                 }
1285         }
1286 }
1287
1288 static void
1289 ctx_flexible_sched_in(struct perf_event_context *ctx,
1290                       struct perf_cpu_context *cpuctx)
1291 {
1292         struct perf_event *event;
1293         int can_add_hw = 1;
1294
1295         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1296                 /* Ignore events in OFF or ERROR state */
1297                 if (event->state <= PERF_EVENT_STATE_OFF)
1298                         continue;
1299                 /*
1300                  * Listen to the 'cpu' scheduling filter constraint
1301                  * of events:
1302                  */
1303                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1304                         continue;
1305
1306                 if (group_can_go_on(event, cpuctx, can_add_hw))
1307                         if (group_sched_in(event, cpuctx, ctx))
1308                                 can_add_hw = 0;
1309         }
1310 }
1311
1312 static void
1313 ctx_sched_in(struct perf_event_context *ctx,
1314              struct perf_cpu_context *cpuctx,
1315              enum event_type_t event_type)
1316 {
1317         raw_spin_lock(&ctx->lock);
1318         ctx->is_active = 1;
1319         if (likely(!ctx->nr_events))
1320                 goto out;
1321
1322         ctx->timestamp = perf_clock();
1323
1324         perf_disable();
1325
1326         /*
1327          * First go through the list and put on any pinned groups
1328          * in order to give them the best chance of going on.
1329          */
1330         if (event_type & EVENT_PINNED)
1331                 ctx_pinned_sched_in(ctx, cpuctx);
1332
1333         /* Then walk through the lower prio flexible groups */
1334         if (event_type & EVENT_FLEXIBLE)
1335                 ctx_flexible_sched_in(ctx, cpuctx);
1336
1337         perf_enable();
1338  out:
1339         raw_spin_unlock(&ctx->lock);
1340 }
1341
1342 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1343                              enum event_type_t event_type)
1344 {
1345         struct perf_event_context *ctx = &cpuctx->ctx;
1346
1347         ctx_sched_in(ctx, cpuctx, event_type);
1348 }
1349
1350 static void task_ctx_sched_in(struct task_struct *task,
1351                               enum event_type_t event_type)
1352 {
1353         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1354         struct perf_event_context *ctx = task->perf_event_ctxp;
1355
1356         if (likely(!ctx))
1357                 return;
1358         if (cpuctx->task_ctx == ctx)
1359                 return;
1360         ctx_sched_in(ctx, cpuctx, event_type);
1361         cpuctx->task_ctx = ctx;
1362 }
1363 /*
1364  * Called from scheduler to add the events of the current task
1365  * with interrupts disabled.
1366  *
1367  * We restore the event value and then enable it.
1368  *
1369  * This does not protect us against NMI, but enable()
1370  * sets the enabled bit in the control field of event _before_
1371  * accessing the event control register. If a NMI hits, then it will
1372  * keep the event running.
1373  */
1374 void perf_event_task_sched_in(struct task_struct *task)
1375 {
1376         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1377         struct perf_event_context *ctx = task->perf_event_ctxp;
1378
1379         if (likely(!ctx))
1380                 return;
1381
1382         if (cpuctx->task_ctx == ctx)
1383                 return;
1384
1385         /*
1386          * We want to keep the following priority order:
1387          * cpu pinned (that don't need to move), task pinned,
1388          * cpu flexible, task flexible.
1389          */
1390         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1391
1392         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1393         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1394         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1395
1396         cpuctx->task_ctx = ctx;
1397 }
1398
1399 #define MAX_INTERRUPTS (~0ULL)
1400
1401 static void perf_log_throttle(struct perf_event *event, int enable);
1402
1403 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1404 {
1405         u64 frequency = event->attr.sample_freq;
1406         u64 sec = NSEC_PER_SEC;
1407         u64 divisor, dividend;
1408
1409         int count_fls, nsec_fls, frequency_fls, sec_fls;
1410
1411         count_fls = fls64(count);
1412         nsec_fls = fls64(nsec);
1413         frequency_fls = fls64(frequency);
1414         sec_fls = 30;
1415
1416         /*
1417          * We got @count in @nsec, with a target of sample_freq HZ
1418          * the target period becomes:
1419          *
1420          *             @count * 10^9
1421          * period = -------------------
1422          *          @nsec * sample_freq
1423          *
1424          */
1425
1426         /*
1427          * Reduce accuracy by one bit such that @a and @b converge
1428          * to a similar magnitude.
1429          */
1430 #define REDUCE_FLS(a, b)                \
1431 do {                                    \
1432         if (a##_fls > b##_fls) {        \
1433                 a >>= 1;                \
1434                 a##_fls--;              \
1435         } else {                        \
1436                 b >>= 1;                \
1437                 b##_fls--;              \
1438         }                               \
1439 } while (0)
1440
1441         /*
1442          * Reduce accuracy until either term fits in a u64, then proceed with
1443          * the other, so that finally we can do a u64/u64 division.
1444          */
1445         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1446                 REDUCE_FLS(nsec, frequency);
1447                 REDUCE_FLS(sec, count);
1448         }
1449
1450         if (count_fls + sec_fls > 64) {
1451                 divisor = nsec * frequency;
1452
1453                 while (count_fls + sec_fls > 64) {
1454                         REDUCE_FLS(count, sec);
1455                         divisor >>= 1;
1456                 }
1457
1458                 dividend = count * sec;
1459         } else {
1460                 dividend = count * sec;
1461
1462                 while (nsec_fls + frequency_fls > 64) {
1463                         REDUCE_FLS(nsec, frequency);
1464                         dividend >>= 1;
1465                 }
1466
1467                 divisor = nsec * frequency;
1468         }
1469
1470         return div64_u64(dividend, divisor);
1471 }
1472
1473 static void perf_event_stop(struct perf_event *event)
1474 {
1475         if (!event->pmu->stop)
1476                 return event->pmu->disable(event);
1477
1478         return event->pmu->stop(event);
1479 }
1480
1481 static int perf_event_start(struct perf_event *event)
1482 {
1483         if (!event->pmu->start)
1484                 return event->pmu->enable(event);
1485
1486         return event->pmu->start(event);
1487 }
1488
1489 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1490 {
1491         struct hw_perf_event *hwc = &event->hw;
1492         u64 period, sample_period;
1493         s64 delta;
1494
1495         period = perf_calculate_period(event, nsec, count);
1496
1497         delta = (s64)(period - hwc->sample_period);
1498         delta = (delta + 7) / 8; /* low pass filter */
1499
1500         sample_period = hwc->sample_period + delta;
1501
1502         if (!sample_period)
1503                 sample_period = 1;
1504
1505         hwc->sample_period = sample_period;
1506
1507         if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1508                 perf_disable();
1509                 perf_event_stop(event);
1510                 atomic64_set(&hwc->period_left, 0);
1511                 perf_event_start(event);
1512                 perf_enable();
1513         }
1514 }
1515
1516 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1517 {
1518         struct perf_event *event;
1519         struct hw_perf_event *hwc;
1520         u64 interrupts, now;
1521         s64 delta;
1522
1523         raw_spin_lock(&ctx->lock);
1524         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1525                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1526                         continue;
1527
1528                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1529                         continue;
1530
1531                 hwc = &event->hw;
1532
1533                 interrupts = hwc->interrupts;
1534                 hwc->interrupts = 0;
1535
1536                 /*
1537                  * unthrottle events on the tick
1538                  */
1539                 if (interrupts == MAX_INTERRUPTS) {
1540                         perf_log_throttle(event, 1);
1541                         event->pmu->unthrottle(event);
1542                 }
1543
1544                 if (!event->attr.freq || !event->attr.sample_freq)
1545                         continue;
1546
1547                 event->pmu->read(event);
1548                 now = atomic64_read(&event->count);
1549                 delta = now - hwc->freq_count_stamp;
1550                 hwc->freq_count_stamp = now;
1551
1552                 if (delta > 0)
1553                         perf_adjust_period(event, TICK_NSEC, delta);
1554         }
1555         raw_spin_unlock(&ctx->lock);
1556 }
1557
1558 /*
1559  * Round-robin a context's events:
1560  */
1561 static void rotate_ctx(struct perf_event_context *ctx)
1562 {
1563         if (!ctx->nr_events)
1564                 return;
1565
1566         raw_spin_lock(&ctx->lock);
1567
1568         /* Rotate the first entry last of non-pinned groups */
1569         list_rotate_left(&ctx->flexible_groups);
1570
1571         raw_spin_unlock(&ctx->lock);
1572 }
1573
1574 void perf_event_task_tick(struct task_struct *curr)
1575 {
1576         struct perf_cpu_context *cpuctx;
1577         struct perf_event_context *ctx;
1578
1579         if (!atomic_read(&nr_events))
1580                 return;
1581
1582         cpuctx = &__get_cpu_var(perf_cpu_context);
1583         ctx = curr->perf_event_ctxp;
1584
1585         perf_disable();
1586
1587         perf_ctx_adjust_freq(&cpuctx->ctx);
1588         if (ctx)
1589                 perf_ctx_adjust_freq(ctx);
1590
1591         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1592         if (ctx)
1593                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1594
1595         rotate_ctx(&cpuctx->ctx);
1596         if (ctx)
1597                 rotate_ctx(ctx);
1598
1599         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1600         if (ctx)
1601                 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1602
1603         perf_enable();
1604 }
1605
1606 static int event_enable_on_exec(struct perf_event *event,
1607                                 struct perf_event_context *ctx)
1608 {
1609         if (!event->attr.enable_on_exec)
1610                 return 0;
1611
1612         event->attr.enable_on_exec = 0;
1613         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1614                 return 0;
1615
1616         __perf_event_mark_enabled(event, ctx);
1617
1618         return 1;
1619 }
1620
1621 /*
1622  * Enable all of a task's events that have been marked enable-on-exec.
1623  * This expects task == current.
1624  */
1625 static void perf_event_enable_on_exec(struct task_struct *task)
1626 {
1627         struct perf_event_context *ctx;
1628         struct perf_event *event;
1629         unsigned long flags;
1630         int enabled = 0;
1631         int ret;
1632
1633         local_irq_save(flags);
1634         ctx = task->perf_event_ctxp;
1635         if (!ctx || !ctx->nr_events)
1636                 goto out;
1637
1638         __perf_event_task_sched_out(ctx);
1639
1640         raw_spin_lock(&ctx->lock);
1641
1642         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1643                 ret = event_enable_on_exec(event, ctx);
1644                 if (ret)
1645                         enabled = 1;
1646         }
1647
1648         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1649                 ret = event_enable_on_exec(event, ctx);
1650                 if (ret)
1651                         enabled = 1;
1652         }
1653
1654         /*
1655          * Unclone this context if we enabled any event.
1656          */
1657         if (enabled)
1658                 unclone_ctx(ctx);
1659
1660         raw_spin_unlock(&ctx->lock);
1661
1662         perf_event_task_sched_in(task);
1663  out:
1664         local_irq_restore(flags);
1665 }
1666
1667 /*
1668  * Cross CPU call to read the hardware event
1669  */
1670 static void __perf_event_read(void *info)
1671 {
1672         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1673         struct perf_event *event = info;
1674         struct perf_event_context *ctx = event->ctx;
1675
1676         /*
1677          * If this is a task context, we need to check whether it is
1678          * the current task context of this cpu.  If not it has been
1679          * scheduled out before the smp call arrived.  In that case
1680          * event->count would have been updated to a recent sample
1681          * when the event was scheduled out.
1682          */
1683         if (ctx->task && cpuctx->task_ctx != ctx)
1684                 return;
1685
1686         raw_spin_lock(&ctx->lock);
1687         update_context_time(ctx);
1688         update_event_times(event);
1689         raw_spin_unlock(&ctx->lock);
1690
1691         event->pmu->read(event);
1692 }
1693
1694 static u64 perf_event_read(struct perf_event *event)
1695 {
1696         /*
1697          * If event is enabled and currently active on a CPU, update the
1698          * value in the event structure:
1699          */
1700         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1701                 smp_call_function_single(event->oncpu,
1702                                          __perf_event_read, event, 1);
1703         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1704                 struct perf_event_context *ctx = event->ctx;
1705                 unsigned long flags;
1706
1707                 raw_spin_lock_irqsave(&ctx->lock, flags);
1708                 update_context_time(ctx);
1709                 update_event_times(event);
1710                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1711         }
1712
1713         return atomic64_read(&event->count);
1714 }
1715
1716 /*
1717  * Initialize the perf_event context in a task_struct:
1718  */
1719 static void
1720 __perf_event_init_context(struct perf_event_context *ctx,
1721                             struct task_struct *task)
1722 {
1723         raw_spin_lock_init(&ctx->lock);
1724         mutex_init(&ctx->mutex);
1725         INIT_LIST_HEAD(&ctx->pinned_groups);
1726         INIT_LIST_HEAD(&ctx->flexible_groups);
1727         INIT_LIST_HEAD(&ctx->event_list);
1728         atomic_set(&ctx->refcount, 1);
1729         ctx->task = task;
1730 }
1731
1732 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1733 {
1734         struct perf_event_context *ctx;
1735         struct perf_cpu_context *cpuctx;
1736         struct task_struct *task;
1737         unsigned long flags;
1738         int err;
1739
1740         if (pid == -1 && cpu != -1) {
1741                 /* Must be root to operate on a CPU event: */
1742                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1743                         return ERR_PTR(-EACCES);
1744
1745                 if (cpu < 0 || cpu >= nr_cpumask_bits)
1746                         return ERR_PTR(-EINVAL);
1747
1748                 /*
1749                  * We could be clever and allow to attach a event to an
1750                  * offline CPU and activate it when the CPU comes up, but
1751                  * that's for later.
1752                  */
1753                 if (!cpu_online(cpu))
1754                         return ERR_PTR(-ENODEV);
1755
1756                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1757                 ctx = &cpuctx->ctx;
1758                 get_ctx(ctx);
1759
1760                 return ctx;
1761         }
1762
1763         rcu_read_lock();
1764         if (!pid)
1765                 task = current;
1766         else
1767                 task = find_task_by_vpid(pid);
1768         if (task)
1769                 get_task_struct(task);
1770         rcu_read_unlock();
1771
1772         if (!task)
1773                 return ERR_PTR(-ESRCH);
1774
1775         /*
1776          * Can't attach events to a dying task.
1777          */
1778         err = -ESRCH;
1779         if (task->flags & PF_EXITING)
1780                 goto errout;
1781
1782         /* Reuse ptrace permission checks for now. */
1783         err = -EACCES;
1784         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1785                 goto errout;
1786
1787  retry:
1788         ctx = perf_lock_task_context(task, &flags);
1789         if (ctx) {
1790                 unclone_ctx(ctx);
1791                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1792         }
1793
1794         if (!ctx) {
1795                 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1796                 err = -ENOMEM;
1797                 if (!ctx)
1798                         goto errout;
1799                 __perf_event_init_context(ctx, task);
1800                 get_ctx(ctx);
1801                 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1802                         /*
1803                          * We raced with some other task; use
1804                          * the context they set.
