futex: remove the wait queue
[safe/jmp/linux-2.6] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/module.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62
63 #include <asm/futex.h>
64
65 #include "rtmutex_common.h"
66
67 int __read_mostly futex_cmpxchg_enabled;
68
69 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
70
71 /*
72  * Priority Inheritance state:
73  */
74 struct futex_pi_state {
75         /*
76          * list of 'owned' pi_state instances - these have to be
77          * cleaned up in do_exit() if the task exits prematurely:
78          */
79         struct list_head list;
80
81         /*
82          * The PI object:
83          */
84         struct rt_mutex pi_mutex;
85
86         struct task_struct *owner;
87         atomic_t refcount;
88
89         union futex_key key;
90 };
91
92 /*
93  * We use this hashed waitqueue instead of a normal wait_queue_t, so
94  * we can wake only the relevant ones (hashed queues may be shared).
95  *
96  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
97  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
98  * The order of wakup is always to make the first condition true, then
99  * wake up q->waiter, then make the second condition true.
100  */
101 struct futex_q {
102         struct plist_node list;
103         /* Waiter reference */
104         struct task_struct *task;
105
106         /* Which hash list lock to use: */
107         spinlock_t *lock_ptr;
108
109         /* Key which the futex is hashed on: */
110         union futex_key key;
111
112         /* Optional priority inheritance state: */
113         struct futex_pi_state *pi_state;
114
115         /* rt_waiter storage for requeue_pi: */
116         struct rt_mutex_waiter *rt_waiter;
117
118         /* Bitset for the optional bitmasked wakeup */
119         u32 bitset;
120 };
121
122 /*
123  * Hash buckets are shared by all the futex_keys that hash to the same
124  * location.  Each key may have multiple futex_q structures, one for each task
125  * waiting on a futex.
126  */
127 struct futex_hash_bucket {
128         spinlock_t lock;
129         struct plist_head chain;
130 };
131
132 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
133
134 /*
135  * We hash on the keys returned from get_futex_key (see below).
136  */
137 static struct futex_hash_bucket *hash_futex(union futex_key *key)
138 {
139         u32 hash = jhash2((u32*)&key->both.word,
140                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
141                           key->both.offset);
142         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
143 }
144
145 /*
146  * Return 1 if two futex_keys are equal, 0 otherwise.
147  */
148 static inline int match_futex(union futex_key *key1, union futex_key *key2)
149 {
150         return (key1->both.word == key2->both.word
151                 && key1->both.ptr == key2->both.ptr
152                 && key1->both.offset == key2->both.offset);
153 }
154
155 /*
156  * Take a reference to the resource addressed by a key.
157  * Can be called while holding spinlocks.
158  *
159  */
160 static void get_futex_key_refs(union futex_key *key)
161 {
162         if (!key->both.ptr)
163                 return;
164
165         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
166         case FUT_OFF_INODE:
167                 atomic_inc(&key->shared.inode->i_count);
168                 break;
169         case FUT_OFF_MMSHARED:
170                 atomic_inc(&key->private.mm->mm_count);
171                 break;
172         }
173 }
174
175 /*
176  * Drop a reference to the resource addressed by a key.
177  * The hash bucket spinlock must not be held.
178  */
179 static void drop_futex_key_refs(union futex_key *key)
180 {
181         if (!key->both.ptr) {
182                 /* If we're here then we tried to put a key we failed to get */
183                 WARN_ON_ONCE(1);
184                 return;
185         }
186
187         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
188         case FUT_OFF_INODE:
189                 iput(key->shared.inode);
190                 break;
191         case FUT_OFF_MMSHARED:
192                 mmdrop(key->private.mm);
193                 break;
194         }
195 }
196
197 /**
198  * get_futex_key - Get parameters which are the keys for a futex.
199  * @uaddr: virtual address of the futex
200  * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
201  * @key: address where result is stored.
202  *
203  * Returns a negative error code or 0
204  * The key words are stored in *key on success.
205  *
206  * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
207  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
208  * We can usually work out the index without swapping in the page.
209  *
210  * lock_page() might sleep, the caller should not hold a spinlock.
