kprobes: Move enable/disable_kprobe() out from debugfs code
[safe/jmp/linux-2.6] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 /*
39  * Each CPU has a list of per CPU events:
40  */
41 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
42
43 int perf_max_events __read_mostly = 1;
44 static int perf_reserved_percpu __read_mostly;
45 static int perf_overcommit __read_mostly = 1;
46
47 static atomic_t nr_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
51
52 /*
53  * perf event paranoia level:
54  *  -1 - not paranoid at all
55  *   0 - disallow raw tracepoint access for unpriv
56  *   1 - disallow cpu events for unpriv
57  *   2 - disallow kernel profiling for unpriv
58  */
59 int sysctl_perf_event_paranoid __read_mostly = 1;
60
61 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62
63 /*
64  * max perf event sample rate
65  */
66 int sysctl_perf_event_sample_rate __read_mostly = 100000;
67
68 static atomic64_t perf_event_id;
69
70 /*
71  * Lock for (sysadmin-configurable) event reservations:
72  */
73 static DEFINE_SPINLOCK(perf_resource_lock);
74
75 /*
76  * Architecture provided APIs - weak aliases:
77  */
78 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79 {
80         return NULL;
81 }
82
83 void __weak hw_perf_disable(void)               { barrier(); }
84 void __weak hw_perf_enable(void)                { barrier(); }
85
86 void __weak perf_event_print_debug(void)        { }
87
88 static DEFINE_PER_CPU(int, perf_disable_count);
89
90 void perf_disable(void)
91 {
92         if (!__get_cpu_var(perf_disable_count)++)
93                 hw_perf_disable();
94 }
95
96 void perf_enable(void)
97 {
98         if (!--__get_cpu_var(perf_disable_count))
99                 hw_perf_enable();
100 }
101
102 static void get_ctx(struct perf_event_context *ctx)
103 {
104         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105 }
106
107 static void free_ctx(struct rcu_head *head)
108 {
109         struct perf_event_context *ctx;
110
111         ctx = container_of(head, struct perf_event_context, rcu_head);
112         kfree(ctx);
113 }
114
115 static void put_ctx(struct perf_event_context *ctx)
116 {
117         if (atomic_dec_and_test(&ctx->refcount)) {
118                 if (ctx->parent_ctx)
119                         put_ctx(ctx->parent_ctx);
120                 if (ctx->task)
121                         put_task_struct(ctx->task);
122                 call_rcu(&ctx->rcu_head, free_ctx);
123         }
124 }
125
126 static void unclone_ctx(struct perf_event_context *ctx)
127 {
128         if (ctx->parent_ctx) {
129                 put_ctx(ctx->parent_ctx);
130                 ctx->parent_ctx = NULL;
131         }
132 }
133
134 /*
135  * If we inherit events we want to return the parent event id
136  * to userspace.
137  */
138 static u64 primary_event_id(struct perf_event *event)
139 {
140         u64 id = event->id;
141
142         if (event->parent)
143                 id = event->parent->id;
144
145         return id;
146 }
147
148 /*
149  * Get the perf_event_context for a task and lock it.
150  * This has to cope with with the fact that until it is locked,
151  * the context could get moved to another task.
152  */
153 static struct perf_event_context *
154 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155 {
156         struct perf_event_context *ctx;
157
158         rcu_read_lock();
159  retry:
160         ctx = rcu_dereference(task->perf_event_ctxp);
161         if (ctx) {
162                 /*
163                  * If this context is a clone of another, it might
164                  * get swapped for another underneath us by
165                  * perf_event_task_sched_out, though the
166                  * rcu_read_lock() protects us from any context
167                  * getting freed.  Lock the context and check if it
168                  * got swapped before we could get the lock, and retry
169                  * if so.  If we locked the right context, then it
170                  * can't get swapped on us any more.
171                  */
172                 raw_spin_lock_irqsave(&ctx->lock, *flags);
173                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175                         goto retry;
176                 }
177
178                 if (!atomic_inc_not_zero(&ctx->refcount)) {
179                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180                         ctx = NULL;
181                 }
182         }
183         rcu_read_unlock();
184         return ctx;
185 }
186
187 /*
188  * Get the context for a task and increment its pin_count so it
189  * can't get swapped to another task.  This also increments its
190  * reference count so that the context can't get freed.
191  */
192 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193 {
194         struct perf_event_context *ctx;
195         unsigned long flags;
196
197         ctx = perf_lock_task_context(task, &flags);
198         if (ctx) {
199                 ++ctx->pin_count;
200                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
201         }
202         return ctx;
203 }
204
205 static void perf_unpin_context(struct perf_event_context *ctx)
206 {
207         unsigned long flags;
208
209         raw_spin_lock_irqsave(&ctx->lock, flags);
210         --ctx->pin_count;
211         raw_spin_unlock_irqrestore(&ctx->lock, flags);
212         put_ctx(ctx);
213 }
214
215 static inline u64 perf_clock(void)
216 {
217         return cpu_clock(raw_smp_processor_id());
218 }
219
220 /*
221  * Update the record of the current time in a context.
222  */
223 static void update_context_time(struct perf_event_context *ctx)
224 {
225         u64 now = perf_clock();
226
227         ctx->time += now - ctx->timestamp;
228         ctx->timestamp = now;
229 }
230
231 /*
232  * Update the total_time_enabled and total_time_running fields for a event.
233  */
234 static void update_event_times(struct perf_event *event)
235 {
236         struct perf_event_context *ctx = event->ctx;
237         u64 run_end;
238
239         if (event->state < PERF_EVENT_STATE_INACTIVE ||
240             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
241                 return;
242
243         if (ctx->is_active)
244                 run_end = ctx->time;
245         else
246                 run_end = event->tstamp_stopped;
247
248         event->total_time_enabled = run_end - event->tstamp_enabled;
249
250         if (event->state == PERF_EVENT_STATE_INACTIVE)
251                 run_end = event->tstamp_stopped;
252         else
253                 run_end = ctx->time;
254
255         event->total_time_running = run_end - event->tstamp_running;
256 }
257
258 static struct list_head *
259 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
260 {
261         if (event->attr.pinned)
262                 return &ctx->pinned_groups;
263         else
264                 return &ctx->flexible_groups;
265 }
266
267 /*
268  * Add a event from the lists for its context.
269  * Must be called with ctx->mutex and ctx->lock held.
270  */
271 static void
272 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
273 {
274         struct perf_event *group_leader = event->group_leader;
275
276         /*
277          * Depending on whether it is a standalone or sibling event,
278          * add it straight to the context's event list, or to the group
279          * leader's sibling list:
280          */
281         if (group_leader == event) {
282                 struct list_head *list;
283
284                 if (is_software_event(event))
285                         event->group_flags |= PERF_GROUP_SOFTWARE;
286
287                 list = ctx_group_list(event, ctx);
288                 list_add_tail(&event->group_entry, list);
289         } else {
290                 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
291                     !is_software_event(event))
292                         group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
293
294                 list_add_tail(&event->group_entry, &group_leader->sibling_list);
295                 group_leader->nr_siblings++;
296         }
297
298         list_add_rcu(&event->event_entry, &ctx->event_list);
299         ctx->nr_events++;
300         if (event->attr.inherit_stat)
301                 ctx->nr_stat++;
302 }
303
304 /*
305  * Remove a event from the lists for its context.
306  * Must be called with ctx->mutex and ctx->lock held.
307  */
308 static void
309 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
310 {
311         struct perf_event *sibling, *tmp;
312
313         if (list_empty(&event->group_entry))
314                 return;
315         ctx->nr_events--;
316         if (event->attr.inherit_stat)
317                 ctx->nr_stat--;
318
319         list_del_init(&event->group_entry);
320         list_del_rcu(&event->event_entry);
321
322         if (event->group_leader != event)
323                 event->group_leader->nr_siblings--;
324
325         update_event_times(event);
326
327         /*
328          * If event was in error state, then keep it
329          * that way, otherwise bogus counts will be
330          * returned on read(). The only way to get out
331          * of error state is by explicit re-enabling
332          * of the event
333          */
334         if (event->state > PERF_EVENT_STATE_OFF)
335                 event->state = PERF_EVENT_STATE_OFF;
336
337         if (event->state > PERF_EVENT_STATE_FREE)
338                 return;
339
340         /*
341          * If this was a group event with sibling events then
342          * upgrade the siblings to singleton events by adding them
343          * to the context list directly:
344          */
345         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
346                 struct list_head *list;
347
348                 list = ctx_group_list(event, ctx);
349                 list_move_tail(&sibling->group_entry, list);
350                 sibling->group_leader = sibling;
351
352                 /* Inherit group flags from the previous leader */
353                 sibling->group_flags = event->group_flags;
354         }
355 }
356
357 static void
358 event_sched_out(struct perf_event *event,
359                   struct perf_cpu_context *cpuctx,
360                   struct perf_event_context *ctx)
361 {
362         if (event->state != PERF_EVENT_STATE_ACTIVE)
363                 return;
364
365         event->state = PERF_EVENT_STATE_INACTIVE;
366         if (event->pending_disable) {
367                 event->pending_disable = 0;
368                 event->state = PERF_EVENT_STATE_OFF;
369         }
370         event->tstamp_stopped = ctx->time;
371         event->pmu->disable(event);
372         event->oncpu = -1;
373
374         if (!is_software_event(event))
375                 cpuctx->active_oncpu--;
376         ctx->nr_active--;
377         if (event->attr.exclusive || !cpuctx->active_oncpu)
378                 cpuctx->exclusive = 0;
379 }
380
381 static void
382 group_sched_out(struct perf_event *group_event,
383                 struct perf_cpu_context *cpuctx,
384                 struct perf_event_context *ctx)
385 {
386         struct perf_event *event;
387
388         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
389                 return;
390
391         event_sched_out(group_event, cpuctx, ctx);
392
393         /*
394          * Schedule out siblings (if any):
395          */
396         list_for_each_entry(event, &group_event->sibling_list, group_entry)
397                 event_sched_out(event, cpuctx, ctx);
398
399         if (group_event->attr.exclusive)
400                 cpuctx->exclusive = 0;
401 }
402
403 /*
404  * Cross CPU call to remove a performance event
405  *
406  * We disable the event on the hardware level first. After that we
407  * remove it from the context list.
408  */
409 static void __perf_event_remove_from_context(void *info)
410 {
411         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
412         struct perf_event *event = info;
413         struct perf_event_context *ctx = event->ctx;
414
415         /*
416          * If this is a task context, we need to check whether it is
417          * the current task context of this cpu. If not it has been
418          * scheduled out before the smp call arrived.
419          */
420         if (ctx->task && cpuctx->task_ctx != ctx)
421                 return;
422
423         raw_spin_lock(&ctx->lock);
424         /*
425          * Protect the list operation against NMI by disabling the
426          * events on a global level.
427          */
428         perf_disable();
429
430         event_sched_out(event, cpuctx, ctx);
431
432         list_del_event(event, ctx);
433
434         if (!ctx->task) {
435                 /*
436                  * Allow more per task events with respect to the
437                  * reservation:
438                  */
439                 cpuctx->max_pertask =
440                         min(perf_max_events - ctx->nr_events,
441                             perf_max_events - perf_reserved_percpu);
442         }
443
444         perf_enable();
445         raw_spin_unlock(&ctx->lock);
446 }
447
448
449 /*
450  * Remove the event from a task's (or a CPU's) list of events.
451  *
452  * Must be called with ctx->mutex held.
453  *
454  * CPU events are removed with a smp call. For task events we only
455  * call when the task is on a CPU.
456  *
457  * If event->ctx is a cloned context, callers must make sure that
458  * every task struct that event->ctx->task could possibly point to
459  * remains valid.  This is OK when called from perf_release since
460  * that only calls us on the top-level context, which can't be a clone.
461  * When called from perf_event_exit_task, it's OK because the
462  * context has been detached from its task.
463  */
464 static void perf_event_remove_from_context(struct perf_event *event)
465 {
466         struct perf_event_context *ctx = event->ctx;
467         struct task_struct *task = ctx->task;
468
469         if (!task) {
470                 /*
471                  * Per cpu events are removed via an smp call and
472                  * the removal is always successful.
473                  */
474                 smp_call_function_single(event->cpu,
475                                          __perf_event_remove_from_context,
476                                          event, 1);
477                 return;
478         }
479
480 retry:
481         task_oncpu_function_call(task, __perf_event_remove_from_context,
482                                  event);
483
484         raw_spin_lock_irq(&ctx->lock);
485         /*
486          * If the context is active we need to retry the smp call.
487          */
488         if (ctx->nr_active && !list_empty(&event->group_entry)) {
489                 raw_spin_unlock_irq(&ctx->lock);
490                 goto retry;
491         }
492
493         /*
494          * The lock prevents that this context is scheduled in so we
495          * can remove the event safely, if the call above did not
496          * succeed.
497          */
498         if (!list_empty(&event->group_entry))
499                 list_del_event(event, ctx);
500         raw_spin_unlock_irq(&ctx->lock);
501 }
502
503 /*
504  * Update total_time_enabled and total_time_running for all events in a group.
505  */
506 static void update_group_times(struct perf_event *leader)
507 {
508         struct perf_event *event;
509
510         update_event_times(leader);
511         list_for_each_entry(event, &leader->sibling_list, group_entry)
512                 update_event_times(event);
513 }
514
515 /*
516  * Cross CPU call to disable a performance event
517  */
518 static void __perf_event_disable(void *info)
519 {
520         struct perf_event *event = info;
521         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
522         struct perf_event_context *ctx = event->ctx;
523
524         /*
525          * If this is a per-task event, need to check whether this
526          * event's task is the current task on this cpu.
527          */
528         if (ctx->task && cpuctx->task_ctx != ctx)
529                 return;
530
531         raw_spin_lock(&ctx->lock);
532
533         /*
534          * If the event is on, turn it off.
535          * If it is in error state, leave it in error state.
536          */
537         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
538                 update_context_time(ctx);
539                 update_group_times(event);
540                 if (event == event->group_leader)
541                         group_sched_out(event, cpuctx, ctx);
542                 else
543                         event_sched_out(event, cpuctx, ctx);
544                 event->state = PERF_EVENT_STATE_OFF;
545         }
546
547         raw_spin_unlock(&ctx->lock);
548 }
549
550 /*
551  * Disable a event.
552  *
553  * If event->ctx is a cloned context, callers must make sure that
554  * every task struct that event->ctx->task could possibly point to
555  * remains valid.  This condition is satisifed when called through
556  * perf_event_for_each_child or perf_event_for_each because they
557  * hold the top-level event's child_mutex, so any descendant that
558  * goes to exit will block in sync_child_event.
559  * When called from perf_pending_event it's OK because event->ctx
560  * is the current context on this CPU and preemption is disabled,
561  * hence we can't get into perf_event_task_sched_out for this context.
562  */
563 void perf_event_disable(struct perf_event *event)
564 {
565         struct perf_event_context *ctx = event->ctx;
566         struct task_struct *task = ctx->task;
567
568         if (!task) {
569                 /*
570                  * Disable the event on the cpu that it's on
571                  */
572                 smp_call_function_single(event->cpu, __perf_event_disable,
573                                          event, 1);
574                 return;
575         }
576
577  retry:
578         task_oncpu_function_call(task, __perf_event_disable, event);
579
580         raw_spin_lock_irq(&ctx->lock);
581         /*
582          * If the event is still active, we need to retry the cross-call.
583          */
584         if (event->state == PERF_EVENT_STATE_ACTIVE) {
585                 raw_spin_unlock_irq(&ctx->lock);
586                 goto retry;
587         }
588
589         /*
590          * Since we have the lock this context can't be scheduled
591          * in, so we can change the state safely.
592          */
593         if (event->state == PERF_EVENT_STATE_INACTIVE) {
594                 update_group_times(event);
595                 event->state = PERF_EVENT_STATE_OFF;
596         }
597
598         raw_spin_unlock_irq(&ctx->lock);
599 }
600
601 static int
602 event_sched_in(struct perf_event *event,
603                  struct perf_cpu_context *cpuctx,
604                  struct perf_event_context *ctx)
605 {
606         if (event->state <= PERF_EVENT_STATE_OFF)
607                 return 0;
608
609         event->state = PERF_EVENT_STATE_ACTIVE;
610         event->oncpu = smp_processor_id();
611         /*
612          * The new state must be visible before we turn it on in the hardware:
613          */
614         smp_wmb();
615
616         if (event->pmu->enable(event)) {
617                 event->state = PERF_EVENT_STATE_INACTIVE;
618                 event->oncpu = -1;
619                 return -EAGAIN;
620         }
621
622         event->tstamp_running += ctx->time - event->tstamp_stopped;
623
624         if (!is_software_event(event))
625                 cpuctx->active_oncpu++;
626         ctx->nr_active++;
627
628         if (event->attr.exclusive)
629                 cpuctx->exclusive = 1;
630
631         return 0;
632 }
633
634 static int
635 group_sched_in(struct perf_event *group_event,
636                struct perf_cpu_context *cpuctx,
637                struct perf_event_context *ctx)
638 {
639         struct perf_event *event, *partial_group = NULL;
640         const struct pmu *pmu = group_event->pmu;
641         bool txn = false;
642         int ret;
643
644         if (group_event->state == PERF_EVENT_STATE_OFF)
645                 return 0;
646
647         /* Check if group transaction availabe */
648         if (pmu->start_txn)
649                 txn = true;
650
651         if (txn)
652                 pmu->start_txn(pmu);
653
654         if (event_sched_in(group_event, cpuctx, ctx))
655                 return -EAGAIN;
656
657         /*
658          * Schedule in siblings as one group (if any):
659          */
660         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
661                 if (event_sched_in(event, cpuctx, ctx)) {
662                         partial_group = event;
663                         goto group_error;
664                 }
665         }
666
667         if (!txn)
668                 return 0;
669
670         ret = pmu->commit_txn(pmu);
671         if (!ret) {
672                 pmu->cancel_txn(pmu);
673                 return 0;
674         }
675
676 group_error:
677         if (txn)
678                 pmu->cancel_txn(pmu);
679
680         /*
681          * Groups can be scheduled in as one unit only, so undo any
682          * partial group before returning:
683          */
684         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
685                 if (event == partial_group)
686                         break;
687                 event_sched_out(event, cpuctx, ctx);
688         }
689         event_sched_out(group_event, cpuctx, ctx);
690
691         return -EAGAIN;
692 }
693
694 /*
695  * Work out whether we can put this event group on the CPU now.
696  */
697 static int group_can_go_on(struct perf_event *event,
698                            struct perf_cpu_context *cpuctx,
699                            int can_add_hw)
700 {
701         /*
702          * Groups consisting entirely of software events can always go on.
703          */
704         if (event->group_flags & PERF_GROUP_SOFTWARE)
705                 return 1;
706         /*
707          * If an exclusive group is already on, no other hardware
708          * events can go on.
709          */
710         if (cpuctx->exclusive)
711                 return 0;
712         /*
713          * If this group is exclusive and there are already
714          * events on the CPU, it can't go on.
715          */
716         if (event->attr.exclusive && cpuctx->active_oncpu)
717                 return 0;
718         /*
719          * Otherwise, try to add it if all previous groups were able
720          * to go on.
721          */
722         return can_add_hw;
723 }
724
725 static void add_event_to_ctx(struct perf_event *event,
726                                struct perf_event_context *ctx)
727 {
728         list_add_event(event, ctx);
729         event->tstamp_enabled = ctx->time;
730         event->tstamp_running = ctx->time;
731         event->tstamp_stopped = ctx->time;
732 }
733
734 /*
735  * Cross CPU call to install and enable a performance event
736  *
737  * Must be called with ctx->mutex held
738  */
739 static void __perf_install_in_context(void *info)
740 {
741         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
742         struct perf_event *event = info;
743         struct perf_event_context *ctx = event->ctx;
744         struct perf_event *leader = event->group_leader;
745         int err;
746
747         /*
748          * If this is a task context, we need to check whether it is
749          * the current task context of this cpu. If not it has been
750          * scheduled out before the smp call arrived.
751          * Or possibly this is the right context but it isn't
752          * on this cpu because it had no events.
753          */
754         if (ctx->task && cpuctx->task_ctx != ctx) {
755                 if (cpuctx->task_ctx || ctx->task != current)
756                         return;
757                 cpuctx->task_ctx = ctx;
758         }
759
760         raw_spin_lock(&ctx->lock);
761         ctx->is_active = 1;
762         update_context_time(ctx);
763
764         /*
765          * Protect the list operation against NMI by disabling the
766          * events on a global level. NOP for non NMI based events.
767          */
768         perf_disable();
769
770         add_event_to_ctx(event, ctx);
771
772         if (event->cpu != -1 && event->cpu != smp_processor_id())
773                 goto unlock;
774
775         /*
776          * Don't put the event on if it is disabled or if
777          * it is in a group and the group isn't on.