1805                          */
1806                         kfree(ctx);
1807                         goto retry;
1808                 }
1809                 get_task_struct(task);
1810         }
1811
1812         put_task_struct(task);
1813         return ctx;
1814
1815  errout:
1816         put_task_struct(task);
1817         return ERR_PTR(err);
1818 }
1819
1820 static void perf_event_free_filter(struct perf_event *event);
1821
1822 static void free_event_rcu(struct rcu_head *head)
1823 {
1824         struct perf_event *event;
1825
1826         event = container_of(head, struct perf_event, rcu_head);
1827         if (event->ns)
1828                 put_pid_ns(event->ns);
1829         perf_event_free_filter(event);
1830         kfree(event);
1831 }
1832
1833 static void perf_pending_sync(struct perf_event *event);
1834
1835 static void free_event(struct perf_event *event)
1836 {
1837         perf_pending_sync(event);
1838
1839         if (!event->parent) {
1840                 atomic_dec(&nr_events);
1841                 if (event->attr.mmap)
1842                         atomic_dec(&nr_mmap_events);
1843                 if (event->attr.comm)
1844                         atomic_dec(&nr_comm_events);
1845                 if (event->attr.task)
1846                         atomic_dec(&nr_task_events);
1847         }
1848
1849         if (event->output) {
1850                 fput(event->output->filp);
1851                 event->output = NULL;
1852         }
1853
1854         if (event->destroy)
1855                 event->destroy(event);
1856
1857         put_ctx(event->ctx);
1858         call_rcu(&event->rcu_head, free_event_rcu);
1859 }
1860
1861 int perf_event_release_kernel(struct perf_event *event)
1862 {
1863         struct perf_event_context *ctx = event->ctx;
1864
1865         WARN_ON_ONCE(ctx->parent_ctx);
1866         mutex_lock(&ctx->mutex);
1867         perf_event_remove_from_context(event);
1868         mutex_unlock(&ctx->mutex);
1869
1870         mutex_lock(&event->owner->perf_event_mutex);
1871         list_del_init(&event->owner_entry);
1872         mutex_unlock(&event->owner->perf_event_mutex);
1873         put_task_struct(event->owner);
1874
1875         free_event(event);
1876
1877         return 0;
1878 }
1879 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1880
1881 /*
1882  * Called when the last reference to the file is gone.
1883  */
1884 static int perf_release(struct inode *inode, struct file *file)
1885 {
1886         struct perf_event *event = file->private_data;
1887
1888         file->private_data = NULL;
1889
1890         return perf_event_release_kernel(event);
1891 }
1892
1893 static int perf_event_read_size(struct perf_event *event)
1894 {
1895         int entry = sizeof(u64); /* value */
1896         int size = 0;
1897         int nr = 1;
1898
1899         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1900                 size += sizeof(u64);
1901
1902         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1903                 size += sizeof(u64);
1904
1905         if (event->attr.read_format & PERF_FORMAT_ID)
1906                 entry += sizeof(u64);
1907
1908         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1909                 nr += event->group_leader->nr_siblings;
1910                 size += sizeof(u64);
1911         }
1912
1913         size += entry * nr;
1914
1915         return size;
1916 }
1917
1918 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1919 {
1920         struct perf_event *child;
1921         u64 total = 0;
1922
1923         *enabled = 0;
1924         *running = 0;
1925
1926         mutex_lock(&event->child_mutex);
1927         total += perf_event_read(event);
1928         *enabled += event->total_time_enabled +
1929                         atomic64_read(&event->child_total_time_enabled);
1930         *running += event->total_time_running +
1931                         atomic64_read(&event->child_total_time_running);
1932
1933         list_for_each_entry(child, &event->child_list, child_list) {
1934                 total += perf_event_read(child);
1935                 *enabled += child->total_time_enabled;
1936                 *running += child->total_time_running;
1937         }
1938         mutex_unlock(&event->child_mutex);
1939
1940         return total;
1941 }
1942 EXPORT_SYMBOL_GPL(perf_event_read_value);
1943
1944 static int perf_event_read_group(struct perf_event *event,
1945                                    u64 read_format, char __user *buf)
1946 {
1947         struct perf_event *leader = event->group_leader, *sub;
1948         int n = 0, size = 0, ret = -EFAULT;
1949         struct perf_event_context *ctx = leader->ctx;
1950         u64 values[5];
1951         u64 count, enabled, running;
1952
1953         mutex_lock(&ctx->mutex);
1954         count = perf_event_read_value(leader, &enabled, &running);
1955
1956         values[n++] = 1 + leader->nr_siblings;
1957         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1958                 values[n++] = enabled;
1959         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1960                 values[n++] = running;
1961         values[n++] = count;
1962         if (read_format & PERF_FORMAT_ID)
1963                 values[n++] = primary_event_id(leader);
1964
1965         size = n * sizeof(u64);
1966
1967         if (copy_to_user(buf, values, size))
1968                 goto unlock;
1969
1970         ret = size;
1971
1972         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1973                 n = 0;
1974
1975                 values[n++] = perf_event_read_value(sub, &enabled, &running);
1976                 if (read_format & PERF_FORMAT_ID)
1977                         values[n++] = primary_event_id(sub);
1978
1979                 size = n * sizeof(u64);
1980
1981                 if (copy_to_user(buf + ret, values, size)) {
1982                         ret = -EFAULT;
1983                         goto unlock;
1984                 }
1985
1986                 ret += size;
1987         }
1988 unlock:
1989         mutex_unlock(&ctx->mutex);
1990
1991         return ret;
1992 }
1993
1994 static int perf_event_read_one(struct perf_event *event,
1995                                  u64 read_format, char __user *buf)
1996 {
1997         u64 enabled, running;
1998         u64 values[4];
1999         int n = 0;
2000
2001         values[n++] = perf_event_read_value(event, &enabled, &running);
2002         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2003                 values[n++] = enabled;
2004         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2005                 values[n++] = running;
2006         if (read_format & PERF_FORMAT_ID)
2007                 values[n++] = primary_event_id(event);
2008
2009         if (copy_to_user(buf, values, n * sizeof(u64)))
2010                 return -EFAULT;
2011
2012         return n * sizeof(u64);
2013 }
2014
2015 /*
2016  * Read the performance event - simple non blocking version for now
2017  */
2018 static ssize_t
2019 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2020 {
2021         u64 read_format = event->attr.read_format;
2022         int ret;
2023
2024         /*
2025          * Return end-of-file for a read on a event that is in
2026          * error state (i.e. because it was pinned but it couldn't be
2027          * scheduled on to the CPU at some point).
2028          */
2029         if (event->state == PERF_EVENT_STATE_ERROR)
2030                 return 0;
2031
2032         if (count < perf_event_read_size(event))
2033                 return -ENOSPC;
2034
2035         WARN_ON_ONCE(event->ctx->parent_ctx);
2036         if (read_format & PERF_FORMAT_GROUP)
2037                 ret = perf_event_read_group(event, read_format, buf);
2038         else
2039                 ret = perf_event_read_one(event, read_format, buf);
2040
2041         return ret;
2042 }
2043
2044 static ssize_t
2045 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2046 {
2047         struct perf_event *event = file->private_data;
2048
2049         return perf_read_hw(event, buf, count);
2050 }
2051
2052 static unsigned int perf_poll(struct file *file, poll_table *wait)
2053 {
2054         struct perf_event *event = file->private_data;
2055         struct perf_mmap_data *data;
2056         unsigned int events = POLL_HUP;
2057
2058         rcu_read_lock();
2059         data = rcu_dereference(event->data);
2060         if (data)
2061                 events = atomic_xchg(&data->poll, 0);
2062         rcu_read_unlock();
2063
2064         poll_wait(file, &event->waitq, wait);
2065
2066         return events;
2067 }
2068
2069 static void perf_event_reset(struct perf_event *event)
2070 {
2071         (void)perf_event_read(event);
2072         atomic64_set(&event->count, 0);
2073         perf_event_update_userpage(event);
2074 }
2075
2076 /*
2077  * Holding the top-level event's child_mutex means that any
2078  * descendant process that has inherited this event will block
2079  * in sync_child_event if it goes to exit, thus satisfying the
2080  * task existence requirements of perf_event_enable/disable.
2081  */
2082 static void perf_event_for_each_child(struct perf_event *event,
2083                                         void (*func)(struct perf_event *))
2084 {
2085         struct perf_event *child;
2086
2087         WARN_ON_ONCE(event->ctx->parent_ctx);
2088         mutex_lock(&event->child_mutex);
2089         func(event);
2090         list_for_each_entry(child, &event->child_list, child_list)
2091                 func(child);
2092         mutex_unlock(&event->child_mutex);
2093 }
2094
2095 static void perf_event_for_each(struct perf_event *event,
2096                                   void (*func)(struct perf_event *))
2097 {
2098         struct perf_event_context *ctx = event->ctx;
2099         struct perf_event *sibling;
2100
2101         WARN_ON_ONCE(ctx->parent_ctx);
2102         mutex_lock(&ctx->mutex);
2103         event = event->group_leader;
2104
2105         perf_event_for_each_child(event, func);
2106         func(event);
2107         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2108                 perf_event_for_each_child(event, func);
2109         mutex_unlock(&ctx->mutex);
2110 }
2111
2112 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2113 {
2114         struct perf_event_context *ctx = event->ctx;
2115         unsigned long size;
2116         int ret = 0;
2117         u64 value;
2118
2119         if (!event->attr.sample_period)
2120                 return -EINVAL;
2121
2122         size = copy_from_user(&value, arg, sizeof(value));
2123         if (size != sizeof(value))
2124                 return -EFAULT;
2125
2126         if (!value)
2127                 return -EINVAL;
2128
2129         raw_spin_lock_irq(&ctx->lock);
2130         if (event->attr.freq) {
2131                 if (value > sysctl_perf_event_sample_rate) {
2132                         ret = -EINVAL;
2133                         goto unlock;
2134                 }
2135
2136                 event->attr.sample_freq = value;
2137         } else {
2138                 event->attr.sample_period = value;
2139                 event->hw.sample_period = value;
2140         }
2141 unlock:
2142         raw_spin_unlock_irq(&ctx->lock);
2143
2144         return ret;
2145 }
2146
2147 static int perf_event_set_output(struct perf_event *event, int output_fd);
2148 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2149
2150 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2151 {
2152         struct perf_event *event = file->private_data;
2153         void (*func)(struct perf_event *);
2154         u32 flags = arg;
2155
2156         switch (cmd) {
2157         case PERF_EVENT_IOC_ENABLE:
2158                 func = perf_event_enable;
2159                 break;
2160         case PERF_EVENT_IOC_DISABLE:
2161                 func = perf_event_disable;
2162                 break;
2163         case PERF_EVENT_IOC_RESET:
2164                 func = perf_event_reset;
2165                 break;
2166
2167         case PERF_EVENT_IOC_REFRESH:
2168                 return perf_event_refresh(event, arg);
2169
2170         case PERF_EVENT_IOC_PERIOD:
2171                 return perf_event_period(event, (u64 __user *)arg);
2172
2173         case PERF_EVENT_IOC_SET_OUTPUT:
2174                 return perf_event_set_output(event, arg);
2175
2176         case PERF_EVENT_IOC_SET_FILTER:
2177                 return perf_event_set_filter(event, (void __user *)arg);
2178
2179         default:
2180                 return -ENOTTY;
2181         }
2182
2183         if (flags & PERF_IOC_FLAG_GROUP)
2184                 perf_event_for_each(event, func);
2185         else
2186                 perf_event_for_each_child(event, func);
2187
2188         return 0;
2189 }
2190
2191 int perf_event_task_enable(void)
2192 {
2193         struct perf_event *event;
2194
2195         mutex_lock(&current->perf_event_mutex);
2196         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2197                 perf_event_for_each_child(event, perf_event_enable);
2198         mutex_unlock(&current->perf_event_mutex);
2199
2200         return 0;
2201 }
2202
2203 int perf_event_task_disable(void)
2204 {
2205         struct perf_event *event;
2206
2207         mutex_lock(&current->perf_event_mutex);
2208         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2209                 perf_event_for_each_child(event, perf_event_disable);
2210         mutex_unlock(&current->perf_event_mutex);
2211
2212         return 0;
2213 }
2214
2215 #ifndef PERF_EVENT_INDEX_OFFSET
2216 # define PERF_EVENT_INDEX_OFFSET 0
2217 #endif
2218
2219 static int perf_event_index(struct perf_event *event)
2220 {
2221         if (event->state != PERF_EVENT_STATE_ACTIVE)
2222                 return 0;
2223
2224         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2225 }
2226
2227 /*
2228  * Callers need to ensure there can be no nesting of this function, otherwise
2229  * the seqlock logic goes bad. We can not serialize this because the arch
2230  * code calls this from NMI context.
2231  */
2232 void perf_event_update_userpage(struct perf_event *event)
2233 {
2234         struct perf_event_mmap_page *userpg;
2235         struct perf_mmap_data *data;
2236
2237         rcu_read_lock();
2238         data = rcu_dereference(event->data);
2239         if (!data)
2240                 goto unlock;
2241
2242         userpg = data->user_page;
2243
2244         /*
2245          * Disable preemption so as to not let the corresponding user-space
2246          * spin too long if we get preempted.
2247          */
2248         preempt_disable();
2249         ++userpg->lock;
2250         barrier();
2251         userpg->index = perf_event_index(event);
2252         userpg->offset = atomic64_read(&event->count);
2253         if (event->state == PERF_EVENT_STATE_ACTIVE)
2254                 userpg->offset -= atomic64_read(&event->hw.prev_count);
2255
2256         userpg->time_enabled = event->total_time_enabled +
2257                         atomic64_read(&event->child_total_time_enabled);
2258
2259         userpg->time_running = event->total_time_running +
2260                         atomic64_read(&event->child_total_time_running);
2261
2262         barrier();
2263         ++userpg->lock;
2264         preempt_enable();
2265 unlock:
2266         rcu_read_unlock();
2267 }
2268
2269 static unsigned long perf_data_size(struct perf_mmap_data *data)
2270 {
2271         return data->nr_pages << (PAGE_SHIFT + data->data_order);
2272 }
2273
2274 #ifndef CONFIG_PERF_USE_VMALLOC
2275
2276 /*
2277  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2278  */
2279
2280 static struct page *
2281 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2282 {
2283         if (pgoff > data->nr_pages)
2284                 return NULL;
2285
2286         if (pgoff == 0)
2287                 return virt_to_page(data->user_page);
2288
2289         return virt_to_page(data->data_pages[pgoff - 1]);
2290 }
2291
2292 static struct perf_mmap_data *
2293 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2294 {
2295         struct perf_mmap_data *data;
2296         unsigned long size;
2297         int i;
2298
2299         WARN_ON(atomic_read(&event->mmap_count));
2300
2301         size = sizeof(struct perf_mmap_data);
2302         size += nr_pages * sizeof(void *);
2303
2304         data = kzalloc(size, GFP_KERNEL);
2305         if (!data)
2306                 goto fail;
2307
2308         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2309         if (!data->user_page)
2310                 goto fail_user_page;
2311
2312         for (i = 0; i < nr_pages; i++) {
2313                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2314                 if (!data->data_pages[i])
2315                         goto fail_data_pages;
2316         }
2317
2318         data->data_order = 0;
2319         data->nr_pages = nr_pages;
2320
2321         return data;
2322
2323 fail_data_pages:
2324         for (i--; i >= 0; i--)
2325                 free_page((unsigned long)data->data_pages[i]);
2326
2327         free_page((unsigned long)data->user_page);
2328
2329 fail_user_page:
2330         kfree(data);
2331
2332 fail:
2333         return NULL;
2334 }
2335
2336 static void perf_mmap_free_page(unsigned long addr)
2337 {
2338         struct page *page = virt_to_page((void *)addr);
2339
2340         page->mapping = NULL;
2341         __free_page(page);
2342 }
2343
2344 static void perf_mmap_data_free(struct perf_mmap_data *data)
2345 {
2346         int i;
2347
2348         perf_mmap_free_page((unsigned long)data->user_page);
2349         for (i = 0; i < data->nr_pages; i++)
2350                 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2351         kfree(data);
2352 }
2353
2354 #else
2355
2356 /*
2357  * Back perf_mmap() with vmalloc memory.
