perf_counter: hook up the tracepoint events
[safe/jmp/linux-2.6] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6  *
7  *  For licencing details see kernel-base/COPYING
8  */
9
10 #include <linux/fs.h>
11 #include <linux/cpu.h>
12 #include <linux/smp.h>
13 #include <linux/file.h>
14 #include <linux/poll.h>
15 #include <linux/sysfs.h>
16 #include <linux/ptrace.h>
17 #include <linux/percpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/syscalls.h>
20 #include <linux/anon_inodes.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/perf_counter.h>
23 #include <linux/mm.h>
24 #include <linux/vmstat.h>
25 #include <linux/rculist.h>
26
27 #include <asm/irq_regs.h>
28
29 /*
30  * Each CPU has a list of per CPU counters:
31  */
32 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
33
34 int perf_max_counters __read_mostly = 1;
35 static int perf_reserved_percpu __read_mostly;
36 static int perf_overcommit __read_mostly = 1;
37
38 /*
39  * Mutex for (sysadmin-configurable) counter reservations:
40  */
41 static DEFINE_MUTEX(perf_resource_mutex);
42
43 /*
44  * Architecture provided APIs - weak aliases:
45  */
46 extern __weak const struct hw_perf_counter_ops *
47 hw_perf_counter_init(struct perf_counter *counter)
48 {
49         return NULL;
50 }
51
52 u64 __weak hw_perf_save_disable(void)           { return 0; }
53 void __weak hw_perf_restore(u64 ctrl)           { barrier(); }
54 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
55 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
56                struct perf_cpu_context *cpuctx,
57                struct perf_counter_context *ctx, int cpu)
58 {
59         return 0;
60 }
61
62 void __weak perf_counter_print_debug(void)      { }
63
64 static void
65 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
66 {
67         struct perf_counter *group_leader = counter->group_leader;
68
69         /*
70          * Depending on whether it is a standalone or sibling counter,
71          * add it straight to the context's counter list, or to the group
72          * leader's sibling list:
73          */
74         if (counter->group_leader == counter)
75                 list_add_tail(&counter->list_entry, &ctx->counter_list);
76         else
77                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
78
79         list_add_rcu(&counter->event_entry, &ctx->event_list);
80 }
81
82 static void
83 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
84 {
85         struct perf_counter *sibling, *tmp;
86
87         list_del_init(&counter->list_entry);
88         list_del_rcu(&counter->event_entry);
89
90         /*
91          * If this was a group counter with sibling counters then
92          * upgrade the siblings to singleton counters by adding them
93          * to the context list directly:
94          */
95         list_for_each_entry_safe(sibling, tmp,
96                                  &counter->sibling_list, list_entry) {
97
98                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
99                 sibling->group_leader = sibling;
100         }
101 }
102
103 static void
104 counter_sched_out(struct perf_counter *counter,
105                   struct perf_cpu_context *cpuctx,
106                   struct perf_counter_context *ctx)
107 {
108         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
109                 return;
110
111         counter->state = PERF_COUNTER_STATE_INACTIVE;
112         counter->hw_ops->disable(counter);
113         counter->oncpu = -1;
114
115         if (!is_software_counter(counter))
116                 cpuctx->active_oncpu--;
117         ctx->nr_active--;
118         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
119                 cpuctx->exclusive = 0;
120 }
121
122 static void
123 group_sched_out(struct perf_counter *group_counter,
124                 struct perf_cpu_context *cpuctx,
125                 struct perf_counter_context *ctx)
126 {
127         struct perf_counter *counter;
128
129         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
130                 return;
131
132         counter_sched_out(group_counter, cpuctx, ctx);
133
134         /*
135          * Schedule out siblings (if any):
136          */
137         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
138                 counter_sched_out(counter, cpuctx, ctx);
139
140         if (group_counter->hw_event.exclusive)
141                 cpuctx->exclusive = 0;
142 }
143
144 /*
145  * Cross CPU call to remove a performance counter
146  *
147  * We disable the counter on the hardware level first. After that we
148  * remove it from the context list.
149  */
150 static void __perf_counter_remove_from_context(void *info)
151 {
152         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
153         struct perf_counter *counter = info;
154         struct perf_counter_context *ctx = counter->ctx;
155         unsigned long flags;
156         u64 perf_flags;
157
158         /*
159          * If this is a task context, we need to check whether it is
160          * the current task context of this cpu. If not it has been
161          * scheduled out before the smp call arrived.
162          */
163         if (ctx->task && cpuctx->task_ctx != ctx)
164                 return;
165
166         curr_rq_lock_irq_save(&flags);
167         spin_lock(&ctx->lock);
168
169         counter_sched_out(counter, cpuctx, ctx);
170
171         counter->task = NULL;
172         ctx->nr_counters--;
173
174         /*
175          * Protect the list operation against NMI by disabling the
176          * counters on a global level. NOP for non NMI based counters.
177          */
178         perf_flags = hw_perf_save_disable();
179         list_del_counter(counter, ctx);
180         hw_perf_restore(perf_flags);
181
182         if (!ctx->task) {
183                 /*
184                  * Allow more per task counters with respect to the
185                  * reservation:
186                  */
187                 cpuctx->max_pertask =
188                         min(perf_max_counters - ctx->nr_counters,
189                             perf_max_counters - perf_reserved_percpu);
190         }
191
192         spin_unlock(&ctx->lock);
193         curr_rq_unlock_irq_restore(&flags);
194 }
195
196
197 /*
198  * Remove the counter from a task's (or a CPU's) list of counters.
199  *
200  * Must be called with counter->mutex and ctx->mutex held.
201  *
202  * CPU counters are removed with a smp call. For task counters we only
203  * call when the task is on a CPU.
204  */
205 static void perf_counter_remove_from_context(struct perf_counter *counter)
206 {
207         struct perf_counter_context *ctx = counter->ctx;
208         struct task_struct *task = ctx->task;
209
210         if (!task) {
211                 /*
212                  * Per cpu counters are removed via an smp call and
213                  * the removal is always sucessful.
214                  */
215                 smp_call_function_single(counter->cpu,
216                                          __perf_counter_remove_from_context,
217                                          counter, 1);
218                 return;
219         }
220
221 retry:
222         task_oncpu_function_call(task, __perf_counter_remove_from_context,
223                                  counter);
224
225         spin_lock_irq(&ctx->lock);
226         /*
227          * If the context is active we need to retry the smp call.
228          */
229         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
230                 spin_unlock_irq(&ctx->lock);
231                 goto retry;
232         }
233
234         /*
235          * The lock prevents that this context is scheduled in so we
236          * can remove the counter safely, if the call above did not
237          * succeed.
238          */
239         if (!list_empty(&counter->list_entry)) {
240                 ctx->nr_counters--;
241                 list_del_counter(counter, ctx);
242                 counter->task = NULL;
243         }
244         spin_unlock_irq(&ctx->lock);
245 }
246
247 /*
248  * Cross CPU call to disable a performance counter
249  */
250 static void __perf_counter_disable(void *info)
251 {
252         struct perf_counter *counter = info;
253         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
254         struct perf_counter_context *ctx = counter->ctx;
255         unsigned long flags;
256
257         /*
258          * If this is a per-task counter, need to check whether this
259          * counter's task is the current task on this cpu.
260          */
261         if (ctx->task && cpuctx->task_ctx != ctx)
262                 return;
263
264         curr_rq_lock_irq_save(&flags);
265         spin_lock(&ctx->lock);
266
267         /*
268          * If the counter is on, turn it off.
269          * If it is in error state, leave it in error state.
270          */
271         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
272                 if (counter == counter->group_leader)
273                         group_sched_out(counter, cpuctx, ctx);
274                 else
275                         counter_sched_out(counter, cpuctx, ctx);
276                 counter->state = PERF_COUNTER_STATE_OFF;
277         }
278
279         spin_unlock(&ctx->lock);
280         curr_rq_unlock_irq_restore(&flags);
281 }
282
283 /*
284  * Disable a counter.
285  */
286 static void perf_counter_disable(struct perf_counter *counter)
287 {
288         struct perf_counter_context *ctx = counter->ctx;
289         struct task_struct *task = ctx->task;
290
291         if (!task) {
292                 /*
293                  * Disable the counter on the cpu that it's on
294                  */
295                 smp_call_function_single(counter->cpu, __perf_counter_disable,
296                                          counter, 1);
297                 return;
298         }
299
300  retry:
301         task_oncpu_function_call(task, __perf_counter_disable, counter);
302
303         spin_lock_irq(&ctx->lock);
304         /*
305          * If the counter is still active, we need to retry the cross-call.
306          */
307         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
308                 spin_unlock_irq(&ctx->lock);
309                 goto retry;
310         }
311
312         /*
313          * Since we have the lock this context can't be scheduled
314          * in, so we can change the state safely.
315          */
316         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
317                 counter->state = PERF_COUNTER_STATE_OFF;
318
319         spin_unlock_irq(&ctx->lock);
320 }
321
322 /*
323  * Disable a counter and all its children.