778          */
779         if (event->state != PERF_EVENT_STATE_INACTIVE ||
780             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
781                 goto unlock;
782
783         /*
784          * An exclusive event can't go on if there are already active
785          * hardware events, and no hardware event can go on if there
786          * is already an exclusive event on.
787          */
788         if (!group_can_go_on(event, cpuctx, 1))
789                 err = -EEXIST;
790         else
791                 err = event_sched_in(event, cpuctx, ctx);
792
793         if (err) {
794                 /*
795                  * This event couldn't go on.  If it is in a group
796                  * then we have to pull the whole group off.
797                  * If the event group is pinned then put it in error state.
798                  */
799                 if (leader != event)
800                         group_sched_out(leader, cpuctx, ctx);
801                 if (leader->attr.pinned) {
802                         update_group_times(leader);
803                         leader->state = PERF_EVENT_STATE_ERROR;
804                 }
805         }
806
807         if (!err && !ctx->task && cpuctx->max_pertask)
808                 cpuctx->max_pertask--;
809
810  unlock:
811         perf_enable();
812
813         raw_spin_unlock(&ctx->lock);
814 }
815
816 /*
817  * Attach a performance event to a context
818  *
819  * First we add the event to the list with the hardware enable bit
820  * in event->hw_config cleared.
821  *
822  * If the event is attached to a task which is on a CPU we use a smp
823  * call to enable it in the task context. The task might have been
824  * scheduled away, but we check this in the smp call again.
825  *
826  * Must be called with ctx->mutex held.
827  */
828 static void
829 perf_install_in_context(struct perf_event_context *ctx,
830                         struct perf_event *event,
831                         int cpu)
832 {
833         struct task_struct *task = ctx->task;
834
835         if (!task) {
836                 /*
837                  * Per cpu events are installed via an smp call and
838                  * the install is always successful.
839                  */
840                 smp_call_function_single(cpu, __perf_install_in_context,
841                                          event, 1);
842                 return;
843         }
844
845 retry:
846         task_oncpu_function_call(task, __perf_install_in_context,
847                                  event);
848
849         raw_spin_lock_irq(&ctx->lock);
850         /*
851          * we need to retry the smp call.
852          */
853         if (ctx->is_active && list_empty(&event->group_entry)) {
854                 raw_spin_unlock_irq(&ctx->lock);
855                 goto retry;
856         }
857
858         /*
859          * The lock prevents that this context is scheduled in so we
860          * can add the event safely, if it the call above did not
861          * succeed.
862          */
863         if (list_empty(&event->group_entry))
864                 add_event_to_ctx(event, ctx);
865         raw_spin_unlock_irq(&ctx->lock);
866 }
867
868 /*
869  * Put a event into inactive state and update time fields.
870  * Enabling the leader of a group effectively enables all
871  * the group members that aren't explicitly disabled, so we
872  * have to update their ->tstamp_enabled also.
873  * Note: this works for group members as well as group leaders
874  * since the non-leader members' sibling_lists will be empty.
875  */
876 static void __perf_event_mark_enabled(struct perf_event *event,
877                                         struct perf_event_context *ctx)
878 {
879         struct perf_event *sub;
880
881         event->state = PERF_EVENT_STATE_INACTIVE;
882         event->tstamp_enabled = ctx->time - event->total_time_enabled;
883         list_for_each_entry(sub, &event->sibling_list, group_entry)
884                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
885                         sub->tstamp_enabled =
886                                 ctx->time - sub->total_time_enabled;
887 }
888
889 /*
890  * Cross CPU call to enable a performance event
891  */
892 static void __perf_event_enable(void *info)
893 {
894         struct perf_event *event = info;
895         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
896         struct perf_event_context *ctx = event->ctx;
897         struct perf_event *leader = event->group_leader;
898         int err;
899
900         /*
901          * If this is a per-task event, need to check whether this
902          * event's task is the current task on this cpu.
903          */
904         if (ctx->task && cpuctx->task_ctx != ctx) {
905                 if (cpuctx->task_ctx || ctx->task != current)
906                         return;
907                 cpuctx->task_ctx = ctx;
908         }
909
910         raw_spin_lock(&ctx->lock);
911         ctx->is_active = 1;
912         update_context_time(ctx);
913
914         if (event->state >= PERF_EVENT_STATE_INACTIVE)
915                 goto unlock;
916         __perf_event_mark_enabled(event, ctx);
917
918         if (event->cpu != -1 && event->cpu != smp_processor_id())
919                 goto unlock;
920
921         /*
922          * If the event is in a group and isn't the group leader,
923          * then don't put it on unless the group is on.
924          */
925         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
926                 goto unlock;
927
928         if (!group_can_go_on(event, cpuctx, 1)) {
929                 err = -EEXIST;
930         } else {
931                 perf_disable();
932                 if (event == leader)
933                         err = group_sched_in(event, cpuctx, ctx);
934                 else
935                         err = event_sched_in(event, cpuctx, ctx);
936                 perf_enable();
937         }
938
939         if (err) {
940                 /*
941                  * If this event can't go on and it's part of a
942                  * group, then the whole group has to come off.
943                  */
944                 if (leader != event)
945                         group_sched_out(leader, cpuctx, ctx);
946                 if (leader->attr.pinned) {
947                         update_group_times(leader);
948                         leader->state = PERF_EVENT_STATE_ERROR;
949                 }
950         }
951
952  unlock:
953         raw_spin_unlock(&ctx->lock);
954 }
955
956 /*
957  * Enable a event.
958  *
959  * If event->ctx is a cloned context, callers must make sure that
960  * every task struct that event->ctx->task could possibly point to
961  * remains valid.  This condition is satisfied when called through
962  * perf_event_for_each_child or perf_event_for_each as described
963  * for perf_event_disable.
964  */
965 void perf_event_enable(struct perf_event *event)
966 {
967         struct perf_event_context *ctx = event->ctx;
968         struct task_struct *task = ctx->task;
969
970         if (!task) {
971                 /*
972                  * Enable the event on the cpu that it's on
973                  */
974                 smp_call_function_single(event->cpu, __perf_event_enable,
975                                          event, 1);
976                 return;
977         }
978
979         raw_spin_lock_irq(&ctx->lock);
980         if (event->state >= PERF_EVENT_STATE_INACTIVE)
981                 goto out;
982
983         /*
984          * If the event is in error state, clear that first.
985          * That way, if we see the event in error state below, we
986          * know that it has gone back into error state, as distinct
987          * from the task having been scheduled away before the
988          * cross-call arrived.
989          */
990         if (event->state == PERF_EVENT_STATE_ERROR)
991                 event->state = PERF_EVENT_STATE_OFF;
992
993  retry:
994         raw_spin_unlock_irq(&ctx->lock);
995         task_oncpu_function_call(task, __perf_event_enable, event);
996
997         raw_spin_lock_irq(&ctx->lock);
998
999         /*
1000          * If the context is active and the event is still off,
1001          * we need to retry the cross-call.
1002          */
1003         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1004                 goto retry;
1005
1006         /*
1007          * Since we have the lock this context can't be scheduled
1008          * in, so we can change the state safely.
1009          */
1010         if (event->state == PERF_EVENT_STATE_OFF)
1011                 __perf_event_mark_enabled(event, ctx);
1012
1013  out:
1014         raw_spin_unlock_irq(&ctx->lock);
1015 }
1016
1017 static int perf_event_refresh(struct perf_event *event, int refresh)
1018 {
1019         /*
1020          * not supported on inherited events
1021          */
1022         if (event->attr.inherit)
1023                 return -EINVAL;
1024
1025         atomic_add(refresh, &event->event_limit);
1026         perf_event_enable(event);
1027
1028         return 0;
1029 }
1030
1031 enum event_type_t {
1032         EVENT_FLEXIBLE = 0x1,
1033         EVENT_PINNED = 0x2,
1034         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1035 };
1036
1037 static void ctx_sched_out(struct perf_event_context *ctx,
1038                           struct perf_cpu_context *cpuctx,
1039                           enum event_type_t event_type)
1040 {
1041         struct perf_event *event;
1042
1043         raw_spin_lock(&ctx->lock);
1044         ctx->is_active = 0;
1045         if (likely(!ctx->nr_events))
1046                 goto out;
1047         update_context_time(ctx);
1048
1049         perf_disable();
1050         if (!ctx->nr_active)
1051                 goto out_enable;
1052
1053         if (event_type & EVENT_PINNED)
1054                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1055                         group_sched_out(event, cpuctx, ctx);
1056
1057         if (event_type & EVENT_FLEXIBLE)
1058                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1059                         group_sched_out(event, cpuctx, ctx);
1060
1061  out_enable:
1062         perf_enable();
1063  out:
1064         raw_spin_unlock(&ctx->lock);
1065 }
1066
1067 /*
1068  * Test whether two contexts are equivalent, i.e. whether they
1069  * have both been cloned from the same version of the same context
1070  * and they both have the same number of enabled events.
1071  * If the number of enabled events is the same, then the set
1072  * of enabled events should be the same, because these are both
1073  * inherited contexts, therefore we can't access individual events
1074  * in them directly with an fd; we can only enable/disable all
1075  * events via prctl, or enable/disable all events in a family
1076  * via ioctl, which will have the same effect on both contexts.
1077  */
1078 static int context_equiv(struct perf_event_context *ctx1,
1079                          struct perf_event_context *ctx2)
1080 {
1081         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1082                 && ctx1->parent_gen == ctx2->parent_gen
1083                 && !ctx1->pin_count && !ctx2->pin_count;
1084 }
1085
1086 static void __perf_event_sync_stat(struct perf_event *event,
1087                                      struct perf_event *next_event)
1088 {
1089         u64 value;
1090
1091         if (!event->attr.inherit_stat)
1092                 return;
1093
1094         /*
1095          * Update the event value, we cannot use perf_event_read()
1096          * because we're in the middle of a context switch and have IRQs
1097          * disabled, which upsets smp_call_function_single(), however
1098          * we know the event must be on the current CPU, therefore we
1099          * don't need to use it.
1100          */
1101         switch (event->state) {
1102         case PERF_EVENT_STATE_ACTIVE:
1103                 event->pmu->read(event);
1104                 /* fall-through */
1105
1106         case PERF_EVENT_STATE_INACTIVE:
1107                 update_event_times(event);
1108                 break;
1109
1110         default:
1111                 break;
1112         }
1113
1114         /*
1115          * In order to keep per-task stats reliable we need to flip the event
1116          * values when we flip the contexts.
1117          */
1118         value = atomic64_read(&next_event->count);
1119         value = atomic64_xchg(&event->count, value);
1120         atomic64_set(&next_event->count, value);
1121
1122         swap(event->total_time_enabled, next_event->total_time_enabled);
1123         swap(event->total_time_running, next_event->total_time_running);
1124
1125         /*
1126          * Since we swizzled the values, update the user visible data too.
1127          */
1128         perf_event_update_userpage(event);
1129         perf_event_update_userpage(next_event);
1130 }
1131
1132 #define list_next_entry(pos, member) \
1133         list_entry(pos->member.next, typeof(*pos), member)
1134
1135 static void perf_event_sync_stat(struct perf_event_context *ctx,
1136                                    struct perf_event_context *next_ctx)
1137 {
1138         struct perf_event *event, *next_event;
1139
1140         if (!ctx->nr_stat)
1141                 return;
1142
1143         update_context_time(ctx);
1144
1145         event = list_first_entry(&ctx->event_list,
1146                                    struct perf_event, event_entry);
1147
1148         next_event = list_first_entry(&next_ctx->event_list,
1149                                         struct perf_event, event_entry);
1150
1151         while (&event->event_entry != &ctx->event_list &&
1152                &next_event->event_entry != &next_ctx->event_list) {
1153
1154                 __perf_event_sync_stat(event, next_event);
1155
1156                 event = list_next_entry(event, event_entry);
1157                 next_event = list_next_entry(next_event, event_entry);
1158         }
1159 }
1160
1161 /*
1162  * Called from scheduler to remove the events of the current task,
1163  * with interrupts disabled.
1164  *
1165  * We stop each event and update the event value in event->count.
1166  *
1167  * This does not protect us against NMI, but disable()
1168  * sets the disabled bit in the control field of event _before_
1169  * accessing the event control register. If a NMI hits, then it will
1170  * not restart the event.
1171  */
1172 void perf_event_task_sched_out(struct task_struct *task,
1173                                  struct task_struct *next)
1174 {
1175         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1176         struct perf_event_context *ctx = task->perf_event_ctxp;
1177         struct perf_event_context *next_ctx;
1178         struct perf_event_context *parent;
1179         int do_switch = 1;
1180
1181         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1182
1183         if (likely(!ctx || !cpuctx->task_ctx))
1184                 return;
1185
1186         rcu_read_lock();
1187         parent = rcu_dereference(ctx->parent_ctx);
1188         next_ctx = next->perf_event_ctxp;
1189         if (parent && next_ctx &&
1190             rcu_dereference(next_ctx->parent_ctx) == parent) {
1191                 /*
1192                  * Looks like the two contexts are clones, so we might be
1193                  * able to optimize the context switch.  We lock both
1194                  * contexts and check that they are clones under the
1195                  * lock (including re-checking that neither has been
1196                  * uncloned in the meantime).  It doesn't matter which
1197                  * order we take the locks because no other cpu could
1198                  * be trying to lock both of these tasks.
1199                  */
1200                 raw_spin_lock(&ctx->lock);
1201                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1202                 if (context_equiv(ctx, next_ctx)) {
1203                         /*
1204                          * XXX do we need a memory barrier of sorts
1205                          * wrt to rcu_dereference() of perf_event_ctxp
1206                          */
1207                         task->perf_event_ctxp = next_ctx;
1208                         next->perf_event_ctxp = ctx;
1209                         ctx->task = next;
1210                         next_ctx->task = task;
1211                         do_switch = 0;
1212
1213                         perf_event_sync_stat(ctx, next_ctx);
1214                 }
1215                 raw_spin_unlock(&next_ctx->lock);
1216                 raw_spin_unlock(&ctx->lock);
1217         }
1218         rcu_read_unlock();
1219
1220         if (do_switch) {
1221                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1222                 cpuctx->task_ctx = NULL;
1223         }
1224 }
1225
1226 static void task_ctx_sched_out(struct perf_event_context *ctx,
1227                                enum event_type_t event_type)
1228 {
1229         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1230
1231         if (!cpuctx->task_ctx)
1232                 return;
1233
1234         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1235                 return;
1236
1237         ctx_sched_out(ctx, cpuctx, event_type);
1238         cpuctx->task_ctx = NULL;
1239 }
1240
1241 /*
1242  * Called with IRQs disabled
1243  */
1244 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1245 {
1246         task_ctx_sched_out(ctx, EVENT_ALL);
1247 }
1248
1249 /*
1250  * Called with IRQs disabled
1251  */
1252 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1253                               enum event_type_t event_type)
1254 {
1255         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1256 }
1257
1258 static void
1259 ctx_pinned_sched_in(struct perf_event_context *ctx,
1260                     struct perf_cpu_context *cpuctx)
1261 {
1262         struct perf_event *event;
1263
1264         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1265                 if (event->state <= PERF_EVENT_STATE_OFF)
1266                         continue;
1267                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1268                         continue;
1269
1270                 if (group_can_go_on(event, cpuctx, 1))
1271                         group_sched_in(event, cpuctx, ctx);
1272
1273                 /*
1274                  * If this pinned group hasn't been scheduled,
1275                  * put it in error state.
1276                  */
1277                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1278                         update_group_times(event);
1279                         event->state = PERF_EVENT_STATE_ERROR;
1280                 }
1281         }
1282 }
1283
1284 static void
1285 ctx_flexible_sched_in(struct perf_event_context *ctx,
1286                       struct perf_cpu_context *cpuctx)
1287 {
1288         struct perf_event *event;
1289         int can_add_hw = 1;
1290
1291         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1292                 /* Ignore events in OFF or ERROR state */
1293                 if (event->state <= PERF_EVENT_STATE_OFF)
1294                         continue;
1295                 /*
1296                  * Listen to the 'cpu' scheduling filter constraint
1297                  * of events:
1298                  */
1299                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1300                         continue;
1301
1302                 if (group_can_go_on(event, cpuctx, can_add_hw))
1303                         if (group_sched_in(event, cpuctx, ctx))
1304                                 can_add_hw = 0;
1305         }
1306 }
1307
1308 static void
1309 ctx_sched_in(struct perf_event_context *ctx,
1310              struct perf_cpu_context *cpuctx,
1311              enum event_type_t event_type)
1312 {
1313         raw_spin_lock(&ctx->lock);
1314         ctx->is_active = 1;
1315         if (likely(!ctx->nr_events))
1316                 goto out;
1317
1318         ctx->timestamp = perf_clock();
1319
1320         perf_disable();
1321
1322         /*
1323          * First go through the list and put on any pinned groups
1324          * in order to give them the best chance of going on.
1325          */
1326         if (event_type & EVENT_PINNED)
1327                 ctx_pinned_sched_in(ctx, cpuctx);
1328
1329         /* Then walk through the lower prio flexible groups */
1330         if (event_type & EVENT_FLEXIBLE)
1331                 ctx_flexible_sched_in(ctx, cpuctx);
1332
1333         perf_enable();
1334  out:
1335         raw_spin_unlock(&ctx->lock);
1336 }
1337
1338 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1339                              enum event_type_t event_type)
1340 {
1341         struct perf_event_context *ctx = &cpuctx->ctx;
1342
1343         ctx_sched_in(ctx, cpuctx, event_type);
1344 }
1345
1346 static void task_ctx_sched_in(struct task_struct *task,
1347                               enum event_type_t event_type)
1348 {
1349         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1350         struct perf_event_context *ctx = task->perf_event_ctxp;
1351
1352         if (likely(!ctx))
1353                 return;
1354         if (cpuctx->task_ctx == ctx)
1355                 return;
1356         ctx_sched_in(ctx, cpuctx, event_type);
1357         cpuctx->task_ctx = ctx;
1358 }
1359 /*
1360  * Called from scheduler to add the events of the current task
1361  * with interrupts disabled.
1362  *
1363  * We restore the event value and then enable it.
1364  *
1365  * This does not protect us against NMI, but enable()
1366  * sets the enabled bit in the control field of event _before_
1367  * accessing the event control register. If a NMI hits, then it will
1368  * keep the event running.
1369  */
1370 void perf_event_task_sched_in(struct task_struct *task)
1371 {
1372         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1373         struct perf_event_context *ctx = task->perf_event_ctxp;
1374
1375         if (likely(!ctx))
1376                 return;
1377
1378         if (cpuctx->task_ctx == ctx)
1379                 return;
1380
1381         perf_disable();
1382
1383         /*
1384          * We want to keep the following priority order:
1385          * cpu pinned (that don't need to move), task pinned,
1386          * cpu flexible, task flexible.
1387          */
1388         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1389
1390         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1391         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1392         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1393
1394         cpuctx->task_ctx = ctx;
1395
1396         perf_enable();
1397 }
1398
1399 #define MAX_INTERRUPTS (~0ULL)
1400
1401 static void perf_log_throttle(struct perf_event *event, int enable);
1402
1403 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1404 {
1405         u64 frequency = event->attr.sample_freq;
1406         u64 sec = NSEC_PER_SEC;
1407         u64 divisor, dividend;
1408
1409         int count_fls, nsec_fls, frequency_fls, sec_fls;
1410
1411         count_fls = fls64(count);
1412         nsec_fls = fls64(nsec);
1413         frequency_fls = fls64(frequency);
1414         sec_fls = 30;
1415
1416         /*
1417          * We got @count in @nsec, with a target of sample_freq HZ
1418          * the target period becomes:
1419          *
1420          *             @count * 10^9
1421          * period = -------------------
1422          *          @nsec * sample_freq
1423          *
1424          */
1425
1426         /*
1427          * Reduce accuracy by one bit such that @a and @b converge
1428          * to a similar magnitude.
1429          */
1430 #define REDUCE_FLS(a, b)                \
1431 do {                                    \
1432         if (a##_fls > b##_fls) {        \
1433                 a >>= 1;                \
1434                 a##_fls--;              \
1435         } else {                        \
1436                 b >>= 1;                \
1437                 b##_fls--;              \
1438         }                               \
1439 } while (0)
1440
1441         /*
1442          * Reduce accuracy until either term fits in a u64, then proceed with
1443          * the other, so that finally we can do a u64/u64 division.