211  */
212 static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
213 {
214         unsigned long address = (unsigned long)uaddr;
215         struct mm_struct *mm = current->mm;
216         struct page *page;
217         int err;
218
219         /*
220          * The futex address must be "naturally" aligned.
221          */
222         key->both.offset = address % PAGE_SIZE;
223         if (unlikely((address % sizeof(u32)) != 0))
224                 return -EINVAL;
225         address -= key->both.offset;
226
227         /*
228          * PROCESS_PRIVATE futexes are fast.
229          * As the mm cannot disappear under us and the 'key' only needs
230          * virtual address, we dont even have to find the underlying vma.
231          * Note : We do have to check 'uaddr' is a valid user address,
232          *        but access_ok() should be faster than find_vma()
233          */
234         if (!fshared) {
235                 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
236                         return -EFAULT;
237                 key->private.mm = mm;
238                 key->private.address = address;
239                 get_futex_key_refs(key);
240                 return 0;
241         }
242
243 again:
244         err = get_user_pages_fast(address, 1, 0, &page);
245         if (err < 0)
246                 return err;
247
248         lock_page(page);
249         if (!page->mapping) {
250                 unlock_page(page);
251                 put_page(page);
252                 goto again;
253         }
254
255         /*
256          * Private mappings are handled in a simple way.
257          *
258          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
259          * it's a read-only handle, it's expected that futexes attach to
260          * the object not the particular process.
261          */
262         if (PageAnon(page)) {
263                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
264                 key->private.mm = mm;
265                 key->private.address = address;
266         } else {
267                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
268                 key->shared.inode = page->mapping->host;
269                 key->shared.pgoff = page->index;
270         }
271
272         get_futex_key_refs(key);
273
274         unlock_page(page);
275         put_page(page);
276         return 0;
277 }
278
279 static inline
280 void put_futex_key(int fshared, union futex_key *key)
281 {
282         drop_futex_key_refs(key);
283 }
284
285 /**
286  * futex_top_waiter() - Return the highest priority waiter on a futex
287  * @hb:     the hash bucket the futex_q's reside in
288  * @key:    the futex key (to distinguish it from other futex futex_q's)
289  *
290  * Must be called with the hb lock held.
291  */
292 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
293                                         union futex_key *key)
294 {
295         struct futex_q *this;
296
297         plist_for_each_entry(this, &hb->chain, list) {
298                 if (match_futex(&this->key, key))
299                         return this;
300         }
301         return NULL;
302 }
303
304 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
305 {
306         u32 curval;
307
308         pagefault_disable();
309         curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
310         pagefault_enable();
311
312         return curval;
313 }
314
315 static int get_futex_value_locked(u32 *dest, u32 __user *from)
316 {
317         int ret;
318
319         pagefault_disable();
320         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
321         pagefault_enable();
322
323         return ret ? -EFAULT : 0;
324 }
325
326
327 /*
328  * PI code:
329  */
330 static int refill_pi_state_cache(void)
331 {
332         struct futex_pi_state *pi_state;
333
334         if (likely(current->pi_state_cache))
335                 return 0;
336
337         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
338
339         if (!pi_state)
340                 return -ENOMEM;
341
342         INIT_LIST_HEAD(&pi_state->list);
343         /* pi_mutex gets initialized later */
344         pi_state->owner = NULL;
345         atomic_set(&pi_state->refcount, 1);
346         pi_state->key = FUTEX_KEY_INIT;
347
348         current->pi_state_cache = pi_state;
349
350         return 0;
351 }
352
353 static struct futex_pi_state * alloc_pi_state(void)
354 {
355         struct futex_pi_state *pi_state = current->pi_state_cache;
356
357         WARN_ON(!pi_state);
358         current->pi_state_cache = NULL;
359
360         return pi_state;
361 }
362
363 static void free_pi_state(struct futex_pi_state *pi_state)
364 {
365         if (!atomic_dec_and_test(&pi_state->refcount))
366                 return;
367
368         /*
369          * If pi_state->owner is NULL, the owner is most probably dying
370          * and has cleaned up the pi_state already
371          */
372         if (pi_state->owner) {
373                 spin_lock_irq(&pi_state->owner->pi_lock);
374                 list_del_init(&pi_state->list);
375                 spin_unlock_irq(&pi_state->owner->pi_lock);
376
377                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
378         }
379
380         if (current->pi_state_cache)
381                 kfree(pi_state);
382         else {
383                 /*
384                  * pi_state->list is already empty.