324  */
325 static void perf_counter_disable_family(struct perf_counter *counter)
326 {
327         struct perf_counter *child;
328
329         perf_counter_disable(counter);
330
331         /*
332          * Lock the mutex to protect the list of children
333          */
334         mutex_lock(&counter->mutex);
335         list_for_each_entry(child, &counter->child_list, child_list)
336                 perf_counter_disable(child);
337         mutex_unlock(&counter->mutex);
338 }
339
340 static int
341 counter_sched_in(struct perf_counter *counter,
342                  struct perf_cpu_context *cpuctx,
343                  struct perf_counter_context *ctx,
344                  int cpu)
345 {
346         if (counter->state <= PERF_COUNTER_STATE_OFF)
347                 return 0;
348
349         counter->state = PERF_COUNTER_STATE_ACTIVE;
350         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
351         /*
352          * The new state must be visible before we turn it on in the hardware:
353          */
354         smp_wmb();
355
356         if (counter->hw_ops->enable(counter)) {
357                 counter->state = PERF_COUNTER_STATE_INACTIVE;
358                 counter->oncpu = -1;
359                 return -EAGAIN;
360         }
361
362         if (!is_software_counter(counter))
363                 cpuctx->active_oncpu++;
364         ctx->nr_active++;
365
366         if (counter->hw_event.exclusive)
367                 cpuctx->exclusive = 1;
368
369         return 0;
370 }
371
372 /*
373  * Return 1 for a group consisting entirely of software counters,
374  * 0 if the group contains any hardware counters.
375  */
376 static int is_software_only_group(struct perf_counter *leader)
377 {
378         struct perf_counter *counter;
379
380         if (!is_software_counter(leader))
381                 return 0;
382         list_for_each_entry(counter, &leader->sibling_list, list_entry)
383                 if (!is_software_counter(counter))
384                         return 0;
385         return 1;
386 }
387
388 /*
389  * Work out whether we can put this counter group on the CPU now.
390  */
391 static int group_can_go_on(struct perf_counter *counter,
392                            struct perf_cpu_context *cpuctx,
393                            int can_add_hw)
394 {
395         /*
396          * Groups consisting entirely of software counters can always go on.
397          */
398         if (is_software_only_group(counter))
399                 return 1;
400         /*
401          * If an exclusive group is already on, no other hardware
402          * counters can go on.
403          */
404         if (cpuctx->exclusive)
405                 return 0;
406         /*
407          * If this group is exclusive and there are already
408          * counters on the CPU, it can't go on.
409          */
410         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
411                 return 0;
412         /*
413          * Otherwise, try to add it if all previous groups were able
414          * to go on.
415          */
416         return can_add_hw;
417 }
418
419 /*
420  * Cross CPU call to install and enable a performance counter
421  */
422 static void __perf_install_in_context(void *info)
423 {
424         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
425         struct perf_counter *counter = info;
426         struct perf_counter_context *ctx = counter->ctx;
427         struct perf_counter *leader = counter->group_leader;
428         int cpu = smp_processor_id();
429         unsigned long flags;
430         u64 perf_flags;
431         int err;
432
433         /*
434          * If this is a task context, we need to check whether it is
435          * the current task context of this cpu. If not it has been
436          * scheduled out before the smp call arrived.
437          */
438         if (ctx->task && cpuctx->task_ctx != ctx)
439                 return;
440
441         curr_rq_lock_irq_save(&flags);
442         spin_lock(&ctx->lock);
443
444         /*
445          * Protect the list operation against NMI by disabling the
446          * counters on a global level. NOP for non NMI based counters.
447          */
448         perf_flags = hw_perf_save_disable();
449
450         list_add_counter(counter, ctx);
451         ctx->nr_counters++;
452         counter->prev_state = PERF_COUNTER_STATE_OFF;
453
454         /*
455          * Don't put the counter on if it is disabled or if
456          * it is in a group and the group isn't on.
457          */
458         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
459             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
460                 goto unlock;
461
462         /*
463          * An exclusive counter can't go on if there are already active
464          * hardware counters, and no hardware counter can go on if there
465          * is already an exclusive counter on.
466          */
467         if (!group_can_go_on(counter, cpuctx, 1))
468                 err = -EEXIST;
469         else
470                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
471
472         if (err) {
473                 /*
474                  * This counter couldn't go on.  If it is in a group
475                  * then we have to pull the whole group off.
476                  * If the counter group is pinned then put it in error state.
477                  */
478                 if (leader != counter)
479                         group_sched_out(leader, cpuctx, ctx);
480                 if (leader->hw_event.pinned)
481                         leader->state = PERF_COUNTER_STATE_ERROR;
482         }
483
484         if (!err && !ctx->task && cpuctx->max_pertask)
485                 cpuctx->max_pertask--;
486
487  unlock:
488         hw_perf_restore(perf_flags);
489
490         spin_unlock(&ctx->lock);
491         curr_rq_unlock_irq_restore(&flags);
492 }
493
494 /*
495  * Attach a performance counter to a context
496  *
497  * First we add the counter to the list with the hardware enable bit
498  * in counter->hw_config cleared.
499  *
500  * If the counter is attached to a task which is on a CPU we use a smp
501  * call to enable it in the task context. The task might have been
502  * scheduled away, but we check this in the smp call again.
503  *
504  * Must be called with ctx->mutex held.
505  */
506 static void
507 perf_install_in_context(struct perf_counter_context *ctx,
508                         struct perf_counter *counter,
509                         int cpu)
510 {
511         struct task_struct *task = ctx->task;
512
513         if (!task) {
514                 /*
515                  * Per cpu counters are installed via an smp call and
516                  * the install is always sucessful.
517                  */
518                 smp_call_function_single(cpu, __perf_install_in_context,
519                                          counter, 1);
520                 return;
521         }
522
523         counter->task = task;
524 retry:
525         task_oncpu_function_call(task, __perf_install_in_context,
526                                  counter);
527
528         spin_lock_irq(&ctx->lock);
529         /*
530          * we need to retry the smp call.
531          */
532         if (ctx->is_active && list_empty(&counter->list_entry)) {
533                 spin_unlock_irq(&ctx->lock);
534                 goto retry;
535         }
536
537         /*
538          * The lock prevents that this context is scheduled in so we
539          * can add the counter safely, if it the call above did not
540          * succeed.
541          */
542         if (list_empty(&counter->list_entry)) {
543                 list_add_counter(counter, ctx);
544                 ctx->nr_counters++;
545         }
546         spin_unlock_irq(&ctx->lock);
547 }
548
549 /*
550  * Cross CPU call to enable a performance counter
551  */
552 static void __perf_counter_enable(void *info)
553 {
554         struct perf_counter *counter = info;
555         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
556         struct perf_counter_context *ctx = counter->ctx;
557         struct perf_counter *leader = counter->group_leader;
558         unsigned long flags;
559         int err;
560
561         /*
562          * If this is a per-task counter, need to check whether this
563          * counter's task is the current task on this cpu.
564          */
565         if (ctx->task && cpuctx->task_ctx != ctx)
566                 return;
567
568         curr_rq_lock_irq_save(&flags);
569         spin_lock(&ctx->lock);
570
571         counter->prev_state = counter->state;
572         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
573                 goto unlock;
574         counter->state = PERF_COUNTER_STATE_INACTIVE;
575
576         /*
577          * If the counter is in a group and isn't the group leader,
578          * then don't put it on unless the group is on.
579          */
580         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
581                 goto unlock;
582
583         if (!group_can_go_on(counter, cpuctx, 1))
584                 err = -EEXIST;
585         else
586                 err = counter_sched_in(counter, cpuctx, ctx,
587                                        smp_processor_id());
588
589         if (err) {
590                 /*
591                  * If this counter can't go on and it's part of a
592                  * group, then the whole group has to come off.
593                  */
594                 if (leader != counter)
595                         group_sched_out(leader, cpuctx, ctx);
596                 if (leader->hw_event.pinned)
597                         leader->state = PERF_COUNTER_STATE_ERROR;
598         }
599
600  unlock:
601         spin_unlock(&ctx->lock);
602         curr_rq_unlock_irq_restore(&flags);
603 }
604
605 /*
606  * Enable a counter.
607  */
608 static void perf_counter_enable(struct perf_counter *counter)
609 {
610         struct perf_counter_context *ctx = counter->ctx;
611         struct task_struct *task = ctx->task;
612
613         if (!task) {
614                 /*
615                  * Enable the counter on the cpu that it's on
616                  */
617                 smp_call_function_single(counter->cpu, __perf_counter_enable,
618                                          counter, 1);
619                 return;
620         }
621
622         spin_lock_irq(&ctx->lock);
623         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
624                 goto out;
625
626         /*
627          * If the counter is in error state, clear that first.
628          * That way, if we see the counter in error state below, we
629          * know that it has gone back into error state, as distinct
630          * from the task having been scheduled away before the
631          * cross-call arrived.
632          */
633         if (counter->state == PERF_COUNTER_STATE_ERROR)
634                 counter->state = PERF_COUNTER_STATE_OFF;
635
636  retry:
637         spin_unlock_irq(&ctx->lock);
638         task_oncpu_function_call(task, __perf_counter_enable, counter);
639
640         spin_lock_irq(&ctx->lock);
641
642         /*
643          * If the context is active and the counter is still off,
644          * we need to retry the cross-call.