1444          */
1445         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1446                 REDUCE_FLS(nsec, frequency);
1447                 REDUCE_FLS(sec, count);
1448         }
1449
1450         if (count_fls + sec_fls > 64) {
1451                 divisor = nsec * frequency;
1452
1453                 while (count_fls + sec_fls > 64) {
1454                         REDUCE_FLS(count, sec);
1455                         divisor >>= 1;
1456                 }
1457
1458                 dividend = count * sec;
1459         } else {
1460                 dividend = count * sec;
1461
1462                 while (nsec_fls + frequency_fls > 64) {
1463                         REDUCE_FLS(nsec, frequency);
1464                         dividend >>= 1;
1465                 }
1466
1467                 divisor = nsec * frequency;
1468         }
1469
1470         return div64_u64(dividend, divisor);
1471 }
1472
1473 static void perf_event_stop(struct perf_event *event)
1474 {
1475         if (!event->pmu->stop)
1476                 return event->pmu->disable(event);
1477
1478         return event->pmu->stop(event);
1479 }
1480
1481 static int perf_event_start(struct perf_event *event)
1482 {
1483         if (!event->pmu->start)
1484                 return event->pmu->enable(event);
1485
1486         return event->pmu->start(event);
1487 }
1488
1489 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1490 {
1491         struct hw_perf_event *hwc = &event->hw;
1492         u64 period, sample_period;
1493         s64 delta;
1494
1495         period = perf_calculate_period(event, nsec, count);
1496
1497         delta = (s64)(period - hwc->sample_period);
1498         delta = (delta + 7) / 8; /* low pass filter */
1499
1500         sample_period = hwc->sample_period + delta;
1501
1502         if (!sample_period)
1503                 sample_period = 1;
1504
1505         hwc->sample_period = sample_period;
1506
1507         if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1508                 perf_disable();
1509                 perf_event_stop(event);
1510                 atomic64_set(&hwc->period_left, 0);
1511                 perf_event_start(event);
1512                 perf_enable();
1513         }
1514 }
1515
1516 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1517 {
1518         struct perf_event *event;
1519         struct hw_perf_event *hwc;
1520         u64 interrupts, now;
1521         s64 delta;
1522
1523         raw_spin_lock(&ctx->lock);
1524         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1525                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1526                         continue;
1527
1528                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1529                         continue;
1530
1531                 hwc = &event->hw;
1532
1533                 interrupts = hwc->interrupts;
1534                 hwc->interrupts = 0;
1535
1536                 /*
1537                  * unthrottle events on the tick
1538                  */
1539                 if (interrupts == MAX_INTERRUPTS) {
1540                         perf_log_throttle(event, 1);
1541                         perf_disable();
1542                         event->pmu->unthrottle(event);
1543                         perf_enable();
1544                 }
1545
1546                 if (!event->attr.freq || !event->attr.sample_freq)
1547                         continue;
1548
1549                 perf_disable();
1550                 event->pmu->read(event);
1551                 now = atomic64_read(&event->count);
1552                 delta = now - hwc->freq_count_stamp;
1553                 hwc->freq_count_stamp = now;
1554
1555                 if (delta > 0)
1556                         perf_adjust_period(event, TICK_NSEC, delta);
1557                 perf_enable();
1558         }
1559         raw_spin_unlock(&ctx->lock);
1560 }
1561
1562 /*
1563  * Round-robin a context's events:
1564  */
1565 static void rotate_ctx(struct perf_event_context *ctx)
1566 {
1567         raw_spin_lock(&ctx->lock);
1568
1569         /* Rotate the first entry last of non-pinned groups */
1570         list_rotate_left(&ctx->flexible_groups);
1571
1572         raw_spin_unlock(&ctx->lock);
1573 }
1574
1575 void perf_event_task_tick(struct task_struct *curr)
1576 {
1577         struct perf_cpu_context *cpuctx;
1578         struct perf_event_context *ctx;
1579         int rotate = 0;
1580
1581         if (!atomic_read(&nr_events))
1582                 return;
1583
1584         cpuctx = &__get_cpu_var(perf_cpu_context);
1585         if (cpuctx->ctx.nr_events &&
1586             cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1587                 rotate = 1;
1588
1589         ctx = curr->perf_event_ctxp;
1590         if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1591                 rotate = 1;
1592
1593         perf_ctx_adjust_freq(&cpuctx->ctx);
1594         if (ctx)
1595                 perf_ctx_adjust_freq(ctx);
1596
1597         if (!rotate)
1598                 return;
1599
1600         perf_disable();
1601         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1602         if (ctx)
1603                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1604
1605         rotate_ctx(&cpuctx->ctx);
1606         if (ctx)
1607                 rotate_ctx(ctx);
1608
1609         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1610         if (ctx)
1611                 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1612         perf_enable();
1613 }
1614
1615 static int event_enable_on_exec(struct perf_event *event,
1616                                 struct perf_event_context *ctx)
1617 {
1618         if (!event->attr.enable_on_exec)
1619                 return 0;
1620
1621         event->attr.enable_on_exec = 0;
1622         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1623                 return 0;
1624
1625         __perf_event_mark_enabled(event, ctx);
1626
1627         return 1;
1628 }
1629
1630 /*
1631  * Enable all of a task's events that have been marked enable-on-exec.
1632  * This expects task == current.
1633  */
1634 static void perf_event_enable_on_exec(struct task_struct *task)
1635 {
1636         struct perf_event_context *ctx;
1637         struct perf_event *event;
1638         unsigned long flags;
1639         int enabled = 0;
1640         int ret;
1641
1642         local_irq_save(flags);
1643         ctx = task->perf_event_ctxp;
1644         if (!ctx || !ctx->nr_events)
1645                 goto out;
1646
1647         __perf_event_task_sched_out(ctx);
1648
1649         raw_spin_lock(&ctx->lock);
1650
1651         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1652                 ret = event_enable_on_exec(event, ctx);
1653                 if (ret)
1654                         enabled = 1;
1655         }
1656
1657         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1658                 ret = event_enable_on_exec(event, ctx);
1659                 if (ret)
1660                         enabled = 1;
1661         }
1662
1663         /*
1664          * Unclone this context if we enabled any event.
1665          */
1666         if (enabled)
1667                 unclone_ctx(ctx);
1668
1669         raw_spin_unlock(&ctx->lock);
1670
1671         perf_event_task_sched_in(task);
1672  out:
1673         local_irq_restore(flags);
1674 }
1675
1676 /*
1677  * Cross CPU call to read the hardware event
1678  */
1679 static void __perf_event_read(void *info)
1680 {
1681         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1682         struct perf_event *event = info;
1683         struct perf_event_context *ctx = event->ctx;
1684
1685         /*
1686          * If this is a task context, we need to check whether it is
1687          * the current task context of this cpu.  If not it has been
1688          * scheduled out before the smp call arrived.  In that case
1689          * event->count would have been updated to a recent sample
1690          * when the event was scheduled out.
1691          */
1692         if (ctx->task && cpuctx->task_ctx != ctx)
1693                 return;
1694
1695         raw_spin_lock(&ctx->lock);
1696         update_context_time(ctx);
1697         update_event_times(event);
1698         raw_spin_unlock(&ctx->lock);
1699
1700         event->pmu->read(event);
1701 }
1702
1703 static u64 perf_event_read(struct perf_event *event)
1704 {
1705         /*
1706          * If event is enabled and currently active on a CPU, update the
1707          * value in the event structure:
1708          */
1709         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1710                 smp_call_function_single(event->oncpu,
1711                                          __perf_event_read, event, 1);
1712         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1713                 struct perf_event_context *ctx = event->ctx;
1714                 unsigned long flags;
1715
1716                 raw_spin_lock_irqsave(&ctx->lock, flags);
1717                 update_context_time(ctx);
1718                 update_event_times(event);
1719                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1720         }
1721
1722         return atomic64_read(&event->count);
1723 }
1724
1725 /*
1726  * Initialize the perf_event context in a task_struct:
1727  */
1728 static void
1729 __perf_event_init_context(struct perf_event_context *ctx,
1730                             struct task_struct *task)
1731 {
1732         raw_spin_lock_init(&ctx->lock);
1733         mutex_init(&ctx->mutex);
1734         INIT_LIST_HEAD(&ctx->pinned_groups);
1735         INIT_LIST_HEAD(&ctx->flexible_groups);
1736         INIT_LIST_HEAD(&ctx->event_list);
1737         atomic_set(&ctx->refcount, 1);
1738         ctx->task = task;
1739 }
1740
1741 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1742 {
1743         struct perf_event_context *ctx;
1744         struct perf_cpu_context *cpuctx;
1745         struct task_struct *task;
1746         unsigned long flags;
1747         int err;
1748
1749         if (pid == -1 && cpu != -1) {
1750                 /* Must be root to operate on a CPU event: */
1751                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1752                         return ERR_PTR(-EACCES);
1753
1754                 if (cpu < 0 || cpu >= nr_cpumask_bits)
1755                         return ERR_PTR(-EINVAL);
1756
1757                 /*
1758                  * We could be clever and allow to attach a event to an
1759                  * offline CPU and activate it when the CPU comes up, but
1760                  * that's for later.
1761                  */
1762                 if (!cpu_online(cpu))
1763                         return ERR_PTR(-ENODEV);
1764
1765                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1766                 ctx = &cpuctx->ctx;
1767                 get_ctx(ctx);
1768
1769                 return ctx;
1770         }
1771
1772         rcu_read_lock();
1773         if (!pid)
1774                 task = current;
1775         else
1776                 task = find_task_by_vpid(pid);
1777         if (task)
1778                 get_task_struct(task);
1779         rcu_read_unlock();
1780
1781         if (!task)
1782                 return ERR_PTR(-ESRCH);
1783
1784         /*
1785          * Can't attach events to a dying task.
1786          */
1787         err = -ESRCH;
1788         if (task->flags & PF_EXITING)
1789                 goto errout;
1790
1791         /* Reuse ptrace permission checks for now. */
1792         err = -EACCES;
1793         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1794                 goto errout;
1795
1796  retry:
1797         ctx = perf_lock_task_context(task, &flags);
1798         if (ctx) {
1799                 unclone_ctx(ctx);
1800                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1801         }
1802
1803         if (!ctx) {
1804                 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1805                 err = -ENOMEM;
1806                 if (!ctx)
1807                         goto errout;
1808                 __perf_event_init_context(ctx, task);
1809                 get_ctx(ctx);
1810                 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1811                         /*
1812                          * We raced with some other task; use
1813                          * the context they set.
1814                          */
1815                         kfree(ctx);
1816                         goto retry;
1817                 }
1818                 get_task_struct(task);
1819         }
1820
1821         put_task_struct(task);
1822         return ctx;
1823
1824  errout:
1825         put_task_struct(task);
1826         return ERR_PTR(err);
1827 }
1828
1829 static void perf_event_free_filter(struct perf_event *event);
1830
1831 static void free_event_rcu(struct rcu_head *head)
1832 {
1833         struct perf_event *event;
1834
1835         event = container_of(head, struct perf_event, rcu_head);
1836         if (event->ns)
1837                 put_pid_ns(event->ns);
1838         perf_event_free_filter(event);
1839         kfree(event);
1840 }
1841
1842 static void perf_pending_sync(struct perf_event *event);
1843
1844 static void free_event(struct perf_event *event)
1845 {
1846         perf_pending_sync(event);
1847
1848         if (!event->parent) {
1849                 atomic_dec(&nr_events);
1850                 if (event->attr.mmap)
1851                         atomic_dec(&nr_mmap_events);
1852                 if (event->attr.comm)
1853                         atomic_dec(&nr_comm_events);
1854                 if (event->attr.task)
1855                         atomic_dec(&nr_task_events);
1856         }
1857
1858         if (event->output) {
1859                 fput(event->output->filp);
1860                 event->output = NULL;
1861         }
1862
1863         if (event->destroy)
1864                 event->destroy(event);
1865
1866         put_ctx(event->ctx);
1867         call_rcu(&event->rcu_head, free_event_rcu);
1868 }
1869
1870 int perf_event_release_kernel(struct perf_event *event)
1871 {
1872         struct perf_event_context *ctx = event->ctx;
1873
1874         event->state = PERF_EVENT_STATE_FREE;
1875
1876         WARN_ON_ONCE(ctx->parent_ctx);
1877         /*
1878          * There are two ways this annotation is useful:
1879          *
1880          *  1) there is a lock recursion from perf_event_exit_task
1881          *     see the comment there.
1882          *
1883          *  2) there is a lock-inversion with mmap_sem through
1884          *     perf_event_read_group(), which takes faults while
1885          *     holding ctx->mutex, however this is called after
1886          *     the last filedesc died, so there is no possibility
1887          *     to trigger the AB-BA case.
1888          */
1889         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1890         perf_event_remove_from_context(event);
1891         mutex_unlock(&ctx->mutex);
1892
1893         mutex_lock(&event->owner->perf_event_mutex);
1894         list_del_init(&event->owner_entry);
1895         mutex_unlock(&event->owner->perf_event_mutex);
1896         put_task_struct(event->owner);
1897
1898         free_event(event);
1899
1900         return 0;
1901 }
1902 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1903
1904 /*
1905  * Called when the last reference to the file is gone.
1906  */
1907 static int perf_release(struct inode *inode, struct file *file)
1908 {
1909         struct perf_event *event = file->private_data;
1910
1911         file->private_data = NULL;
1912
1913         return perf_event_release_kernel(event);
1914 }
1915
1916 static int perf_event_read_size(struct perf_event *event)
1917 {
1918         int entry = sizeof(u64); /* value */
1919         int size = 0;
1920         int nr = 1;
1921
1922         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1923                 size += sizeof(u64);
1924
1925         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1926                 size += sizeof(u64);
1927
1928         if (event->attr.read_format & PERF_FORMAT_ID)
1929                 entry += sizeof(u64);
1930
1931         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1932                 nr += event->group_leader->nr_siblings;
1933                 size += sizeof(u64);
1934         }
1935
1936         size += entry * nr;
1937
1938         return size;
1939 }
1940
1941 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1942 {
1943         struct perf_event *child;
1944         u64 total = 0;
1945
1946         *enabled = 0;
1947         *running = 0;
1948
1949         mutex_lock(&event->child_mutex);
1950         total += perf_event_read(event);
1951         *enabled += event->total_time_enabled +
1952                         atomic64_read(&event->child_total_time_enabled);
1953         *running += event->total_time_running +
1954                         atomic64_read(&event->child_total_time_running);
1955
1956         list_for_each_entry(child, &event->child_list, child_list) {
1957                 total += perf_event_read(child);
1958                 *enabled += child->total_time_enabled;
1959                 *running += child->total_time_running;
1960         }
1961         mutex_unlock(&event->child_mutex);
1962
1963         return total;
1964 }
1965 EXPORT_SYMBOL_GPL(perf_event_read_value);
1966
1967 static int perf_event_read_group(struct perf_event *event,
1968                                    u64 read_format, char __user *buf)
1969 {
1970         struct perf_event *leader = event->group_leader, *sub;
1971         int n = 0, size = 0, ret = -EFAULT;
1972         struct perf_event_context *ctx = leader->ctx;
1973         u64 values[5];
1974         u64 count, enabled, running;
1975
1976         mutex_lock(&ctx->mutex);
1977         count = perf_event_read_value(leader, &enabled, &running);
1978
1979         values[n++] = 1 + leader->nr_siblings;
1980         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1981                 values[n++] = enabled;
1982         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1983                 values[n++] = running;
1984         values[n++] = count;
1985         if (read_format & PERF_FORMAT_ID)
1986                 values[n++] = primary_event_id(leader);
1987
1988         size = n * sizeof(u64);
1989
1990         if (copy_to_user(buf, values, size))
1991                 goto unlock;
1992
1993         ret = size;
1994
1995         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1996                 n = 0;
1997
1998                 values[n++] = perf_event_read_value(sub, &enabled, &running);
1999                 if (read_format & PERF_FORMAT_ID)
2000                         values[n++] = primary_event_id(sub);
2001
2002                 size = n * sizeof(u64);
2003
2004                 if (copy_to_user(buf + ret, values, size)) {
2005                         ret = -EFAULT;
2006                         goto unlock;
2007                 }
2008
2009                 ret += size;
2010         }
2011 unlock:
2012         mutex_unlock(&ctx->mutex);
2013
2014         return ret;
2015 }
2016
2017 static int perf_event_read_one(struct perf_event *event,
2018                                  u64 read_format, char __user *buf)
2019 {
2020         u64 enabled, running;
2021         u64 values[4];
2022         int n = 0;
2023
2024         values[n++] = perf_event_read_value(event, &enabled, &running);
2025         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2026                 values[n++] = enabled;
2027         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2028                 values[n++] = running;
2029         if (read_format & PERF_FORMAT_ID)
2030                 values[n++] = primary_event_id(event);
2031
2032         if (copy_to_user(buf, values, n * sizeof(u64)))
2033                 return -EFAULT;
2034
2035         return n * sizeof(u64);
2036 }
2037
2038 /*
2039  * Read the performance event - simple non blocking version for now
2040  */
2041 static ssize_t
2042 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2043 {
2044         u64 read_format = event->attr.read_format;
2045         int ret;
2046
2047         /*
2048          * Return end-of-file for a read on a event that is in
2049          * error state (i.e. because it was pinned but it couldn't be
2050          * scheduled on to the CPU at some point).
2051          */
2052         if (event->state == PERF_EVENT_STATE_ERROR)
2053                 return 0;
2054
2055         if (count < perf_event_read_size(event))
2056                 return -ENOSPC;
2057
2058         WARN_ON_ONCE(event->ctx->parent_ctx);
2059         if (read_format & PERF_FORMAT_GROUP)
2060                 ret = perf_event_read_group(event, read_format, buf);
2061         else
2062                 ret = perf_event_read_one(event, read_format, buf);
2063
2064         return ret;
2065 }
2066
2067 static ssize_t
2068 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2069 {
2070         struct perf_event *event = file->private_data;
2071
2072         return perf_read_hw(event, buf, count);
2073 }
2074
2075 static unsigned int perf_poll(struct file *file, poll_table *wait)
2076 {
2077         struct perf_event *event = file->private_data;
2078         struct perf_mmap_data *data;
2079         unsigned int events = POLL_HUP;
2080
2081         rcu_read_lock();
2082         data = rcu_dereference(event->data);
2083         if (data)
2084                 events = atomic_xchg(&data->poll, 0);
2085         rcu_read_unlock();
2086
2087         poll_wait(file, &event->waitq, wait);
2088
2089         return events;
2090 }
2091
2092 static void perf_event_reset(struct perf_event *event)
2093 {
2094         (void)perf_event_read(event);
2095         atomic64_set(&event->count, 0);
2096         perf_event_update_userpage(event);
2097 }
2098
2099 /*
2100  * Holding the top-level event's child_mutex means that any
2101  * descendant process that has inherited this event will block
2102  * in sync_child_event if it goes to exit, thus satisfying the
2103  * task existence requirements of perf_event_enable/disable.