2358  *
2359  * Required for architectures that have d-cache aliasing issues.
2360  */
2361
2362 static struct page *
2363 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2364 {
2365         if (pgoff > (1UL << data->data_order))
2366                 return NULL;
2367
2368         return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2369 }
2370
2371 static void perf_mmap_unmark_page(void *addr)
2372 {
2373         struct page *page = vmalloc_to_page(addr);
2374
2375         page->mapping = NULL;
2376 }
2377
2378 static void perf_mmap_data_free_work(struct work_struct *work)
2379 {
2380         struct perf_mmap_data *data;
2381         void *base;
2382         int i, nr;
2383
2384         data = container_of(work, struct perf_mmap_data, work);
2385         nr = 1 << data->data_order;
2386
2387         base = data->user_page;
2388         for (i = 0; i < nr + 1; i++)
2389                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2390
2391         vfree(base);
2392         kfree(data);
2393 }
2394
2395 static void perf_mmap_data_free(struct perf_mmap_data *data)
2396 {
2397         schedule_work(&data->work);
2398 }
2399
2400 static struct perf_mmap_data *
2401 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2402 {
2403         struct perf_mmap_data *data;
2404         unsigned long size;
2405         void *all_buf;
2406
2407         WARN_ON(atomic_read(&event->mmap_count));
2408
2409         size = sizeof(struct perf_mmap_data);
2410         size += sizeof(void *);
2411
2412         data = kzalloc(size, GFP_KERNEL);
2413         if (!data)
2414                 goto fail;
2415
2416         INIT_WORK(&data->work, perf_mmap_data_free_work);
2417
2418         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2419         if (!all_buf)
2420                 goto fail_all_buf;
2421
2422         data->user_page = all_buf;
2423         data->data_pages[0] = all_buf + PAGE_SIZE;
2424         data->data_order = ilog2(nr_pages);
2425         data->nr_pages = 1;
2426
2427         return data;
2428
2429 fail_all_buf:
2430         kfree(data);
2431
2432 fail:
2433         return NULL;
2434 }
2435
2436 #endif
2437
2438 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2439 {
2440         struct perf_event *event = vma->vm_file->private_data;
2441         struct perf_mmap_data *data;
2442         int ret = VM_FAULT_SIGBUS;
2443
2444         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2445                 if (vmf->pgoff == 0)
2446                         ret = 0;
2447                 return ret;
2448         }
2449
2450         rcu_read_lock();
2451         data = rcu_dereference(event->data);
2452         if (!data)
2453                 goto unlock;
2454
2455         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2456                 goto unlock;
2457
2458         vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2459         if (!vmf->page)
2460                 goto unlock;
2461
2462         get_page(vmf->page);
2463         vmf->page->mapping = vma->vm_file->f_mapping;
2464         vmf->page->index   = vmf->pgoff;
2465
2466         ret = 0;
2467 unlock:
2468         rcu_read_unlock();
2469
2470         return ret;
2471 }
2472
2473 static void
2474 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2475 {
2476         long max_size = perf_data_size(data);
2477
2478         atomic_set(&data->lock, -1);
2479
2480         if (event->attr.watermark) {
2481                 data->watermark = min_t(long, max_size,
2482                                         event->attr.wakeup_watermark);
2483         }
2484
2485         if (!data->watermark)
2486                 data->watermark = max_size / 2;
2487
2488
2489         rcu_assign_pointer(event->data, data);
2490 }
2491
2492 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2493 {
2494         struct perf_mmap_data *data;
2495
2496         data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2497         perf_mmap_data_free(data);
2498 }
2499
2500 static void perf_mmap_data_release(struct perf_event *event)
2501 {
2502         struct perf_mmap_data *data = event->data;
2503
2504         WARN_ON(atomic_read(&event->mmap_count));
2505
2506         rcu_assign_pointer(event->data, NULL);
2507         call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2508 }
2509
2510 static void perf_mmap_open(struct vm_area_struct *vma)
2511 {
2512         struct perf_event *event = vma->vm_file->private_data;
2513
2514         atomic_inc(&event->mmap_count);
2515 }
2516
2517 static void perf_mmap_close(struct vm_area_struct *vma)
2518 {
2519         struct perf_event *event = vma->vm_file->private_data;
2520
2521         WARN_ON_ONCE(event->ctx->parent_ctx);
2522         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2523                 unsigned long size = perf_data_size(event->data);
2524                 struct user_struct *user = current_user();
2525
2526                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2527                 vma->vm_mm->locked_vm -= event->data->nr_locked;
2528                 perf_mmap_data_release(event);
2529                 mutex_unlock(&event->mmap_mutex);
2530         }
2531 }
2532
2533 static const struct vm_operations_struct perf_mmap_vmops = {
2534         .open           = perf_mmap_open,
2535         .close          = perf_mmap_close,
2536         .fault          = perf_mmap_fault,
2537         .page_mkwrite   = perf_mmap_fault,
2538 };
2539
2540 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2541 {
2542         struct perf_event *event = file->private_data;
2543         unsigned long user_locked, user_lock_limit;
2544         struct user_struct *user = current_user();
2545         unsigned long locked, lock_limit;
2546         struct perf_mmap_data *data;
2547         unsigned long vma_size;
2548         unsigned long nr_pages;
2549         long user_extra, extra;
2550         int ret = 0;
2551
2552         if (!(vma->vm_flags & VM_SHARED))
2553                 return -EINVAL;
2554
2555         vma_size = vma->vm_end - vma->vm_start;
2556         nr_pages = (vma_size / PAGE_SIZE) - 1;
2557
2558         /*
2559          * If we have data pages ensure they're a power-of-two number, so we
2560          * can do bitmasks instead of modulo.
2561          */
2562         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2563                 return -EINVAL;
2564
2565         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2566                 return -EINVAL;
2567
2568         if (vma->vm_pgoff != 0)
2569                 return -EINVAL;
2570
2571         WARN_ON_ONCE(event->ctx->parent_ctx);
2572         mutex_lock(&event->mmap_mutex);
2573         if (event->output) {
2574                 ret = -EINVAL;
2575                 goto unlock;
2576         }
2577
2578         if (atomic_inc_not_zero(&event->mmap_count)) {
2579                 if (nr_pages != event->data->nr_pages)
2580                         ret = -EINVAL;
2581                 goto unlock;
2582         }
2583
2584         user_extra = nr_pages + 1;
2585         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2586
2587         /*
2588          * Increase the limit linearly with more CPUs:
2589          */
2590         user_lock_limit *= num_online_cpus();
2591
2592         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2593
2594         extra = 0;
2595         if (user_locked > user_lock_limit)
2596                 extra = user_locked - user_lock_limit;
2597
2598         lock_limit = rlimit(RLIMIT_MEMLOCK);
2599         lock_limit >>= PAGE_SHIFT;
2600         locked = vma->vm_mm->locked_vm + extra;
2601
2602         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2603                 !capable(CAP_IPC_LOCK)) {
2604                 ret = -EPERM;
2605                 goto unlock;
2606         }
2607
2608         WARN_ON(event->data);
2609
2610         data = perf_mmap_data_alloc(event, nr_pages);
2611         ret = -ENOMEM;
2612         if (!data)
2613                 goto unlock;
2614
2615         ret = 0;
2616         perf_mmap_data_init(event, data);
2617
2618         atomic_set(&event->mmap_count, 1);
2619         atomic_long_add(user_extra, &user->locked_vm);
2620         vma->vm_mm->locked_vm += extra;
2621         event->data->nr_locked = extra;
2622         if (vma->vm_flags & VM_WRITE)
2623                 event->data->writable = 1;
2624
2625 unlock:
2626         mutex_unlock(&event->mmap_mutex);
2627
2628         vma->vm_flags |= VM_RESERVED;
2629         vma->vm_ops = &perf_mmap_vmops;
2630
2631         return ret;
2632 }
2633
2634 static int perf_fasync(int fd, struct file *filp, int on)
2635 {
2636         struct inode *inode = filp->f_path.dentry->d_inode;
2637         struct perf_event *event = filp->private_data;
2638         int retval;
2639
2640         mutex_lock(&inode->i_mutex);
2641         retval = fasync_helper(fd, filp, on, &event->fasync);
2642         mutex_unlock(&inode->i_mutex);
2643
2644         if (retval < 0)
2645                 return retval;
2646
2647         return 0;
2648 }
2649
2650 static const struct file_operations perf_fops = {
2651         .release                = perf_release,
2652         .read                   = perf_read,
2653         .poll                   = perf_poll,
2654         .unlocked_ioctl         = perf_ioctl,
2655         .compat_ioctl           = perf_ioctl,
2656         .mmap                   = perf_mmap,
2657         .fasync                 = perf_fasync,
2658 };
2659
2660 /*
2661  * Perf event wakeup
2662  *
2663  * If there's data, ensure we set the poll() state and publish everything
2664  * to user-space before waking everybody up.
2665  */
2666
2667 void perf_event_wakeup(struct perf_event *event)
2668 {
2669         wake_up_all(&event->waitq);
2670
2671         if (event->pending_kill) {
2672                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2673                 event->pending_kill = 0;
2674         }
2675 }
2676
2677 /*
2678  * Pending wakeups
2679  *
2680  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2681  *
2682  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2683  * single linked list and use cmpxchg() to add entries lockless.
2684  */
2685
2686 static void perf_pending_event(struct perf_pending_entry *entry)
2687 {
2688         struct perf_event *event = container_of(entry,
2689                         struct perf_event, pending);
2690
2691         if (event->pending_disable) {
2692                 event->pending_disable = 0;
2693                 __perf_event_disable(event);
2694         }
2695
2696         if (event->pending_wakeup) {
2697                 event->pending_wakeup = 0;
2698                 perf_event_wakeup(event);
2699         }
2700 }
2701
2702 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2703
2704 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2705         PENDING_TAIL,
2706 };
2707
2708 static void perf_pending_queue(struct perf_pending_entry *entry,
2709                                void (*func)(struct perf_pending_entry *))
2710 {
2711         struct perf_pending_entry **head;
2712
2713         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2714                 return;
2715
2716         entry->func = func;
2717
2718         head = &get_cpu_var(perf_pending_head);
2719
2720         do {
2721                 entry->next = *head;
2722         } while (cmpxchg(head, entry->next, entry) != entry->next);
2723
2724         set_perf_event_pending();
2725
2726         put_cpu_var(perf_pending_head);
2727 }
2728
2729 static int __perf_pending_run(void)
2730 {
2731         struct perf_pending_entry *list;
2732         int nr = 0;
2733
2734         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2735         while (list != PENDING_TAIL) {
2736                 void (*func)(struct perf_pending_entry *);
2737                 struct perf_pending_entry *entry = list;
2738
2739                 list = list->next;
2740
2741                 func = entry->func;
2742                 entry->next = NULL;
2743                 /*
2744                  * Ensure we observe the unqueue before we issue the wakeup,
2745                  * so that we won't be waiting forever.
2746                  * -- see perf_not_pending().
2747                  */
2748                 smp_wmb();
2749
2750                 func(entry);
2751                 nr++;
2752         }
2753
2754         return nr;
2755 }
2756
2757 static inline int perf_not_pending(struct perf_event *event)
2758 {
2759         /*
2760          * If we flush on whatever cpu we run, there is a chance we don't
2761          * need to wait.
2762          */
2763         get_cpu();
2764         __perf_pending_run();
2765         put_cpu();
2766
2767         /*
2768          * Ensure we see the proper queue state before going to sleep
2769          * so that we do not miss the wakeup. -- see perf_pending_handle()
2770          */
2771         smp_rmb();
2772         return event->pending.next == NULL;
2773 }
2774
2775 static void perf_pending_sync(struct perf_event *event)
2776 {
2777         wait_event(event->waitq, perf_not_pending(event));
2778 }
2779
2780 void perf_event_do_pending(void)
2781 {
2782         __perf_pending_run();
2783 }
2784
2785 /*
2786  * Callchain support -- arch specific
2787  */
2788
2789 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2790 {
2791         return NULL;
2792 }
2793
2794 /*
2795  * Output
2796  */
2797 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2798                               unsigned long offset, unsigned long head)
2799 {
2800         unsigned long mask;
2801
2802         if (!data->writable)
2803                 return true;
2804
2805         mask = perf_data_size(data) - 1;
2806
2807         offset = (offset - tail) & mask;
2808         head   = (head   - tail) & mask;
2809
2810         if ((int)(head - offset) < 0)
2811                 return false;
2812
2813         return true;
2814 }
2815
2816 static void perf_output_wakeup(struct perf_output_handle *handle)
2817 {
2818         atomic_set(&handle->data->poll, POLL_IN);
2819
2820         if (handle->nmi) {
2821                 handle->event->pending_wakeup = 1;
2822                 perf_pending_queue(&handle->event->pending,
2823                                    perf_pending_event);
2824         } else
2825                 perf_event_wakeup(handle->event);
2826 }
2827
2828 /*
2829  * Curious locking construct.
2830  *
2831  * We need to ensure a later event_id doesn't publish a head when a former
2832  * event_id isn't done writing. However since we need to deal with NMIs we
2833  * cannot fully serialize things.
2834  *
2835  * What we do is serialize between CPUs so we only have to deal with NMI
2836  * nesting on a single CPU.
2837  *
2838  * We only publish the head (and generate a wakeup) when the outer-most
2839  * event_id completes.
2840  */
2841 static void perf_output_lock(struct perf_output_handle *handle)
2842 {
2843         struct perf_mmap_data *data = handle->data;
2844         int cur, cpu = get_cpu();
2845
2846         handle->locked = 0;
2847
2848         for (;;) {
2849                 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2850                 if (cur == -1) {
2851                         handle->locked = 1;
2852                         break;
2853                 }
2854                 if (cur == cpu)
2855                         break;
2856
2857                 cpu_relax();
2858         }
2859 }
2860
2861 static void perf_output_unlock(struct perf_output_handle *handle)
2862 {
2863         struct perf_mmap_data *data = handle->data;
2864         unsigned long head;
2865         int cpu;
2866
2867         data->done_head = data->head;
2868
2869         if (!handle->locked)
2870                 goto out;
2871
2872 again:
2873         /*
2874          * The xchg implies a full barrier that ensures all writes are done
2875          * before we publish the new head, matched by a rmb() in userspace when
2876          * reading this position.
2877          */
2878         while ((head = atomic_long_xchg(&data->done_head, 0)))
2879                 data->user_page->data_head = head;
2880
2881         /*
2882          * NMI can happen here, which means we can miss a done_head update.
2883          */
2884
2885         cpu = atomic_xchg(&data->lock, -1);
2886         WARN_ON_ONCE(cpu != smp_processor_id());
2887
2888         /*
2889          * Therefore we have to validate we did not indeed do so.
2890          */
2891         if (unlikely(atomic_long_read(&data->done_head))) {
2892                 /*
2893                  * Since we had it locked, we can lock it again.
2894                  */
2895                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2896                         cpu_relax();
2897
2898                 goto again;
2899         }
2900
2901         if (atomic_xchg(&data->wakeup, 0))
2902                 perf_output_wakeup(handle);
2903 out:
2904         put_cpu();
2905 }
2906
2907 void perf_output_copy(struct perf_output_handle *handle,
2908                       const void *buf, unsigned int len)
2909 {
2910         unsigned int pages_mask;
2911         unsigned long offset;
2912         unsigned int size;
2913         void **pages;
2914
2915         offset          = handle->offset;
2916         pages_mask      = handle->data->nr_pages - 1;
2917         pages           = handle->data->data_pages;
2918
2919         do {
2920                 unsigned long page_offset;
2921                 unsigned long page_size;
2922                 int nr;
2923
2924                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2925                 page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
2926                 page_offset = offset & (page_size - 1);
2927                 size        = min_t(unsigned int, page_size - page_offset, len);
2928
2929                 memcpy(pages[nr] + page_offset, buf, size);
2930
2931                 len         -= size;
2932                 buf         += size;
2933                 offset      += size;
2934         } while (len);
2935
2936         handle->offset = offset;
2937
2938         /*
2939          * Check we didn't copy past our reservation window, taking the
2940          * possible unsigned int wrap into account.