645          */
646         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
647                 goto retry;
648
649         /*
650          * Since we have the lock this context can't be scheduled
651          * in, so we can change the state safely.
652          */
653         if (counter->state == PERF_COUNTER_STATE_OFF)
654                 counter->state = PERF_COUNTER_STATE_INACTIVE;
655  out:
656         spin_unlock_irq(&ctx->lock);
657 }
658
659 /*
660  * Enable a counter and all its children.
661  */
662 static void perf_counter_enable_family(struct perf_counter *counter)
663 {
664         struct perf_counter *child;
665
666         perf_counter_enable(counter);
667
668         /*
669          * Lock the mutex to protect the list of children
670          */
671         mutex_lock(&counter->mutex);
672         list_for_each_entry(child, &counter->child_list, child_list)
673                 perf_counter_enable(child);
674         mutex_unlock(&counter->mutex);
675 }
676
677 void __perf_counter_sched_out(struct perf_counter_context *ctx,
678                               struct perf_cpu_context *cpuctx)
679 {
680         struct perf_counter *counter;
681         u64 flags;
682
683         spin_lock(&ctx->lock);
684         ctx->is_active = 0;
685         if (likely(!ctx->nr_counters))
686                 goto out;
687
688         flags = hw_perf_save_disable();
689         if (ctx->nr_active) {
690                 list_for_each_entry(counter, &ctx->counter_list, list_entry)
691                         group_sched_out(counter, cpuctx, ctx);
692         }
693         hw_perf_restore(flags);
694  out:
695         spin_unlock(&ctx->lock);
696 }
697
698 /*
699  * Called from scheduler to remove the counters of the current task,
700  * with interrupts disabled.
701  *
702  * We stop each counter and update the counter value in counter->count.
703  *
704  * This does not protect us against NMI, but disable()
705  * sets the disabled bit in the control field of counter _before_
706  * accessing the counter control register. If a NMI hits, then it will
707  * not restart the counter.
708  */
709 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
710 {
711         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
712         struct perf_counter_context *ctx = &task->perf_counter_ctx;
713         struct pt_regs *regs;
714
715         if (likely(!cpuctx->task_ctx))
716                 return;
717
718         regs = task_pt_regs(task);
719         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
720         __perf_counter_sched_out(ctx, cpuctx);
721
722         cpuctx->task_ctx = NULL;
723 }
724
725 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
726 {
727         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
728 }
729
730 static int
731 group_sched_in(struct perf_counter *group_counter,
732                struct perf_cpu_context *cpuctx,
733                struct perf_counter_context *ctx,
734                int cpu)
735 {
736         struct perf_counter *counter, *partial_group;
737         int ret;
738
739         if (group_counter->state == PERF_COUNTER_STATE_OFF)
740                 return 0;
741
742         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
743         if (ret)
744                 return ret < 0 ? ret : 0;
745
746         group_counter->prev_state = group_counter->state;
747         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
748                 return -EAGAIN;
749
750         /*
751          * Schedule in siblings as one group (if any):
752          */
753         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
754                 counter->prev_state = counter->state;
755                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
756                         partial_group = counter;
757                         goto group_error;
758                 }
759         }
760
761         return 0;
762
763 group_error:
764         /*
765          * Groups can be scheduled in as one unit only, so undo any
766          * partial group before returning:
767          */
768         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
769                 if (counter == partial_group)
770                         break;
771                 counter_sched_out(counter, cpuctx, ctx);
772         }
773         counter_sched_out(group_counter, cpuctx, ctx);
774
775         return -EAGAIN;
776 }
777
778 static void
779 __perf_counter_sched_in(struct perf_counter_context *ctx,
780                         struct perf_cpu_context *cpuctx, int cpu)
781 {
782         struct perf_counter *counter;
783         u64 flags;
784         int can_add_hw = 1;
785
786         spin_lock(&ctx->lock);
787         ctx->is_active = 1;
788         if (likely(!ctx->nr_counters))
789                 goto out;
790
791         flags = hw_perf_save_disable();
792
793         /*
794          * First go through the list and put on any pinned groups
795          * in order to give them the best chance of going on.
796          */
797         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
798                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
799                     !counter->hw_event.pinned)
800                         continue;
801                 if (counter->cpu != -1 && counter->cpu != cpu)
802                         continue;
803
804                 if (group_can_go_on(counter, cpuctx, 1))
805                         group_sched_in(counter, cpuctx, ctx, cpu);
806
807                 /*
808                  * If this pinned group hasn't been scheduled,
809                  * put it in error state.
810                  */
811                 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
812                         counter->state = PERF_COUNTER_STATE_ERROR;
813         }
814
815         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
816                 /*
817                  * Ignore counters in OFF or ERROR state, and
818                  * ignore pinned counters since we did them already.
819                  */
820                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
821                     counter->hw_event.pinned)
822                         continue;
823
824                 /*
825                  * Listen to the 'cpu' scheduling filter constraint
826                  * of counters:
827                  */
828                 if (counter->cpu != -1 && counter->cpu != cpu)
829                         continue;
830
831                 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
832                         if (group_sched_in(counter, cpuctx, ctx, cpu))
833                                 can_add_hw = 0;
834                 }
835         }
836         hw_perf_restore(flags);
837  out:
838         spin_unlock(&ctx->lock);
839 }
840
841 /*
842  * Called from scheduler to add the counters of the current task
843  * with interrupts disabled.
844  *
845  * We restore the counter value and then enable it.
846  *
847  * This does not protect us against NMI, but enable()
848  * sets the enabled bit in the control field of counter _before_
849  * accessing the counter control register. If a NMI hits, then it will
850  * keep the counter running.
851  */
852 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
853 {
854         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
855         struct perf_counter_context *ctx = &task->perf_counter_ctx;
856
857         __perf_counter_sched_in(ctx, cpuctx, cpu);
858         cpuctx->task_ctx = ctx;
859 }
860
861 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
862 {
863         struct perf_counter_context *ctx = &cpuctx->ctx;
864
865         __perf_counter_sched_in(ctx, cpuctx, cpu);
866 }
867
868 int perf_counter_task_disable(void)
869 {
870         struct task_struct *curr = current;
871         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
872         struct perf_counter *counter;
873         unsigned long flags;
874         u64 perf_flags;
875         int cpu;
876
877         if (likely(!ctx->nr_counters))
878                 return 0;
879
880         curr_rq_lock_irq_save(&flags);
881         cpu = smp_processor_id();
882
883         /* force the update of the task clock: */
884         __task_delta_exec(curr, 1);
885
886         perf_counter_task_sched_out(curr, cpu);
887
888         spin_lock(&ctx->lock);
889
890         /*
891          * Disable all the counters:
892          */
893         perf_flags = hw_perf_save_disable();
894
895         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
896                 if (counter->state != PERF_COUNTER_STATE_ERROR)
897                         counter->state = PERF_COUNTER_STATE_OFF;
898         }
899
900         hw_perf_restore(perf_flags);
901
902         spin_unlock(&ctx->lock);
903
904         curr_rq_unlock_irq_restore(&flags);
905
906         return 0;
907 }
908
909 int perf_counter_task_enable(void)
910 {
911         struct task_struct *curr = current;
912         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
913         struct perf_counter *counter;
914         unsigned long flags;
915         u64 perf_flags;
916         int cpu;
917
918         if (likely(!ctx->nr_counters))
919                 return 0;
920
921         curr_rq_lock_irq_save(&flags);
922         cpu = smp_processor_id();
923
924         /* force the update of the task clock: */
925         __task_delta_exec(curr, 1);
926
927         perf_counter_task_sched_out(curr, cpu);
928
929         spin_lock(&ctx->lock);
930
931         /*
932          * Disable all the counters:
933          */
934         perf_flags = hw_perf_save_disable();
935
936         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
937                 if (counter->state > PERF_COUNTER_STATE_OFF)
938                         continue;
939                 counter->state = PERF_COUNTER_STATE_INACTIVE;
940                 counter->hw_event.disabled = 0;
941         }
942         hw_perf_restore(perf_flags);
943
944         spin_unlock(&ctx->lock);
945
946         perf_counter_task_sched_in(curr, cpu);
947
948         curr_rq_unlock_irq_restore(&flags);
949
950         return 0;
951 }
952
953 /*
954  * Round-robin a context's counters:
955  */
956 static void rotate_ctx(struct perf_counter_context *ctx)
957 {
958         struct perf_counter *counter;
959         u64 perf_flags;
960
961         if (!ctx->nr_counters)
962                 return;
963
964         spin_lock(&ctx->lock);
965         /*
966          * Rotate the first entry last (works just fine for group counters too):
967          */
968         perf_flags = hw_perf_save_disable();
969         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
970                 list_move_tail(&counter->list_entry, &ctx->counter_list);
971                 break;
972         }
973         hw_perf_restore(perf_flags);
974
975         spin_unlock(&ctx->lock);
976 }
977
978 void perf_counter_task_tick(struct task_struct *curr, int cpu)
979 {
980         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
981         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
982         const int rotate_percpu = 0;
983
984         if (rotate_percpu)
985                 perf_counter_cpu_sched_out(cpuctx);
986         perf_counter_task_sched_out(curr, cpu);
987
988         if (rotate_percpu)
989                 rotate_ctx(&cpuctx->ctx);
990         rotate_ctx(ctx);
991
992         if (rotate_percpu)
993                 perf_counter_cpu_sched_in(cpuctx, cpu);
994         perf_counter_task_sched_in(curr, cpu);
995 }
996
997 /*
998  * Cross CPU call to read the hardware counter
999  */
1000 static void __read(void *info)
1001 {
1002         struct perf_counter *counter = info;
1003         unsigned long flags;
1004
1005         curr_rq_lock_irq_save(&flags);
1006         counter->hw_ops->read(counter);
1007         curr_rq_unlock_irq_restore(&flags);
1008 }
1009
1010 static u64 perf_counter_read(struct perf_counter *counter)
1011 {
1012         /*
1013          * If counter is enabled and currently active on a CPU, update the
1014          * value in the counter structure:
1015          */
1016         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1017                 smp_call_function_single(counter->oncpu,
1018                                          __read, counter, 1);
1019         }
1020
1021         return atomic64_read(&counter->count);
1022 }
1023
1024 /*
1025  * Cross CPU call to switch performance data pointers
1026  */
1027 static void __perf_switch_irq_data(void *info)
1028 {
1029         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1030         struct perf_counter *counter = info;
1031         struct perf_counter_context *ctx = counter->ctx;
1032         struct perf_data *oldirqdata = counter->irqdata;
1033
1034         /*
1035          * If this is a task context, we need to check whether it is
1036          * the current task context of this cpu. If not it has been
1037          * scheduled out before the smp call arrived.