2104  */
2105 static void perf_event_for_each_child(struct perf_event *event,
2106                                         void (*func)(struct perf_event *))
2107 {
2108         struct perf_event *child;
2109
2110         WARN_ON_ONCE(event->ctx->parent_ctx);
2111         mutex_lock(&event->child_mutex);
2112         func(event);
2113         list_for_each_entry(child, &event->child_list, child_list)
2114                 func(child);
2115         mutex_unlock(&event->child_mutex);
2116 }
2117
2118 static void perf_event_for_each(struct perf_event *event,
2119                                   void (*func)(struct perf_event *))
2120 {
2121         struct perf_event_context *ctx = event->ctx;
2122         struct perf_event *sibling;
2123
2124         WARN_ON_ONCE(ctx->parent_ctx);
2125         mutex_lock(&ctx->mutex);
2126         event = event->group_leader;
2127
2128         perf_event_for_each_child(event, func);
2129         func(event);
2130         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2131                 perf_event_for_each_child(event, func);
2132         mutex_unlock(&ctx->mutex);
2133 }
2134
2135 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2136 {
2137         struct perf_event_context *ctx = event->ctx;
2138         unsigned long size;
2139         int ret = 0;
2140         u64 value;
2141
2142         if (!event->attr.sample_period)
2143                 return -EINVAL;
2144
2145         size = copy_from_user(&value, arg, sizeof(value));
2146         if (size != sizeof(value))
2147                 return -EFAULT;
2148
2149         if (!value)
2150                 return -EINVAL;
2151
2152         raw_spin_lock_irq(&ctx->lock);
2153         if (event->attr.freq) {
2154                 if (value > sysctl_perf_event_sample_rate) {
2155                         ret = -EINVAL;
2156                         goto unlock;
2157                 }
2158
2159                 event->attr.sample_freq = value;
2160         } else {
2161                 event->attr.sample_period = value;
2162                 event->hw.sample_period = value;
2163         }
2164 unlock:
2165         raw_spin_unlock_irq(&ctx->lock);
2166
2167         return ret;
2168 }
2169
2170 static int perf_event_set_output(struct perf_event *event, int output_fd);
2171 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2172
2173 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2174 {
2175         struct perf_event *event = file->private_data;
2176         void (*func)(struct perf_event *);
2177         u32 flags = arg;
2178
2179         switch (cmd) {
2180         case PERF_EVENT_IOC_ENABLE:
2181                 func = perf_event_enable;
2182                 break;
2183         case PERF_EVENT_IOC_DISABLE:
2184                 func = perf_event_disable;
2185                 break;
2186         case PERF_EVENT_IOC_RESET:
2187                 func = perf_event_reset;
2188                 break;
2189
2190         case PERF_EVENT_IOC_REFRESH:
2191                 return perf_event_refresh(event, arg);
2192
2193         case PERF_EVENT_IOC_PERIOD:
2194                 return perf_event_period(event, (u64 __user *)arg);
2195
2196         case PERF_EVENT_IOC_SET_OUTPUT:
2197                 return perf_event_set_output(event, arg);
2198
2199         case PERF_EVENT_IOC_SET_FILTER:
2200                 return perf_event_set_filter(event, (void __user *)arg);
2201
2202         default:
2203                 return -ENOTTY;
2204         }
2205
2206         if (flags & PERF_IOC_FLAG_GROUP)
2207                 perf_event_for_each(event, func);
2208         else
2209                 perf_event_for_each_child(event, func);
2210
2211         return 0;
2212 }
2213
2214 int perf_event_task_enable(void)
2215 {
2216         struct perf_event *event;
2217
2218         mutex_lock(&current->perf_event_mutex);
2219         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2220                 perf_event_for_each_child(event, perf_event_enable);
2221         mutex_unlock(&current->perf_event_mutex);
2222
2223         return 0;
2224 }
2225
2226 int perf_event_task_disable(void)
2227 {
2228         struct perf_event *event;
2229
2230         mutex_lock(&current->perf_event_mutex);
2231         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2232                 perf_event_for_each_child(event, perf_event_disable);
2233         mutex_unlock(&current->perf_event_mutex);
2234
2235         return 0;
2236 }
2237
2238 #ifndef PERF_EVENT_INDEX_OFFSET
2239 # define PERF_EVENT_INDEX_OFFSET 0
2240 #endif
2241
2242 static int perf_event_index(struct perf_event *event)
2243 {
2244         if (event->state != PERF_EVENT_STATE_ACTIVE)
2245                 return 0;
2246
2247         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2248 }
2249
2250 /*
2251  * Callers need to ensure there can be no nesting of this function, otherwise
2252  * the seqlock logic goes bad. We can not serialize this because the arch
2253  * code calls this from NMI context.
2254  */
2255 void perf_event_update_userpage(struct perf_event *event)
2256 {
2257         struct perf_event_mmap_page *userpg;
2258         struct perf_mmap_data *data;
2259
2260         rcu_read_lock();
2261         data = rcu_dereference(event->data);
2262         if (!data)
2263                 goto unlock;
2264
2265         userpg = data->user_page;
2266
2267         /*
2268          * Disable preemption so as to not let the corresponding user-space
2269          * spin too long if we get preempted.
2270          */
2271         preempt_disable();
2272         ++userpg->lock;
2273         barrier();
2274         userpg->index = perf_event_index(event);
2275         userpg->offset = atomic64_read(&event->count);
2276         if (event->state == PERF_EVENT_STATE_ACTIVE)
2277                 userpg->offset -= atomic64_read(&event->hw.prev_count);
2278
2279         userpg->time_enabled = event->total_time_enabled +
2280                         atomic64_read(&event->child_total_time_enabled);
2281
2282         userpg->time_running = event->total_time_running +
2283                         atomic64_read(&event->child_total_time_running);
2284
2285         barrier();
2286         ++userpg->lock;
2287         preempt_enable();
2288 unlock:
2289         rcu_read_unlock();
2290 }
2291
2292 static unsigned long perf_data_size(struct perf_mmap_data *data)
2293 {
2294         return data->nr_pages << (PAGE_SHIFT + data->data_order);
2295 }
2296
2297 #ifndef CONFIG_PERF_USE_VMALLOC
2298
2299 /*
2300  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2301  */
2302
2303 static struct page *
2304 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2305 {
2306         if (pgoff > data->nr_pages)
2307                 return NULL;
2308
2309         if (pgoff == 0)
2310                 return virt_to_page(data->user_page);
2311
2312         return virt_to_page(data->data_pages[pgoff - 1]);
2313 }
2314
2315 static struct perf_mmap_data *
2316 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2317 {
2318         struct perf_mmap_data *data;
2319         unsigned long size;
2320         int i;
2321
2322         WARN_ON(atomic_read(&event->mmap_count));
2323
2324         size = sizeof(struct perf_mmap_data);
2325         size += nr_pages * sizeof(void *);
2326
2327         data = kzalloc(size, GFP_KERNEL);
2328         if (!data)
2329                 goto fail;
2330
2331         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2332         if (!data->user_page)
2333                 goto fail_user_page;
2334
2335         for (i = 0; i < nr_pages; i++) {
2336                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2337                 if (!data->data_pages[i])
2338                         goto fail_data_pages;
2339         }
2340
2341         data->data_order = 0;
2342         data->nr_pages = nr_pages;
2343
2344         return data;
2345
2346 fail_data_pages:
2347         for (i--; i >= 0; i--)
2348                 free_page((unsigned long)data->data_pages[i]);
2349
2350         free_page((unsigned long)data->user_page);
2351
2352 fail_user_page:
2353         kfree(data);
2354
2355 fail:
2356         return NULL;
2357 }
2358
2359 static void perf_mmap_free_page(unsigned long addr)
2360 {
2361         struct page *page = virt_to_page((void *)addr);
2362
2363         page->mapping = NULL;
2364         __free_page(page);
2365 }
2366
2367 static void perf_mmap_data_free(struct perf_mmap_data *data)
2368 {
2369         int i;
2370
2371         perf_mmap_free_page((unsigned long)data->user_page);
2372         for (i = 0; i < data->nr_pages; i++)
2373                 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2374         kfree(data);
2375 }
2376
2377 #else
2378
2379 /*
2380  * Back perf_mmap() with vmalloc memory.
2381  *
2382  * Required for architectures that have d-cache aliasing issues.
2383  */
2384
2385 static struct page *
2386 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2387 {
2388         if (pgoff > (1UL << data->data_order))
2389                 return NULL;
2390
2391         return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2392 }
2393
2394 static void perf_mmap_unmark_page(void *addr)
2395 {
2396         struct page *page = vmalloc_to_page(addr);
2397
2398         page->mapping = NULL;
2399 }
2400
2401 static void perf_mmap_data_free_work(struct work_struct *work)
2402 {
2403         struct perf_mmap_data *data;
2404         void *base;
2405         int i, nr;
2406
2407         data = container_of(work, struct perf_mmap_data, work);
2408         nr = 1 << data->data_order;
2409
2410         base = data->user_page;
2411         for (i = 0; i < nr + 1; i++)
2412                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2413
2414         vfree(base);
2415         kfree(data);
2416 }
2417
2418 static void perf_mmap_data_free(struct perf_mmap_data *data)
2419 {
2420         schedule_work(&data->work);
2421 }
2422
2423 static struct perf_mmap_data *
2424 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2425 {
2426         struct perf_mmap_data *data;
2427         unsigned long size;
2428         void *all_buf;
2429
2430         WARN_ON(atomic_read(&event->mmap_count));
2431
2432         size = sizeof(struct perf_mmap_data);
2433         size += sizeof(void *);
2434
2435         data = kzalloc(size, GFP_KERNEL);
2436         if (!data)
2437                 goto fail;
2438
2439         INIT_WORK(&data->work, perf_mmap_data_free_work);
2440
2441         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2442         if (!all_buf)
2443                 goto fail_all_buf;
2444
2445         data->user_page = all_buf;
2446         data->data_pages[0] = all_buf + PAGE_SIZE;
2447         data->data_order = ilog2(nr_pages);
2448         data->nr_pages = 1;
2449
2450         return data;
2451
2452 fail_all_buf:
2453         kfree(data);
2454
2455 fail:
2456         return NULL;
2457 }
2458
2459 #endif
2460
2461 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2462 {
2463         struct perf_event *event = vma->vm_file->private_data;
2464         struct perf_mmap_data *data;
2465         int ret = VM_FAULT_SIGBUS;
2466
2467         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2468                 if (vmf->pgoff == 0)
2469                         ret = 0;
2470                 return ret;
2471         }
2472
2473         rcu_read_lock();
2474         data = rcu_dereference(event->data);
2475         if (!data)
2476                 goto unlock;
2477
2478         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2479                 goto unlock;
2480
2481         vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2482         if (!vmf->page)
2483                 goto unlock;
2484
2485         get_page(vmf->page);
2486         vmf->page->mapping = vma->vm_file->f_mapping;
2487         vmf->page->index   = vmf->pgoff;
2488
2489         ret = 0;
2490 unlock:
2491         rcu_read_unlock();
2492
2493         return ret;
2494 }
2495
2496 static void
2497 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2498 {
2499         long max_size = perf_data_size(data);
2500
2501         atomic_set(&data->lock, -1);
2502
2503         if (event->attr.watermark) {
2504                 data->watermark = min_t(long, max_size,
2505                                         event->attr.wakeup_watermark);
2506         }
2507
2508         if (!data->watermark)
2509                 data->watermark = max_size / 2;
2510
2511
2512         rcu_assign_pointer(event->data, data);
2513 }
2514
2515 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2516 {
2517         struct perf_mmap_data *data;
2518
2519         data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2520         perf_mmap_data_free(data);
2521 }
2522
2523 static void perf_mmap_data_release(struct perf_event *event)
2524 {
2525         struct perf_mmap_data *data = event->data;
2526
2527         WARN_ON(atomic_read(&event->mmap_count));
2528
2529         rcu_assign_pointer(event->data, NULL);
2530         call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2531 }
2532
2533 static void perf_mmap_open(struct vm_area_struct *vma)
2534 {
2535         struct perf_event *event = vma->vm_file->private_data;
2536
2537         atomic_inc(&event->mmap_count);
2538 }
2539
2540 static void perf_mmap_close(struct vm_area_struct *vma)
2541 {
2542         struct perf_event *event = vma->vm_file->private_data;
2543
2544         WARN_ON_ONCE(event->ctx->parent_ctx);
2545         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2546                 unsigned long size = perf_data_size(event->data);
2547                 struct user_struct *user = current_user();
2548
2549                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2550                 vma->vm_mm->locked_vm -= event->data->nr_locked;
2551                 perf_mmap_data_release(event);
2552                 mutex_unlock(&event->mmap_mutex);
2553         }
2554 }
2555
2556 static const struct vm_operations_struct perf_mmap_vmops = {
2557         .open           = perf_mmap_open,
2558         .close          = perf_mmap_close,
2559         .fault          = perf_mmap_fault,
2560         .page_mkwrite   = perf_mmap_fault,
2561 };
2562
2563 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2564 {
2565         struct perf_event *event = file->private_data;
2566         unsigned long user_locked, user_lock_limit;
2567         struct user_struct *user = current_user();
2568         unsigned long locked, lock_limit;
2569         struct perf_mmap_data *data;
2570         unsigned long vma_size;
2571         unsigned long nr_pages;
2572         long user_extra, extra;
2573         int ret = 0;
2574
2575         if (!(vma->vm_flags & VM_SHARED))
2576                 return -EINVAL;
2577
2578         vma_size = vma->vm_end - vma->vm_start;
2579         nr_pages = (vma_size / PAGE_SIZE) - 1;
2580
2581         /*
2582          * If we have data pages ensure they're a power-of-two number, so we
2583          * can do bitmasks instead of modulo.
2584          */
2585         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2586                 return -EINVAL;
2587
2588         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2589                 return -EINVAL;
2590
2591         if (vma->vm_pgoff != 0)
2592                 return -EINVAL;
2593
2594         WARN_ON_ONCE(event->ctx->parent_ctx);
2595         mutex_lock(&event->mmap_mutex);
2596         if (event->output) {
2597                 ret = -EINVAL;
2598                 goto unlock;
2599         }
2600
2601         if (atomic_inc_not_zero(&event->mmap_count)) {
2602                 if (nr_pages != event->data->nr_pages)
2603                         ret = -EINVAL;
2604                 goto unlock;
2605         }
2606
2607         user_extra = nr_pages + 1;
2608         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2609
2610         /*
2611          * Increase the limit linearly with more CPUs:
2612          */
2613         user_lock_limit *= num_online_cpus();
2614
2615         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2616
2617         extra = 0;
2618         if (user_locked > user_lock_limit)
2619                 extra = user_locked - user_lock_limit;
2620
2621         lock_limit = rlimit(RLIMIT_MEMLOCK);
2622         lock_limit >>= PAGE_SHIFT;
2623         locked = vma->vm_mm->locked_vm + extra;
2624
2625         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2626                 !capable(CAP_IPC_LOCK)) {
2627                 ret = -EPERM;
2628                 goto unlock;
2629         }
2630
2631         WARN_ON(event->data);
2632
2633         data = perf_mmap_data_alloc(event, nr_pages);
2634         ret = -ENOMEM;
2635         if (!data)
2636                 goto unlock;
2637
2638         ret = 0;
2639         perf_mmap_data_init(event, data);
2640
2641         atomic_set(&event->mmap_count, 1);
2642         atomic_long_add(user_extra, &user->locked_vm);
2643         vma->vm_mm->locked_vm += extra;
2644         event->data->nr_locked = extra;
2645         if (vma->vm_flags & VM_WRITE)
2646                 event->data->writable = 1;
2647
2648 unlock:
2649         mutex_unlock(&event->mmap_mutex);
2650
2651         vma->vm_flags |= VM_RESERVED;
2652         vma->vm_ops = &perf_mmap_vmops;
2653
2654         return ret;
2655 }
2656
2657 static int perf_fasync(int fd, struct file *filp, int on)
2658 {
2659         struct inode *inode = filp->f_path.dentry->d_inode;
2660         struct perf_event *event = filp->private_data;
2661         int retval;
2662
2663         mutex_lock(&inode->i_mutex);
2664         retval = fasync_helper(fd, filp, on, &event->fasync);
2665         mutex_unlock(&inode->i_mutex);
2666
2667         if (retval < 0)
2668                 return retval;
2669
2670         return 0;
2671 }
2672
2673 static const struct file_operations perf_fops = {
2674         .llseek                 = no_llseek,
2675         .release                = perf_release,
2676         .read                   = perf_read,
2677         .poll                   = perf_poll,
2678         .unlocked_ioctl         = perf_ioctl,
2679         .compat_ioctl           = perf_ioctl,
2680         .mmap                   = perf_mmap,
2681         .fasync                 = perf_fasync,
2682 };
2683
2684 /*
2685  * Perf event wakeup
2686  *
2687  * If there's data, ensure we set the poll() state and publish everything
2688  * to user-space before waking everybody up.
2689  */
2690
2691 void perf_event_wakeup(struct perf_event *event)
2692 {
2693         wake_up_all(&event->waitq);
2694
2695         if (event->pending_kill) {
2696                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2697                 event->pending_kill = 0;
2698         }
2699 }
2700
2701 /*
2702  * Pending wakeups
2703  *
2704  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2705  *
2706  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2707  * single linked list and use cmpxchg() to add entries lockless.
2708  */
2709
2710 static void perf_pending_event(struct perf_pending_entry *entry)
2711 {
2712         struct perf_event *event = container_of(entry,
2713                         struct perf_event, pending);
2714
2715         if (event->pending_disable) {
2716                 event->pending_disable = 0;
2717                 __perf_event_disable(event);
2718         }
2719
2720         if (event->pending_wakeup) {
2721                 event->pending_wakeup = 0;
2722                 perf_event_wakeup(event);
2723         }
2724 }
2725
2726 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2727
2728 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2729         PENDING_TAIL,
2730 };
2731
2732 static void perf_pending_queue(struct perf_pending_entry *entry,
2733                                void (*func)(struct perf_pending_entry *))
2734 {
2735         struct perf_pending_entry **head;
2736
2737         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2738                 return;
2739
2740         entry->func = func;
2741
2742         head = &get_cpu_var(perf_pending_head);
2743
2744         do {
2745                 entry->next = *head;
2746         } while (cmpxchg(head, entry->next, entry) != entry->next);
2747
2748         set_perf_event_pending();
2749
2750         put_cpu_var(perf_pending_head);
2751 }
2752
2753 static int __perf_pending_run(void)
2754 {
2755         struct perf_pending_entry *list;
2756         int nr = 0;
2757
2758         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2759         while (list != PENDING_TAIL) {
2760                 void (*func)(struct perf_pending_entry *);
2761                 struct perf_pending_entry *entry = list;
2762
2763                 list = list->next;
2764
2765                 func = entry->func;
2766                 entry->next = NULL;
2767                 /*
2768                  * Ensure we observe the unqueue before we issue the wakeup,
2769                  * so that we won't be waiting forever.
2770                  * -- see perf_not_pending().
2771                  */
2772                 smp_wmb();
2773
2774                 func(entry);
2775                 nr++;
2776         }
2777
2778         return nr;
2779 }
2780
2781 static inline int perf_not_pending(struct perf_event *event)
2782 {
2783         /*
2784          * If we flush on whatever cpu we run, there is a chance we don't
2785          * need to wait.
2786          */
2787         get_cpu();
2788         __perf_pending_run();
2789         put_cpu();
2790
2791         /*
2792          * Ensure we see the proper queue state before going to sleep
2793          * so that we do not miss the wakeup. -- see perf_pending_handle()
2794          */
2795         smp_rmb();
2796         return event->pending.next == NULL;
2797 }
2798
2799 static void perf_pending_sync(struct perf_event *event)
2800 {
2801         wait_event(event->waitq, perf_not_pending(event));
2802 }
2803
2804 void perf_event_do_pending(void)
2805 {
2806         __perf_pending_run();
2807 }
2808
2809 /*
2810  * Callchain support -- arch specific
2811  */
2812
2813 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2814 {
2815         return NULL;
2816 }
2817
2818 __weak
2819 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2820 {
2821 }
2822
2823
2824 /*
2825  * We assume there is only KVM supporting the callbacks.
2826  * Later on, we might change it to a list if there is
2827  * another virtualization implementation supporting the callbacks.
2828  */
2829 struct perf_guest_info_callbacks *perf_guest_cbs;
2830
2831 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2832 {
2833         perf_guest_cbs = cbs;
2834         return 0;
2835 }
2836 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
2837
2838 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2839 {
2840         perf_guest_cbs = NULL;
2841         return 0;
2842 }
2843 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2844
2845 /*
2846  * Output
2847  */
2848 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2849                               unsigned long offset, unsigned long head)
2850 {
2851         unsigned long mask;
2852
2853         if (!data->writable)
2854                 return true;
2855
2856         mask = perf_data_size(data) - 1;
2857
2858         offset = (offset - tail) & mask;
2859         head   = (head   - tail) & mask;
2860
2861         if ((int)(head - offset) < 0)
2862                 return false;
2863
2864         return true;
2865 }
2866
2867 static void perf_output_wakeup(struct perf_output_handle *handle)
2868 {
2869         atomic_set(&handle->data->poll, POLL_IN);
2870
2871         if (handle->nmi) {
2872                 handle->event->pending_wakeup = 1;
2873                 perf_pending_queue(&handle->event->pending,
2874                                    perf_pending_event);
2875         } else
2876                 perf_event_wakeup(handle->event);
2877 }
2878
2879 /*
2880  * Curious locking construct.
2881  *
2882  * We need to ensure a later event_id doesn't publish a head when a former
2883  * event_id isn't done writing. However since we need to deal with NMIs we
2884  * cannot fully serialize things.
2885  *
2886  * What we do is serialize between CPUs so we only have to deal with NMI
2887  * nesting on a single CPU.
2888  *
2889  * We only publish the head (and generate a wakeup) when the outer-most
2890  * event_id completes.
2891  */
2892 static void perf_output_lock(struct perf_output_handle *handle)
2893 {
2894         struct perf_mmap_data *data = handle->data;
2895         int cur, cpu = get_cpu();
2896
2897         handle->locked = 0;
2898
2899         for (;;) {
2900                 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2901                 if (cur == -1) {
2902                         handle->locked = 1;
2903                         break;
2904                 }
2905                 if (cur == cpu)
2906                         break;
2907
2908                 cpu_relax();
2909         }
2910 }
2911
2912 static void perf_output_unlock(struct perf_output_handle *handle)
2913 {
2914         struct perf_mmap_data *data = handle->data;
2915         unsigned long head;
2916         int cpu;
2917
2918         data->done_head = data->head;
2919
2920         if (!handle->locked)
2921                 goto out;
2922
2923 again:
2924         /*
2925          * The xchg implies a full barrier that ensures all writes are done
2926          * before we publish the new head, matched by a rmb() in userspace when
2927          * reading this position.