2941          */
2942         WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2943 }
2944
2945 int perf_output_begin(struct perf_output_handle *handle,
2946                       struct perf_event *event, unsigned int size,
2947                       int nmi, int sample)
2948 {
2949         struct perf_event *output_event;
2950         struct perf_mmap_data *data;
2951         unsigned long tail, offset, head;
2952         int have_lost;
2953         struct {
2954                 struct perf_event_header header;
2955                 u64                      id;
2956                 u64                      lost;
2957         } lost_event;
2958
2959         rcu_read_lock();
2960         /*
2961          * For inherited events we send all the output towards the parent.
2962          */
2963         if (event->parent)
2964                 event = event->parent;
2965
2966         output_event = rcu_dereference(event->output);
2967         if (output_event)
2968                 event = output_event;
2969
2970         data = rcu_dereference(event->data);
2971         if (!data)
2972                 goto out;
2973
2974         handle->data    = data;
2975         handle->event   = event;
2976         handle->nmi     = nmi;
2977         handle->sample  = sample;
2978
2979         if (!data->nr_pages)
2980                 goto fail;
2981
2982         have_lost = atomic_read(&data->lost);
2983         if (have_lost)
2984                 size += sizeof(lost_event);
2985
2986         perf_output_lock(handle);
2987
2988         do {
2989                 /*
2990                  * Userspace could choose to issue a mb() before updating the
2991                  * tail pointer. So that all reads will be completed before the
2992                  * write is issued.
2993                  */
2994                 tail = ACCESS_ONCE(data->user_page->data_tail);
2995                 smp_rmb();
2996                 offset = head = atomic_long_read(&data->head);
2997                 head += size;
2998                 if (unlikely(!perf_output_space(data, tail, offset, head)))
2999                         goto fail;
3000         } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3001
3002         handle->offset  = offset;
3003         handle->head    = head;
3004
3005         if (head - tail > data->watermark)
3006                 atomic_set(&data->wakeup, 1);
3007
3008         if (have_lost) {
3009                 lost_event.header.type = PERF_RECORD_LOST;
3010                 lost_event.header.misc = 0;
3011                 lost_event.header.size = sizeof(lost_event);
3012                 lost_event.id          = event->id;
3013                 lost_event.lost        = atomic_xchg(&data->lost, 0);
3014
3015                 perf_output_put(handle, lost_event);
3016         }
3017
3018         return 0;
3019
3020 fail:
3021         atomic_inc(&data->lost);
3022         perf_output_unlock(handle);
3023 out:
3024         rcu_read_unlock();
3025
3026         return -ENOSPC;
3027 }
3028
3029 void perf_output_end(struct perf_output_handle *handle)
3030 {
3031         struct perf_event *event = handle->event;
3032         struct perf_mmap_data *data = handle->data;
3033
3034         int wakeup_events = event->attr.wakeup_events;
3035
3036         if (handle->sample && wakeup_events) {
3037                 int events = atomic_inc_return(&data->events);
3038                 if (events >= wakeup_events) {
3039                         atomic_sub(wakeup_events, &data->events);
3040                         atomic_set(&data->wakeup, 1);
3041                 }
3042         }
3043
3044         perf_output_unlock(handle);
3045         rcu_read_unlock();
3046 }
3047
3048 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3049 {
3050         /*
3051          * only top level events have the pid namespace they were created in
3052          */
3053         if (event->parent)
3054                 event = event->parent;
3055
3056         return task_tgid_nr_ns(p, event->ns);
3057 }
3058
3059 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3060 {
3061         /*
3062          * only top level events have the pid namespace they were created in
3063          */
3064         if (event->parent)
3065                 event = event->parent;
3066
3067         return task_pid_nr_ns(p, event->ns);
3068 }
3069
3070 static void perf_output_read_one(struct perf_output_handle *handle,
3071                                  struct perf_event *event)
3072 {
3073         u64 read_format = event->attr.read_format;
3074         u64 values[4];
3075         int n = 0;
3076
3077         values[n++] = atomic64_read(&event->count);
3078         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3079                 values[n++] = event->total_time_enabled +
3080                         atomic64_read(&event->child_total_time_enabled);
3081         }
3082         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3083                 values[n++] = event->total_time_running +
3084                         atomic64_read(&event->child_total_time_running);
3085         }
3086         if (read_format & PERF_FORMAT_ID)
3087                 values[n++] = primary_event_id(event);
3088
3089         perf_output_copy(handle, values, n * sizeof(u64));
3090 }
3091
3092 /*
3093  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3094  */
3095 static void perf_output_read_group(struct perf_output_handle *handle,
3096                             struct perf_event *event)
3097 {
3098         struct perf_event *leader = event->group_leader, *sub;
3099         u64 read_format = event->attr.read_format;
3100         u64 values[5];
3101         int n = 0;
3102
3103         values[n++] = 1 + leader->nr_siblings;
3104
3105         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3106                 values[n++] = leader->total_time_enabled;
3107
3108         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3109                 values[n++] = leader->total_time_running;
3110
3111         if (leader != event)
3112                 leader->pmu->read(leader);
3113
3114         values[n++] = atomic64_read(&leader->count);
3115         if (read_format & PERF_FORMAT_ID)
3116                 values[n++] = primary_event_id(leader);
3117
3118         perf_output_copy(handle, values, n * sizeof(u64));
3119
3120         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3121                 n = 0;
3122
3123                 if (sub != event)
3124                         sub->pmu->read(sub);
3125
3126                 values[n++] = atomic64_read(&sub->count);
3127                 if (read_format & PERF_FORMAT_ID)
3128                         values[n++] = primary_event_id(sub);
3129
3130                 perf_output_copy(handle, values, n * sizeof(u64));
3131         }
3132 }
3133
3134 static void perf_output_read(struct perf_output_handle *handle,
3135                              struct perf_event *event)
3136 {
3137         if (event->attr.read_format & PERF_FORMAT_GROUP)
3138                 perf_output_read_group(handle, event);
3139         else
3140                 perf_output_read_one(handle, event);
3141 }
3142
3143 void perf_output_sample(struct perf_output_handle *handle,
3144                         struct perf_event_header *header,
3145                         struct perf_sample_data *data,
3146                         struct perf_event *event)
3147 {
3148         u64 sample_type = data->type;
3149
3150         perf_output_put(handle, *header);
3151
3152         if (sample_type & PERF_SAMPLE_IP)
3153                 perf_output_put(handle, data->ip);
3154
3155         if (sample_type & PERF_SAMPLE_TID)
3156                 perf_output_put(handle, data->tid_entry);
3157
3158         if (sample_type & PERF_SAMPLE_TIME)
3159                 perf_output_put(handle, data->time);
3160
3161         if (sample_type & PERF_SAMPLE_ADDR)
3162                 perf_output_put(handle, data->addr);
3163
3164         if (sample_type & PERF_SAMPLE_ID)
3165                 perf_output_put(handle, data->id);
3166
3167         if (sample_type & PERF_SAMPLE_STREAM_ID)
3168                 perf_output_put(handle, data->stream_id);
3169
3170         if (sample_type & PERF_SAMPLE_CPU)
3171                 perf_output_put(handle, data->cpu_entry);
3172
3173         if (sample_type & PERF_SAMPLE_PERIOD)
3174                 perf_output_put(handle, data->period);
3175
3176         if (sample_type & PERF_SAMPLE_READ)
3177                 perf_output_read(handle, event);
3178
3179         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3180                 if (data->callchain) {
3181                         int size = 1;
3182
3183                         if (data->callchain)
3184                                 size += data->callchain->nr;
3185
3186                         size *= sizeof(u64);
3187
3188                         perf_output_copy(handle, data->callchain, size);
3189                 } else {
3190                         u64 nr = 0;
3191                         perf_output_put(handle, nr);
3192                 }
3193         }
3194
3195         if (sample_type & PERF_SAMPLE_RAW) {
3196                 if (data->raw) {
3197                         perf_output_put(handle, data->raw->size);
3198                         perf_output_copy(handle, data->raw->data,
3199                                          data->raw->size);
3200                 } else {
3201                         struct {
3202                                 u32     size;
3203                                 u32     data;
3204                         } raw = {
3205                                 .size = sizeof(u32),
3206                                 .data = 0,
3207                         };
3208                         perf_output_put(handle, raw);
3209                 }
3210         }
3211 }
3212
3213 void perf_prepare_sample(struct perf_event_header *header,
3214                          struct perf_sample_data *data,
3215                          struct perf_event *event,
3216                          struct pt_regs *regs)
3217 {
3218         u64 sample_type = event->attr.sample_type;
3219
3220         data->type = sample_type;
3221
3222         header->type = PERF_RECORD_SAMPLE;
3223         header->size = sizeof(*header);
3224
3225         header->misc = 0;
3226         header->misc |= perf_misc_flags(regs);
3227
3228         if (sample_type & PERF_SAMPLE_IP) {
3229                 data->ip = perf_instruction_pointer(regs);
3230
3231                 header->size += sizeof(data->ip);
3232         }
3233
3234         if (sample_type & PERF_SAMPLE_TID) {
3235                 /* namespace issues */
3236                 data->tid_entry.pid = perf_event_pid(event, current);
3237                 data->tid_entry.tid = perf_event_tid(event, current);
3238
3239                 header->size += sizeof(data->tid_entry);
3240         }
3241
3242         if (sample_type & PERF_SAMPLE_TIME) {
3243                 data->time = perf_clock();
3244
3245                 header->size += sizeof(data->time);
3246         }
3247
3248         if (sample_type & PERF_SAMPLE_ADDR)
3249                 header->size += sizeof(data->addr);
3250
3251         if (sample_type & PERF_SAMPLE_ID) {
3252                 data->id = primary_event_id(event);
3253
3254                 header->size += sizeof(data->id);
3255         }
3256
3257         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3258                 data->stream_id = event->id;
3259
3260                 header->size += sizeof(data->stream_id);
3261         }
3262
3263         if (sample_type & PERF_SAMPLE_CPU) {
3264                 data->cpu_entry.cpu             = raw_smp_processor_id();
3265                 data->cpu_entry.reserved        = 0;
3266
3267                 header->size += sizeof(data->cpu_entry);
3268         }
3269
3270         if (sample_type & PERF_SAMPLE_PERIOD)
3271                 header->size += sizeof(data->period);
3272
3273         if (sample_type & PERF_SAMPLE_READ)
3274                 header->size += perf_event_read_size(event);
3275
3276         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3277                 int size = 1;
3278
3279                 data->callchain = perf_callchain(regs);
3280
3281                 if (data->callchain)
3282                         size += data->callchain->nr;
3283
3284                 header->size += size * sizeof(u64);
3285         }
3286
3287         if (sample_type & PERF_SAMPLE_RAW) {
3288                 int size = sizeof(u32);
3289
3290                 if (data->raw)
3291                         size += data->raw->size;
3292                 else
3293                         size += sizeof(u32);
3294
3295                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3296                 header->size += size;
3297         }
3298 }
3299
3300 static void perf_event_output(struct perf_event *event, int nmi,
3301                                 struct perf_sample_data *data,
3302                                 struct pt_regs *regs)
3303 {
3304         struct perf_output_handle handle;
3305         struct perf_event_header header;
3306
3307         perf_prepare_sample(&header, data, event, regs);
3308
3309         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3310                 return;
3311
3312         perf_output_sample(&handle, &header, data, event);
3313
3314         perf_output_end(&handle);
3315 }
3316
3317 /*
3318  * read event_id
3319  */
3320
3321 struct perf_read_event {
3322         struct perf_event_header        header;
3323
3324         u32                             pid;
3325         u32                             tid;
3326 };
3327
3328 static void
3329 perf_event_read_event(struct perf_event *event,
3330                         struct task_struct *task)
3331 {
3332         struct perf_output_handle handle;
3333         struct perf_read_event read_event = {
3334                 .header = {
3335                         .type = PERF_RECORD_READ,
3336                         .misc = 0,
3337                         .size = sizeof(read_event) + perf_event_read_size(event),
3338                 },
3339                 .pid = perf_event_pid(event, task),
3340                 .tid = perf_event_tid(event, task),
3341         };
3342         int ret;
3343
3344         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3345         if (ret)
3346                 return;
3347
3348         perf_output_put(&handle, read_event);
3349         perf_output_read(&handle, event);
3350
3351         perf_output_end(&handle);
3352 }
3353
3354 /*
3355  * task tracking -- fork/exit
3356  *
3357  * enabled by: attr.comm | attr.mmap | attr.task
3358  */
3359
3360 struct perf_task_event {
3361         struct task_struct              *task;
3362         struct perf_event_context       *task_ctx;
3363
3364         struct {
3365                 struct perf_event_header        header;
3366
3367                 u32                             pid;
3368                 u32                             ppid;
3369                 u32                             tid;
3370                 u32                             ptid;
3371                 u64                             time;
3372         } event_id;
3373 };
3374
3375 static void perf_event_task_output(struct perf_event *event,
3376                                      struct perf_task_event *task_event)
3377 {
3378         struct perf_output_handle handle;
3379         int size;
3380         struct task_struct *task = task_event->task;
3381         int ret;
3382
3383         size  = task_event->event_id.header.size;
3384         ret = perf_output_begin(&handle, event, size, 0, 0);
3385
3386         if (ret)
3387                 return;
3388
3389         task_event->event_id.pid = perf_event_pid(event, task);
3390         task_event->event_id.ppid = perf_event_pid(event, current);
3391
3392         task_event->event_id.tid = perf_event_tid(event, task);
3393         task_event->event_id.ptid = perf_event_tid(event, current);
3394
3395         perf_output_put(&handle, task_event->event_id);
3396
3397         perf_output_end(&handle);
3398 }
3399
3400 static int perf_event_task_match(struct perf_event *event)
3401 {
3402         if (event->state < PERF_EVENT_STATE_INACTIVE)
3403                 return 0;
3404
3405         if (event->cpu != -1 && event->cpu != smp_processor_id())
3406                 return 0;
3407
3408         if (event->attr.comm || event->attr.mmap || event->attr.task)
3409                 return 1;
3410
3411         return 0;
3412 }
3413
3414 static void perf_event_task_ctx(struct perf_event_context *ctx,
3415                                   struct perf_task_event *task_event)
3416 {
3417         struct perf_event *event;
3418
3419         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3420                 if (perf_event_task_match(event))
3421                         perf_event_task_output(event, task_event);
3422         }
3423 }
3424
3425 static void perf_event_task_event(struct perf_task_event *task_event)
3426 {
3427         struct perf_cpu_context *cpuctx;
3428         struct perf_event_context *ctx = task_event->task_ctx;
3429
3430         rcu_read_lock();
3431         cpuctx = &get_cpu_var(perf_cpu_context);
3432         perf_event_task_ctx(&cpuctx->ctx, task_event);
3433         if (!ctx)
3434                 ctx = rcu_dereference(current->perf_event_ctxp);
3435         if (ctx)
3436                 perf_event_task_ctx(ctx, task_event);
3437         put_cpu_var(perf_cpu_context);
3438         rcu_read_unlock();
3439 }
3440
3441 static void perf_event_task(struct task_struct *task,
3442                               struct perf_event_context *task_ctx,
3443                               int new)
3444 {
3445         struct perf_task_event task_event;
3446
3447         if (!atomic_read(&nr_comm_events) &&
3448             !atomic_read(&nr_mmap_events) &&
3449             !atomic_read(&nr_task_events))
3450                 return;
3451
3452         task_event = (struct perf_task_event){
3453                 .task     = task,
3454                 .task_ctx = task_ctx,
3455                 .event_id    = {
3456                         .header = {
3457                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3458                                 .misc = 0,