1038          */
1039         if (ctx->task) {
1040                 if (cpuctx->task_ctx != ctx)
1041                         return;
1042                 spin_lock(&ctx->lock);
1043         }
1044
1045         /* Change the pointer NMI safe */
1046         atomic_long_set((atomic_long_t *)&counter->irqdata,
1047                         (unsigned long) counter->usrdata);
1048         counter->usrdata = oldirqdata;
1049
1050         if (ctx->task)
1051                 spin_unlock(&ctx->lock);
1052 }
1053
1054 static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
1055 {
1056         struct perf_counter_context *ctx = counter->ctx;
1057         struct perf_data *oldirqdata = counter->irqdata;
1058         struct task_struct *task = ctx->task;
1059
1060         if (!task) {
1061                 smp_call_function_single(counter->cpu,
1062                                          __perf_switch_irq_data,
1063                                          counter, 1);
1064                 return counter->usrdata;
1065         }
1066
1067 retry:
1068         spin_lock_irq(&ctx->lock);
1069         if (counter->state != PERF_COUNTER_STATE_ACTIVE) {
1070                 counter->irqdata = counter->usrdata;
1071                 counter->usrdata = oldirqdata;
1072                 spin_unlock_irq(&ctx->lock);
1073                 return oldirqdata;
1074         }
1075         spin_unlock_irq(&ctx->lock);
1076         task_oncpu_function_call(task, __perf_switch_irq_data, counter);
1077         /* Might have failed, because task was scheduled out */
1078         if (counter->irqdata == oldirqdata)
1079                 goto retry;
1080
1081         return counter->usrdata;
1082 }
1083
1084 static void put_context(struct perf_counter_context *ctx)
1085 {
1086         if (ctx->task)
1087                 put_task_struct(ctx->task);
1088 }
1089
1090 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1091 {
1092         struct perf_cpu_context *cpuctx;
1093         struct perf_counter_context *ctx;
1094         struct task_struct *task;
1095
1096         /*
1097          * If cpu is not a wildcard then this is a percpu counter:
1098          */
1099         if (cpu != -1) {
1100                 /* Must be root to operate on a CPU counter: */
1101                 if (!capable(CAP_SYS_ADMIN))
1102                         return ERR_PTR(-EACCES);
1103
1104                 if (cpu < 0 || cpu > num_possible_cpus())
1105                         return ERR_PTR(-EINVAL);
1106
1107                 /*
1108                  * We could be clever and allow to attach a counter to an
1109                  * offline CPU and activate it when the CPU comes up, but
1110                  * that's for later.
1111                  */
1112                 if (!cpu_isset(cpu, cpu_online_map))
1113                         return ERR_PTR(-ENODEV);
1114
1115                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1116                 ctx = &cpuctx->ctx;
1117
1118                 return ctx;
1119         }
1120
1121         rcu_read_lock();
1122         if (!pid)
1123                 task = current;
1124         else
1125                 task = find_task_by_vpid(pid);
1126         if (task)
1127                 get_task_struct(task);
1128         rcu_read_unlock();
1129
1130         if (!task)
1131                 return ERR_PTR(-ESRCH);
1132
1133         ctx = &task->perf_counter_ctx;
1134         ctx->task = task;
1135
1136         /* Reuse ptrace permission checks for now. */
1137         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1138                 put_context(ctx);
1139                 return ERR_PTR(-EACCES);
1140         }
1141
1142         return ctx;
1143 }
1144
1145 static void free_counter_rcu(struct rcu_head *head)
1146 {
1147         struct perf_counter *counter;
1148
1149         counter = container_of(head, struct perf_counter, rcu_head);
1150         kfree(counter);
1151 }
1152
1153 static void free_counter(struct perf_counter *counter)
1154 {
1155         if (counter->destroy)
1156                 counter->destroy(counter);
1157
1158         call_rcu(&counter->rcu_head, free_counter_rcu);
1159 }
1160
1161 /*
1162  * Called when the last reference to the file is gone.
1163  */
1164 static int perf_release(struct inode *inode, struct file *file)
1165 {
1166         struct perf_counter *counter = file->private_data;
1167         struct perf_counter_context *ctx = counter->ctx;
1168
1169         file->private_data = NULL;
1170
1171         mutex_lock(&ctx->mutex);
1172         mutex_lock(&counter->mutex);
1173
1174         perf_counter_remove_from_context(counter);
1175
1176         mutex_unlock(&counter->mutex);
1177         mutex_unlock(&ctx->mutex);
1178
1179         free_counter(counter);
1180         put_context(ctx);
1181
1182         return 0;
1183 }
1184
1185 /*
1186  * Read the performance counter - simple non blocking version for now
1187  */
1188 static ssize_t
1189 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1190 {
1191         u64 cntval;
1192
1193         if (count != sizeof(cntval))
1194                 return -EINVAL;
1195
1196         /*
1197          * Return end-of-file for a read on a counter that is in
1198          * error state (i.e. because it was pinned but it couldn't be
1199          * scheduled on to the CPU at some point).