2928          */
2929         while ((head = atomic_long_xchg(&data->done_head, 0)))
2930                 data->user_page->data_head = head;
2931
2932         /*
2933          * NMI can happen here, which means we can miss a done_head update.
2934          */
2935
2936         cpu = atomic_xchg(&data->lock, -1);
2937         WARN_ON_ONCE(cpu != smp_processor_id());
2938
2939         /*
2940          * Therefore we have to validate we did not indeed do so.
2941          */
2942         if (unlikely(atomic_long_read(&data->done_head))) {
2943                 /*
2944                  * Since we had it locked, we can lock it again.
2945                  */
2946                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2947                         cpu_relax();
2948
2949                 goto again;
2950         }
2951
2952         if (atomic_xchg(&data->wakeup, 0))
2953                 perf_output_wakeup(handle);
2954 out:
2955         put_cpu();
2956 }
2957
2958 void perf_output_copy(struct perf_output_handle *handle,
2959                       const void *buf, unsigned int len)
2960 {
2961         unsigned int pages_mask;
2962         unsigned long offset;
2963         unsigned int size;
2964         void **pages;
2965
2966         offset          = handle->offset;
2967         pages_mask      = handle->data->nr_pages - 1;
2968         pages           = handle->data->data_pages;
2969
2970         do {
2971                 unsigned long page_offset;
2972                 unsigned long page_size;
2973                 int nr;
2974
2975                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2976                 page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
2977                 page_offset = offset & (page_size - 1);
2978                 size        = min_t(unsigned int, page_size - page_offset, len);
2979
2980                 memcpy(pages[nr] + page_offset, buf, size);
2981
2982                 len         -= size;
2983                 buf         += size;
2984                 offset      += size;
2985         } while (len);
2986
2987         handle->offset = offset;
2988
2989         /*
2990          * Check we didn't copy past our reservation window, taking the
2991          * possible unsigned int wrap into account.
2992          */
2993         WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2994 }
2995
2996 int perf_output_begin(struct perf_output_handle *handle,
2997                       struct perf_event *event, unsigned int size,
2998                       int nmi, int sample)
2999 {
3000         struct perf_event *output_event;
3001         struct perf_mmap_data *data;
3002         unsigned long tail, offset, head;
3003         int have_lost;
3004         struct {
3005                 struct perf_event_header header;
3006                 u64                      id;
3007                 u64                      lost;
3008         } lost_event;
3009
3010         rcu_read_lock();
3011         /*
3012          * For inherited events we send all the output towards the parent.
3013          */
3014         if (event->parent)
3015                 event = event->parent;
3016
3017         output_event = rcu_dereference(event->output);
3018         if (output_event)
3019                 event = output_event;
3020
3021         data = rcu_dereference(event->data);
3022         if (!data)
3023                 goto out;
3024
3025         handle->data    = data;
3026         handle->event   = event;
3027         handle->nmi     = nmi;
3028         handle->sample  = sample;
3029
3030         if (!data->nr_pages)
3031                 goto fail;
3032
3033         have_lost = atomic_read(&data->lost);
3034         if (have_lost)
3035                 size += sizeof(lost_event);
3036
3037         perf_output_lock(handle);
3038
3039         do {
3040                 /*
3041                  * Userspace could choose to issue a mb() before updating the
3042                  * tail pointer. So that all reads will be completed before the
3043                  * write is issued.
3044                  */
3045                 tail = ACCESS_ONCE(data->user_page->data_tail);
3046                 smp_rmb();
3047                 offset = head = atomic_long_read(&data->head);
3048                 head += size;
3049                 if (unlikely(!perf_output_space(data, tail, offset, head)))
3050                         goto fail;
3051         } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3052
3053         handle->offset  = offset;
3054         handle->head    = head;
3055
3056         if (head - tail > data->watermark)
3057                 atomic_set(&data->wakeup, 1);
3058
3059         if (have_lost) {
3060                 lost_event.header.type = PERF_RECORD_LOST;
3061                 lost_event.header.misc = 0;
3062                 lost_event.header.size = sizeof(lost_event);
3063                 lost_event.id          = event->id;
3064                 lost_event.lost        = atomic_xchg(&data->lost, 0);
3065
3066                 perf_output_put(handle, lost_event);
3067         }
3068
3069         return 0;
3070
3071 fail:
3072         atomic_inc(&data->lost);
3073         perf_output_unlock(handle);
3074 out:
3075         rcu_read_unlock();
3076
3077         return -ENOSPC;
3078 }
3079
3080 void perf_output_end(struct perf_output_handle *handle)
3081 {
3082         struct perf_event *event = handle->event;
3083         struct perf_mmap_data *data = handle->data;
3084
3085         int wakeup_events = event->attr.wakeup_events;
3086
3087         if (handle->sample && wakeup_events) {
3088                 int events = atomic_inc_return(&data->events);
3089                 if (events >= wakeup_events) {
3090                         atomic_sub(wakeup_events, &data->events);
3091                         atomic_set(&data->wakeup, 1);
3092                 }
3093         }
3094
3095         perf_output_unlock(handle);
3096         rcu_read_unlock();
3097 }
3098
3099 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3100 {
3101         /*
3102          * only top level events have the pid namespace they were created in
3103          */
3104         if (event->parent)
3105                 event = event->parent;
3106
3107         return task_tgid_nr_ns(p, event->ns);
3108 }
3109
3110 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3111 {
3112         /*
3113          * only top level events have the pid namespace they were created in
3114          */
3115         if (event->parent)
3116                 event = event->parent;
3117
3118         return task_pid_nr_ns(p, event->ns);
3119 }
3120
3121 static void perf_output_read_one(struct perf_output_handle *handle,
3122                                  struct perf_event *event)
3123 {
3124         u64 read_format = event->attr.read_format;
3125         u64 values[4];
3126         int n = 0;
3127
3128         values[n++] = atomic64_read(&event->count);
3129         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3130                 values[n++] = event->total_time_enabled +
3131                         atomic64_read(&event->child_total_time_enabled);
3132         }
3133         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3134                 values[n++] = event->total_time_running +
3135                         atomic64_read(&event->child_total_time_running);
3136         }
3137         if (read_format & PERF_FORMAT_ID)
3138                 values[n++] = primary_event_id(event);
3139
3140         perf_output_copy(handle, values, n * sizeof(u64));
3141 }
3142
3143 /*
3144  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3145  */
3146 static void perf_output_read_group(struct perf_output_handle *handle,
3147                             struct perf_event *event)
3148 {
3149         struct perf_event *leader = event->group_leader, *sub;
3150         u64 read_format = event->attr.read_format;
3151         u64 values[5];
3152         int n = 0;
3153
3154         values[n++] = 1 + leader->nr_siblings;
3155
3156         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3157                 values[n++] = leader->total_time_enabled;
3158
3159         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3160                 values[n++] = leader->total_time_running;
3161
3162         if (leader != event)
3163                 leader->pmu->read(leader);
3164
3165         values[n++] = atomic64_read(&leader->count);
3166         if (read_format & PERF_FORMAT_ID)
3167                 values[n++] = primary_event_id(leader);
3168
3169         perf_output_copy(handle, values, n * sizeof(u64));
3170
3171         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3172                 n = 0;
3173
3174                 if (sub != event)
3175                         sub->pmu->read(sub);
3176
3177                 values[n++] = atomic64_read(&sub->count);
3178                 if (read_format & PERF_FORMAT_ID)
3179                         values[n++] = primary_event_id(sub);
3180
3181                 perf_output_copy(handle, values, n * sizeof(u64));
3182         }
3183 }
3184
3185 static void perf_output_read(struct perf_output_handle *handle,
3186                              struct perf_event *event)
3187 {
3188         if (event->attr.read_format & PERF_FORMAT_GROUP)
3189                 perf_output_read_group(handle, event);
3190         else
3191                 perf_output_read_one(handle, event);
3192 }
3193
3194 void perf_output_sample(struct perf_output_handle *handle,
3195                         struct perf_event_header *header,
3196                         struct perf_sample_data *data,
3197                         struct perf_event *event)
3198 {
3199         u64 sample_type = data->type;
3200
3201         perf_output_put(handle, *header);
3202
3203         if (sample_type & PERF_SAMPLE_IP)
3204                 perf_output_put(handle, data->ip);
3205
3206         if (sample_type & PERF_SAMPLE_TID)
3207                 perf_output_put(handle, data->tid_entry);
3208
3209         if (sample_type & PERF_SAMPLE_TIME)
3210                 perf_output_put(handle, data->time);
3211
3212         if (sample_type & PERF_SAMPLE_ADDR)
3213                 perf_output_put(handle, data->addr);
3214
3215         if (sample_type & PERF_SAMPLE_ID)
3216                 perf_output_put(handle, data->id);
3217
3218         if (sample_type & PERF_SAMPLE_STREAM_ID)
3219                 perf_output_put(handle, data->stream_id);
3220
3221         if (sample_type & PERF_SAMPLE_CPU)
3222                 perf_output_put(handle, data->cpu_entry);
3223
3224         if (sample_type & PERF_SAMPLE_PERIOD)
3225                 perf_output_put(handle, data->period);
3226
3227         if (sample_type & PERF_SAMPLE_READ)
3228                 perf_output_read(handle, event);
3229
3230         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3231                 if (data->callchain) {
3232                         int size = 1;
3233
3234                         if (data->callchain)
3235                                 size += data->callchain->nr;
3236
3237                         size *= sizeof(u64);
3238
3239                         perf_output_copy(handle, data->callchain, size);
3240                 } else {
3241                         u64 nr = 0;
3242                         perf_output_put(handle, nr);
3243                 }
3244         }
3245
3246         if (sample_type & PERF_SAMPLE_RAW) {
3247                 if (data->raw) {
3248                         perf_output_put(handle, data->raw->size);
3249                         perf_output_copy(handle, data->raw->data,
3250                                          data->raw->size);
3251                 } else {
3252                         struct {
3253                                 u32     size;
3254                                 u32     data;
3255                         } raw = {
3256                                 .size = sizeof(u32),
3257                                 .data = 0,
3258                         };
3259                         perf_output_put(handle, raw);
3260                 }
3261         }
3262 }
3263
3264 void perf_prepare_sample(struct perf_event_header *header,
3265                          struct perf_sample_data *data,
3266                          struct perf_event *event,
3267                          struct pt_regs *regs)
3268 {
3269         u64 sample_type = event->attr.sample_type;
3270
3271         data->type = sample_type;
3272
3273         header->type = PERF_RECORD_SAMPLE;
3274         header->size = sizeof(*header);
3275
3276         header->misc = 0;
3277         header->misc |= perf_misc_flags(regs);
3278
3279         if (sample_type & PERF_SAMPLE_IP) {
3280                 data->ip = perf_instruction_pointer(regs);
3281
3282                 header->size += sizeof(data->ip);
3283         }
3284
3285         if (sample_type & PERF_SAMPLE_TID) {
3286                 /* namespace issues */
3287                 data->tid_entry.pid = perf_event_pid(event, current);
3288                 data->tid_entry.tid = perf_event_tid(event, current);
3289
3290                 header->size += sizeof(data->tid_entry);
3291         }
3292
3293         if (sample_type & PERF_SAMPLE_TIME) {
3294                 data->time = perf_clock();
3295
3296                 header->size += sizeof(data->time);
3297         }
3298
3299         if (sample_type & PERF_SAMPLE_ADDR)
3300                 header->size += sizeof(data->addr);
3301
3302         if (sample_type & PERF_SAMPLE_ID) {
3303                 data->id = primary_event_id(event);
3304
3305                 header->size += sizeof(data->id);
3306         }
3307
3308         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3309                 data->stream_id = event->id;
3310
3311                 header->size += sizeof(data->stream_id);
3312         }
3313
3314         if (sample_type & PERF_SAMPLE_CPU) {
3315                 data->cpu_entry.cpu             = raw_smp_processor_id();
3316                 data->cpu_entry.reserved        = 0;
3317
3318                 header->size += sizeof(data->cpu_entry);
3319         }
3320
3321         if (sample_type & PERF_SAMPLE_PERIOD)
3322                 header->size += sizeof(data->period);
3323
3324         if (sample_type & PERF_SAMPLE_READ)
3325                 header->size += perf_event_read_size(event);
3326
3327         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3328                 int size = 1;
3329
3330                 data->callchain = perf_callchain(regs);
3331
3332                 if (data->callchain)
3333                         size += data->callchain->nr;
3334
3335                 header->size += size * sizeof(u64);
3336         }
3337
3338         if (sample_type & PERF_SAMPLE_RAW) {
3339                 int size = sizeof(u32);
3340
3341                 if (data->raw)
3342                         size += data->raw->size;
3343                 else
3344                         size += sizeof(u32);
3345
3346                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3347                 header->size += size;
3348         }
3349 }
3350
3351 static void perf_event_output(struct perf_event *event, int nmi,
3352                                 struct perf_sample_data *data,
3353                                 struct pt_regs *regs)
3354 {
3355         struct perf_output_handle handle;
3356         struct perf_event_header header;
3357
3358         perf_prepare_sample(&header, data, event, regs);
3359
3360         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3361                 return;
3362
3363         perf_output_sample(&handle, &header, data, event);
3364
3365         perf_output_end(&handle);
3366 }
3367
3368 /*
3369  * read event_id
3370  */
3371
3372 struct perf_read_event {
3373         struct perf_event_header        header;
3374
3375         u32                             pid;
3376         u32                             tid;
3377 };
3378
3379 static void
3380 perf_event_read_event(struct perf_event *event,
3381                         struct task_struct *task)
3382 {
3383         struct perf_output_handle handle;
3384         struct perf_read_event read_event = {
3385                 .header = {
3386                         .type = PERF_RECORD_READ,
3387                         .misc = 0,
3388                         .size = sizeof(read_event) + perf_event_read_size(event),
3389                 },
3390                 .pid = perf_event_pid(event, task),
3391                 .tid = perf_event_tid(event, task),
3392         };
3393         int ret;
3394
3395         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3396         if (ret)
3397                 return;
3398
3399         perf_output_put(&handle, read_event);
3400         perf_output_read(&handle, event);
3401
3402         perf_output_end(&handle);
3403 }
3404
3405 /*
3406  * task tracking -- fork/exit
3407  *
3408  * enabled by: attr.comm | attr.mmap | attr.task
3409  */
3410
3411 struct perf_task_event {
3412         struct task_struct              *task;
3413         struct perf_event_context       *task_ctx;
3414
3415         struct {
3416                 struct perf_event_header        header;
3417
3418                 u32                             pid;
3419                 u32                             ppid;
3420                 u32                             tid;
3421                 u32                             ptid;
3422                 u64                             time;
3423         } event_id;
3424 };
3425
3426 static void perf_event_task_output(struct perf_event *event,
3427                                      struct perf_task_event *task_event)
3428 {
3429         struct perf_output_handle handle;
3430         struct task_struct *task = task_event->task;
3431         unsigned long flags;
3432         int size, ret;
3433
3434         /*
3435          * If this CPU attempts to acquire an rq lock held by a CPU spinning
3436          * in perf_output_lock() from interrupt context, it's game over.
3437          */
3438         local_irq_save(flags);
3439
3440         size  = task_event->event_id.header.size;
3441         ret = perf_output_begin(&handle, event, size, 0, 0);
3442
3443         if (ret) {
3444                 local_irq_restore(flags);
3445                 return;
3446         }
3447
3448         task_event->event_id.pid = perf_event_pid(event, task);
3449         task_event->event_id.ppid = perf_event_pid(event, current);
3450
3451         task_event->event_id.tid = perf_event_tid(event, task);
3452         task_event->event_id.ptid = perf_event_tid(event, current);
3453
3454         perf_output_put(&handle, task_event->event_id);
3455
3456         perf_output_end(&handle);
3457         local_irq_restore(flags);
3458 }
3459
3460 static int perf_event_task_match(struct perf_event *event)
3461 {
3462         if (event->state < PERF_EVENT_STATE_INACTIVE)
3463                 return 0;
3464
3465         if (event->cpu != -1 && event->cpu != smp_processor_id())
3466                 return 0;
3467
3468         if (event->attr.comm || event->attr.mmap || event->attr.task)
3469                 return 1;
3470
3471         return 0;
3472 }
3473
3474 static void perf_event_task_ctx(struct perf_event_context *ctx,
3475                                   struct perf_task_event *task_event)
3476 {
3477         struct perf_event *event;
3478
3479         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3480                 if (perf_event_task_match(event))
3481                         perf_event_task_output(event, task_event);
3482         }
3483 }
3484
3485 static void perf_event_task_event(struct perf_task_event *task_event)
3486 {
3487         struct perf_cpu_context *cpuctx;
3488         struct perf_event_context *ctx = task_event->task_ctx;
3489
3490         rcu_read_lock();
3491         cpuctx = &get_cpu_var(perf_cpu_context);
3492         perf_event_task_ctx(&cpuctx->ctx, task_event);
3493         if (!ctx)
3494                 ctx = rcu_dereference(current->perf_event_ctxp);
3495         if (ctx)
3496                 perf_event_task_ctx(ctx, task_event);
3497         put_cpu_var(perf_cpu_context);
3498         rcu_read_unlock();
3499 }
3500
3501 static void perf_event_task(struct task_struct *task,
3502                               struct perf_event_context *task_ctx,
3503                               int new)
3504 {
3505         struct perf_task_event task_event;
3506
3507         if (!atomic_read(&nr_comm_events) &&
3508             !atomic_read(&nr_mmap_events) &&
3509             !atomic_read(&nr_task_events))
3510                 return;
3511
3512         task_event = (struct perf_task_event){
3513                 .task     = task,
3514                 .task_ctx = task_ctx,
3515                 .event_id    = {
3516                         .header = {
3517                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3518                                 .misc = 0,
3519                                 .size = sizeof(task_event.event_id),
3520                         },
3521                         /* .pid  */
3522                         /* .ppid */
3523                         /* .tid  */
3524                         /* .ptid */
3525                         .time = perf_clock(),
3526                 },
3527         };
3528
3529         perf_event_task_event(&task_event);
3530 }
3531
3532 void perf_event_fork(struct task_struct *task)
3533 {
3534         perf_event_task(task, NULL, 1);
3535 }
3536
3537 /*
3538  * comm tracking
3539  */
3540
3541 struct perf_comm_event {
3542         struct task_struct      *task;
3543         char                    *comm;
3544         int                     comm_size;
3545
3546         struct {
3547                 struct perf_event_header        header;
3548
3549                 u32                             pid;
3550                 u32                             tid;
3551         } event_id;
3552 };
3553
3554 static void perf_event_comm_output(struct perf_event *event,
3555                                      struct perf_comm_event *comm_event)
3556 {
3557         struct perf_output_handle handle;
3558         int size = comm_event->event_id.header.size;
3559         int ret = perf_output_begin(&handle, event, size, 0, 0);
3560
3561         if (ret)
3562                 return;
3563
3564         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3565         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3566
3567         perf_output_put(&handle, comm_event->event_id);
3568         perf_output_copy(&handle, comm_event->comm,
3569                                    comm_event->comm_size);
3570         perf_output_end(&handle);
3571 }
3572
3573 static int perf_event_comm_match(struct perf_event *event)
3574 {
3575         if (event->state < PERF_EVENT_STATE_INACTIVE)
3576                 return 0;
3577
3578         if (event->cpu != -1 && event->cpu != smp_processor_id())
3579                 return 0;
3580
3581         if (event->attr.comm)
3582                 return 1;
3583
3584         return 0;
3585 }
3586
3587 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3588                                   struct perf_comm_event *comm_event)
3589 {
3590         struct perf_event *event;
3591
3592         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3593                 if (perf_event_comm_match(event))
3594                         perf_event_comm_output(event, comm_event);
3595         }
3596 }
3597
3598 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3599 {
3600         struct perf_cpu_context *cpuctx;
3601         struct perf_event_context *ctx;
3602         unsigned int size;
3603         char comm[TASK_COMM_LEN];
3604
3605         memset(comm, 0, sizeof(comm));
3606         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3607         size = ALIGN(strlen(comm)+1, sizeof(u64));
3608
3609         comm_event->comm = comm;
3610         comm_event->comm_size = size;
3611
3612         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3613
3614         rcu_read_lock();
3615         cpuctx = &get_cpu_var(perf_cpu_context);
3616         perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3617         ctx = rcu_dereference(current->perf_event_ctxp);
3618         if (ctx)
3619                 perf_event_comm_ctx(ctx, comm_event);
3620         put_cpu_var(perf_cpu_context);
3621         rcu_read_unlock();
3622 }
3623
3624 void perf_event_comm(struct task_struct *task)
3625 {
3626         struct perf_comm_event comm_event;
3627
3628         if (task->perf_event_ctxp)
3629                 perf_event_enable_on_exec(task);
3630
3631         if (!atomic_read(&nr_comm_events))
3632                 return;
3633
3634         comm_event = (struct perf_comm_event){
3635                 .task   = task,
3636                 /* .comm      */
3637                 /* .comm_size */
3638                 .event_id  = {
3639                         .header = {
3640                                 .type = PERF_RECORD_COMM,
3641                                 .misc = 0,
3642                                 /* .size */
3643                         },
3644                         /* .pid */
3645                         /* .tid */
3646                 },
3647         };
3648
3649         perf_event_comm_event(&comm_event);
3650 }
3651
3652 /*
3653  * mmap tracking
3654  */
3655
3656 struct perf_mmap_event {
3657         struct vm_area_struct   *vma;
3658
3659         const char              *file_name;
3660         int                     file_size;
3661
3662         struct {
3663                 struct perf_event_header        header;
3664
3665                 u32                             pid;
3666                 u32                             tid;
3667                 u64                             start;
3668                 u64                             len;
3669                 u64                             pgoff;
3670         } event_id;
3671 };
3672
3673 static void perf_event_mmap_output(struct perf_event *event,
3674                                      struct perf_mmap_event *mmap_event)
3675 {
3676         struct perf_output_handle handle;
3677         int size = mmap_event->event_id.header.size;
3678         int ret = perf_output_begin(&handle, event, size, 0, 0);
3679
3680         if (ret)
3681                 return;
3682
3683         mmap_event->event_id.pid = perf_event_pid(event, current);
3684         mmap_event->event_id.tid = perf_event_tid(event, current);
3685
3686         perf_output_put(&handle, mmap_event->event_id);
3687         perf_output_copy(&handle, mmap_event->file_name,
3688                                    mmap_event->file_size);
3689         perf_output_end(&handle);
3690 }
3691
3692 static int perf_event_mmap_match(struct perf_event *event,
3693                                    struct perf_mmap_event *mmap_event)
3694 {
3695         if (event->state < PERF_EVENT_STATE_INACTIVE)
3696                 return 0;
3697
3698         if (event->cpu != -1 && event->cpu != smp_processor_id())
3699                 return 0;
3700
3701         if (event->attr.mmap)
3702                 return 1;
3703
3704         return 0;
3705 }
3706
3707 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3708                                   struct perf_mmap_event *mmap_event)
3709 {
3710         struct perf_event *event;
3711
3712         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3713                 if (perf_event_mmap_match(event, mmap_event))
3714                         perf_event_mmap_output(event, mmap_event);
3715         }
3716 }
3717
3718 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3719 {
3720         struct perf_cpu_context *cpuctx;
3721         struct perf_event_context *ctx;
3722         struct vm_area_struct *vma = mmap_event->vma;
3723         struct file *file = vma->vm_file;
3724         unsigned int size;
3725         char tmp[16];
3726         char *buf = NULL;
3727         const char *name;
3728
3729         memset(tmp, 0, sizeof(tmp));
3730
3731         if (file) {
3732                 /*
3733                  * d_path works from the end of the buffer backwards, so we
3734                  * need to add enough zero bytes after the string to handle
3735                  * the 64bit alignment we do later.