385                  * clear pi_state->owner.
386                  * refcount is at 0 - put it back to 1.
387                  */
388                 pi_state->owner = NULL;
389                 atomic_set(&pi_state->refcount, 1);
390                 current->pi_state_cache = pi_state;
391         }
392 }
393
394 /*
395  * Look up the task based on what TID userspace gave us.
396  * We dont trust it.
397  */
398 static struct task_struct * futex_find_get_task(pid_t pid)
399 {
400         struct task_struct *p;
401         const struct cred *cred = current_cred(), *pcred;
402
403         rcu_read_lock();
404         p = find_task_by_vpid(pid);
405         if (!p) {
406                 p = ERR_PTR(-ESRCH);
407         } else {
408                 pcred = __task_cred(p);
409                 if (cred->euid != pcred->euid &&
410                     cred->euid != pcred->uid)
411                         p = ERR_PTR(-ESRCH);
412                 else
413                         get_task_struct(p);
414         }
415
416         rcu_read_unlock();
417
418         return p;
419 }
420
421 /*
422  * This task is holding PI mutexes at exit time => bad.
423  * Kernel cleans up PI-state, but userspace is likely hosed.
424  * (Robust-futex cleanup is separate and might save the day for userspace.)
425  */
426 void exit_pi_state_list(struct task_struct *curr)
427 {
428         struct list_head *next, *head = &curr->pi_state_list;
429         struct futex_pi_state *pi_state;
430         struct futex_hash_bucket *hb;
431         union futex_key key = FUTEX_KEY_INIT;
432
433         if (!futex_cmpxchg_enabled)
434                 return;
435         /*
436          * We are a ZOMBIE and nobody can enqueue itself on
437          * pi_state_list anymore, but we have to be careful
438          * versus waiters unqueueing themselves:
439          */
440         spin_lock_irq(&curr->pi_lock);
441         while (!list_empty(head)) {
442
443                 next = head->next;
444                 pi_state = list_entry(next, struct futex_pi_state, list);
445                 key = pi_state->key;
446                 hb = hash_futex(&key);
447                 spin_unlock_irq(&curr->pi_lock);
448
449                 spin_lock(&hb->lock);
450
451                 spin_lock_irq(&curr->pi_lock);
452                 /*
453                  * We dropped the pi-lock, so re-check whether this
454                  * task still owns the PI-state:
455                  */
456                 if (head->next != next) {
457                         spin_unlock(&hb->lock);
458                         continue;
459                 }
460
461                 WARN_ON(pi_state->owner != curr);
462                 WARN_ON(list_empty(&pi_state->list));
463                 list_del_init(&pi_state->list);
464                 pi_state->owner = NULL;
465                 spin_unlock_irq(&curr->pi_lock);
466
467                 rt_mutex_unlock(&pi_state->pi_mutex);
468
469                 spin_unlock(&hb->lock);
470
471                 spin_lock_irq(&curr->pi_lock);
472         }
473         spin_unlock_irq(&curr->pi_lock);
474 }
475
476 static int
477 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
478                 union futex_key *key, struct futex_pi_state **ps)
479 {
480         struct futex_pi_state *pi_state = NULL;
481         struct futex_q *this, *next;
482         struct plist_head *head;
483         struct task_struct *p;
484         pid_t pid = uval & FUTEX_TID_MASK;
485
486         head = &hb->chain;
487
488         plist_for_each_entry_safe(this, next, head, list) {
489                 if (match_futex(&this->key, key)) {
490                         /*
491                          * Another waiter already exists - bump up
492                          * the refcount and return its pi_state:
493                          */
494                         pi_state = this->pi_state;
495                         /*
496                          * Userspace might have messed up non PI and PI futexes
497                          */
498                         if (unlikely(!pi_state))
499                                 return -EINVAL;
500
501                         WARN_ON(!atomic_read(&pi_state->refcount));
502                         WARN_ON(pid && pi_state->owner &&
503                                 pi_state->owner->pid != pid);
504
505                         atomic_inc(&pi_state->refcount);
506                         *ps = pi_state;
507
508                         return 0;
509                 }
510         }
511
512         /*
513          * We are the first waiter - try to look up the real owner and attach
514          * the new pi_state to it, but bail out when TID = 0
515          */
516         if (!pid)
517                 return -ESRCH;