3459                                 .size = sizeof(task_event.event_id),
3460                         },
3461                         /* .pid  */
3462                         /* .ppid */
3463                         /* .tid  */
3464                         /* .ptid */
3465                         .time = perf_clock(),
3466                 },
3467         };
3468
3469         perf_event_task_event(&task_event);
3470 }
3471
3472 void perf_event_fork(struct task_struct *task)
3473 {
3474         perf_event_task(task, NULL, 1);
3475 }
3476
3477 /*
3478  * comm tracking
3479  */
3480
3481 struct perf_comm_event {
3482         struct task_struct      *task;
3483         char                    *comm;
3484         int                     comm_size;
3485
3486         struct {
3487                 struct perf_event_header        header;
3488
3489                 u32                             pid;
3490                 u32                             tid;
3491         } event_id;
3492 };
3493
3494 static void perf_event_comm_output(struct perf_event *event,
3495                                      struct perf_comm_event *comm_event)
3496 {
3497         struct perf_output_handle handle;
3498         int size = comm_event->event_id.header.size;
3499         int ret = perf_output_begin(&handle, event, size, 0, 0);
3500
3501         if (ret)
3502                 return;
3503
3504         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3505         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3506
3507         perf_output_put(&handle, comm_event->event_id);
3508         perf_output_copy(&handle, comm_event->comm,
3509                                    comm_event->comm_size);
3510         perf_output_end(&handle);
3511 }
3512
3513 static int perf_event_comm_match(struct perf_event *event)
3514 {
3515         if (event->state < PERF_EVENT_STATE_INACTIVE)
3516                 return 0;
3517
3518         if (event->cpu != -1 && event->cpu != smp_processor_id())
3519                 return 0;
3520
3521         if (event->attr.comm)
3522                 return 1;
3523
3524         return 0;
3525 }
3526
3527 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3528                                   struct perf_comm_event *comm_event)
3529 {
3530         struct perf_event *event;
3531
3532         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3533                 if (perf_event_comm_match(event))
3534                         perf_event_comm_output(event, comm_event);
3535         }
3536 }
3537
3538 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3539 {
3540         struct perf_cpu_context *cpuctx;
3541         struct perf_event_context *ctx;
3542         unsigned int size;
3543         char comm[TASK_COMM_LEN];
3544
3545         memset(comm, 0, sizeof(comm));
3546         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3547         size = ALIGN(strlen(comm)+1, sizeof(u64));
3548
3549         comm_event->comm = comm;
3550         comm_event->comm_size = size;
3551
3552         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3553
3554         rcu_read_lock();
3555         cpuctx = &get_cpu_var(perf_cpu_context);
3556         perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3557         ctx = rcu_dereference(current->perf_event_ctxp);
3558         if (ctx)
3559                 perf_event_comm_ctx(ctx, comm_event);
3560         put_cpu_var(perf_cpu_context);
3561         rcu_read_unlock();
3562 }
3563
3564 void perf_event_comm(struct task_struct *task)
3565 {
3566         struct perf_comm_event comm_event;
3567
3568         if (task->perf_event_ctxp)
3569                 perf_event_enable_on_exec(task);
3570
3571         if (!atomic_read(&nr_comm_events))
3572                 return;
3573
3574         comm_event = (struct perf_comm_event){
3575                 .task   = task,
3576                 /* .comm      */
3577                 /* .comm_size */
3578                 .event_id  = {
3579                         .header = {
3580                                 .type = PERF_RECORD_COMM,
3581                                 .misc = 0,
3582                                 /* .size */
3583                         },
3584                         /* .pid */
3585                         /* .tid */
3586                 },
3587         };
3588
3589         perf_event_comm_event(&comm_event);
3590 }
3591
3592 /*
3593  * mmap tracking
3594  */
3595
3596 struct perf_mmap_event {
3597         struct vm_area_struct   *vma;
3598
3599         const char              *file_name;
3600         int                     file_size;
3601
3602         struct {
3603                 struct perf_event_header        header;
3604
3605                 u32                             pid;
3606                 u32                             tid;
3607                 u64                             start;
3608                 u64                             len;
3609                 u64                             pgoff;
3610         } event_id;
3611 };
3612
3613 static void perf_event_mmap_output(struct perf_event *event,
3614                                      struct perf_mmap_event *mmap_event)
3615 {
3616         struct perf_output_handle handle;
3617         int size = mmap_event->event_id.header.size;
3618         int ret = perf_output_begin(&handle, event, size, 0, 0);
3619
3620         if (ret)
3621                 return;
3622
3623         mmap_event->event_id.pid = perf_event_pid(event, current);
3624         mmap_event->event_id.tid = perf_event_tid(event, current);
3625
3626         perf_output_put(&handle, mmap_event->event_id);
3627         perf_output_copy(&handle, mmap_event->file_name,
3628                                    mmap_event->file_size);
3629         perf_output_end(&handle);
3630 }
3631
3632 static int perf_event_mmap_match(struct perf_event *event,
3633                                    struct perf_mmap_event *mmap_event)
3634 {
3635         if (event->state < PERF_EVENT_STATE_INACTIVE)
3636                 return 0;
3637
3638         if (event->cpu != -1 && event->cpu != smp_processor_id())
3639                 return 0;
3640
3641         if (event->attr.mmap)
3642                 return 1;
3643
3644         return 0;
3645 }
3646
3647 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3648                                   struct perf_mmap_event *mmap_event)
3649 {
3650         struct perf_event *event;
3651
3652         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3653                 if (perf_event_mmap_match(event, mmap_event))
3654                         perf_event_mmap_output(event, mmap_event);
3655         }
3656 }
3657
3658 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3659 {
3660         struct perf_cpu_context *cpuctx;
3661         struct perf_event_context *ctx;
3662         struct vm_area_struct *vma = mmap_event->vma;
3663         struct file *file = vma->vm_file;
3664         unsigned int size;
3665         char tmp[16];
3666         char *buf = NULL;
3667         const char *name;
3668
3669         memset(tmp, 0, sizeof(tmp));
3670
3671         if (file) {
3672                 /*
3673                  * d_path works from the end of the buffer backwards, so we
3674                  * need to add enough zero bytes after the string to handle
3675                  * the 64bit alignment we do later.
3676                  */
3677                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3678                 if (!buf) {
3679                         name = strncpy(tmp, "//enomem", sizeof(tmp));
3680                         goto got_name;
3681                 }
3682                 name = d_path(&file->f_path, buf, PATH_MAX);
3683                 if (IS_ERR(name)) {
3684                         name = strncpy(tmp, "//toolong", sizeof(tmp));
3685                         goto got_name;
3686                 }
3687         } else {
3688                 if (arch_vma_name(mmap_event->vma)) {
3689                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3690                                        sizeof(tmp));
3691                         goto got_name;
3692                 }
3693
3694                 if (!vma->vm_mm) {
3695                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
3696                         goto got_name;
3697                 }
3698
3699                 name = strncpy(tmp, "//anon", sizeof(tmp));
3700                 goto got_name;
3701         }
3702
3703 got_name:
3704         size = ALIGN(strlen(name)+1, sizeof(u64));
3705
3706         mmap_event->file_name = name;
3707         mmap_event->file_size = size;
3708
3709         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3710
3711         rcu_read_lock();
3712         cpuctx = &get_cpu_var(perf_cpu_context);
3713         perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3714         ctx = rcu_dereference(current->perf_event_ctxp);
3715         if (ctx)
3716                 perf_event_mmap_ctx(ctx, mmap_event);
3717         put_cpu_var(perf_cpu_context);
3718         rcu_read_unlock();
3719
3720         kfree(buf);
3721 }
3722
3723 void __perf_event_mmap(struct vm_area_struct *vma)
3724 {
3725         struct perf_mmap_event mmap_event;
3726
3727         if (!atomic_read(&nr_mmap_events))
3728                 return;
3729
3730         mmap_event = (struct perf_mmap_event){
3731                 .vma    = vma,
3732                 /* .file_name */
3733                 /* .file_size */
3734                 .event_id  = {
3735                         .header = {
3736                                 .type = PERF_RECORD_MMAP,
3737                                 .misc = 0,
3738                                 /* .size */
3739                         },
3740                         /* .pid */
3741                         /* .tid */
3742                         .start  = vma->vm_start,
3743                         .len    = vma->vm_end - vma->vm_start,
3744                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3745                 },
3746         };
3747
3748         perf_event_mmap_event(&mmap_event);
3749 }
3750
3751 /*
3752  * IRQ throttle logging
3753  */
3754
3755 static void perf_log_throttle(struct perf_event *event, int enable)
3756 {
3757         struct perf_output_handle handle;
3758         int ret;
3759
3760         struct {
3761                 struct perf_event_header        header;
3762                 u64                             time;
3763                 u64                             id;
3764                 u64                             stream_id;
3765         } throttle_event = {
3766                 .header = {
3767                         .type = PERF_RECORD_THROTTLE,
3768                         .misc = 0,
3769                         .size = sizeof(throttle_event),
3770                 },
3771                 .time           = perf_clock(),
3772                 .id             = primary_event_id(event),
3773                 .stream_id      = event->id,
3774         };
3775
3776         if (enable)
3777                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3778
3779         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3780         if (ret)
3781                 return;
3782
3783         perf_output_put(&handle, throttle_event);
3784         perf_output_end(&handle);
3785 }
3786
3787 /*
3788  * Generic event overflow handling, sampling.
3789  */
3790
3791 static int __perf_event_overflow(struct perf_event *event, int nmi,
3792                                    int throttle, struct perf_sample_data *data,
3793                                    struct pt_regs *regs)
3794 {
3795         int events = atomic_read(&event->event_limit);
3796         struct hw_perf_event *hwc = &event->hw;
3797         int ret = 0;
3798
3799         throttle = (throttle && event->pmu->unthrottle != NULL);
3800
3801         if (!throttle) {
3802                 hwc->interrupts++;
3803         } else {
3804                 if (hwc->interrupts != MAX_INTERRUPTS) {
3805                         hwc->interrupts++;
3806                         if (HZ * hwc->interrupts >
3807                                         (u64)sysctl_perf_event_sample_rate) {
3808                                 hwc->interrupts = MAX_INTERRUPTS;
3809                                 perf_log_throttle(event, 0);
3810                                 ret = 1;
3811                         }
3812                 } else {
3813                         /*
3814                          * Keep re-disabling events even though on the previous
3815                          * pass we disabled it - just in case we raced with a
3816                          * sched-in and the event got enabled again:
3817                          */
3818                         ret = 1;
3819                 }
3820         }
3821
3822         if (event->attr.freq) {
3823                 u64 now = perf_clock();
3824                 s64 delta = now - hwc->freq_time_stamp;
3825
3826                 hwc->freq_time_stamp = now;
3827
3828                 if (delta > 0 && delta < 2*TICK_NSEC)
3829                         perf_adjust_period(event, delta, hwc->last_period);
3830         }
3831
3832         /*
3833          * XXX event_limit might not quite work as expected on inherited
3834          * events
3835          */
3836
3837         event->pending_kill = POLL_IN;
3838         if (events && atomic_dec_and_test(&event->event_limit)) {
3839                 ret = 1;
3840                 event->pending_kill = POLL_HUP;
3841                 if (nmi) {
3842                         event->pending_disable = 1;
3843                         perf_pending_queue(&event->pending,
3844                                            perf_pending_event);
3845                 } else
3846                         perf_event_disable(event);
3847         }
3848
3849         if (event->overflow_handler)
3850                 event->overflow_handler(event, nmi, data, regs);
3851         else
3852                 perf_event_output(event, nmi, data, regs);
3853
3854         return ret;
3855 }
3856
3857 int perf_event_overflow(struct perf_event *event, int nmi,
3858                           struct perf_sample_data *data,
3859                           struct pt_regs *regs)
3860 {
3861         return __perf_event_overflow(event, nmi, 1, data, regs);
3862 }
3863
3864 /*
3865  * Generic software event infrastructure
3866  */
3867
3868 /*
3869  * We directly increment event->count and keep a second value in
3870  * event->hw.period_left to count intervals. This period event
3871  * is kept in the range [-sample_period, 0] so that we can use the
3872  * sign as trigger.
3873  */
3874
3875 static u64 perf_swevent_set_period(struct perf_event *event)
3876 {
3877         struct hw_perf_event *hwc = &event->hw;
3878         u64 period = hwc->last_period;
3879         u64 nr, offset;
3880         s64 old, val;
3881
3882         hwc->last_period = hwc->sample_period;
3883
3884 again:
3885         old = val = atomic64_read(&hwc->period_left);
3886         if (val < 0)
3887                 return 0;
3888
3889         nr = div64_u64(period + val, period);
3890         offset = nr * period;
3891         val -= offset;
3892         if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3893                 goto again;
3894
3895         return nr;
3896 }
3897
3898 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3899                                     int nmi, struct perf_sample_data *data,
3900                                     struct pt_regs *regs)
3901 {
3902         struct hw_perf_event *hwc = &event->hw;
3903         int throttle = 0;
3904
3905         data->period = event->hw.last_period;
3906         if (!overflow)
3907                 overflow = perf_swevent_set_period(event);
3908
3909         if (hwc->interrupts == MAX_INTERRUPTS)
3910                 return;
3911
3912         for (; overflow; overflow--) {
3913                 if (__perf_event_overflow(event, nmi, throttle,
3914                                             data, regs)) {
3915                         /*
3916                          * We inhibit the overflow from happening when
3917                          * hwc->interrupts == MAX_INTERRUPTS.
3918                          */
3919                         break;
3920                 }
3921                 throttle = 1;
3922         }
3923 }
3924
3925 static void perf_swevent_unthrottle(struct perf_event *event)
3926 {
3927         /*
3928          * Nothing to do, we already reset hwc->interrupts.
3929          */
3930 }
3931
3932 static void perf_swevent_add(struct perf_event *event, u64 nr,
3933                                int nmi, struct perf_sample_data *data,
3934                                struct pt_regs *regs)
3935 {
3936         struct hw_perf_event *hwc = &event->hw;
3937
3938         atomic64_add(nr, &event->count);
3939
3940         if (!regs)
3941                 return;
3942
3943         if (!hwc->sample_period)
3944                 return;
3945
3946         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3947                 return perf_swevent_overflow(event, 1, nmi, data, regs);
3948
3949         if (atomic64_add_negative(nr, &hwc->period_left))
3950                 return;
3951
3952         perf_swevent_overflow(event, 0, nmi, data, regs);
3953 }
3954
3955 static int perf_swevent_is_counting(struct perf_event *event)
3956 {
3957         /*
3958          * The event is active, we're good!
3959          */
3960         if (event->state == PERF_EVENT_STATE_ACTIVE)
3961                 return 1;
3962
3963         /*
3964          * The event is off/error, not counting.
3965          */
3966         if (event->state != PERF_EVENT_STATE_INACTIVE)
3967                 return 0;
3968
3969         /*
3970          * The event is inactive, if the context is active
3971          * we're part of a group that didn't make it on the 'pmu',
3972          * not counting.
3973          */
3974         if (event->ctx->is_active)
3975                 return 0;
3976
3977         /*
3978          * We're inactive and the context is too, this means the
3979          * task is scheduled out, we're counting events that happen
3980          * to us, like migration events.