1200          */
1201         if (counter->state == PERF_COUNTER_STATE_ERROR)
1202                 return 0;
1203
1204         mutex_lock(&counter->mutex);
1205         cntval = perf_counter_read(counter);
1206         mutex_unlock(&counter->mutex);
1207
1208         return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
1209 }
1210
1211 static ssize_t
1212 perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
1213 {
1214         if (!usrdata->len)
1215                 return 0;
1216
1217         count = min(count, (size_t)usrdata->len);
1218         if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
1219                 return -EFAULT;
1220
1221         /* Adjust the counters */
1222         usrdata->len -= count;
1223         if (!usrdata->len)
1224                 usrdata->rd_idx = 0;
1225         else
1226                 usrdata->rd_idx += count;
1227
1228         return count;
1229 }
1230
1231 static ssize_t
1232 perf_read_irq_data(struct perf_counter  *counter,
1233                    char __user          *buf,
1234                    size_t               count,
1235                    int                  nonblocking)
1236 {
1237         struct perf_data *irqdata, *usrdata;
1238         DECLARE_WAITQUEUE(wait, current);
1239         ssize_t res, res2;
1240
1241         irqdata = counter->irqdata;
1242         usrdata = counter->usrdata;
1243
1244         if (usrdata->len + irqdata->len >= count)
1245                 goto read_pending;
1246
1247         if (nonblocking)
1248                 return -EAGAIN;
1249
1250         spin_lock_irq(&counter->waitq.lock);
1251         __add_wait_queue(&counter->waitq, &wait);
1252         for (;;) {
1253                 set_current_state(TASK_INTERRUPTIBLE);
1254                 if (usrdata->len + irqdata->len >= count)
1255                         break;
1256
1257                 if (signal_pending(current))
1258                         break;
1259
1260                 if (counter->state == PERF_COUNTER_STATE_ERROR)
1261                         break;
1262
1263                 spin_unlock_irq(&counter->waitq.lock);
1264                 schedule();
1265                 spin_lock_irq(&counter->waitq.lock);
1266         }
1267         __remove_wait_queue(&counter->waitq, &wait);
1268         __set_current_state(TASK_RUNNING);
1269         spin_unlock_irq(&counter->waitq.lock);
1270
1271         if (usrdata->len + irqdata->len < count &&
1272             counter->state != PERF_COUNTER_STATE_ERROR)
1273                 return -ERESTARTSYS;
1274 read_pending:
1275         mutex_lock(&counter->mutex);
1276
1277         /* Drain pending data first: */
1278         res = perf_copy_usrdata(usrdata, buf, count);
1279         if (res < 0 || res == count)
1280                 goto out;
1281
1282         /* Switch irq buffer: */
1283         usrdata = perf_switch_irq_data(counter);
1284         res2 = perf_copy_usrdata(usrdata, buf + res, count - res);
1285         if (res2 < 0) {
1286                 if (!res)
1287                         res = -EFAULT;
1288         } else {
1289                 res += res2;
1290         }
1291 out:
1292         mutex_unlock(&counter->mutex);
1293
1294         return res;
1295 }
1296
1297 static ssize_t
1298 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1299 {
1300         struct perf_counter *counter = file->private_data;
1301
1302         switch (counter->hw_event.record_type) {
1303         case PERF_RECORD_SIMPLE:
1304                 return perf_read_hw(counter, buf, count);
1305
1306         case PERF_RECORD_IRQ:
1307         case PERF_RECORD_GROUP:
1308                 return perf_read_irq_data(counter, buf, count,
1309                                           file->f_flags & O_NONBLOCK);
1310         }
1311         return -EINVAL;
1312 }
1313
1314 static unsigned int perf_poll(struct file *file, poll_table *wait)
1315 {
1316         struct perf_counter *counter = file->private_data;
1317         unsigned int events = 0;
1318         unsigned long flags;
1319
1320         poll_wait(file, &counter->waitq, wait);
1321
1322         spin_lock_irqsave(&counter->waitq.lock, flags);
1323         if (counter->usrdata->len || counter->irqdata->len)
1324                 events |= POLLIN;
1325         spin_unlock_irqrestore(&counter->waitq.lock, flags);
1326
1327         return events;
1328 }
1329
1330 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1331 {
1332         struct perf_counter *counter = file->private_data;
1333         int err = 0;
1334
1335         switch (cmd) {
1336         case PERF_COUNTER_IOC_ENABLE:
1337                 perf_counter_enable_family(counter);
1338                 break;
1339         case PERF_COUNTER_IOC_DISABLE:
1340                 perf_counter_disable_family(counter);
1341                 break;
1342         default:
1343                 err = -ENOTTY;
1344         }
1345         return err;
1346 }
1347
1348 static const struct file_operations perf_fops = {
1349         .release                = perf_release,
1350         .read                   = perf_read,
1351         .poll                   = perf_poll,
1352         .unlocked_ioctl         = perf_ioctl,
1353         .compat_ioctl           = perf_ioctl,
1354 };
1355
1356 /*
1357  * Generic software counter infrastructure
1358  */
1359
1360 static void perf_swcounter_update(struct perf_counter *counter)
1361 {
1362         struct hw_perf_counter *hwc = &counter->hw;
1363         u64 prev, now;
1364         s64 delta;
1365
1366 again:
1367         prev = atomic64_read(&hwc->prev_count);
1368         now = atomic64_read(&hwc->count);
1369         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
1370                 goto again;
1371
1372         delta = now - prev;
1373
1374         atomic64_add(delta, &counter->count);
1375         atomic64_sub(delta, &hwc->period_left);
1376 }
1377
1378 static void perf_swcounter_set_period(struct perf_counter *counter)
1379 {
1380         struct hw_perf_counter *hwc = &counter->hw;
1381         s64 left = atomic64_read(&hwc->period_left);
1382         s64 period = hwc->irq_period;
1383
1384         if (unlikely(left <= -period)) {
1385                 left = period;
1386                 atomic64_set(&hwc->period_left, left);
1387         }
1388
1389         if (unlikely(left <= 0)) {
1390                 left += period;
1391                 atomic64_add(period, &hwc->period_left);
1392         }
1393
1394         atomic64_set(&hwc->prev_count, -left);
1395         atomic64_set(&hwc->count, -left);
1396 }
1397
1398 static void perf_swcounter_save_and_restart(struct perf_counter *counter)
1399 {
1400         perf_swcounter_update(counter);
1401         perf_swcounter_set_period(counter);
1402 }
1403
1404 static void perf_swcounter_store_irq(struct perf_counter *counter, u64 data)
1405 {
1406         struct perf_data *irqdata = counter->irqdata;
1407
1408         if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) {
1409                 irqdata->overrun++;
1410         } else {
1411                 u64 *p = (u64 *) &irqdata->data[irqdata->len];
1412
1413                 *p = data;
1414                 irqdata->len += sizeof(u64);
1415         }
1416 }
1417
1418 static void perf_swcounter_handle_group(struct perf_counter *sibling)
1419 {
1420         struct perf_counter *counter, *group_leader = sibling->group_leader;
1421
1422         list_for_each_entry(counter, &group_leader->sibling_list, list_entry) {
1423                 counter->hw_ops->read(counter);
1424                 perf_swcounter_store_irq(sibling, counter->hw_event.type);
1425                 perf_swcounter_store_irq(sibling, atomic64_read(&counter->count));
1426         }
1427 }
1428
1429 static void perf_swcounter_interrupt(struct perf_counter *counter,
1430                                      int nmi, struct pt_regs *regs)
1431 {
1432         switch (counter->hw_event.record_type) {
1433         case PERF_RECORD_SIMPLE:
1434                 break;
1435
1436         case PERF_RECORD_IRQ:
1437                 perf_swcounter_store_irq(counter, instruction_pointer(regs));
1438                 break;
1439
1440         case PERF_RECORD_GROUP:
1441                 perf_swcounter_handle_group(counter);
1442                 break;
1443         }
1444
1445         if (nmi) {
1446                 counter->wakeup_pending = 1;
1447                 set_perf_counter_pending();
1448         } else
1449                 wake_up(&counter->waitq);
1450 }
1451
1452 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
1453 {
1454         struct perf_counter *counter;
1455         struct pt_regs *regs;
1456
1457         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
1458         counter->hw_ops->read(counter);
1459
1460         regs = get_irq_regs();
1461         /*
1462          * In case we exclude kernel IPs or are somehow not in interrupt
1463          * context, provide the next best thing, the user IP.
1464          */
1465         if ((counter->hw_event.exclude_kernel || !regs) &&
1466                         !counter->hw_event.exclude_user)
1467                 regs = task_pt_regs(current);
1468
1469         if (regs)
1470                 perf_swcounter_interrupt(counter, 0, regs);
1471
1472         hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
1473
1474         return HRTIMER_RESTART;
1475 }
1476
1477 static void perf_swcounter_overflow(struct perf_counter *counter,
1478                                     int nmi, struct pt_regs *regs)
1479 {
1480         perf_swcounter_save_and_restart(counter);
1481         perf_swcounter_interrupt(counter, nmi, regs);
1482 }
1483
1484 static int perf_swcounter_match(struct perf_counter *counter,
1485                                 enum hw_event_types event,
1486                                 struct pt_regs *regs)
1487 {
1488         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1489                 return 0;
1490
1491         if (counter->hw_event.raw)
1492                 return 0;
1493
1494         if (counter->hw_event.type != event)