518         p = futex_find_get_task(pid);
519         if (IS_ERR(p))
520                 return PTR_ERR(p);
521
522         /*
523          * We need to look at the task state flags to figure out,
524          * whether the task is exiting. To protect against the do_exit
525          * change of the task flags, we do this protected by
526          * p->pi_lock:
527          */
528         spin_lock_irq(&p->pi_lock);
529         if (unlikely(p->flags & PF_EXITING)) {
530                 /*
531                  * The task is on the way out. When PF_EXITPIDONE is
532                  * set, we know that the task has finished the
533                  * cleanup:
534                  */
535                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
536
537                 spin_unlock_irq(&p->pi_lock);
538                 put_task_struct(p);
539                 return ret;
540         }
541
542         pi_state = alloc_pi_state();
543
544         /*
545          * Initialize the pi_mutex in locked state and make 'p'
546          * the owner of it:
547          */
548         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
549
550         /* Store the key for possible exit cleanups: */
551         pi_state->key = *key;
552
553         WARN_ON(!list_empty(&pi_state->list));
554         list_add(&pi_state->list, &p->pi_state_list);
555         pi_state->owner = p;
556         spin_unlock_irq(&p->pi_lock);
557
558         put_task_struct(p);
559
560         *ps = pi_state;
561
562         return 0;
563 }
564
565 /**
566  * futex_lock_pi_atomic() - atomic work required to acquire a pi aware futex
567  * @uaddr:              the pi futex user address
568  * @hb:                 the pi futex hash bucket
569  * @key:                the futex key associated with uaddr and hb
570  * @ps:                 the pi_state pointer where we store the result of the
571  *                      lookup
572  * @task:               the task to perform the atomic lock work for.  This will
573  *                      be "current" except in the case of requeue pi.
574  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
575  *
576  * Returns:
577  *  0 - ready to wait
578  *  1 - acquired the lock
579  * <0 - error
580  *
581  * The hb->lock and futex_key refs shall be held by the caller.
582  */
583 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
584                                 union futex_key *key,
585                                 struct futex_pi_state **ps,
586                                 struct task_struct *task, int set_waiters)
587 {
588         int lock_taken, ret, ownerdied = 0;
589         u32 uval, newval, curval;
590
591 retry:
592         ret = lock_taken = 0;
593
594         /*
595          * To avoid races, we attempt to take the lock here again
596          * (by doing a 0 -> TID atomic cmpxchg), while holding all
597          * the locks. It will most likely not succeed.
598          */
599         newval = task_pid_vnr(task);
600         if (set_waiters)
601                 newval |= FUTEX_WAITERS;
602
603         curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
604
605         if (unlikely(curval == -EFAULT))
606                 return -EFAULT;
607
608         /*
609          * Detect deadlocks.
610          */
611         if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
612                 return -EDEADLK;
613
614         /*
615          * Surprise - we got the lock. Just return to userspace:
616          */
617         if (unlikely(!curval))
618                 return 1;
619
620         uval = curval;
621
622         /*
623          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
624          * to wake at the next unlock.
625          */
626         newval = curval | FUTEX_WAITERS;
627
628         /*
629          * There are two cases, where a futex might have no owner (the
630          * owner TID is 0): OWNER_DIED. We take over the futex in this
631          * case. We also do an unconditional take over, when the owner
632          * of the futex died.
633          *
634          * This is safe as we are protected by the hash bucket lock !
635          */
636         if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
637                 /* Keep the OWNER_DIED bit */
638                 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
639                 ownerdied = 0;
640                 lock_taken = 1;
641         }
642
643         curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
644
645         if (unlikely(curval == -EFAULT))
646                 return -EFAULT;
647         if (unlikely(curval != uval))
648                 goto retry;
649
650         /*
651          * We took the lock due to owner died take over.