3981          */
3982         return 1;
3983 }
3984
3985 static int perf_tp_event_match(struct perf_event *event,
3986                                 struct perf_sample_data *data);
3987
3988 static int perf_exclude_event(struct perf_event *event,
3989                               struct pt_regs *regs)
3990 {
3991         if (regs) {
3992                 if (event->attr.exclude_user && user_mode(regs))
3993                         return 1;
3994
3995                 if (event->attr.exclude_kernel && !user_mode(regs))
3996                         return 1;
3997         }
3998
3999         return 0;
4000 }
4001
4002 static int perf_swevent_match(struct perf_event *event,
4003                                 enum perf_type_id type,
4004                                 u32 event_id,
4005                                 struct perf_sample_data *data,
4006                                 struct pt_regs *regs)
4007 {
4008         if (event->cpu != -1 && event->cpu != smp_processor_id())
4009                 return 0;
4010
4011         if (!perf_swevent_is_counting(event))
4012                 return 0;
4013
4014         if (event->attr.type != type)
4015                 return 0;
4016
4017         if (event->attr.config != event_id)
4018                 return 0;
4019
4020         if (perf_exclude_event(event, regs))
4021                 return 0;
4022
4023         if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4024             !perf_tp_event_match(event, data))
4025                 return 0;
4026
4027         return 1;
4028 }
4029
4030 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4031                                      enum perf_type_id type,
4032                                      u32 event_id, u64 nr, int nmi,
4033                                      struct perf_sample_data *data,
4034                                      struct pt_regs *regs)
4035 {
4036         struct perf_event *event;
4037
4038         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4039                 if (perf_swevent_match(event, type, event_id, data, regs))
4040                         perf_swevent_add(event, nr, nmi, data, regs);
4041         }
4042 }
4043
4044 int perf_swevent_get_recursion_context(void)
4045 {
4046         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4047         int rctx;
4048
4049         if (in_nmi())
4050                 rctx = 3;
4051         else if (in_irq())
4052                 rctx = 2;
4053         else if (in_softirq())
4054                 rctx = 1;
4055         else
4056                 rctx = 0;
4057
4058         if (cpuctx->recursion[rctx]) {
4059                 put_cpu_var(perf_cpu_context);
4060                 return -1;
4061         }
4062
4063         cpuctx->recursion[rctx]++;
4064         barrier();
4065
4066         return rctx;
4067 }
4068 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4069
4070 void perf_swevent_put_recursion_context(int rctx)
4071 {
4072         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4073         barrier();
4074         cpuctx->recursion[rctx]--;
4075         put_cpu_var(perf_cpu_context);
4076 }
4077 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4078
4079 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4080                                     u64 nr, int nmi,
4081                                     struct perf_sample_data *data,
4082                                     struct pt_regs *regs)
4083 {
4084         struct perf_cpu_context *cpuctx;
4085         struct perf_event_context *ctx;
4086
4087         cpuctx = &__get_cpu_var(perf_cpu_context);
4088         rcu_read_lock();
4089         perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4090                                  nr, nmi, data, regs);
4091         /*
4092          * doesn't really matter which of the child contexts the
4093          * events ends up in.
4094          */
4095         ctx = rcu_dereference(current->perf_event_ctxp);
4096         if (ctx)
4097                 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4098         rcu_read_unlock();
4099 }
4100
4101 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4102                             struct pt_regs *regs, u64 addr)
4103 {
4104         struct perf_sample_data data;
4105         int rctx;
4106
4107         rctx = perf_swevent_get_recursion_context();
4108         if (rctx < 0)
4109                 return;
4110
4111         perf_sample_data_init(&data, addr);
4112
4113         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4114
4115         perf_swevent_put_recursion_context(rctx);
4116 }
4117
4118 static void perf_swevent_read(struct perf_event *event)
4119 {
4120 }
4121
4122 static int perf_swevent_enable(struct perf_event *event)
4123 {
4124         struct hw_perf_event *hwc = &event->hw;
4125
4126         if (hwc->sample_period) {
4127                 hwc->last_period = hwc->sample_period;
4128                 perf_swevent_set_period(event);
4129         }
4130         return 0;
4131 }
4132
4133 static void perf_swevent_disable(struct perf_event *event)
4134 {
4135 }
4136
4137 static const struct pmu perf_ops_generic = {
4138         .enable         = perf_swevent_enable,
4139         .disable        = perf_swevent_disable,
4140         .read           = perf_swevent_read,
4141         .unthrottle     = perf_swevent_unthrottle,
4142 };
4143
4144 /*
4145  * hrtimer based swevent callback
4146  */
4147
4148 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4149 {
4150         enum hrtimer_restart ret = HRTIMER_RESTART;
4151         struct perf_sample_data data;
4152         struct pt_regs *regs;
4153         struct perf_event *event;
4154         u64 period;
4155
4156         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4157         event->pmu->read(event);
4158
4159         perf_sample_data_init(&data, 0);
4160         data.period = event->hw.last_period;
4161         regs = get_irq_regs();
4162         /*
4163          * In case we exclude kernel IPs or are somehow not in interrupt
4164          * context, provide the next best thing, the user IP.
4165          */
4166         if ((event->attr.exclude_kernel || !regs) &&
4167                         !event->attr.exclude_user)
4168                 regs = task_pt_regs(current);
4169
4170         if (regs) {
4171                 if (!(event->attr.exclude_idle && current->pid == 0))
4172                         if (perf_event_overflow(event, 0, &data, regs))
4173                                 ret = HRTIMER_NORESTART;
4174         }
4175
4176         period = max_t(u64, 10000, event->hw.sample_period);
4177         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4178
4179         return ret;
4180 }
4181
4182 static void perf_swevent_start_hrtimer(struct perf_event *event)
4183 {
4184         struct hw_perf_event *hwc = &event->hw;
4185
4186         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4187         hwc->hrtimer.function = perf_swevent_hrtimer;
4188         if (hwc->sample_period) {
4189                 u64 period;
4190
4191                 if (hwc->remaining) {
4192                         if (hwc->remaining < 0)
4193                                 period = 10000;
4194                         else
4195                                 period = hwc->remaining;
4196                         hwc->remaining = 0;
4197                 } else {
4198                         period = max_t(u64, 10000, hwc->sample_period);
4199                 }
4200                 __hrtimer_start_range_ns(&hwc->hrtimer,
4201                                 ns_to_ktime(period), 0,
4202                                 HRTIMER_MODE_REL, 0);
4203         }
4204 }
4205
4206 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4207 {
4208         struct hw_perf_event *hwc = &event->hw;
4209
4210         if (hwc->sample_period) {
4211                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4212                 hwc->remaining = ktime_to_ns(remaining);
4213
4214                 hrtimer_cancel(&hwc->hrtimer);
4215         }
4216 }
4217
4218 /*
4219  * Software event: cpu wall time clock
4220  */
4221
4222 static void cpu_clock_perf_event_update(struct perf_event *event)
4223 {
4224         int cpu = raw_smp_processor_id();
4225         s64 prev;
4226         u64 now;
4227
4228         now = cpu_clock(cpu);
4229         prev = atomic64_xchg(&event->hw.prev_count, now);
4230         atomic64_add(now - prev, &event->count);
4231 }
4232
4233 static int cpu_clock_perf_event_enable(struct perf_event *event)
4234 {
4235         struct hw_perf_event *hwc = &event->hw;
4236         int cpu = raw_smp_processor_id();
4237
4238         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4239         perf_swevent_start_hrtimer(event);
4240
4241         return 0;
4242 }
4243
4244 static void cpu_clock_perf_event_disable(struct perf_event *event)
4245 {
4246         perf_swevent_cancel_hrtimer(event);
4247         cpu_clock_perf_event_update(event);
4248 }
4249
4250 static void cpu_clock_perf_event_read(struct perf_event *event)
4251 {
4252         cpu_clock_perf_event_update(event);
4253 }
4254
4255 static const struct pmu perf_ops_cpu_clock = {
4256         .enable         = cpu_clock_perf_event_enable,
4257         .disable        = cpu_clock_perf_event_disable,
4258         .read           = cpu_clock_perf_event_read,
4259 };
4260
4261 /*
4262  * Software event: task time clock
4263  */
4264
4265 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4266 {
4267         u64 prev;
4268         s64 delta;
4269
4270         prev = atomic64_xchg(&event->hw.prev_count, now);
4271         delta = now - prev;
4272         atomic64_add(delta, &event->count);
4273 }
4274
4275 static int task_clock_perf_event_enable(struct perf_event *event)
4276 {
4277         struct hw_perf_event *hwc = &event->hw;
4278         u64 now;
4279
4280         now = event->ctx->time;
4281
4282         atomic64_set(&hwc->prev_count, now);
4283
4284         perf_swevent_start_hrtimer(event);
4285
4286         return 0;
4287 }
4288
4289 static void task_clock_perf_event_disable(struct perf_event *event)
4290 {
4291         perf_swevent_cancel_hrtimer(event);
4292         task_clock_perf_event_update(event, event->ctx->time);
4293
4294 }
4295
4296 static void task_clock_perf_event_read(struct perf_event *event)
4297 {
4298         u64 time;
4299
4300         if (!in_nmi()) {
4301                 update_context_time(event->ctx);
4302                 time = event->ctx->time;
4303         } else {
4304                 u64 now = perf_clock();
4305                 u64 delta = now - event->ctx->timestamp;
4306                 time = event->ctx->time + delta;
4307         }
4308
4309         task_clock_perf_event_update(event, time);
4310 }
4311
4312 static const struct pmu perf_ops_task_clock = {
4313         .enable         = task_clock_perf_event_enable,
4314         .disable        = task_clock_perf_event_disable,
4315         .read           = task_clock_perf_event_read,
4316 };
4317
4318 #ifdef CONFIG_EVENT_TRACING
4319
4320 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4321                           int entry_size)
4322 {
4323         struct pt_regs *regs = get_irq_regs();
4324         struct perf_sample_data data;
4325         struct perf_raw_record raw = {
4326                 .size = entry_size,
4327                 .data = record,
4328         };
4329
4330         perf_sample_data_init(&data, addr);
4331         data.raw = &raw;
4332
4333         if (!regs)
4334                 regs = task_pt_regs(current);
4335
4336         /* Trace events already protected against recursion */
4337         do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4338                                 &data, regs);
4339 }
4340 EXPORT_SYMBOL_GPL(perf_tp_event);
4341
4342 static int perf_tp_event_match(struct perf_event *event,
4343                                 struct perf_sample_data *data)
4344 {
4345         void *record = data->raw->data;
4346
4347         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4348                 return 1;
4349         return 0;
4350 }
4351
4352 static void tp_perf_event_destroy(struct perf_event *event)
4353 {
4354         ftrace_profile_disable(event->attr.config);
4355 }
4356
4357 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4358 {
4359         /*
4360          * Raw tracepoint data is a severe data leak, only allow root to
4361          * have these.
4362          */
4363         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4364                         perf_paranoid_tracepoint_raw() &&
4365                         !capable(CAP_SYS_ADMIN))
4366                 return ERR_PTR(-EPERM);
4367
4368         if (ftrace_profile_enable(event->attr.config))
4369                 return NULL;
4370
4371         event->destroy = tp_perf_event_destroy;
4372
4373         return &perf_ops_generic;
4374 }
4375
4376 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4377 {
4378         char *filter_str;
4379         int ret;
4380
4381         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4382                 return -EINVAL;
4383
4384         filter_str = strndup_user(arg, PAGE_SIZE);
4385         if (IS_ERR(filter_str))
4386                 return PTR_ERR(filter_str);
4387
4388         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4389
4390         kfree(filter_str);
4391         return ret;
4392 }
4393
4394 static void perf_event_free_filter(struct perf_event *event)
4395 {
4396         ftrace_profile_free_filter(event);
4397 }
4398
4399 #else
4400
4401 static int perf_tp_event_match(struct perf_event *event,
4402                                 struct perf_sample_data *data)
4403 {
4404         return 1;
4405 }
4406
4407 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4408 {
4409         return NULL;
4410 }
4411
4412 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4413 {
4414         return -ENOENT;
4415 }
4416
4417 static void perf_event_free_filter(struct perf_event *event)
4418 {
4419 }
4420
4421 #endif /* CONFIG_EVENT_TRACING */
4422
4423 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4424 static void bp_perf_event_destroy(struct perf_event *event)
4425 {
4426         release_bp_slot(event);
4427 }
4428
4429 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4430 {
4431         int err;
4432
4433         err = register_perf_hw_breakpoint(bp);
4434         if (err)
4435                 return ERR_PTR(err);
4436
4437         bp->destroy = bp_perf_event_destroy;
4438
4439         return &perf_ops_bp;
4440 }
4441
4442 void perf_bp_event(struct perf_event *bp, void *data)
4443 {
4444         struct perf_sample_data sample;
4445         struct pt_regs *regs = data;
4446
4447         perf_sample_data_init(&sample, bp->attr.bp_addr);
4448
4449         if (!perf_exclude_event(bp, regs))
4450                 perf_swevent_add(bp, 1, 1, &sample, regs);
4451 }
4452 #else
4453 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4454 {
4455         return NULL;
4456 }
4457
4458 void perf_bp_event(struct perf_event *bp, void *regs)
4459 {
4460 }
4461 #endif
4462
4463 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4464
4465 static void sw_perf_event_destroy(struct perf_event *event)
4466 {
4467         u64 event_id = event->attr.config;
4468
4469         WARN_ON(event->parent);
4470
4471         atomic_dec(&perf_swevent_enabled[event_id]);
4472 }
4473
4474 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4475 {
4476         const struct pmu *pmu = NULL;
4477         u64 event_id = event->attr.config;
4478
4479         /*
4480          * Software events (currently) can't in general distinguish
4481          * between user, kernel and hypervisor events.
4482          * However, context switches and cpu migrations are considered
4483          * to be kernel events, and page faults are never hypervisor
4484          * events.
4485          */
4486         switch (event_id) {
4487         case PERF_COUNT_SW_CPU_CLOCK:
4488                 pmu = &perf_ops_cpu_clock;
4489
4490                 break;
4491         case PERF_COUNT_SW_TASK_CLOCK:
4492                 /*
4493                  * If the user instantiates this as a per-cpu event,
4494                  * use the cpu_clock event instead.