1495                 return 0;
1496
1497         if (counter->hw_event.exclude_user && user_mode(regs))
1498                 return 0;
1499
1500         if (counter->hw_event.exclude_kernel && !user_mode(regs))
1501                 return 0;
1502
1503         return 1;
1504 }
1505
1506 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
1507                                int nmi, struct pt_regs *regs)
1508 {
1509         int neg = atomic64_add_negative(nr, &counter->hw.count);
1510         if (counter->hw.irq_period && !neg)
1511                 perf_swcounter_overflow(counter, nmi, regs);
1512 }
1513
1514 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
1515                                      enum hw_event_types event, u64 nr,
1516                                      int nmi, struct pt_regs *regs)
1517 {
1518         struct perf_counter *counter;
1519
1520         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1521                 return;
1522
1523         rcu_read_lock();
1524         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1525                 if (perf_swcounter_match(counter, event, regs))
1526                         perf_swcounter_add(counter, nr, nmi, regs);
1527         }
1528         rcu_read_unlock();
1529 }
1530
1531 void perf_swcounter_event(enum hw_event_types event, u64 nr,
1532                           int nmi, struct pt_regs *regs)
1533 {
1534         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
1535
1536         perf_swcounter_ctx_event(&cpuctx->ctx, event, nr, nmi, regs);
1537         if (cpuctx->task_ctx)
1538                 perf_swcounter_ctx_event(cpuctx->task_ctx, event, nr, nmi, regs);
1539
1540         put_cpu_var(perf_cpu_context);
1541 }
1542
1543 static void perf_swcounter_read(struct perf_counter *counter)
1544 {
1545         perf_swcounter_update(counter);
1546 }
1547
1548 static int perf_swcounter_enable(struct perf_counter *counter)
1549 {
1550         perf_swcounter_set_period(counter);
1551         return 0;
1552 }
1553
1554 static void perf_swcounter_disable(struct perf_counter *counter)
1555 {
1556         perf_swcounter_update(counter);
1557 }
1558
1559 static const struct hw_perf_counter_ops perf_ops_generic = {
1560         .enable         = perf_swcounter_enable,
1561         .disable        = perf_swcounter_disable,
1562         .read           = perf_swcounter_read,
1563 };
1564
1565 /*
1566  * Software counter: cpu wall time clock
1567  */
1568
1569 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
1570 {
1571         int cpu = raw_smp_processor_id();
1572         s64 prev;
1573         u64 now;
1574
1575         now = cpu_clock(cpu);
1576         prev = atomic64_read(&counter->hw.prev_count);
1577         atomic64_set(&counter->hw.prev_count, now);
1578         atomic64_add(now - prev, &counter->count);
1579 }
1580
1581 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
1582 {
1583         struct hw_perf_counter *hwc = &counter->hw;
1584         int cpu = raw_smp_processor_id();
1585
1586         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
1587         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1588         hwc->hrtimer.function = perf_swcounter_hrtimer;
1589         if (hwc->irq_period) {
1590                 __hrtimer_start_range_ns(&hwc->hrtimer,
1591                                 ns_to_ktime(hwc->irq_period), 0,
1592                                 HRTIMER_MODE_REL, 0);
1593         }
1594
1595         return 0;
1596 }
1597
1598 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
1599 {
1600         hrtimer_cancel(&counter->hw.hrtimer);
1601         cpu_clock_perf_counter_update(counter);
1602 }
1603
1604 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
1605 {
1606         cpu_clock_perf_counter_update(counter);
1607 }
1608
1609 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
1610         .enable         = cpu_clock_perf_counter_enable,
1611         .disable        = cpu_clock_perf_counter_disable,
1612         .read           = cpu_clock_perf_counter_read,
1613 };
1614
1615 /*
1616  * Software counter: task time clock
1617  */
1618
1619 /*
1620  * Called from within the scheduler:
1621  */
1622 static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
1623 {
1624         struct task_struct *curr = counter->task;
1625         u64 delta;
1626
1627         delta = __task_delta_exec(curr, update);
1628
1629         return curr->se.sum_exec_runtime + delta;
1630 }
1631
1632 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
1633 {
1634         u64 prev;
1635         s64 delta;
1636
1637         prev = atomic64_read(&counter->hw.prev_count);
1638
1639         atomic64_set(&counter->hw.prev_count, now);
1640
1641         delta = now - prev;
1642
1643         atomic64_add(delta, &counter->count);
1644 }
1645
1646 static int task_clock_perf_counter_enable(struct perf_counter *counter)
1647 {
1648         struct hw_perf_counter *hwc = &counter->hw;
1649
1650         atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
1651         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1652         hwc->hrtimer.function = perf_swcounter_hrtimer;
1653         if (hwc->irq_period) {
1654                 __hrtimer_start_range_ns(&hwc->hrtimer,
1655                                 ns_to_ktime(hwc->irq_period), 0,
1656                                 HRTIMER_MODE_REL, 0);
1657         }
1658
1659         return 0;
1660 }
1661
1662 static void task_clock_perf_counter_disable(struct perf_counter *counter)
1663 {
1664         hrtimer_cancel(&counter->hw.hrtimer);
1665         task_clock_perf_counter_update(counter,
1666                         task_clock_perf_counter_val(counter, 0));
1667 }
1668
1669 static void task_clock_perf_counter_read(struct perf_counter *counter)
1670 {
1671         task_clock_perf_counter_update(counter,
1672                         task_clock_perf_counter_val(counter, 1));
1673 }
1674
1675 static const struct hw_perf_counter_ops perf_ops_task_clock = {
1676         .enable         = task_clock_perf_counter_enable,
1677         .disable        = task_clock_perf_counter_disable,
1678         .read           = task_clock_perf_counter_read,
1679 };
1680
1681 /*
1682  * Software counter: cpu migrations
1683  */
1684
1685 static inline u64 get_cpu_migrations(struct perf_counter *counter)
1686 {
1687         struct task_struct *curr = counter->ctx->task;
1688
1689         if (curr)
1690                 return curr->se.nr_migrations;
1691         return cpu_nr_migrations(smp_processor_id());
1692 }
1693
1694 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
1695 {
1696         u64 prev, now;
1697         s64 delta;
1698
1699         prev = atomic64_read(&counter->hw.prev_count);
1700         now = get_cpu_migrations(counter);
1701
1702         atomic64_set(&counter->hw.prev_count, now);
1703
1704         delta = now - prev;
1705
1706         atomic64_add(delta, &counter->count);
1707 }
1708
1709 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
1710 {
1711         cpu_migrations_perf_counter_update(counter);
1712 }
1713
1714 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
1715 {
1716         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
1717                 atomic64_set(&counter->hw.prev_count,
1718                              get_cpu_migrations(counter));
1719         return 0;
1720 }
1721
1722 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
1723 {
1724         cpu_migrations_perf_counter_update(counter);
1725 }
1726
1727 static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
1728         .enable         = cpu_migrations_perf_counter_enable,
1729         .disable        = cpu_migrations_perf_counter_disable,
1730         .read           = cpu_migrations_perf_counter_read,
1731 };
1732
1733 #ifdef CONFIG_EVENT_PROFILE
1734 void perf_tpcounter_event(int event_id)
1735 {
1736         perf_swcounter_event(PERF_TP_EVENTS_MIN + event_id, 1, 1,
1737                         task_pt_regs(current));
1738 }
1739
1740 extern int ftrace_profile_enable(int);
1741 extern void ftrace_profile_disable(int);
1742
1743 static void tp_perf_counter_destroy(struct perf_counter *counter)
1744 {
1745         int event_id = counter->hw_event.type - PERF_TP_EVENTS_MIN;
1746
1747         ftrace_profile_disable(event_id);
1748 }
1749
1750 static const struct hw_perf_counter_ops *
1751 tp_perf_counter_init(struct perf_counter *counter)
1752 {
1753         int event_id = counter->hw_event.type - PERF_TP_EVENTS_MIN;
1754         int ret;
1755
1756         ret = ftrace_profile_enable(event_id);
1757         if (ret)
1758                 return NULL;
1759
1760         counter->destroy = tp_perf_counter_destroy;
1761
1762         return &perf_ops_generic;
1763 }
1764 #else
1765 static const struct hw_perf_counter_ops *
1766 tp_perf_counter_init(struct perf_counter *counter)
1767 {
1768         return NULL;
1769 }
1770 #endif
1771
1772 static const struct hw_perf_counter_ops *
1773 sw_perf_counter_init(struct perf_counter *counter)
1774 {
1775         struct perf_counter_hw_event *hw_event = &counter->hw_event;
1776         const struct hw_perf_counter_ops *hw_ops = NULL;
1777         struct hw_perf_counter *hwc = &counter->hw;
1778
1779         /*
1780          * Software counters (currently) can't in general distinguish
1781          * between user, kernel and hypervisor events.
1782          * However, context switches and cpu migrations are considered
1783          * to be kernel events, and page faults are never hypervisor
1784          * events.
1785          */
1786         switch (counter->hw_event.type) {
1787         case PERF_COUNT_CPU_CLOCK:
1788                 hw_ops = &perf_ops_cpu_clock;
1789
1790                 if (hw_event->irq_period && hw_event->irq_period < 10000)
1791                         hw_event->irq_period = 10000;
1792                 break;
1793         case PERF_COUNT_TASK_CLOCK:
1794                 /*
1795                  * If the user instantiates this as a per-cpu counter,
1796                  * use the cpu_clock counter instead.