3736                  */
3737                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3738                 if (!buf) {
3739                         name = strncpy(tmp, "//enomem", sizeof(tmp));
3740                         goto got_name;
3741                 }
3742                 name = d_path(&file->f_path, buf, PATH_MAX);
3743                 if (IS_ERR(name)) {
3744                         name = strncpy(tmp, "//toolong", sizeof(tmp));
3745                         goto got_name;
3746                 }
3747         } else {
3748                 if (arch_vma_name(mmap_event->vma)) {
3749                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3750                                        sizeof(tmp));
3751                         goto got_name;
3752                 }
3753
3754                 if (!vma->vm_mm) {
3755                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
3756                         goto got_name;
3757                 }
3758
3759                 name = strncpy(tmp, "//anon", sizeof(tmp));
3760                 goto got_name;
3761         }
3762
3763 got_name:
3764         size = ALIGN(strlen(name)+1, sizeof(u64));
3765
3766         mmap_event->file_name = name;
3767         mmap_event->file_size = size;
3768
3769         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3770
3771         rcu_read_lock();
3772         cpuctx = &get_cpu_var(perf_cpu_context);
3773         perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3774         ctx = rcu_dereference(current->perf_event_ctxp);
3775         if (ctx)
3776                 perf_event_mmap_ctx(ctx, mmap_event);
3777         put_cpu_var(perf_cpu_context);
3778         rcu_read_unlock();
3779
3780         kfree(buf);
3781 }
3782
3783 void __perf_event_mmap(struct vm_area_struct *vma)
3784 {
3785         struct perf_mmap_event mmap_event;
3786
3787         if (!atomic_read(&nr_mmap_events))
3788                 return;
3789
3790         mmap_event = (struct perf_mmap_event){
3791                 .vma    = vma,
3792                 /* .file_name */
3793                 /* .file_size */
3794                 .event_id  = {
3795                         .header = {
3796                                 .type = PERF_RECORD_MMAP,
3797                                 .misc = PERF_RECORD_MISC_USER,
3798                                 /* .size */
3799                         },
3800                         /* .pid */
3801                         /* .tid */
3802                         .start  = vma->vm_start,
3803                         .len    = vma->vm_end - vma->vm_start,
3804                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3805                 },
3806         };
3807
3808         perf_event_mmap_event(&mmap_event);
3809 }
3810
3811 /*
3812  * IRQ throttle logging
3813  */
3814
3815 static void perf_log_throttle(struct perf_event *event, int enable)
3816 {
3817         struct perf_output_handle handle;
3818         int ret;
3819
3820         struct {
3821                 struct perf_event_header        header;
3822                 u64                             time;
3823                 u64                             id;
3824                 u64                             stream_id;
3825         } throttle_event = {
3826                 .header = {
3827                         .type = PERF_RECORD_THROTTLE,
3828                         .misc = 0,
3829                         .size = sizeof(throttle_event),
3830                 },
3831                 .time           = perf_clock(),
3832                 .id             = primary_event_id(event),
3833                 .stream_id      = event->id,
3834         };
3835
3836         if (enable)
3837                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3838
3839         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3840         if (ret)
3841                 return;
3842
3843         perf_output_put(&handle, throttle_event);
3844         perf_output_end(&handle);
3845 }
3846
3847 /*
3848  * Generic event overflow handling, sampling.
3849  */
3850
3851 static int __perf_event_overflow(struct perf_event *event, int nmi,
3852                                    int throttle, struct perf_sample_data *data,
3853                                    struct pt_regs *regs)
3854 {
3855         int events = atomic_read(&event->event_limit);
3856         struct hw_perf_event *hwc = &event->hw;
3857         int ret = 0;
3858
3859         throttle = (throttle && event->pmu->unthrottle != NULL);
3860
3861         if (!throttle) {
3862                 hwc->interrupts++;
3863         } else {
3864                 if (hwc->interrupts != MAX_INTERRUPTS) {
3865                         hwc->interrupts++;
3866                         if (HZ * hwc->interrupts >
3867                                         (u64)sysctl_perf_event_sample_rate) {
3868                                 hwc->interrupts = MAX_INTERRUPTS;
3869                                 perf_log_throttle(event, 0);
3870                                 ret = 1;
3871                         }
3872                 } else {
3873                         /*
3874                          * Keep re-disabling events even though on the previous
3875                          * pass we disabled it - just in case we raced with a
3876                          * sched-in and the event got enabled again:
3877                          */
3878                         ret = 1;
3879                 }
3880         }
3881
3882         if (event->attr.freq) {
3883                 u64 now = perf_clock();
3884                 s64 delta = now - hwc->freq_time_stamp;
3885
3886                 hwc->freq_time_stamp = now;
3887
3888                 if (delta > 0 && delta < 2*TICK_NSEC)
3889                         perf_adjust_period(event, delta, hwc->last_period);
3890         }
3891
3892         /*
3893          * XXX event_limit might not quite work as expected on inherited
3894          * events
3895          */
3896
3897         event->pending_kill = POLL_IN;
3898         if (events && atomic_dec_and_test(&event->event_limit)) {
3899                 ret = 1;
3900                 event->pending_kill = POLL_HUP;
3901                 if (nmi) {
3902                         event->pending_disable = 1;
3903                         perf_pending_queue(&event->pending,
3904                                            perf_pending_event);
3905                 } else
3906                         perf_event_disable(event);
3907         }
3908
3909         if (event->overflow_handler)
3910                 event->overflow_handler(event, nmi, data, regs);
3911         else
3912                 perf_event_output(event, nmi, data, regs);
3913
3914         return ret;
3915 }
3916
3917 int perf_event_overflow(struct perf_event *event, int nmi,
3918                           struct perf_sample_data *data,
3919                           struct pt_regs *regs)
3920 {
3921         return __perf_event_overflow(event, nmi, 1, data, regs);
3922 }
3923
3924 /*
3925  * Generic software event infrastructure
3926  */
3927
3928 /*
3929  * We directly increment event->count and keep a second value in
3930  * event->hw.period_left to count intervals. This period event
3931  * is kept in the range [-sample_period, 0] so that we can use the
3932  * sign as trigger.
3933  */
3934
3935 static u64 perf_swevent_set_period(struct perf_event *event)
3936 {
3937         struct hw_perf_event *hwc = &event->hw;
3938         u64 period = hwc->last_period;
3939         u64 nr, offset;
3940         s64 old, val;
3941
3942         hwc->last_period = hwc->sample_period;
3943
3944 again:
3945         old = val = atomic64_read(&hwc->period_left);
3946         if (val < 0)
3947                 return 0;
3948
3949         nr = div64_u64(period + val, period);
3950         offset = nr * period;
3951         val -= offset;
3952         if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3953                 goto again;
3954
3955         return nr;
3956 }
3957
3958 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3959                                     int nmi, struct perf_sample_data *data,
3960                                     struct pt_regs *regs)
3961 {
3962         struct hw_perf_event *hwc = &event->hw;
3963         int throttle = 0;
3964
3965         data->period = event->hw.last_period;
3966         if (!overflow)
3967                 overflow = perf_swevent_set_period(event);
3968
3969         if (hwc->interrupts == MAX_INTERRUPTS)
3970                 return;
3971
3972         for (; overflow; overflow--) {
3973                 if (__perf_event_overflow(event, nmi, throttle,
3974                                             data, regs)) {
3975                         /*
3976                          * We inhibit the overflow from happening when
3977                          * hwc->interrupts == MAX_INTERRUPTS.
3978                          */
3979                         break;
3980                 }
3981                 throttle = 1;
3982         }
3983 }
3984
3985 static void perf_swevent_unthrottle(struct perf_event *event)
3986 {
3987         /*
3988          * Nothing to do, we already reset hwc->interrupts.
3989          */
3990 }
3991
3992 static void perf_swevent_add(struct perf_event *event, u64 nr,
3993                                int nmi, struct perf_sample_data *data,
3994                                struct pt_regs *regs)
3995 {
3996         struct hw_perf_event *hwc = &event->hw;
3997
3998         atomic64_add(nr, &event->count);
3999
4000         if (!regs)
4001                 return;
4002
4003         if (!hwc->sample_period)
4004                 return;
4005
4006         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4007                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4008
4009         if (atomic64_add_negative(nr, &hwc->period_left))
4010                 return;
4011
4012         perf_swevent_overflow(event, 0, nmi, data, regs);
4013 }
4014
4015 static int perf_tp_event_match(struct perf_event *event,
4016                                 struct perf_sample_data *data);
4017
4018 static int perf_exclude_event(struct perf_event *event,
4019                               struct pt_regs *regs)
4020 {
4021         if (regs) {
4022                 if (event->attr.exclude_user && user_mode(regs))
4023                         return 1;
4024
4025                 if (event->attr.exclude_kernel && !user_mode(regs))
4026                         return 1;
4027         }
4028
4029         return 0;
4030 }
4031
4032 static int perf_swevent_match(struct perf_event *event,
4033                                 enum perf_type_id type,
4034                                 u32 event_id,
4035                                 struct perf_sample_data *data,
4036                                 struct pt_regs *regs)
4037 {
4038         if (event->attr.type != type)
4039                 return 0;
4040
4041         if (event->attr.config != event_id)
4042                 return 0;
4043
4044         if (perf_exclude_event(event, regs))
4045                 return 0;
4046
4047         if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4048             !perf_tp_event_match(event, data))
4049                 return 0;
4050
4051         return 1;
4052 }
4053
4054 static inline u64 swevent_hash(u64 type, u32 event_id)
4055 {
4056         u64 val = event_id | (type << 32);
4057
4058         return hash_64(val, SWEVENT_HLIST_BITS);
4059 }
4060
4061 static struct hlist_head *
4062 find_swevent_head(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4063 {
4064         u64 hash;
4065         struct swevent_hlist *hlist;
4066
4067         hash = swevent_hash(type, event_id);
4068
4069         hlist = rcu_dereference(ctx->swevent_hlist);
4070         if (!hlist)
4071                 return NULL;
4072
4073         return &hlist->heads[hash];
4074 }
4075
4076 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4077                                     u64 nr, int nmi,
4078                                     struct perf_sample_data *data,
4079                                     struct pt_regs *regs)
4080 {
4081         struct perf_cpu_context *cpuctx;
4082         struct perf_event *event;
4083         struct hlist_node *node;
4084         struct hlist_head *head;
4085
4086         cpuctx = &__get_cpu_var(perf_cpu_context);
4087
4088         rcu_read_lock();
4089
4090         head = find_swevent_head(cpuctx, type, event_id);
4091
4092         if (!head)
4093                 goto end;
4094
4095         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4096                 if (perf_swevent_match(event, type, event_id, data, regs))
4097                         perf_swevent_add(event, nr, nmi, data, regs);
4098         }
4099 end:
4100         rcu_read_unlock();
4101 }
4102
4103 int perf_swevent_get_recursion_context(void)
4104 {
4105         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4106         int rctx;
4107
4108         if (in_nmi())
4109                 rctx = 3;
4110         else if (in_irq())
4111                 rctx = 2;
4112         else if (in_softirq())
4113                 rctx = 1;
4114         else
4115                 rctx = 0;
4116
4117         if (cpuctx->recursion[rctx]) {
4118                 put_cpu_var(perf_cpu_context);
4119                 return -1;
4120         }
4121
4122         cpuctx->recursion[rctx]++;
4123         barrier();
4124
4125         return rctx;
4126 }
4127 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4128
4129 void perf_swevent_put_recursion_context(int rctx)
4130 {
4131         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4132         barrier();
4133         cpuctx->recursion[rctx]--;
4134         put_cpu_var(perf_cpu_context);
4135 }
4136 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4137
4138
4139 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4140                             struct pt_regs *regs, u64 addr)
4141 {
4142         struct perf_sample_data data;
4143         int rctx;
4144
4145         rctx = perf_swevent_get_recursion_context();
4146         if (rctx < 0)
4147                 return;
4148
4149         perf_sample_data_init(&data, addr);
4150
4151         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4152
4153         perf_swevent_put_recursion_context(rctx);
4154 }
4155
4156 static void perf_swevent_read(struct perf_event *event)
4157 {
4158 }
4159
4160 static int perf_swevent_enable(struct perf_event *event)
4161 {
4162         struct hw_perf_event *hwc = &event->hw;
4163         struct perf_cpu_context *cpuctx;
4164         struct hlist_head *head;
4165
4166         cpuctx = &__get_cpu_var(perf_cpu_context);
4167
4168         if (hwc->sample_period) {
4169                 hwc->last_period = hwc->sample_period;
4170                 perf_swevent_set_period(event);
4171         }
4172
4173         head = find_swevent_head(cpuctx, event->attr.type, event->attr.config);
4174         if (WARN_ON_ONCE(!head))
4175                 return -EINVAL;
4176
4177         hlist_add_head_rcu(&event->hlist_entry, head);
4178
4179         return 0;
4180 }
4181
4182 static void perf_swevent_disable(struct perf_event *event)
4183 {
4184         hlist_del_rcu(&event->hlist_entry);
4185 }
4186
4187 static const struct pmu perf_ops_generic = {
4188         .enable         = perf_swevent_enable,
4189         .disable        = perf_swevent_disable,
4190         .read           = perf_swevent_read,
4191         .unthrottle     = perf_swevent_unthrottle,
4192 };
4193
4194 /*
4195  * hrtimer based swevent callback
4196  */
4197
4198 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4199 {
4200         enum hrtimer_restart ret = HRTIMER_RESTART;
4201         struct perf_sample_data data;
4202         struct pt_regs *regs;
4203         struct perf_event *event;
4204         u64 period;
4205
4206         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4207         event->pmu->read(event);
4208
4209         perf_sample_data_init(&data, 0);
4210         data.period = event->hw.last_period;
4211         regs = get_irq_regs();
4212
4213         if (regs && !perf_exclude_event(event, regs)) {
4214                 if (!(event->attr.exclude_idle && current->pid == 0))
4215                         if (perf_event_overflow(event, 0, &data, regs))
4216                                 ret = HRTIMER_NORESTART;
4217         }
4218
4219         period = max_t(u64, 10000, event->hw.sample_period);
4220         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4221
4222         return ret;
4223 }
4224
4225 static void perf_swevent_start_hrtimer(struct perf_event *event)
4226 {
4227         struct hw_perf_event *hwc = &event->hw;
4228
4229         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4230         hwc->hrtimer.function = perf_swevent_hrtimer;
4231         if (hwc->sample_period) {
4232                 u64 period;
4233
4234                 if (hwc->remaining) {
4235                         if (hwc->remaining < 0)
4236                                 period = 10000;
4237                         else
4238                                 period = hwc->remaining;
4239                         hwc->remaining = 0;
4240                 } else {
4241                         period = max_t(u64, 10000, hwc->sample_period);
4242                 }
4243                 __hrtimer_start_range_ns(&hwc->hrtimer,
4244                                 ns_to_ktime(period), 0,
4245                                 HRTIMER_MODE_REL, 0);
4246         }
4247 }
4248
4249 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4250 {
4251         struct hw_perf_event *hwc = &event->hw;
4252
4253         if (hwc->sample_period) {
4254                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4255                 hwc->remaining = ktime_to_ns(remaining);
4256
4257                 hrtimer_cancel(&hwc->hrtimer);
4258         }
4259 }
4260
4261 /*
4262  * Software event: cpu wall time clock
4263  */
4264
4265 static void cpu_clock_perf_event_update(struct perf_event *event)
4266 {
4267         int cpu = raw_smp_processor_id();
4268         s64 prev;
4269         u64 now;
4270
4271         now = cpu_clock(cpu);
4272         prev = atomic64_xchg(&event->hw.prev_count, now);
4273         atomic64_add(now - prev, &event->count);
4274 }
4275
4276 static int cpu_clock_perf_event_enable(struct perf_event *event)
4277 {
4278         struct hw_perf_event *hwc = &event->hw;
4279         int cpu = raw_smp_processor_id();
4280
4281         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4282         perf_swevent_start_hrtimer(event);
4283
4284         return 0;
4285 }
4286
4287 static void cpu_clock_perf_event_disable(struct perf_event *event)
4288 {
4289         perf_swevent_cancel_hrtimer(event);
4290         cpu_clock_perf_event_update(event);
4291 }
4292
4293 static void cpu_clock_perf_event_read(struct perf_event *event)
4294 {
4295         cpu_clock_perf_event_update(event);
4296 }
4297
4298 static const struct pmu perf_ops_cpu_clock = {
4299         .enable         = cpu_clock_perf_event_enable,
4300         .disable        = cpu_clock_perf_event_disable,
4301         .read           = cpu_clock_perf_event_read,
4302 };
4303
4304 /*
4305  * Software event: task time clock
4306  */
4307
4308 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4309 {
4310         u64 prev;
4311         s64 delta;
4312
4313         prev = atomic64_xchg(&event->hw.prev_count, now);
4314         delta = now - prev;
4315         atomic64_add(delta, &event->count);
4316 }
4317
4318 static int task_clock_perf_event_enable(struct perf_event *event)
4319 {
4320         struct hw_perf_event *hwc = &event->hw;
4321         u64 now;
4322
4323         now = event->ctx->time;
4324
4325         atomic64_set(&hwc->prev_count, now);
4326
4327         perf_swevent_start_hrtimer(event);
4328
4329         return 0;
4330 }
4331
4332 static void task_clock_perf_event_disable(struct perf_event *event)
4333 {
4334         perf_swevent_cancel_hrtimer(event);
4335         task_clock_perf_event_update(event, event->ctx->time);
4336
4337 }
4338
4339 static void task_clock_perf_event_read(struct perf_event *event)
4340 {
4341         u64 time;
4342
4343         if (!in_nmi()) {
4344                 update_context_time(event->ctx);
4345                 time = event->ctx->time;
4346         } else {
4347                 u64 now = perf_clock();
4348                 u64 delta = now - event->ctx->timestamp;
4349                 time = event->ctx->time + delta;
4350         }
4351
4352         task_clock_perf_event_update(event, time);
4353 }
4354
4355 static const struct pmu perf_ops_task_clock = {
4356         .enable         = task_clock_perf_event_enable,
4357         .disable        = task_clock_perf_event_disable,
4358         .read           = task_clock_perf_event_read,
4359 };
4360
4361 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4362 {
4363         struct swevent_hlist *hlist;
4364
4365         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4366         kfree(hlist);
4367 }
4368
4369 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4370 {
4371         struct swevent_hlist *hlist;
4372
4373         if (!cpuctx->swevent_hlist)
4374                 return;
4375
4376         hlist = cpuctx->swevent_hlist;
4377         rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4378         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4379 }
4380
4381 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4382 {
4383         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4384
4385         mutex_lock(&cpuctx->hlist_mutex);
4386
4387         if (!--cpuctx->hlist_refcount)
4388                 swevent_hlist_release(cpuctx);
4389
4390         mutex_unlock(&cpuctx->hlist_mutex);
4391 }
4392
4393 static void swevent_hlist_put(struct perf_event *event)
4394 {
4395         int cpu;
4396
4397         if (event->cpu != -1) {
4398                 swevent_hlist_put_cpu(event, event->cpu);
4399                 return;
4400         }
4401
4402         for_each_possible_cpu(cpu)
4403                 swevent_hlist_put_cpu(event, cpu);
4404 }
4405
4406 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4407 {
4408         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4409         int err = 0;
4410
4411         mutex_lock(&cpuctx->hlist_mutex);
4412
4413         if (!cpuctx->swevent_hlist && cpu_online(cpu)) {
4414                 struct swevent_hlist *hlist;
4415
4416                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4417                 if (!hlist) {
4418                         err = -ENOMEM;
4419                         goto exit;
4420                 }
4421                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4422         }
4423         cpuctx->hlist_refcount++;
4424  exit:
4425         mutex_unlock(&cpuctx->hlist_mutex);
4426
4427         return err;
4428 }
4429
4430 static int swevent_hlist_get(struct perf_event *event)
4431 {
4432         int err;
4433         int cpu, failed_cpu;
4434
4435         if (event->cpu != -1)
4436                 return swevent_hlist_get_cpu(event, event->cpu);
4437
4438         get_online_cpus();
4439         for_each_possible_cpu(cpu) {
4440                 err = swevent_hlist_get_cpu(event, cpu);
4441                 if (err) {
4442                         failed_cpu = cpu;
4443                         goto fail;
4444                 }
4445         }
4446         put_online_cpus();
4447
4448         return 0;
4449  fail:
4450         for_each_possible_cpu(cpu) {
4451                 if (cpu == failed_cpu)
4452                         break;
4453                 swevent_hlist_put_cpu(event, cpu);
4454         }
4455
4456         put_online_cpus();
4457         return err;
4458 }
4459
4460 #ifdef CONFIG_EVENT_TRACING
4461
4462 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4463                    int entry_size, struct pt_regs *regs)
4464 {
4465         struct perf_sample_data data;
4466         struct perf_raw_record raw = {
4467                 .size = entry_size,
4468                 .data = record,
4469         };
4470
4471         perf_sample_data_init(&data, addr);
4472         data.raw = &raw;
4473
4474         /* Trace events already protected against recursion */
4475         do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4476                          &data, regs);
4477 }
4478 EXPORT_SYMBOL_GPL(perf_tp_event);
4479
4480 static int perf_tp_event_match(struct perf_event *event,
4481                                 struct perf_sample_data *data)
4482 {
4483         void *record = data->raw->data;
4484
4485         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4486                 return 1;
4487         return 0;
4488 }
4489
4490 static void tp_perf_event_destroy(struct perf_event *event)
4491 {
4492         perf_trace_disable(event->attr.config);
4493         swevent_hlist_put(event);
4494 }
4495
4496 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4497 {
4498         int err;
4499
4500         /*
4501          * Raw tracepoint data is a severe data leak, only allow root to
4502          * have these.