652          */
653         if (unlikely(lock_taken))
654                 return 1;
655
656         /*
657          * We dont have the lock. Look up the PI state (or create it if
658          * we are the first waiter):
659          */
660         ret = lookup_pi_state(uval, hb, key, ps);
661
662         if (unlikely(ret)) {
663                 switch (ret) {
664                 case -ESRCH:
665                         /*
666                          * No owner found for this futex. Check if the
667                          * OWNER_DIED bit is set to figure out whether
668                          * this is a robust futex or not.
669                          */
670                         if (get_futex_value_locked(&curval, uaddr))
671                                 return -EFAULT;
672
673                         /*
674                          * We simply start over in case of a robust
675                          * futex. The code above will take the futex
676                          * and return happy.
677                          */
678                         if (curval & FUTEX_OWNER_DIED) {
679                                 ownerdied = 1;
680                                 goto retry;
681                         }
682                 default:
683                         break;
684                 }
685         }
686
687         return ret;
688 }
689
690 /*
691  * The hash bucket lock must be held when this is called.
692  * Afterwards, the futex_q must not be accessed.
693  */
694 static void wake_futex(struct futex_q *q)
695 {
696         struct task_struct *p = q->task;
697
698         /*
699          * We set q->lock_ptr = NULL _before_ we wake up the task. If
700          * a non futex wake up happens on another CPU then the task
701          * might exit and p would dereference a non existing task
702          * struct. Prevent this by holding a reference on p across the
703          * wake up.
704          */
705         get_task_struct(p);
706
707         plist_del(&q->list, &q->list.plist);
708         /*
709          * The waiting task can free the futex_q as soon as
710          * q->lock_ptr = NULL is written, without taking any locks. A
711          * memory barrier is required here to prevent the following
712          * store to lock_ptr from getting ahead of the plist_del.
713          */
714         smp_wmb();
715         q->lock_ptr = NULL;
716
717         wake_up_state(p, TASK_NORMAL);
718         put_task_struct(p);
719 }
720
721 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
722 {
723         struct task_struct *new_owner;
724         struct futex_pi_state *pi_state = this->pi_state;
725         u32 curval, newval;
726
727         if (!pi_state)
728                 return -EINVAL;
729
730         spin_lock(&pi_state->pi_mutex.wait_lock);
731         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
732
733         /*
734          * This happens when we have stolen the lock and the original
735          * pending owner did not enqueue itself back on the rt_mutex.
736          * Thats not a tragedy. We know that way, that a lock waiter
737          * is on the fly. We make the futex_q waiter the pending owner.
738          */
739         if (!new_owner)
740                 new_owner = this->task;
741
742         /*
743          * We pass it to the next owner. (The WAITERS bit is always
744          * kept enabled while there is PI state around. We must also
745          * preserve the owner died bit.)
746          */
747         if (!(uval & FUTEX_OWNER_DIED)) {
748                 int ret = 0;
749
750                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
751
752                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
753
754                 if (curval == -EFAULT)
755                         ret = -EFAULT;
756                 else if (curval != uval)
757                         ret = -EINVAL;
758                 if (ret) {
759                         spin_unlock(&pi_state->pi_mutex.wait_lock);
760                         return ret;
761                 }
762         }
763
764         spin_lock_irq(&pi_state->owner->pi_lock);
765         WARN_ON(list_empty(&pi_state->list));
766         list_del_init(&pi_state->list);
767         spin_unlock_irq(&pi_state->owner->pi_lock);
768
769         spin_lock_irq(&new_owner->pi_lock);
770         WARN_ON(!list_empty(&pi_state->list));
771         list_add(&pi_state->list, &new_owner->pi_state_list);
772         pi_state->owner = new_owner;
773         spin_unlock_irq(&new_owner->pi_lock);
774
775         spin_unlock(&pi_state->pi_mutex.wait_lock);
776         rt_mutex_unlock(&pi_state->pi_mutex);
777
778         return 0;
779 }
780
781 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
782 {
783         u32 oldval;
784
785         /*
786          * There is no waiter, so we unlock the futex. The owner died
787          * bit has not to be preserved here. We are the owner:
788          */
789         oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
790
791         if (oldval == -EFAULT)
792                 return oldval;
793         if (oldval != uval)
794                 return -EAGAIN;
795
796         return 0;
797 }
798
799 /*
800  * Express the locking dependencies for lockdep:
801  */
802 static inline void
803 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
804 {
805         if (hb1 <= hb2) {
806                 spin_lock(&hb1->lock);
807                 if (hb1 < hb2)
808                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
809         } else { /* hb1 > hb2 */
810                 spin_lock(&hb2->lock);
811                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
812         }
813 }
814
815 static inline void
816 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
817 {
818         spin_unlock(&hb1->lock);
819         if (hb1 != hb2)
820                 spin_unlock(&hb2->lock);
821 }
822
823 /*
824  * Wake up waiters matching bitset queued on this futex (uaddr).