1797                  */
1798                 if (counter->ctx->task)
1799                         hw_ops = &perf_ops_task_clock;
1800                 else
1801                         hw_ops = &perf_ops_cpu_clock;
1802
1803                 if (hw_event->irq_period && hw_event->irq_period < 10000)
1804                         hw_event->irq_period = 10000;
1805                 break;
1806         case PERF_COUNT_PAGE_FAULTS:
1807         case PERF_COUNT_PAGE_FAULTS_MIN:
1808         case PERF_COUNT_PAGE_FAULTS_MAJ:
1809         case PERF_COUNT_CONTEXT_SWITCHES:
1810                 hw_ops = &perf_ops_generic;
1811                 break;
1812         case PERF_COUNT_CPU_MIGRATIONS:
1813                 if (!counter->hw_event.exclude_kernel)
1814                         hw_ops = &perf_ops_cpu_migrations;
1815                 break;
1816         default:
1817                 hw_ops = tp_perf_counter_init(counter);
1818                 break;
1819         }
1820
1821         if (hw_ops)
1822                 hwc->irq_period = hw_event->irq_period;
1823
1824         return hw_ops;
1825 }
1826
1827 /*
1828  * Allocate and initialize a counter structure
1829  */
1830 static struct perf_counter *
1831 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
1832                    int cpu,
1833                    struct perf_counter_context *ctx,
1834                    struct perf_counter *group_leader,
1835                    gfp_t gfpflags)
1836 {
1837         const struct hw_perf_counter_ops *hw_ops;
1838         struct perf_counter *counter;
1839
1840         counter = kzalloc(sizeof(*counter), gfpflags);
1841         if (!counter)
1842                 return NULL;
1843
1844         /*
1845          * Single counters are their own group leaders, with an
1846          * empty sibling list:
1847          */
1848         if (!group_leader)
1849                 group_leader = counter;
1850
1851         mutex_init(&counter->mutex);
1852         INIT_LIST_HEAD(&counter->list_entry);
1853         INIT_LIST_HEAD(&counter->event_entry);
1854         INIT_LIST_HEAD(&counter->sibling_list);
1855         init_waitqueue_head(&counter->waitq);
1856
1857         INIT_LIST_HEAD(&counter->child_list);
1858
1859         counter->irqdata                = &counter->data[0];
1860         counter->usrdata                = &counter->data[1];
1861         counter->cpu                    = cpu;
1862         counter->hw_event               = *hw_event;
1863         counter->wakeup_pending         = 0;
1864         counter->group_leader           = group_leader;
1865         counter->hw_ops                 = NULL;
1866         counter->ctx                    = ctx;
1867
1868         counter->state = PERF_COUNTER_STATE_INACTIVE;
1869         if (hw_event->disabled)
1870                 counter->state = PERF_COUNTER_STATE_OFF;
1871
1872         hw_ops = NULL;
1873         if (!hw_event->raw && hw_event->type < 0)
1874                 hw_ops = sw_perf_counter_init(counter);
1875         else
1876                 hw_ops = hw_perf_counter_init(counter);
1877
1878         if (!hw_ops) {
1879                 kfree(counter);
1880                 return NULL;
1881         }
1882         counter->hw_ops = hw_ops;
1883
1884         return counter;
1885 }
1886
1887 /**
1888  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
1889  *
1890  * @hw_event_uptr:      event type attributes for monitoring/sampling
1891  * @pid:                target pid
1892  * @cpu:                target cpu
1893  * @group_fd:           group leader counter fd
1894  */
1895 SYSCALL_DEFINE5(perf_counter_open,
1896                 const struct perf_counter_hw_event __user *, hw_event_uptr,
1897                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
1898 {
1899         struct perf_counter *counter, *group_leader;
1900         struct perf_counter_hw_event hw_event;
1901         struct perf_counter_context *ctx;
1902         struct file *counter_file = NULL;
1903         struct file *group_file = NULL;
1904         int fput_needed = 0;
1905         int fput_needed2 = 0;
1906         int ret;
1907
1908         /* for future expandability... */
1909         if (flags)
1910                 return -EINVAL;
1911
1912         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
1913                 return -EFAULT;
1914
1915         /*
1916          * Get the target context (task or percpu):
1917          */
1918         ctx = find_get_context(pid, cpu);
1919         if (IS_ERR(ctx))
1920                 return PTR_ERR(ctx);
1921
1922         /*
1923          * Look up the group leader (we will attach this counter to it):
1924          */
1925         group_leader = NULL;
1926         if (group_fd != -1) {
1927                 ret = -EINVAL;
1928                 group_file = fget_light(group_fd, &fput_needed);
1929                 if (!group_file)
1930                         goto err_put_context;
1931                 if (group_file->f_op != &perf_fops)
1932                         goto err_put_context;
1933
1934                 group_leader = group_file->private_data;
1935                 /*
1936                  * Do not allow a recursive hierarchy (this new sibling
1937                  * becoming part of another group-sibling):
1938                  */
1939                 if (group_leader->group_leader != group_leader)
1940                         goto err_put_context;
1941                 /*
1942                  * Do not allow to attach to a group in a different
1943                  * task or CPU context:
1944                  */
1945                 if (group_leader->ctx != ctx)
1946                         goto err_put_context;
1947                 /*
1948                  * Only a group leader can be exclusive or pinned
1949                  */
1950                 if (hw_event.exclusive || hw_event.pinned)
1951                         goto err_put_context;
1952         }
1953
1954         ret = -EINVAL;
1955         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
1956                                      GFP_KERNEL);
1957         if (!counter)
1958                 goto err_put_context;
1959
1960         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
1961         if (ret < 0)
1962                 goto err_free_put_context;
1963
1964         counter_file = fget_light(ret, &fput_needed2);
1965         if (!counter_file)
1966                 goto err_free_put_context;
1967
1968         counter->filp = counter_file;
1969         mutex_lock(&ctx->mutex);
1970         perf_install_in_context(ctx, counter, cpu);
1971         mutex_unlock(&ctx->mutex);
1972
1973         fput_light(counter_file, fput_needed2);
1974
1975 out_fput:
1976         fput_light(group_file, fput_needed);
1977
1978         return ret;
1979
1980 err_free_put_context:
1981         kfree(counter);
1982
1983 err_put_context:
1984         put_context(ctx);
1985
1986         goto out_fput;
1987 }
1988
1989 /*
1990  * Initialize the perf_counter context in a task_struct:
1991  */
1992 static void
1993 __perf_counter_init_context(struct perf_counter_context *ctx,
1994                             struct task_struct *task)
1995 {
1996         memset(ctx, 0, sizeof(*ctx));
1997         spin_lock_init(&ctx->lock);
1998         mutex_init(&ctx->mutex);
1999         INIT_LIST_HEAD(&ctx->counter_list);
2000         INIT_LIST_HEAD(&ctx->event_list);
2001         ctx->task = task;
2002 }
2003
2004 /*
2005  * inherit a counter from parent task to child task:
2006  */
2007 static struct perf_counter *
2008 inherit_counter(struct perf_counter *parent_counter,
2009               struct task_struct *parent,
2010               struct perf_counter_context *parent_ctx,
2011               struct task_struct *child,
2012               struct perf_counter *group_leader,
2013               struct perf_counter_context *child_ctx)
2014 {
2015         struct perf_counter *child_counter;
2016
2017         /*
2018          * Instead of creating recursive hierarchies of counters,
2019          * we link inherited counters back to the original parent,
2020          * which has a filp for sure, which we use as the reference
2021          * count:
2022          */
2023         if (parent_counter->parent)
2024                 parent_counter = parent_counter->parent;
2025
2026         child_counter = perf_counter_alloc(&parent_counter->hw_event,
2027                                            parent_counter->cpu, child_ctx,
2028                                            group_leader, GFP_KERNEL);
2029         if (!child_counter)
2030                 return NULL;
2031
2032         /*
2033          * Link it up in the child's context:
2034          */
2035         child_counter->task = child;
2036         list_add_counter(child_counter, child_ctx);
2037         child_ctx->nr_counters++;
2038
2039         child_counter->parent = parent_counter;
2040         /*
2041          * inherit into child's child as well:
2042          */
2043         child_counter->hw_event.inherit = 1;
2044
2045         /*
2046          * Get a reference to the parent filp - we will fput it
2047          * when the child counter exits. This is safe to do because
2048          * we are in the parent and we know that the filp still
2049          * exists and has a nonzero count:
2050          */
2051         atomic_long_inc(&parent_counter->filp->f_count);
2052
2053         /*
2054          * Link this into the parent counter's child list
2055          */
2056         mutex_lock(&parent_counter->mutex);
2057         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2058
2059         /*
2060          * Make the child state follow the state of the parent counter,
2061          * not its hw_event.disabled bit.  We hold the parent's mutex,
2062          * so we won't race with perf_counter_{en,dis}able_family.
2063          */
2064         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2065                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2066         else
2067                 child_counter->state = PERF_COUNTER_STATE_OFF;
2068
2069         mutex_unlock(&parent_counter->mutex);
2070
2071         return child_counter;
2072 }
2073
2074 static int inherit_group(struct perf_counter *parent_counter,
2075               struct task_struct *parent,
2076               struct perf_counter_context *parent_ctx,
2077               struct task_struct *child,
2078               struct perf_counter_context *child_ctx)
2079 {
2080         struct perf_counter *leader;
2081         struct perf_counter *sub;
2082
2083         leader = inherit_counter(parent_counter, parent, parent_ctx,
2084                                  child, NULL, child_ctx);
2085         if (!leader)
2086                 return -ENOMEM;
2087         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2088                 if (!inherit_counter(sub, parent, parent_ctx,
2089                                      child, leader, child_ctx))
2090                         return -ENOMEM;
2091         }
2092         return 0;
2093 }
2094
2095 static void sync_child_counter(struct perf_counter *child_counter,
2096                                struct perf_counter *parent_counter)
2097 {
2098         u64 parent_val, child_val;
2099
2100         parent_val = atomic64_read(&parent_counter->count);
2101         child_val = atomic64_read(&child_counter->count);
2102
2103         /*
2104          * Add back the child's count to the parent's count:
2105          */
2106         atomic64_add(child_val, &parent_counter->count);
2107
2108         /*
2109          * Remove this counter from the parent's list
2110          */
2111         mutex_lock(&parent_counter->mutex);
2112         list_del_init(&child_counter->child_list);
2113         mutex_unlock(&parent_counter->mutex);
2114
2115         /*
2116          * Release the parent counter, if this was the last
2117          * reference to it.