4503          */
4504         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4505                         perf_paranoid_tracepoint_raw() &&
4506                         !capable(CAP_SYS_ADMIN))
4507                 return ERR_PTR(-EPERM);
4508
4509         if (perf_trace_enable(event->attr.config))
4510                 return NULL;
4511
4512         event->destroy = tp_perf_event_destroy;
4513         err = swevent_hlist_get(event);
4514         if (err) {
4515                 perf_trace_disable(event->attr.config);
4516                 return ERR_PTR(err);
4517         }
4518
4519         return &perf_ops_generic;
4520 }
4521
4522 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4523 {
4524         char *filter_str;
4525         int ret;
4526
4527         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4528                 return -EINVAL;
4529
4530         filter_str = strndup_user(arg, PAGE_SIZE);
4531         if (IS_ERR(filter_str))
4532                 return PTR_ERR(filter_str);
4533
4534         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4535
4536         kfree(filter_str);
4537         return ret;
4538 }
4539
4540 static void perf_event_free_filter(struct perf_event *event)
4541 {
4542         ftrace_profile_free_filter(event);
4543 }
4544
4545 #else
4546
4547 static int perf_tp_event_match(struct perf_event *event,
4548                                 struct perf_sample_data *data)
4549 {
4550         return 1;
4551 }
4552
4553 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4554 {
4555         return NULL;
4556 }
4557
4558 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4559 {
4560         return -ENOENT;
4561 }
4562
4563 static void perf_event_free_filter(struct perf_event *event)
4564 {
4565 }
4566
4567 #endif /* CONFIG_EVENT_TRACING */
4568
4569 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4570 static void bp_perf_event_destroy(struct perf_event *event)
4571 {
4572         release_bp_slot(event);
4573 }
4574
4575 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4576 {
4577         int err;
4578
4579         err = register_perf_hw_breakpoint(bp);
4580         if (err)
4581                 return ERR_PTR(err);
4582
4583         bp->destroy = bp_perf_event_destroy;
4584
4585         return &perf_ops_bp;
4586 }
4587
4588 void perf_bp_event(struct perf_event *bp, void *data)
4589 {
4590         struct perf_sample_data sample;
4591         struct pt_regs *regs = data;
4592
4593         perf_sample_data_init(&sample, bp->attr.bp_addr);
4594
4595         if (!perf_exclude_event(bp, regs))
4596                 perf_swevent_add(bp, 1, 1, &sample, regs);
4597 }
4598 #else
4599 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4600 {
4601         return NULL;
4602 }
4603
4604 void perf_bp_event(struct perf_event *bp, void *regs)
4605 {
4606 }
4607 #endif
4608
4609 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4610
4611 static void sw_perf_event_destroy(struct perf_event *event)
4612 {
4613         u64 event_id = event->attr.config;
4614
4615         WARN_ON(event->parent);
4616
4617         atomic_dec(&perf_swevent_enabled[event_id]);
4618         swevent_hlist_put(event);
4619 }
4620
4621 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4622 {
4623         const struct pmu *pmu = NULL;
4624         u64 event_id = event->attr.config;
4625
4626         /*
4627          * Software events (currently) can't in general distinguish
4628          * between user, kernel and hypervisor events.
4629          * However, context switches and cpu migrations are considered
4630          * to be kernel events, and page faults are never hypervisor
4631          * events.
4632          */
4633         switch (event_id) {
4634         case PERF_COUNT_SW_CPU_CLOCK:
4635                 pmu = &perf_ops_cpu_clock;
4636
4637                 break;
4638         case PERF_COUNT_SW_TASK_CLOCK:
4639                 /*
4640                  * If the user instantiates this as a per-cpu event,
4641                  * use the cpu_clock event instead.
4642                  */
4643                 if (event->ctx->task)
4644                         pmu = &perf_ops_task_clock;
4645                 else
4646                         pmu = &perf_ops_cpu_clock;
4647
4648                 break;
4649         case PERF_COUNT_SW_PAGE_FAULTS:
4650         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4651         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4652         case PERF_COUNT_SW_CONTEXT_SWITCHES:
4653         case PERF_COUNT_SW_CPU_MIGRATIONS:
4654         case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4655         case PERF_COUNT_SW_EMULATION_FAULTS:
4656                 if (!event->parent) {
4657                         int err;
4658
4659                         err = swevent_hlist_get(event);
4660                         if (err)
4661                                 return ERR_PTR(err);
4662
4663                         atomic_inc(&perf_swevent_enabled[event_id]);
4664                         event->destroy = sw_perf_event_destroy;
4665                 }
4666                 pmu = &perf_ops_generic;
4667                 break;
4668         }
4669
4670         return pmu;
4671 }
4672
4673 /*
4674  * Allocate and initialize a event structure
4675  */
4676 static struct perf_event *
4677 perf_event_alloc(struct perf_event_attr *attr,
4678                    int cpu,
4679                    struct perf_event_context *ctx,
4680                    struct perf_event *group_leader,
4681                    struct perf_event *parent_event,
4682                    perf_overflow_handler_t overflow_handler,
4683                    gfp_t gfpflags)
4684 {
4685         const struct pmu *pmu;
4686         struct perf_event *event;
4687         struct hw_perf_event *hwc;
4688         long err;
4689
4690         event = kzalloc(sizeof(*event), gfpflags);
4691         if (!event)
4692                 return ERR_PTR(-ENOMEM);
4693
4694         /*
4695          * Single events are their own group leaders, with an
4696          * empty sibling list:
4697          */
4698         if (!group_leader)
4699                 group_leader = event;
4700
4701         mutex_init(&event->child_mutex);
4702         INIT_LIST_HEAD(&event->child_list);
4703
4704         INIT_LIST_HEAD(&event->group_entry);
4705         INIT_LIST_HEAD(&event->event_entry);
4706         INIT_LIST_HEAD(&event->sibling_list);
4707         init_waitqueue_head(&event->waitq);
4708
4709         mutex_init(&event->mmap_mutex);
4710
4711         event->cpu              = cpu;
4712         event->attr             = *attr;
4713         event->group_leader     = group_leader;
4714         event->pmu              = NULL;
4715         event->ctx              = ctx;
4716         event->oncpu            = -1;
4717
4718         event->parent           = parent_event;
4719
4720         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
4721         event->id               = atomic64_inc_return(&perf_event_id);
4722
4723         event->state            = PERF_EVENT_STATE_INACTIVE;
4724
4725         if (!overflow_handler && parent_event)
4726                 overflow_handler = parent_event->overflow_handler;
4727         
4728         event->overflow_handler = overflow_handler;
4729
4730         if (attr->disabled)
4731                 event->state = PERF_EVENT_STATE_OFF;
4732
4733         pmu = NULL;
4734
4735         hwc = &event->hw;
4736         hwc->sample_period = attr->sample_period;
4737         if (attr->freq && attr->sample_freq)
4738                 hwc->sample_period = 1;
4739         hwc->last_period = hwc->sample_period;
4740
4741         atomic64_set(&hwc->period_left, hwc->sample_period);
4742
4743         /*
4744          * we currently do not support PERF_FORMAT_GROUP on inherited events
4745          */
4746         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4747                 goto done;
4748
4749         switch (attr->type) {
4750         case PERF_TYPE_RAW:
4751         case PERF_TYPE_HARDWARE:
4752         case PERF_TYPE_HW_CACHE:
4753                 pmu = hw_perf_event_init(event);
4754                 break;
4755
4756         case PERF_TYPE_SOFTWARE:
4757                 pmu = sw_perf_event_init(event);
4758                 break;
4759
4760         case PERF_TYPE_TRACEPOINT:
4761                 pmu = tp_perf_event_init(event);
4762                 break;
4763
4764         case PERF_TYPE_BREAKPOINT:
4765                 pmu = bp_perf_event_init(event);
4766                 break;
4767
4768
4769         default:
4770                 break;
4771         }
4772 done:
4773         err = 0;
4774         if (!pmu)
4775                 err = -EINVAL;
4776         else if (IS_ERR(pmu))
4777                 err = PTR_ERR(pmu);
4778
4779         if (err) {
4780                 if (event->ns)
4781                         put_pid_ns(event->ns);
4782                 kfree(event);
4783                 return ERR_PTR(err);
4784         }
4785
4786         event->pmu = pmu;
4787
4788         if (!event->parent) {
4789                 atomic_inc(&nr_events);
4790                 if (event->attr.mmap)
4791                         atomic_inc(&nr_mmap_events);
4792                 if (event->attr.comm)
4793                         atomic_inc(&nr_comm_events);
4794                 if (event->attr.task)
4795                         atomic_inc(&nr_task_events);
4796         }
4797
4798         return event;
4799 }
4800
4801 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4802                           struct perf_event_attr *attr)
4803 {
4804         u32 size;
4805         int ret;
4806
4807         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4808                 return -EFAULT;
4809
4810         /*
4811          * zero the full structure, so that a short copy will be nice.
4812          */
4813         memset(attr, 0, sizeof(*attr));
4814
4815         ret = get_user(size, &uattr->size);
4816         if (ret)
4817                 return ret;
4818
4819         if (size > PAGE_SIZE)   /* silly large */
4820                 goto err_size;
4821
4822         if (!size)              /* abi compat */
4823                 size = PERF_ATTR_SIZE_VER0;
4824
4825         if (size < PERF_ATTR_SIZE_VER0)
4826                 goto err_size;
4827
4828         /*
4829          * If we're handed a bigger struct than we know of,
4830          * ensure all the unknown bits are 0 - i.e. new
4831          * user-space does not rely on any kernel feature
4832          * extensions we dont know about yet.
4833          */
4834         if (size > sizeof(*attr)) {
4835                 unsigned char __user *addr;
4836                 unsigned char __user *end;
4837                 unsigned char val;
4838
4839                 addr = (void __user *)uattr + sizeof(*attr);
4840                 end  = (void __user *)uattr + size;
4841
4842                 for (; addr < end; addr++) {
4843                         ret = get_user(val, addr);
4844                         if (ret)
4845                                 return ret;
4846                         if (val)
4847                                 goto err_size;
4848                 }
4849                 size = sizeof(*attr);
4850         }
4851
4852         ret = copy_from_user(attr, uattr, size);
4853         if (ret)
4854                 return -EFAULT;
4855
4856         /*
4857          * If the type exists, the corresponding creation will verify
4858          * the attr->config.
4859          */
4860         if (attr->type >= PERF_TYPE_MAX)
4861                 return -EINVAL;
4862
4863         if (attr->__reserved_1)
4864                 return -EINVAL;
4865
4866         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4867                 return -EINVAL;
4868
4869         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4870                 return -EINVAL;
4871
4872 out:
4873         return ret;
4874
4875 err_size:
4876         put_user(sizeof(*attr), &uattr->size);
4877         ret = -E2BIG;
4878         goto out;
4879 }
4880
4881 static int perf_event_set_output(struct perf_event *event, int output_fd)
4882 {
4883         struct perf_event *output_event = NULL;
4884         struct file *output_file = NULL;
4885         struct perf_event *old_output;
4886         int fput_needed = 0;
4887         int ret = -EINVAL;
4888
4889         if (!output_fd)
4890                 goto set;
4891
4892         output_file = fget_light(output_fd, &fput_needed);
4893         if (!output_file)
4894                 return -EBADF;
4895
4896         if (output_file->f_op != &perf_fops)
4897                 goto out;
4898
4899         output_event = output_file->private_data;
4900
4901         /* Don't chain output fds */
4902         if (output_event->output)
4903                 goto out;
4904
4905         /* Don't set an output fd when we already have an output channel */
4906         if (event->data)
4907                 goto out;
4908
4909         atomic_long_inc(&output_file->f_count);
4910
4911 set:
4912         mutex_lock(&event->mmap_mutex);
4913         old_output = event->output;
4914         rcu_assign_pointer(event->output, output_event);
4915         mutex_unlock(&event->mmap_mutex);
4916
4917         if (old_output) {
4918                 /*
4919                  * we need to make sure no existing perf_output_*()
4920                  * is still referencing this event.
4921                  */
4922                 synchronize_rcu();
4923                 fput(old_output->filp);
4924         }
4925
4926         ret = 0;
4927 out:
4928         fput_light(output_file, fput_needed);
4929         return ret;
4930 }
4931
4932 /**
4933  * sys_perf_event_open - open a performance event, associate it to a task/cpu
4934  *
4935  * @attr_uptr:  event_id type attributes for monitoring/sampling
4936  * @pid:                target pid
4937  * @cpu:                target cpu
4938  * @group_fd:           group leader event fd
4939  */
4940 SYSCALL_DEFINE5(perf_event_open,
4941                 struct perf_event_attr __user *, attr_uptr,
4942                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4943 {
4944         struct perf_event *event, *group_leader;
4945         struct perf_event_attr attr;
4946         struct perf_event_context *ctx;
4947         struct file *event_file = NULL;
4948         struct file *group_file = NULL;
4949         int fput_needed = 0;
4950         int fput_needed2 = 0;
4951         int err;
4952
4953         /* for future expandability... */
4954         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4955                 return -EINVAL;
4956
4957         err = perf_copy_attr(attr_uptr, &attr);
4958         if (err)
4959                 return err;
4960
4961         if (!attr.exclude_kernel) {
4962                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4963                         return -EACCES;
4964         }
4965
4966         if (attr.freq) {
4967                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4968                         return -EINVAL;
4969         }
4970
4971         /*
4972          * Get the target context (task or percpu):
4973          */
4974         ctx = find_get_context(pid, cpu);
4975         if (IS_ERR(ctx))
4976                 return PTR_ERR(ctx);
4977
4978         /*
4979          * Look up the group leader (we will attach this event to it):
4980          */
4981         group_leader = NULL;
4982         if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4983                 err = -EINVAL;
4984                 group_file = fget_light(group_fd, &fput_needed);
4985                 if (!group_file)
4986                         goto err_put_context;
4987                 if (group_file->f_op != &perf_fops)
4988                         goto err_put_context;
4989
4990                 group_leader = group_file->private_data;
4991                 /*
4992                  * Do not allow a recursive hierarchy (this new sibling
4993                  * becoming part of another group-sibling):
4994                  */
4995                 if (group_leader->group_leader != group_leader)
4996                         goto err_put_context;
4997                 /*
4998                  * Do not allow to attach to a group in a different
4999                  * task or CPU context:
5000                  */
5001                 if (group_leader->ctx != ctx)
5002                         goto err_put_context;
5003                 /*
5004                  * Only a group leader can be exclusive or pinned
5005                  */
5006                 if (attr.exclusive || attr.pinned)
5007                         goto err_put_context;
5008         }
5009
5010         event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5011                                      NULL, NULL, GFP_KERNEL);
5012         err = PTR_ERR(event);
5013         if (IS_ERR(event))
5014                 goto err_put_context;
5015
5016         err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
5017         if (err < 0)
5018                 goto err_free_put_context;
5019
5020         event_file = fget_light(err, &fput_needed2);
5021         if (!event_file)
5022                 goto err_free_put_context;
5023
5024         if (flags & PERF_FLAG_FD_OUTPUT) {
5025                 err = perf_event_set_output(event, group_fd);
5026                 if (err)
5027                         goto err_fput_free_put_context;
5028         }
5029
5030         event->filp = event_file;
5031         WARN_ON_ONCE(ctx->parent_ctx);
5032         mutex_lock(&ctx->mutex);
5033         perf_install_in_context(ctx, event, cpu);
5034         ++ctx->generation;
5035         mutex_unlock(&ctx->mutex);
5036
5037         event->owner = current;
5038         get_task_struct(current);
5039         mutex_lock(&current->perf_event_mutex);
5040         list_add_tail(&event->owner_entry, &current->perf_event_list);
5041         mutex_unlock(&current->perf_event_mutex);
5042
5043 err_fput_free_put_context:
5044         fput_light(event_file, fput_needed2);
5045
5046 err_free_put_context:
5047         if (err < 0)
5048                 free_event(event);
5049
5050 err_put_context:
5051         if (err < 0)
5052                 put_ctx(ctx);
5053
5054         fput_light(group_file, fput_needed);
5055
5056         return err;
5057 }
5058
5059 /**
5060  * perf_event_create_kernel_counter
5061  *
5062  * @attr: attributes of the counter to create
5063  * @cpu: cpu in which the counter is bound
5064  * @pid: task to profile
5065  */
5066 struct perf_event *
5067 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5068                                  pid_t pid,
5069                                  perf_overflow_handler_t overflow_handler)
5070 {
5071         struct perf_event *event;
5072         struct perf_event_context *ctx;
5073         int err;
5074
5075         /*
5076          * Get the target context (task or percpu):
5077          */
5078
5079         ctx = find_get_context(pid, cpu);
5080         if (IS_ERR(ctx)) {
5081                 err = PTR_ERR(ctx);
5082                 goto err_exit;
5083         }
5084
5085         event = perf_event_alloc(attr, cpu, ctx, NULL,
5086                                  NULL, overflow_handler, GFP_KERNEL);
5087         if (IS_ERR(event)) {
5088                 err = PTR_ERR(event);
5089                 goto err_put_context;
5090         }
5091
5092         event->filp = NULL;
5093         WARN_ON_ONCE(ctx->parent_ctx);
5094         mutex_lock(&ctx->mutex);
5095         perf_install_in_context(ctx, event, cpu);
5096         ++ctx->generation;
5097         mutex_unlock(&ctx->mutex);
5098
5099         event->owner = current;
5100         get_task_struct(current);
5101         mutex_lock(&current->perf_event_mutex);
5102         list_add_tail(&event->owner_entry, &current->perf_event_list);
5103         mutex_unlock(&current->perf_event_mutex);
5104
5105         return event;
5106
5107  err_put_context:
5108         put_ctx(ctx);
5109  err_exit:
5110         return ERR_PTR(err);
5111 }
5112 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5113
5114 /*
5115  * inherit a event from parent task to child task:
5116  */
5117 static struct perf_event *
5118 inherit_event(struct perf_event *parent_event,
5119               struct task_struct *parent,
5120               struct perf_event_context *parent_ctx,
5121               struct task_struct *child,
5122               struct perf_event *group_leader,
5123               struct perf_event_context *child_ctx)
5124 {
5125         struct perf_event *child_event;
5126
5127         /*
5128          * Instead of creating recursive hierarchies of events,
5129          * we link inherited events back to the original parent,
5130          * which has a filp for sure, which we use as the reference
5131          * count:
5132          */
5133         if (parent_event->parent)
5134                 parent_event = parent_event->parent;
5135
5136         child_event = perf_event_alloc(&parent_event->attr,
5137                                            parent_event->cpu, child_ctx,
5138                                            group_leader, parent_event,
5139                                            NULL, GFP_KERNEL);
5140         if (IS_ERR(child_event))
5141                 return child_event;
5142         get_ctx(child_ctx);
5143
5144         /*
5145          * Make the child state follow the state of the parent event,
5146          * not its attr.disabled bit.  We hold the parent's mutex,
5147          * so we won't race with perf_event_{en, dis}able_family.