825  */
826 static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
827 {
828         struct futex_hash_bucket *hb;
829         struct futex_q *this, *next;
830         struct plist_head *head;
831         union futex_key key = FUTEX_KEY_INIT;
832         int ret;
833
834         if (!bitset)
835                 return -EINVAL;
836
837         ret = get_futex_key(uaddr, fshared, &key);
838         if (unlikely(ret != 0))
839                 goto out;
840
841         hb = hash_futex(&key);
842         spin_lock(&hb->lock);
843         head = &hb->chain;
844
845         plist_for_each_entry_safe(this, next, head, list) {
846                 if (match_futex (&this->key, &key)) {
847                         if (this->pi_state || this->rt_waiter) {
848                                 ret = -EINVAL;
849                                 break;
850                         }
851
852                         /* Check if one of the bits is set in both bitsets */
853                         if (!(this->bitset & bitset))
854                                 continue;
855
856                         wake_futex(this);
857                         if (++ret >= nr_wake)
858                                 break;
859                 }
860         }
861
862         spin_unlock(&hb->lock);
863         put_futex_key(fshared, &key);
864 out:
865         return ret;
866 }
867
868 /*
869  * Wake up all waiters hashed on the physical page that is mapped
870  * to this virtual address:
871  */
872 static int
873 futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
874               int nr_wake, int nr_wake2, int op)
875 {
876         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
877         struct futex_hash_bucket *hb1, *hb2;
878         struct plist_head *head;
879         struct futex_q *this, *next;
880         int ret, op_ret;
881
882 retry:
883         ret = get_futex_key(uaddr1, fshared, &key1);
884         if (unlikely(ret != 0))
885                 goto out;
886         ret = get_futex_key(uaddr2, fshared, &key2);
887         if (unlikely(ret != 0))
888                 goto out_put_key1;
889
890         hb1 = hash_futex(&key1);
891         hb2 = hash_futex(&key2);
892
893         double_lock_hb(hb1, hb2);
894 retry_private:
895         op_ret = futex_atomic_op_inuser(op, uaddr2);
896         if (unlikely(op_ret < 0)) {
897                 u32 dummy;
898
899                 double_unlock_hb(hb1, hb2);
900
901 #ifndef CONFIG_MMU
902                 /*
903                  * we don't get EFAULT from MMU faults if we don't have an MMU,
904                  * but we might get them from range checking
905                  */
906                 ret = op_ret;
907                 goto out_put_keys;
908 #endif
909
910                 if (unlikely(op_ret != -EFAULT)) {
911                         ret = op_ret;
912                         goto out_put_keys;
913                 }
914
915                 ret = get_user(dummy, uaddr2);
916                 if (ret)
917                         goto out_put_keys;
918
919                 if (!fshared)
920                         goto retry_private;
921
922                 put_futex_key(fshared, &key2);
923                 put_futex_key(fshared, &key1);
924                 goto retry;
925         }
926
927         head = &hb1->chain;
928
929         plist_for_each_entry_safe(this, next, head, list) {
930                 if (match_futex (&this->key, &key1)) {
931                         wake_futex(this);
932                         if (++ret >= nr_wake)
933                                 break;
934                 }
935         }
936
937         if (op_ret > 0) {
938                 head = &hb2->chain;
939
940                 op_ret = 0;
941                 plist_for_each_entry_safe(this, next, head, list) {
942                         if (match_futex (&this->key, &key2)) {
943                                 wake_futex(this);
944                                 if (++op_ret >= nr_wake2)
945                                         break;
946                         }
947                 }
948                 ret += op_ret;
949         }
950
951         double_unlock_hb(hb1, hb2);
952 out_put_keys:
953         put_futex_key(fshared, &key2);
954 out_put_key1:
955         put_futex_key(fshared, &key1);
956 out:
957         return ret;
958 }
959
960 /**
961  * requeue_futex() - Requeue a futex_q from one hb to another
962  * @q:          the futex_q to requeue
963  * @hb1:        the source hash_bucket
964  * @hb2:        the target hash_bucket
965  * @key2:       the new key for the requeued futex_q
966  */
967 static inline
968 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
969                    struct futex_hash_bucket *hb2, union futex_key *key2)
970 {
971
972         /*
973          * If key1 and key2 hash to the same bucket, no need to
974          * requeue.