4495                  */
4496                 if (event->ctx->task)
4497                         pmu = &perf_ops_task_clock;
4498                 else
4499                         pmu = &perf_ops_cpu_clock;
4500
4501                 break;
4502         case PERF_COUNT_SW_PAGE_FAULTS:
4503         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4504         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4505         case PERF_COUNT_SW_CONTEXT_SWITCHES:
4506         case PERF_COUNT_SW_CPU_MIGRATIONS:
4507         case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4508         case PERF_COUNT_SW_EMULATION_FAULTS:
4509                 if (!event->parent) {
4510                         atomic_inc(&perf_swevent_enabled[event_id]);
4511                         event->destroy = sw_perf_event_destroy;
4512                 }
4513                 pmu = &perf_ops_generic;
4514                 break;
4515         }
4516
4517         return pmu;
4518 }
4519
4520 /*
4521  * Allocate and initialize a event structure
4522  */
4523 static struct perf_event *
4524 perf_event_alloc(struct perf_event_attr *attr,
4525                    int cpu,
4526                    struct perf_event_context *ctx,
4527                    struct perf_event *group_leader,
4528                    struct perf_event *parent_event,
4529                    perf_overflow_handler_t overflow_handler,
4530                    gfp_t gfpflags)
4531 {
4532         const struct pmu *pmu;
4533         struct perf_event *event;
4534         struct hw_perf_event *hwc;
4535         long err;
4536
4537         event = kzalloc(sizeof(*event), gfpflags);
4538         if (!event)
4539                 return ERR_PTR(-ENOMEM);
4540
4541         /*
4542          * Single events are their own group leaders, with an
4543          * empty sibling list:
4544          */
4545         if (!group_leader)
4546                 group_leader = event;
4547
4548         mutex_init(&event->child_mutex);
4549         INIT_LIST_HEAD(&event->child_list);
4550
4551         INIT_LIST_HEAD(&event->group_entry);
4552         INIT_LIST_HEAD(&event->event_entry);
4553         INIT_LIST_HEAD(&event->sibling_list);
4554         init_waitqueue_head(&event->waitq);
4555
4556         mutex_init(&event->mmap_mutex);
4557
4558         event->cpu              = cpu;
4559         event->attr             = *attr;
4560         event->group_leader     = group_leader;
4561         event->pmu              = NULL;
4562         event->ctx              = ctx;
4563         event->oncpu            = -1;
4564
4565         event->parent           = parent_event;
4566
4567         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
4568         event->id               = atomic64_inc_return(&perf_event_id);
4569
4570         event->state            = PERF_EVENT_STATE_INACTIVE;
4571
4572         if (!overflow_handler && parent_event)
4573                 overflow_handler = parent_event->overflow_handler;
4574         
4575         event->overflow_handler = overflow_handler;
4576
4577         if (attr->disabled)
4578                 event->state = PERF_EVENT_STATE_OFF;
4579
4580         pmu = NULL;
4581
4582         hwc = &event->hw;
4583         hwc->sample_period = attr->sample_period;
4584         if (attr->freq && attr->sample_freq)
4585                 hwc->sample_period = 1;
4586         hwc->last_period = hwc->sample_period;
4587
4588         atomic64_set(&hwc->period_left, hwc->sample_period);
4589
4590         /*
4591          * we currently do not support PERF_FORMAT_GROUP on inherited events
4592          */
4593         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4594                 goto done;
4595
4596         switch (attr->type) {
4597         case PERF_TYPE_RAW:
4598         case PERF_TYPE_HARDWARE:
4599         case PERF_TYPE_HW_CACHE:
4600                 pmu = hw_perf_event_init(event);
4601                 break;
4602
4603         case PERF_TYPE_SOFTWARE:
4604                 pmu = sw_perf_event_init(event);
4605                 break;
4606
4607         case PERF_TYPE_TRACEPOINT:
4608                 pmu = tp_perf_event_init(event);
4609                 break;
4610
4611         case PERF_TYPE_BREAKPOINT:
4612                 pmu = bp_perf_event_init(event);
4613                 break;
4614
4615
4616         default:
4617                 break;
4618         }
4619 done:
4620         err = 0;
4621         if (!pmu)
4622                 err = -EINVAL;
4623         else if (IS_ERR(pmu))
4624                 err = PTR_ERR(pmu);
4625
4626         if (err) {
4627                 if (event->ns)
4628                         put_pid_ns(event->ns);
4629                 kfree(event);
4630                 return ERR_PTR(err);
4631         }
4632
4633         event->pmu = pmu;
4634
4635         if (!event->parent) {
4636                 atomic_inc(&nr_events);
4637                 if (event->attr.mmap)
4638                         atomic_inc(&nr_mmap_events);
4639                 if (event->attr.comm)
4640                         atomic_inc(&nr_comm_events);
4641                 if (event->attr.task)
4642                         atomic_inc(&nr_task_events);
4643         }
4644
4645         return event;
4646 }
4647
4648 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4649                           struct perf_event_attr *attr)
4650 {
4651         u32 size;
4652         int ret;
4653
4654         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4655                 return -EFAULT;
4656
4657         /*
4658          * zero the full structure, so that a short copy will be nice.
4659          */
4660         memset(attr, 0, sizeof(*attr));
4661
4662         ret = get_user(size, &uattr->size);
4663         if (ret)
4664                 return ret;
4665
4666         if (size > PAGE_SIZE)   /* silly large */
4667                 goto err_size;
4668
4669         if (!size)              /* abi compat */
4670                 size = PERF_ATTR_SIZE_VER0;
4671
4672         if (size < PERF_ATTR_SIZE_VER0)
4673                 goto err_size;
4674
4675         /*
4676          * If we're handed a bigger struct than we know of,
4677          * ensure all the unknown bits are 0 - i.e. new
4678          * user-space does not rely on any kernel feature
4679          * extensions we dont know about yet.
4680          */
4681         if (size > sizeof(*attr)) {
4682                 unsigned char __user *addr;
4683                 unsigned char __user *end;
4684                 unsigned char val;
4685
4686                 addr = (void __user *)uattr + sizeof(*attr);
4687                 end  = (void __user *)uattr + size;
4688
4689                 for (; addr < end; addr++) {
4690                         ret = get_user(val, addr);
4691                         if (ret)
4692                                 return ret;
4693                         if (val)
4694                                 goto err_size;
4695                 }
4696                 size = sizeof(*attr);
4697         }
4698
4699         ret = copy_from_user(attr, uattr, size);
4700         if (ret)
4701                 return -EFAULT;
4702
4703         /*
4704          * If the type exists, the corresponding creation will verify
4705          * the attr->config.
4706          */
4707         if (attr->type >= PERF_TYPE_MAX)
4708                 return -EINVAL;
4709
4710         if (attr->__reserved_1)
4711                 return -EINVAL;
4712
4713         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4714                 return -EINVAL;
4715
4716         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4717                 return -EINVAL;
4718
4719 out:
4720         return ret;
4721
4722 err_size:
4723         put_user(sizeof(*attr), &uattr->size);
4724         ret = -E2BIG;
4725         goto out;
4726 }
4727
4728 static int perf_event_set_output(struct perf_event *event, int output_fd)
4729 {
4730         struct perf_event *output_event = NULL;
4731         struct file *output_file = NULL;
4732         struct perf_event *old_output;
4733         int fput_needed = 0;
4734         int ret = -EINVAL;
4735
4736         if (!output_fd)
4737                 goto set;
4738
4739         output_file = fget_light(output_fd, &fput_needed);
4740         if (!output_file)
4741                 return -EBADF;
4742
4743         if (output_file->f_op != &perf_fops)
4744                 goto out;
4745
4746         output_event = output_file->private_data;
4747
4748         /* Don't chain output fds */
4749         if (output_event->output)
4750                 goto out;
4751
4752         /* Don't set an output fd when we already have an output channel */
4753         if (event->data)
4754                 goto out;
4755
4756         atomic_long_inc(&output_file->f_count);
4757
4758 set:
4759         mutex_lock(&event->mmap_mutex);
4760         old_output = event->output;
4761         rcu_assign_pointer(event->output, output_event);
4762         mutex_unlock(&event->mmap_mutex);
4763
4764         if (old_output) {
4765                 /*
4766                  * we need to make sure no existing perf_output_*()
4767                  * is still referencing this event.
4768                  */
4769                 synchronize_rcu();
4770                 fput(old_output->filp);
4771         }
4772
4773         ret = 0;
4774 out:
4775         fput_light(output_file, fput_needed);
4776         return ret;
4777 }
4778
4779 /**
4780  * sys_perf_event_open - open a performance event, associate it to a task/cpu
4781  *
4782  * @attr_uptr:  event_id type attributes for monitoring/sampling
4783  * @pid:                target pid
4784  * @cpu:                target cpu
4785  * @group_fd:           group leader event fd
4786  */
4787 SYSCALL_DEFINE5(perf_event_open,
4788                 struct perf_event_attr __user *, attr_uptr,
4789                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4790 {
4791         struct perf_event *event, *group_leader;
4792         struct perf_event_attr attr;
4793         struct perf_event_context *ctx;
4794         struct file *event_file = NULL;
4795         struct file *group_file = NULL;
4796         int fput_needed = 0;
4797         int fput_needed2 = 0;
4798         int err;
4799
4800         /* for future expandability... */
4801         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4802                 return -EINVAL;
4803
4804         err = perf_copy_attr(attr_uptr, &attr);
4805         if (err)
4806                 return err;
4807
4808         if (!attr.exclude_kernel) {
4809                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4810                         return -EACCES;
4811         }
4812
4813         if (attr.freq) {
4814                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4815                         return -EINVAL;
4816         }
4817
4818         /*
4819          * Get the target context (task or percpu):
4820          */
4821         ctx = find_get_context(pid, cpu);
4822         if (IS_ERR(ctx))
4823                 return PTR_ERR(ctx);
4824
4825         /*
4826          * Look up the group leader (we will attach this event to it):
4827          */
4828         group_leader = NULL;
4829         if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4830                 err = -EINVAL;
4831                 group_file = fget_light(group_fd, &fput_needed);
4832                 if (!group_file)
4833                         goto err_put_context;
4834                 if (group_file->f_op != &perf_fops)
4835                         goto err_put_context;
4836
4837                 group_leader = group_file->private_data;
4838                 /*
4839                  * Do not allow a recursive hierarchy (this new sibling
4840                  * becoming part of another group-sibling):
4841                  */
4842                 if (group_leader->group_leader != group_leader)
4843                         goto err_put_context;
4844                 /*
4845                  * Do not allow to attach to a group in a different
4846                  * task or CPU context:
4847                  */
4848                 if (group_leader->ctx != ctx)
4849                         goto err_put_context;
4850                 /*
4851                  * Only a group leader can be exclusive or pinned
4852                  */
4853                 if (attr.exclusive || attr.pinned)
4854                         goto err_put_context;
4855         }
4856
4857         event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4858                                      NULL, NULL, GFP_KERNEL);
4859         err = PTR_ERR(event);
4860         if (IS_ERR(event))
4861                 goto err_put_context;
4862
4863         err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4864         if (err < 0)
4865                 goto err_free_put_context;
4866
4867         event_file = fget_light(err, &fput_needed2);
4868         if (!event_file)
4869                 goto err_free_put_context;
4870
4871         if (flags & PERF_FLAG_FD_OUTPUT) {
4872                 err = perf_event_set_output(event, group_fd);
4873                 if (err)
4874                         goto err_fput_free_put_context;
4875         }
4876
4877         event->filp = event_file;
4878         WARN_ON_ONCE(ctx->parent_ctx);
4879         mutex_lock(&ctx->mutex);
4880         perf_install_in_context(ctx, event, cpu);
4881         ++ctx->generation;
4882         mutex_unlock(&ctx->mutex);
4883
4884         event->owner = current;
4885         get_task_struct(current);
4886         mutex_lock(&current->perf_event_mutex);
4887         list_add_tail(&event->owner_entry, &current->perf_event_list);
4888         mutex_unlock(&current->perf_event_mutex);
4889
4890 err_fput_free_put_context:
4891         fput_light(event_file, fput_needed2);
4892
4893 err_free_put_context:
4894         if (err < 0)
4895                 kfree(event);
4896
4897 err_put_context:
4898         if (err < 0)
4899                 put_ctx(ctx);
4900
4901         fput_light(group_file, fput_needed);
4902
4903         return err;
4904 }
4905
4906 /**
4907  * perf_event_create_kernel_counter
4908  *
4909  * @attr: attributes of the counter to create
4910  * @cpu: cpu in which the counter is bound
4911  * @pid: task to profile
4912  */
4913 struct perf_event *
4914 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4915                                  pid_t pid,
4916                                  perf_overflow_handler_t overflow_handler)
4917 {
4918         struct perf_event *event;
4919         struct perf_event_context *ctx;
4920         int err;
4921
4922         /*
4923          * Get the target context (task or percpu):
4924          */
4925
4926         ctx = find_get_context(pid, cpu);
4927         if (IS_ERR(ctx)) {
4928                 err = PTR_ERR(ctx);
4929                 goto err_exit;
4930         }
4931
4932         event = perf_event_alloc(attr, cpu, ctx, NULL,
4933                                  NULL, overflow_handler, GFP_KERNEL);
4934         if (IS_ERR(event)) {
4935                 err = PTR_ERR(event);
4936                 goto err_put_context;
4937         }
4938
4939         event->filp = NULL;
4940         WARN_ON_ONCE(ctx->parent_ctx);
4941         mutex_lock(&ctx->mutex);
4942         perf_install_in_context(ctx, event, cpu);
4943         ++ctx->generation;
4944         mutex_unlock(&ctx->mutex);
4945
4946         event->owner = current;
4947         get_task_struct(current);
4948         mutex_lock(&current->perf_event_mutex);
4949         list_add_tail(&event->owner_entry, &current->perf_event_list);
4950         mutex_unlock(&current->perf_event_mutex);
4951
4952         return event;
4953
4954  err_put_context:
4955         put_ctx(ctx);
4956  err_exit:
4957         return ERR_PTR(err);
4958 }
4959 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4960
4961 /*
4962  * inherit a event from parent task to child task:
4963  */
4964 static struct perf_event *
4965 inherit_event(struct perf_event *parent_event,
4966               struct task_struct *parent,
4967               struct perf_event_context *parent_ctx,
4968               struct task_struct *child,
4969               struct perf_event *group_leader,
4970               struct perf_event_context *child_ctx)
4971 {
4972         struct perf_event *child_event;
4973
4974         /*
4975          * Instead of creating recursive hierarchies of events,
4976          * we link inherited events back to the original parent,
4977          * which has a filp for sure, which we use as the reference
4978          * count:
4979          */
4980         if (parent_event->parent)
4981                 parent_event = parent_event->parent;
4982
4983         child_event = perf_event_alloc(&parent_event->attr,
4984                                            parent_event->cpu, child_ctx,
4985                                            group_leader, parent_event,
4986                                            NULL, GFP_KERNEL);
4987         if (IS_ERR(child_event))
4988                 return child_event;
4989         get_ctx(child_ctx);
4990
4991         /*
4992          * Make the child state follow the state of the parent event,
4993          * not its attr.disabled bit.  We hold the parent's mutex,
4994          * so we won't race with perf_event_{en, dis}able_family.
4995          */
4996         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4997                 child_event->state = PERF_EVENT_STATE_INACTIVE;
4998         else
4999                 child_event->state = PERF_EVENT_STATE_OFF;
5000
5001         if (parent_event->attr.freq) {
5002                 u64 sample_period = parent_event->hw.sample_period;
5003                 struct hw_perf_event *hwc = &child_event->hw;
5004
5005                 hwc->sample_period = sample_period;
5006                 hwc->last_period   = sample_period;
5007
5008                 atomic64_set(&hwc->period_left, sample_period);
5009         }
5010
5011         child_event->overflow_handler = parent_event->overflow_handler;
5012
5013         /*
5014          * Link it up in the child's context:
5015          */
5016         add_event_to_ctx(child_event, child_ctx);
5017
5018         /*
5019          * Get a reference to the parent filp - we will fput it
5020          * when the child event exits. This is safe to do because
5021          * we are in the parent and we know that the filp still
5022          * exists and has a nonzero count:
5023          */
5024         atomic_long_inc(&parent_event->filp->f_count);
5025
5026         /*
5027          * Link this into the parent event's child list
5028          */
5029         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5030         mutex_lock(&parent_event->child_mutex);
5031         list_add_tail(&child_event->child_list, &parent_event->child_list);
5032         mutex_unlock(&parent_event->child_mutex);
5033
5034         return child_event;
5035 }
5036
5037 static int inherit_group(struct perf_event *parent_event,
5038               struct task_struct *parent,
5039               struct perf_event_context *parent_ctx,
5040               struct task_struct *child,
5041               struct perf_event_context *child_ctx)
5042 {
5043         struct perf_event *leader;
5044         struct perf_event *sub;
5045         struct perf_event *child_ctr;
5046
5047         leader = inherit_event(parent_event, parent, parent_ctx,
5048                                  child, NULL, child_ctx);
5049         if (IS_ERR(leader))
5050                 return PTR_ERR(leader);
5051         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5052                 child_ctr = inherit_event(sub, parent, parent_ctx,
5053                                             child, leader, child_ctx);
5054                 if (IS_ERR(child_ctr))
5055                         return PTR_ERR(child_ctr);
5056         }
5057         return 0;
5058 }
5059
5060 static void sync_child_event(struct perf_event *child_event,
5061                                struct task_struct *child)
5062 {
5063         struct perf_event *parent_event = child_event->parent;
5064         u64 child_val;
5065
5066         if (child_event->attr.inherit_stat)
5067                 perf_event_read_event(child_event, child);
5068
5069         child_val = atomic64_read(&child_event->count);
5070
5071         /*
5072          * Add back the child's count to the parent's count:
5073          */
5074         atomic64_add(child_val, &parent_event->count);
5075         atomic64_add(child_event->total_time_enabled,
5076                      &parent_event->child_total_time_enabled);
5077         atomic64_add(child_event->total_time_running,
5078                      &parent_event->child_total_time_running);
5079
5080         /*
5081          * Remove this event from the parent's list
5082          */
5083         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5084         mutex_lock(&parent_event->child_mutex);
5085         list_del_init(&child_event->child_list);
5086         mutex_unlock(&parent_event->child_mutex);
5087
5088         /*
5089          * Release the parent event, if this was the last
5090          * reference to it.