5148          */
5149         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5150                 child_event->state = PERF_EVENT_STATE_INACTIVE;
5151         else
5152                 child_event->state = PERF_EVENT_STATE_OFF;
5153
5154         if (parent_event->attr.freq) {
5155                 u64 sample_period = parent_event->hw.sample_period;
5156                 struct hw_perf_event *hwc = &child_event->hw;
5157
5158                 hwc->sample_period = sample_period;
5159                 hwc->last_period   = sample_period;
5160
5161                 atomic64_set(&hwc->period_left, sample_period);
5162         }
5163
5164         child_event->overflow_handler = parent_event->overflow_handler;
5165
5166         /*
5167          * Link it up in the child's context:
5168          */
5169         add_event_to_ctx(child_event, child_ctx);
5170
5171         /*
5172          * Get a reference to the parent filp - we will fput it
5173          * when the child event exits. This is safe to do because
5174          * we are in the parent and we know that the filp still
5175          * exists and has a nonzero count:
5176          */
5177         atomic_long_inc(&parent_event->filp->f_count);
5178
5179         /*
5180          * Link this into the parent event's child list
5181          */
5182         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5183         mutex_lock(&parent_event->child_mutex);
5184         list_add_tail(&child_event->child_list, &parent_event->child_list);
5185         mutex_unlock(&parent_event->child_mutex);
5186
5187         return child_event;
5188 }
5189
5190 static int inherit_group(struct perf_event *parent_event,
5191               struct task_struct *parent,
5192               struct perf_event_context *parent_ctx,
5193               struct task_struct *child,
5194               struct perf_event_context *child_ctx)
5195 {
5196         struct perf_event *leader;
5197         struct perf_event *sub;
5198         struct perf_event *child_ctr;
5199
5200         leader = inherit_event(parent_event, parent, parent_ctx,
5201                                  child, NULL, child_ctx);
5202         if (IS_ERR(leader))
5203                 return PTR_ERR(leader);
5204         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5205                 child_ctr = inherit_event(sub, parent, parent_ctx,
5206                                             child, leader, child_ctx);
5207                 if (IS_ERR(child_ctr))
5208                         return PTR_ERR(child_ctr);
5209         }
5210         return 0;
5211 }
5212
5213 static void sync_child_event(struct perf_event *child_event,
5214                                struct task_struct *child)
5215 {
5216         struct perf_event *parent_event = child_event->parent;
5217         u64 child_val;
5218
5219         if (child_event->attr.inherit_stat)
5220                 perf_event_read_event(child_event, child);
5221
5222         child_val = atomic64_read(&child_event->count);
5223
5224         /*
5225          * Add back the child's count to the parent's count:
5226          */
5227         atomic64_add(child_val, &parent_event->count);
5228         atomic64_add(child_event->total_time_enabled,
5229                      &parent_event->child_total_time_enabled);
5230         atomic64_add(child_event->total_time_running,
5231                      &parent_event->child_total_time_running);
5232
5233         /*
5234          * Remove this event from the parent's list
5235          */
5236         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5237         mutex_lock(&parent_event->child_mutex);
5238         list_del_init(&child_event->child_list);
5239         mutex_unlock(&parent_event->child_mutex);
5240
5241         /*
5242          * Release the parent event, if this was the last
5243          * reference to it.
5244          */
5245         fput(parent_event->filp);
5246 }
5247
5248 static void
5249 __perf_event_exit_task(struct perf_event *child_event,
5250                          struct perf_event_context *child_ctx,
5251                          struct task_struct *child)
5252 {
5253         struct perf_event *parent_event;
5254
5255         perf_event_remove_from_context(child_event);
5256
5257         parent_event = child_event->parent;
5258         /*
5259          * It can happen that parent exits first, and has events
5260          * that are still around due to the child reference. These
5261          * events need to be zapped - but otherwise linger.
5262          */
5263         if (parent_event) {
5264                 sync_child_event(child_event, child);
5265                 free_event(child_event);
5266         }
5267 }
5268
5269 /*
5270  * When a child task exits, feed back event values to parent events.
5271  */
5272 void perf_event_exit_task(struct task_struct *child)
5273 {
5274         struct perf_event *child_event, *tmp;
5275         struct perf_event_context *child_ctx;
5276         unsigned long flags;
5277
5278         if (likely(!child->perf_event_ctxp)) {
5279                 perf_event_task(child, NULL, 0);
5280                 return;
5281         }
5282
5283         local_irq_save(flags);
5284         /*
5285          * We can't reschedule here because interrupts are disabled,
5286          * and either child is current or it is a task that can't be
5287          * scheduled, so we are now safe from rescheduling changing
5288          * our context.
5289          */
5290         child_ctx = child->perf_event_ctxp;
5291         __perf_event_task_sched_out(child_ctx);
5292
5293         /*
5294          * Take the context lock here so that if find_get_context is
5295          * reading child->perf_event_ctxp, we wait until it has
5296          * incremented the context's refcount before we do put_ctx below.
5297          */
5298         raw_spin_lock(&child_ctx->lock);
5299         child->perf_event_ctxp = NULL;
5300         /*
5301          * If this context is a clone; unclone it so it can't get
5302          * swapped to another process while we're removing all
5303          * the events from it.
5304          */
5305         unclone_ctx(child_ctx);
5306         update_context_time(child_ctx);
5307         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5308
5309         /*
5310          * Report the task dead after unscheduling the events so that we
5311          * won't get any samples after PERF_RECORD_EXIT. We can however still
5312          * get a few PERF_RECORD_READ events.
5313          */
5314         perf_event_task(child, child_ctx, 0);
5315
5316         /*
5317          * We can recurse on the same lock type through:
5318          *
5319          *   __perf_event_exit_task()
5320          *     sync_child_event()
5321          *       fput(parent_event->filp)
5322          *         perf_release()
5323          *           mutex_lock(&ctx->mutex)
5324          *
5325          * But since its the parent context it won't be the same instance.
5326          */
5327         mutex_lock(&child_ctx->mutex);
5328
5329 again:
5330         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5331                                  group_entry)
5332                 __perf_event_exit_task(child_event, child_ctx, child);
5333
5334         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5335                                  group_entry)
5336                 __perf_event_exit_task(child_event, child_ctx, child);
5337
5338         /*
5339          * If the last event was a group event, it will have appended all
5340          * its siblings to the list, but we obtained 'tmp' before that which
5341          * will still point to the list head terminating the iteration.
5342          */
5343         if (!list_empty(&child_ctx->pinned_groups) ||
5344             !list_empty(&child_ctx->flexible_groups))
5345                 goto again;
5346
5347         mutex_unlock(&child_ctx->mutex);
5348
5349         put_ctx(child_ctx);
5350 }
5351
5352 static void perf_free_event(struct perf_event *event,
5353                             struct perf_event_context *ctx)
5354 {
5355         struct perf_event *parent = event->parent;
5356
5357         if (WARN_ON_ONCE(!parent))
5358                 return;
5359
5360         mutex_lock(&parent->child_mutex);
5361         list_del_init(&event->child_list);
5362         mutex_unlock(&parent->child_mutex);
5363
5364         fput(parent->filp);
5365
5366         list_del_event(event, ctx);
5367         free_event(event);
5368 }
5369
5370 /*
5371  * free an unexposed, unused context as created by inheritance by
5372  * init_task below, used by fork() in case of fail.
5373  */
5374 void perf_event_free_task(struct task_struct *task)
5375 {
5376         struct perf_event_context *ctx = task->perf_event_ctxp;
5377         struct perf_event *event, *tmp;
5378
5379         if (!ctx)
5380                 return;
5381
5382         mutex_lock(&ctx->mutex);
5383 again:
5384         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5385                 perf_free_event(event, ctx);
5386
5387         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5388                                  group_entry)
5389                 perf_free_event(event, ctx);
5390
5391         if (!list_empty(&ctx->pinned_groups) ||
5392             !list_empty(&ctx->flexible_groups))
5393                 goto again;
5394
5395         mutex_unlock(&ctx->mutex);
5396
5397         put_ctx(ctx);
5398 }
5399
5400 static int
5401 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5402                    struct perf_event_context *parent_ctx,
5403                    struct task_struct *child,
5404                    int *inherited_all)
5405 {
5406         int ret;
5407         struct perf_event_context *child_ctx = child->perf_event_ctxp;
5408
5409         if (!event->attr.inherit) {
5410                 *inherited_all = 0;
5411                 return 0;
5412         }
5413
5414         if (!child_ctx) {
5415                 /*
5416                  * This is executed from the parent task context, so
5417                  * inherit events that have been marked for cloning.
5418                  * First allocate and initialize a context for the
5419                  * child.
5420                  */
5421
5422                 child_ctx = kzalloc(sizeof(struct perf_event_context),
5423                                     GFP_KERNEL);
5424                 if (!child_ctx)
5425                         return -ENOMEM;
5426
5427                 __perf_event_init_context(child_ctx, child);
5428                 child->perf_event_ctxp = child_ctx;
5429                 get_task_struct(child);
5430         }
5431
5432         ret = inherit_group(event, parent, parent_ctx,
5433                             child, child_ctx);
5434
5435         if (ret)
5436                 *inherited_all = 0;
5437
5438         return ret;
5439 }
5440
5441
5442 /*
5443  * Initialize the perf_event context in task_struct
5444  */
5445 int perf_event_init_task(struct task_struct *child)
5446 {
5447         struct perf_event_context *child_ctx, *parent_ctx;
5448         struct perf_event_context *cloned_ctx;
5449         struct perf_event *event;
5450         struct task_struct *parent = current;
5451         int inherited_all = 1;
5452         int ret = 0;
5453
5454         child->perf_event_ctxp = NULL;
5455
5456         mutex_init(&child->perf_event_mutex);
5457         INIT_LIST_HEAD(&child->perf_event_list);
5458
5459         if (likely(!parent->perf_event_ctxp))
5460                 return 0;
5461
5462         /*
5463          * If the parent's context is a clone, pin it so it won't get
5464          * swapped under us.
5465          */
5466         parent_ctx = perf_pin_task_context(parent);
5467
5468         /*
5469          * No need to check if parent_ctx != NULL here; since we saw
5470          * it non-NULL earlier, the only reason for it to become NULL
5471          * is if we exit, and since we're currently in the middle of
5472          * a fork we can't be exiting at the same time.
5473          */
5474
5475         /*
5476          * Lock the parent list. No need to lock the child - not PID
5477          * hashed yet and not running, so nobody can access it.
5478          */
5479         mutex_lock(&parent_ctx->mutex);
5480
5481         /*
5482          * We dont have to disable NMIs - we are only looking at
5483          * the list, not manipulating it:
5484          */
5485         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5486                 ret = inherit_task_group(event, parent, parent_ctx, child,
5487                                          &inherited_all);
5488                 if (ret)
5489                         break;
5490         }
5491
5492         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5493                 ret = inherit_task_group(event, parent, parent_ctx, child,
5494                                          &inherited_all);
5495                 if (ret)
5496                         break;
5497         }
5498
5499         child_ctx = child->perf_event_ctxp;
5500
5501         if (child_ctx && inherited_all) {
5502                 /*
5503                  * Mark the child context as a clone of the parent
5504                  * context, or of whatever the parent is a clone of.
5505                  * Note that if the parent is a clone, it could get
5506                  * uncloned at any point, but that doesn't matter
5507                  * because the list of events and the generation
5508                  * count can't have changed since we took the mutex.
5509                  */
5510                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5511                 if (cloned_ctx) {
5512                         child_ctx->parent_ctx = cloned_ctx;
5513                         child_ctx->parent_gen = parent_ctx->parent_gen;
5514                 } else {
5515                         child_ctx->parent_ctx = parent_ctx;
5516                         child_ctx->parent_gen = parent_ctx->generation;
5517                 }
5518                 get_ctx(child_ctx->parent_ctx);
5519         }
5520
5521         mutex_unlock(&parent_ctx->mutex);
5522
5523         perf_unpin_context(parent_ctx);
5524
5525         return ret;
5526 }
5527
5528 static void __init perf_event_init_all_cpus(void)
5529 {
5530         int cpu;
5531         struct perf_cpu_context *cpuctx;
5532
5533         for_each_possible_cpu(cpu) {
5534                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5535                 mutex_init(&cpuctx->hlist_mutex);
5536                 __perf_event_init_context(&cpuctx->ctx, NULL);
5537         }
5538 }
5539
5540 static void __cpuinit perf_event_init_cpu(int cpu)
5541 {
5542         struct perf_cpu_context *cpuctx;
5543
5544         cpuctx = &per_cpu(perf_cpu_context, cpu);
5545
5546         spin_lock(&perf_resource_lock);
5547         cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5548         spin_unlock(&perf_resource_lock);
5549
5550         mutex_lock(&cpuctx->hlist_mutex);
5551         if (cpuctx->hlist_refcount > 0) {
5552                 struct swevent_hlist *hlist;
5553
5554                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5555                 WARN_ON_ONCE(!hlist);
5556                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5557         }
5558         mutex_unlock(&cpuctx->hlist_mutex);
5559 }
5560
5561 #ifdef CONFIG_HOTPLUG_CPU
5562 static void __perf_event_exit_cpu(void *info)
5563 {
5564         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5565         struct perf_event_context *ctx = &cpuctx->ctx;
5566         struct perf_event *event, *tmp;
5567
5568         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5569                 __perf_event_remove_from_context(event);
5570         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5571                 __perf_event_remove_from_context(event);
5572 }
5573 static void perf_event_exit_cpu(int cpu)
5574 {
5575         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5576         struct perf_event_context *ctx = &cpuctx->ctx;
5577
5578         mutex_lock(&cpuctx->hlist_mutex);
5579         swevent_hlist_release(cpuctx);
5580         mutex_unlock(&cpuctx->hlist_mutex);
5581
5582         mutex_lock(&ctx->mutex);
5583         smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5584         mutex_unlock(&ctx->mutex);
5585 }
5586 #else
5587 static inline void perf_event_exit_cpu(int cpu) { }
5588 #endif
5589
5590 static int __cpuinit
5591 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5592 {
5593         unsigned int cpu = (long)hcpu;
5594
5595         switch (action) {
5596
5597         case CPU_UP_PREPARE:
5598         case CPU_UP_PREPARE_FROZEN:
5599                 perf_event_init_cpu(cpu);
5600                 break;
5601
5602         case CPU_DOWN_PREPARE:
5603         case CPU_DOWN_PREPARE_FROZEN:
5604                 perf_event_exit_cpu(cpu);
5605                 break;
5606
5607         default:
5608                 break;
5609         }
5610
5611         return NOTIFY_OK;
5612 }
5613
5614 /*
5615  * This has to have a higher priority than migration_notifier in sched.c.
5616  */
5617 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5618         .notifier_call          = perf_cpu_notify,
5619         .priority               = 20,
5620 };
5621
5622 void __init perf_event_init(void)
5623 {
5624         perf_event_init_all_cpus();
5625         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5626                         (void *)(long)smp_processor_id());
5627         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5628                         (void *)(long)smp_processor_id());
5629         register_cpu_notifier(&perf_cpu_nb);
5630 }
5631
5632 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5633                                         struct sysdev_class_attribute *attr,
5634                                         char *buf)
5635 {
5636         return sprintf(buf, "%d\n", perf_reserved_percpu);
5637 }
5638
5639 static ssize_t
5640 perf_set_reserve_percpu(struct sysdev_class *class,
5641                         struct sysdev_class_attribute *attr,
5642                         const char *buf,
5643                         size_t count)
5644 {
5645         struct perf_cpu_context *cpuctx;
5646         unsigned long val;
5647         int err, cpu, mpt;
5648
5649         err = strict_strtoul(buf, 10, &val);
5650         if (err)
5651                 return err;
5652         if (val > perf_max_events)
5653                 return -EINVAL;
5654
5655         spin_lock(&perf_resource_lock);
5656         perf_reserved_percpu = val;
5657         for_each_online_cpu(cpu) {
5658                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5659                 raw_spin_lock_irq(&cpuctx->ctx.lock);
5660                 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5661                           perf_max_events - perf_reserved_percpu);
5662                 cpuctx->max_pertask = mpt;
5663                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5664         }
5665         spin_unlock(&perf_resource_lock);
5666
5667         return count;
5668 }
5669
5670 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5671                                     struct sysdev_class_attribute *attr,
5672                                     char *buf)
5673 {
5674         return sprintf(buf, "%d\n", perf_overcommit);
5675 }
5676
5677 static ssize_t
5678 perf_set_overcommit(struct sysdev_class *class,
5679                     struct sysdev_class_attribute *attr,
5680                     const char *buf, size_t count)
5681 {
5682         unsigned long val;
5683         int err;
5684
5685         err = strict_strtoul(buf, 10, &val);
5686         if (err)
5687                 return err;
5688         if (val > 1)
5689                 return -EINVAL;
5690
5691         spin_lock(&perf_resource_lock);
5692         perf_overcommit = val;
5693         spin_unlock(&perf_resource_lock);
5694
5695         return count;
5696 }
5697
5698 static SYSDEV_CLASS_ATTR(
5699                                 reserve_percpu,
5700                                 0644,
5701                                 perf_show_reserve_percpu,
5702                                 perf_set_reserve_percpu
5703                         );
5704
5705 static SYSDEV_CLASS_ATTR(
5706                                 overcommit,
5707                                 0644,
5708                                 perf_show_overcommit,
5709                                 perf_set_overcommit
5710                         );
5711
5712 static struct attribute *perfclass_attrs[] = {
5713         &attr_reserve_percpu.attr,
5714         &attr_overcommit.attr,
5715         NULL
5716 };
5717
5718 static struct attribute_group perfclass_attr_group = {
5719         .attrs                  = perfclass_attrs,
5720         .name                   = "perf_events",
5721 };
5722
5723 static int __init perf_event_sysfs_init(void)
5724 {
5725         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5726                                   &perfclass_attr_group);
5727 }
5728 device_initcall(perf_event_sysfs_init);