975          */
976         if (likely(&hb1->chain != &hb2->chain)) {
977                 plist_del(&q->list, &hb1->chain);
978                 plist_add(&q->list, &hb2->chain);
979                 q->lock_ptr = &hb2->lock;
980 #ifdef CONFIG_DEBUG_PI_LIST
981                 q->list.plist.lock = &hb2->lock;
982 #endif
983         }
984         get_futex_key_refs(key2);
985         q->key = *key2;
986 }
987
988 /**
989  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
990  * q:   the futex_q
991  * key: the key of the requeue target futex
992  *
993  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
994  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
995  * to the requeue target futex so the waiter can detect the wakeup on the right
996  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
997  * atomic lock acquisition.  Must be called with the q->lock_ptr held.
998  */
999 static inline
1000 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key)
1001 {
1002         drop_futex_key_refs(&q->key);
1003         get_futex_key_refs(key);
1004         q->key = *key;
1005
1006         WARN_ON(plist_node_empty(&q->list));
1007         plist_del(&q->list, &q->list.plist);
1008
1009         WARN_ON(!q->rt_waiter);
1010         q->rt_waiter = NULL;
1011
1012         wake_up_state(q->task, TASK_NORMAL);
1013 }
1014
1015 /**
1016  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1017  * @pifutex:            the user address of the to futex
1018  * @hb1:                the from futex hash bucket, must be locked by the caller
1019  * @hb2:                the to futex hash bucket, must be locked by the caller
1020  * @key1:               the from futex key
1021  * @key2:               the to futex key
1022  * @ps:                 address to store the pi_state pointer
1023  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1024  *
1025  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1026  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1027  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1028  * hb1 and hb2 must be held by the caller.
1029  *
1030  * Returns:
1031  *  0 - failed to acquire the lock atomicly
1032  *  1 - acquired the lock
1033  * <0 - error
1034  */
1035 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1036                                  struct futex_hash_bucket *hb1,
1037                                  struct futex_hash_bucket *hb2,
1038                                  union futex_key *key1, union futex_key *key2,
1039                                  struct futex_pi_state **ps, int set_waiters)
1040 {
1041         struct futex_q *top_waiter = NULL;
1042         u32 curval;
1043         int ret;
1044
1045         if (get_futex_value_locked(&curval, pifutex))
1046                 return -EFAULT;
1047
1048         /*
1049          * Find the top_waiter and determine if there are additional waiters.
1050          * If the caller intends to requeue more than 1 waiter to pifutex,
1051          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1052          * as we have means to handle the possible fault.  If not, don't set
1053          * the bit unecessarily as it will force the subsequent unlock to enter
1054          * the kernel.
1055          */
1056         top_waiter = futex_top_waiter(hb1, key1);
1057
1058         /* There are no waiters, nothing for us to do. */
1059         if (!top_waiter)
1060                 return 0;
1061
1062         /*
1063          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1064          * the contended case or if set_waiters is 1.  The pi_state is returned
1065          * in ps in contended cases.