2118          */
2119         fput(parent_counter->filp);
2120 }
2121
2122 static void
2123 __perf_counter_exit_task(struct task_struct *child,
2124                          struct perf_counter *child_counter,
2125                          struct perf_counter_context *child_ctx)
2126 {
2127         struct perf_counter *parent_counter;
2128         struct perf_counter *sub, *tmp;
2129
2130         /*
2131          * If we do not self-reap then we have to wait for the
2132          * child task to unschedule (it will happen for sure),
2133          * so that its counter is at its final count. (This
2134          * condition triggers rarely - child tasks usually get
2135          * off their CPU before the parent has a chance to
2136          * get this far into the reaping action)
2137          */
2138         if (child != current) {
2139                 wait_task_inactive(child, 0);
2140                 list_del_init(&child_counter->list_entry);
2141         } else {
2142                 struct perf_cpu_context *cpuctx;
2143                 unsigned long flags;
2144                 u64 perf_flags;
2145
2146                 /*
2147                  * Disable and unlink this counter.
2148                  *
2149                  * Be careful about zapping the list - IRQ/NMI context
2150                  * could still be processing it:
2151                  */
2152                 curr_rq_lock_irq_save(&flags);
2153                 perf_flags = hw_perf_save_disable();
2154
2155                 cpuctx = &__get_cpu_var(perf_cpu_context);
2156
2157                 group_sched_out(child_counter, cpuctx, child_ctx);
2158
2159                 list_del_init(&child_counter->list_entry);
2160
2161                 child_ctx->nr_counters--;
2162
2163                 hw_perf_restore(perf_flags);
2164                 curr_rq_unlock_irq_restore(&flags);
2165         }
2166
2167         parent_counter = child_counter->parent;
2168         /*
2169          * It can happen that parent exits first, and has counters
2170          * that are still around due to the child reference. These
2171          * counters need to be zapped - but otherwise linger.
2172          */
2173         if (parent_counter) {
2174                 sync_child_counter(child_counter, parent_counter);
2175                 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
2176                                          list_entry) {
2177                         if (sub->parent) {
2178                                 sync_child_counter(sub, sub->parent);
2179                                 free_counter(sub);
2180                         }
2181                 }
2182                 free_counter(child_counter);
2183         }
2184 }
2185
2186 /*
2187  * When a child task exits, feed back counter values to parent counters.
2188  *
2189  * Note: we may be running in child context, but the PID is not hashed
2190  * anymore so new counters will not be added.
2191  */
2192 void perf_counter_exit_task(struct task_struct *child)
2193 {
2194         struct perf_counter *child_counter, *tmp;
2195         struct perf_counter_context *child_ctx;
2196
2197         child_ctx = &child->perf_counter_ctx;
2198
2199         if (likely(!child_ctx->nr_counters))
2200                 return;
2201
2202         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
2203                                  list_entry)
2204                 __perf_counter_exit_task(child, child_counter, child_ctx);
2205 }
2206
2207 /*
2208  * Initialize the perf_counter context in task_struct
2209  */
2210 void perf_counter_init_task(struct task_struct *child)
2211 {
2212         struct perf_counter_context *child_ctx, *parent_ctx;
2213         struct perf_counter *counter;
2214         struct task_struct *parent = current;
2215
2216         child_ctx  =  &child->perf_counter_ctx;
2217         parent_ctx = &parent->perf_counter_ctx;
2218
2219         __perf_counter_init_context(child_ctx, child);
2220
2221         /*
2222          * This is executed from the parent task context, so inherit
2223          * counters that have been marked for cloning:
2224          */
2225
2226         if (likely(!parent_ctx->nr_counters))
2227                 return;
2228
2229         /*
2230          * Lock the parent list. No need to lock the child - not PID
2231          * hashed yet and not running, so nobody can access it.
2232          */
2233         mutex_lock(&parent_ctx->mutex);
2234
2235         /*
2236          * We dont have to disable NMIs - we are only looking at
2237          * the list, not manipulating it:
2238          */
2239         list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2240                 if (!counter->hw_event.inherit)
2241                         continue;
2242
2243                 if (inherit_group(counter, parent,
2244                                   parent_ctx, child, child_ctx))
2245                         break;
2246         }
2247
2248         mutex_unlock(&parent_ctx->mutex);
2249 }
2250
2251 static void __cpuinit perf_counter_init_cpu(int cpu)
2252 {
2253         struct perf_cpu_context *cpuctx;
2254
2255         cpuctx = &per_cpu(perf_cpu_context, cpu);
2256         __perf_counter_init_context(&cpuctx->ctx, NULL);
2257
2258         mutex_lock(&perf_resource_mutex);
2259         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
2260         mutex_unlock(&perf_resource_mutex);
2261
2262         hw_perf_counter_setup(cpu);
2263 }
2264
2265 #ifdef CONFIG_HOTPLUG_CPU
2266 static void __perf_counter_exit_cpu(void *info)
2267 {
2268         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
2269         struct perf_counter_context *ctx = &cpuctx->ctx;
2270         struct perf_counter *counter, *tmp;
2271
2272         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
2273                 __perf_counter_remove_from_context(counter);
2274 }
2275 static void perf_counter_exit_cpu(int cpu)
2276 {
2277         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
2278         struct perf_counter_context *ctx = &cpuctx->ctx;
2279
2280         mutex_lock(&ctx->mutex);
2281         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2282         mutex_unlock(&ctx->mutex);
2283 }
2284 #else
2285 static inline void perf_counter_exit_cpu(int cpu) { }
2286 #endif
2287
2288 static int __cpuinit
2289 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
2290 {
2291         unsigned int cpu = (long)hcpu;
2292
2293         switch (action) {
2294
2295         case CPU_UP_PREPARE:
2296         case CPU_UP_PREPARE_FROZEN:
2297                 perf_counter_init_cpu(cpu);
2298                 break;
2299
2300         case CPU_DOWN_PREPARE:
2301         case CPU_DOWN_PREPARE_FROZEN:
2302                 perf_counter_exit_cpu(cpu);
2303                 break;
2304
2305         default:
2306                 break;
2307         }
2308
2309         return NOTIFY_OK;
2310 }
2311
2312 static struct notifier_block __cpuinitdata perf_cpu_nb = {
2313         .notifier_call          = perf_cpu_notify,
2314 };
2315
2316 static int __init perf_counter_init(void)
2317 {
2318         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
2319                         (void *)(long)smp_processor_id());
2320         register_cpu_notifier(&perf_cpu_nb);
2321
2322         return 0;
2323 }
2324 early_initcall(perf_counter_init);
2325
2326 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
2327 {
2328         return sprintf(buf, "%d\n", perf_reserved_percpu);
2329 }
2330
2331 static ssize_t
2332 perf_set_reserve_percpu(struct sysdev_class *class,
2333                         const char *buf,
2334                         size_t count)
2335 {
2336         struct perf_cpu_context *cpuctx;
2337         unsigned long val;
2338         int err, cpu, mpt;
2339
2340         err = strict_strtoul(buf, 10, &val);
2341         if (err)
2342                 return err;
2343         if (val > perf_max_counters)
2344                 return -EINVAL;
2345
2346         mutex_lock(&perf_resource_mutex);
2347         perf_reserved_percpu = val;
2348         for_each_online_cpu(cpu) {
2349                 cpuctx = &per_cpu(perf_cpu_context, cpu);
2350                 spin_lock_irq(&cpuctx->ctx.lock);
2351                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
2352                           perf_max_counters - perf_reserved_percpu);
2353                 cpuctx->max_pertask = mpt;
2354                 spin_unlock_irq(&cpuctx->ctx.lock);
2355         }
2356         mutex_unlock(&perf_resource_mutex);
2357
2358         return count;
2359 }
2360
2361 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
2362 {
2363         return sprintf(buf, "%d\n", perf_overcommit);
2364 }
2365
2366 static ssize_t
2367 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
2368 {
2369         unsigned long val;
2370         int err;
2371
2372         err = strict_strtoul(buf, 10, &val);
2373         if (err)
2374                 return err;
2375         if (val > 1)
2376                 return -EINVAL;
2377
2378         mutex_lock(&perf_resource_mutex);
2379         perf_overcommit = val;
2380         mutex_unlock(&perf_resource_mutex);
2381
2382         return count;
2383 }
2384
2385 static SYSDEV_CLASS_ATTR(
2386                                 reserve_percpu,
2387                                 0644,
2388                                 perf_show_reserve_percpu,
2389                                 perf_set_reserve_percpu
2390                         );
2391
2392 static SYSDEV_CLASS_ATTR(
2393                                 overcommit,
2394                                 0644,
2395                                 perf_show_overcommit,
2396                                 perf_set_overcommit
2397                         );
2398
2399 static struct attribute *perfclass_attrs[] = {
2400         &attr_reserve_percpu.attr,
2401         &attr_overcommit.attr,
2402         NULL
2403 };
2404
2405 static struct attribute_group perfclass_attr_group = {
2406         .attrs                  = perfclass_attrs,
2407         .name                   = "perf_counters",
2408 };
2409
2410 static int __init perf_counter_sysfs_init(void)
2411 {
2412         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
2413                                   &perfclass_attr_group);
2414 }
2415 device_initcall(perf_counter_sysfs_init);