5091          */
5092         fput(parent_event->filp);
5093 }
5094
5095 static void
5096 __perf_event_exit_task(struct perf_event *child_event,
5097                          struct perf_event_context *child_ctx,
5098                          struct task_struct *child)
5099 {
5100         struct perf_event *parent_event;
5101
5102         perf_event_remove_from_context(child_event);
5103
5104         parent_event = child_event->parent;
5105         /*
5106          * It can happen that parent exits first, and has events
5107          * that are still around due to the child reference. These
5108          * events need to be zapped - but otherwise linger.
5109          */
5110         if (parent_event) {
5111                 sync_child_event(child_event, child);
5112                 free_event(child_event);
5113         }
5114 }
5115
5116 /*
5117  * When a child task exits, feed back event values to parent events.
5118  */
5119 void perf_event_exit_task(struct task_struct *child)
5120 {
5121         struct perf_event *child_event, *tmp;
5122         struct perf_event_context *child_ctx;
5123         unsigned long flags;
5124
5125         if (likely(!child->perf_event_ctxp)) {
5126                 perf_event_task(child, NULL, 0);
5127                 return;
5128         }
5129
5130         local_irq_save(flags);
5131         /*
5132          * We can't reschedule here because interrupts are disabled,
5133          * and either child is current or it is a task that can't be
5134          * scheduled, so we are now safe from rescheduling changing
5135          * our context.
5136          */
5137         child_ctx = child->perf_event_ctxp;
5138         __perf_event_task_sched_out(child_ctx);
5139
5140         /*
5141          * Take the context lock here so that if find_get_context is
5142          * reading child->perf_event_ctxp, we wait until it has
5143          * incremented the context's refcount before we do put_ctx below.
5144          */
5145         raw_spin_lock(&child_ctx->lock);
5146         child->perf_event_ctxp = NULL;
5147         /*
5148          * If this context is a clone; unclone it so it can't get
5149          * swapped to another process while we're removing all
5150          * the events from it.
5151          */
5152         unclone_ctx(child_ctx);
5153         update_context_time(child_ctx);
5154         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5155
5156         /*
5157          * Report the task dead after unscheduling the events so that we
5158          * won't get any samples after PERF_RECORD_EXIT. We can however still
5159          * get a few PERF_RECORD_READ events.
5160          */
5161         perf_event_task(child, child_ctx, 0);
5162
5163         /*
5164          * We can recurse on the same lock type through:
5165          *
5166          *   __perf_event_exit_task()
5167          *     sync_child_event()
5168          *       fput(parent_event->filp)
5169          *         perf_release()
5170          *           mutex_lock(&ctx->mutex)
5171          *
5172          * But since its the parent context it won't be the same instance.
5173          */
5174         mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5175
5176 again:
5177         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5178                                  group_entry)
5179                 __perf_event_exit_task(child_event, child_ctx, child);
5180
5181         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5182                                  group_entry)
5183                 __perf_event_exit_task(child_event, child_ctx, child);
5184
5185         /*
5186          * If the last event was a group event, it will have appended all
5187          * its siblings to the list, but we obtained 'tmp' before that which
5188          * will still point to the list head terminating the iteration.
5189          */
5190         if (!list_empty(&child_ctx->pinned_groups) ||
5191             !list_empty(&child_ctx->flexible_groups))
5192                 goto again;
5193
5194         mutex_unlock(&child_ctx->mutex);
5195
5196         put_ctx(child_ctx);
5197 }
5198
5199 static void perf_free_event(struct perf_event *event,
5200                             struct perf_event_context *ctx)
5201 {
5202         struct perf_event *parent = event->parent;
5203
5204         if (WARN_ON_ONCE(!parent))
5205                 return;
5206
5207         mutex_lock(&parent->child_mutex);
5208         list_del_init(&event->child_list);
5209         mutex_unlock(&parent->child_mutex);
5210
5211         fput(parent->filp);
5212
5213         list_del_event(event, ctx);
5214         free_event(event);
5215 }
5216
5217 /*
5218  * free an unexposed, unused context as created by inheritance by
5219  * init_task below, used by fork() in case of fail.
5220  */
5221 void perf_event_free_task(struct task_struct *task)
5222 {
5223         struct perf_event_context *ctx = task->perf_event_ctxp;
5224         struct perf_event *event, *tmp;
5225
5226         if (!ctx)
5227                 return;
5228
5229         mutex_lock(&ctx->mutex);
5230 again:
5231         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5232                 perf_free_event(event, ctx);
5233
5234         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5235                                  group_entry)
5236                 perf_free_event(event, ctx);
5237
5238         if (!list_empty(&ctx->pinned_groups) ||
5239             !list_empty(&ctx->flexible_groups))
5240                 goto again;
5241
5242         mutex_unlock(&ctx->mutex);
5243
5244         put_ctx(ctx);
5245 }
5246
5247 static int
5248 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5249                    struct perf_event_context *parent_ctx,
5250                    struct task_struct *child,
5251                    int *inherited_all)
5252 {
5253         int ret;
5254         struct perf_event_context *child_ctx = child->perf_event_ctxp;
5255
5256         if (!event->attr.inherit) {
5257                 *inherited_all = 0;
5258                 return 0;
5259         }
5260
5261         if (!child_ctx) {
5262                 /*
5263                  * This is executed from the parent task context, so
5264                  * inherit events that have been marked for cloning.
5265                  * First allocate and initialize a context for the
5266                  * child.
5267                  */
5268
5269                 child_ctx = kzalloc(sizeof(struct perf_event_context),
5270                                     GFP_KERNEL);
5271                 if (!child_ctx)
5272                         return -ENOMEM;
5273
5274                 __perf_event_init_context(child_ctx, child);
5275                 child->perf_event_ctxp = child_ctx;
5276                 get_task_struct(child);
5277         }
5278
5279         ret = inherit_group(event, parent, parent_ctx,
5280                             child, child_ctx);
5281
5282         if (ret)
5283                 *inherited_all = 0;
5284
5285         return ret;
5286 }
5287
5288
5289 /*
5290  * Initialize the perf_event context in task_struct
5291  */
5292 int perf_event_init_task(struct task_struct *child)
5293 {
5294         struct perf_event_context *child_ctx, *parent_ctx;
5295         struct perf_event_context *cloned_ctx;
5296         struct perf_event *event;
5297         struct task_struct *parent = current;
5298         int inherited_all = 1;
5299         int ret = 0;
5300
5301         child->perf_event_ctxp = NULL;
5302
5303         mutex_init(&child->perf_event_mutex);
5304         INIT_LIST_HEAD(&child->perf_event_list);
5305
5306         if (likely(!parent->perf_event_ctxp))
5307                 return 0;
5308
5309         /*
5310          * If the parent's context is a clone, pin it so it won't get
5311          * swapped under us.
5312          */
5313         parent_ctx = perf_pin_task_context(parent);
5314
5315         /*
5316          * No need to check if parent_ctx != NULL here; since we saw
5317          * it non-NULL earlier, the only reason for it to become NULL
5318          * is if we exit, and since we're currently in the middle of
5319          * a fork we can't be exiting at the same time.
5320          */
5321
5322         /*
5323          * Lock the parent list. No need to lock the child - not PID
5324          * hashed yet and not running, so nobody can access it.
5325          */
5326         mutex_lock(&parent_ctx->mutex);
5327
5328         /*
5329          * We dont have to disable NMIs - we are only looking at
5330          * the list, not manipulating it:
5331          */
5332         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5333                 ret = inherit_task_group(event, parent, parent_ctx, child,
5334                                          &inherited_all);
5335                 if (ret)
5336                         break;
5337         }
5338
5339         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5340                 ret = inherit_task_group(event, parent, parent_ctx, child,
5341                                          &inherited_all);
5342                 if (ret)
5343                         break;
5344         }
5345
5346         child_ctx = child->perf_event_ctxp;
5347
5348         if (child_ctx && inherited_all) {
5349                 /*
5350                  * Mark the child context as a clone of the parent
5351                  * context, or of whatever the parent is a clone of.
5352                  * Note that if the parent is a clone, it could get
5353                  * uncloned at any point, but that doesn't matter
5354                  * because the list of events and the generation
5355                  * count can't have changed since we took the mutex.
5356                  */
5357                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5358                 if (cloned_ctx) {
5359                         child_ctx->parent_ctx = cloned_ctx;
5360                         child_ctx->parent_gen = parent_ctx->parent_gen;
5361                 } else {
5362                         child_ctx->parent_ctx = parent_ctx;
5363                         child_ctx->parent_gen = parent_ctx->generation;
5364                 }
5365                 get_ctx(child_ctx->parent_ctx);
5366         }
5367
5368         mutex_unlock(&parent_ctx->mutex);
5369
5370         perf_unpin_context(parent_ctx);
5371
5372         return ret;
5373 }
5374
5375 static void __cpuinit perf_event_init_cpu(int cpu)
5376 {
5377         struct perf_cpu_context *cpuctx;
5378
5379         cpuctx = &per_cpu(perf_cpu_context, cpu);
5380         __perf_event_init_context(&cpuctx->ctx, NULL);
5381
5382         spin_lock(&perf_resource_lock);
5383         cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5384         spin_unlock(&perf_resource_lock);
5385
5386         hw_perf_event_setup(cpu);
5387 }
5388
5389 #ifdef CONFIG_HOTPLUG_CPU
5390 static void __perf_event_exit_cpu(void *info)
5391 {
5392         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5393         struct perf_event_context *ctx = &cpuctx->ctx;
5394         struct perf_event *event, *tmp;
5395
5396         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5397                 __perf_event_remove_from_context(event);
5398         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5399                 __perf_event_remove_from_context(event);
5400 }
5401 static void perf_event_exit_cpu(int cpu)
5402 {
5403         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5404         struct perf_event_context *ctx = &cpuctx->ctx;
5405
5406         mutex_lock(&ctx->mutex);
5407         smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5408         mutex_unlock(&ctx->mutex);
5409 }
5410 #else
5411 static inline void perf_event_exit_cpu(int cpu) { }
5412 #endif
5413
5414 static int __cpuinit
5415 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5416 {
5417         unsigned int cpu = (long)hcpu;
5418
5419         switch (action) {
5420
5421         case CPU_UP_PREPARE:
5422         case CPU_UP_PREPARE_FROZEN:
5423                 perf_event_init_cpu(cpu);
5424                 break;
5425
5426         case CPU_ONLINE:
5427         case CPU_ONLINE_FROZEN:
5428                 hw_perf_event_setup_online(cpu);
5429                 break;
5430
5431         case CPU_DOWN_PREPARE:
5432         case CPU_DOWN_PREPARE_FROZEN:
5433                 perf_event_exit_cpu(cpu);
5434                 break;
5435
5436         case CPU_DEAD:
5437                 hw_perf_event_setup_offline(cpu);
5438                 break;
5439
5440         default:
5441                 break;
5442         }
5443
5444         return NOTIFY_OK;
5445 }
5446
5447 /*
5448  * This has to have a higher priority than migration_notifier in sched.c.
5449  */
5450 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5451         .notifier_call          = perf_cpu_notify,
5452         .priority               = 20,
5453 };
5454
5455 void __init perf_event_init(void)
5456 {
5457         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5458                         (void *)(long)smp_processor_id());
5459         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5460                         (void *)(long)smp_processor_id());
5461         register_cpu_notifier(&perf_cpu_nb);
5462 }
5463
5464 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5465                                         struct sysdev_class_attribute *attr,
5466                                         char *buf)
5467 {
5468         return sprintf(buf, "%d\n", perf_reserved_percpu);
5469 }
5470
5471 static ssize_t
5472 perf_set_reserve_percpu(struct sysdev_class *class,
5473                         struct sysdev_class_attribute *attr,
5474                         const char *buf,
5475                         size_t count)
5476 {
5477         struct perf_cpu_context *cpuctx;
5478         unsigned long val;
5479         int err, cpu, mpt;
5480
5481         err = strict_strtoul(buf, 10, &val);
5482         if (err)
5483                 return err;
5484         if (val > perf_max_events)
5485                 return -EINVAL;
5486
5487         spin_lock(&perf_resource_lock);
5488         perf_reserved_percpu = val;
5489         for_each_online_cpu(cpu) {
5490                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5491                 raw_spin_lock_irq(&cpuctx->ctx.lock);
5492                 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5493                           perf_max_events - perf_reserved_percpu);
5494                 cpuctx->max_pertask = mpt;
5495                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5496         }
5497         spin_unlock(&perf_resource_lock);
5498
5499         return count;
5500 }
5501
5502 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5503                                     struct sysdev_class_attribute *attr,
5504                                     char *buf)
5505 {
5506         return sprintf(buf, "%d\n", perf_overcommit);
5507 }
5508
5509 static ssize_t
5510 perf_set_overcommit(struct sysdev_class *class,
5511                     struct sysdev_class_attribute *attr,
5512                     const char *buf, size_t count)
5513 {
5514         unsigned long val;
5515         int err;
5516
5517         err = strict_strtoul(buf, 10, &val);
5518         if (err)
5519                 return err;
5520         if (val > 1)
5521                 return -EINVAL;
5522
5523         spin_lock(&perf_resource_lock);
5524         perf_overcommit = val;
5525         spin_unlock(&perf_resource_lock);
5526
5527         return count;
5528 }
5529
5530 static SYSDEV_CLASS_ATTR(
5531                                 reserve_percpu,
5532                                 0644,
5533                                 perf_show_reserve_percpu,
5534                                 perf_set_reserve_percpu
5535                         );
5536
5537 static SYSDEV_CLASS_ATTR(
5538                                 overcommit,
5539                                 0644,
5540                                 perf_show_overcommit,
5541                                 perf_set_overcommit
5542                         );
5543
5544 static struct attribute *perfclass_attrs[] = {
5545         &attr_reserve_percpu.attr,
5546         &attr_overcommit.attr,
5547         NULL
5548 };
5549
5550 static struct attribute_group perfclass_attr_group = {
5551         .attrs                  = perfclass_attrs,
5552         .name                   = "perf_events",
5553 };
5554
5555 static int __init perf_event_sysfs_init(void)
5556 {
5557         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5558                                   &perfclass_attr_group);
5559 }
5560 device_initcall(perf_event_sysfs_init);