1066          */
1067         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1068                                    set_waiters);
1069         if (ret == 1)
1070                 requeue_pi_wake_futex(top_waiter, key2);
1071
1072         return ret;
1073 }
1074
1075 /**
1076  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1077  * uaddr1:      source futex user address
1078  * uaddr2:      target futex user address
1079  * nr_wake:     number of waiters to wake (must be 1 for requeue_pi)
1080  * nr_requeue:  number of waiters to requeue (0-INT_MAX)
1081  * requeue_pi:  if we are attempting to requeue from a non-pi futex to a
1082  *              pi futex (pi to pi requeue is not supported)
1083  *
1084  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1085  * uaddr2 atomically on behalf of the top waiter.
1086  *
1087  * Returns:
1088  * >=0 - on success, the number of tasks requeued or woken
1089  *  <0 - on error
1090  */
1091 static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
1092                          int nr_wake, int nr_requeue, u32 *cmpval,
1093                          int requeue_pi)
1094 {
1095         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1096         int drop_count = 0, task_count = 0, ret;
1097         struct futex_pi_state *pi_state = NULL;
1098         struct futex_hash_bucket *hb1, *hb2;
1099         struct plist_head *head1;
1100         struct futex_q *this, *next;
1101         u32 curval2;
1102
1103         if (requeue_pi) {
1104                 /*
1105                  * requeue_pi requires a pi_state, try to allocate it now
1106                  * without any locks in case it fails.
1107                  */
1108                 if (refill_pi_state_cache())
1109                         return -ENOMEM;
1110                 /*
1111                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1112                  * + nr_requeue, since it acquires the rt_mutex prior to
1113                  * returning to userspace, so as to not leave the rt_mutex with
1114                  * waiters and no owner.  However, second and third wake-ups
1115                  * cannot be predicted as they involve race conditions with the
1116                  * first wake and a fault while looking up the pi_state.  Both
1117                  * pthread_cond_signal() and pthread_cond_broadcast() should
1118                  * use nr_wake=1.
1119                  */
1120                 if (nr_wake != 1)
1121                         return -EINVAL;
1122         }
1123
1124 retry:
1125         if (pi_state != NULL) {
1126                 /*
1127                  * We will have to lookup the pi_state again, so free this one
1128                  * to keep the accounting correct.
1129                  */
1130                 free_pi_state(pi_state);
1131                 pi_state = NULL;
1132         }
1133
1134         ret = get_futex_key(uaddr1, fshared, &key1);
1135         if (unlikely(ret != 0))
1136                 goto out;
1137         ret = get_futex_key(uaddr2, fshared, &key2);
1138         if (unlikely(ret != 0))
1139                 goto out_put_key1;
1140
1141         hb1 = hash_futex(&key1);
1142         hb2 = hash_futex(&key2);
1143
1144 retry_private:
1145         double_lock_hb(hb1, hb2);
1146
1147         if (likely(cmpval != NULL)) {
1148                 u32 curval;
1149
1150                 ret = get_futex_value_locked(&curval, uaddr1);
1151
1152                 if (unlikely(ret)) {
1153                         double_unlock_hb(hb1, hb2);
1154
1155                         ret = get_user(curval, uaddr1);
1156                         if (ret)
1157                                 goto out_put_keys;
1158
1159                         if (!fshared)
1160                                 goto retry_private;
1161
1162                         put_futex_key(fshared, &key2);
1163                         put_futex_key(fshared, &key1);
1164                         goto retry;
1165                 }
1166                 if (curval != *cmpval) {
1167                         ret = -EAGAIN;
1168                         goto out_unlock;
1169                 }
1170         }
1171
1172         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1173                 /*
1174                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1175                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1176                  * bit.  We force this here where we are able to easily handle
1177                  * faults rather in the requeue loop below.
1178                  */
1179                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1180                                                  &key2, &pi_state, nr_requeue);
1181
1182                 /*
1183                  * At this point the top_waiter has either taken uaddr2 or is
1184                  * waiting on it.  If the former, then the pi_state will not
1185                  * exist yet, look it up one more time to ensure we have a
1186                  * reference to it.
1187                  */
1188                 if (ret == 1) {
1189                         WARN_ON(pi_state);
1190                         task_count++;
1191                         ret = get_futex_value_locked(&curval2, uaddr2);
1192                         if (!ret)
1193                                 ret = lookup_pi_state(curval2, hb2, &key2,
1194                                                       &pi_state);
1195                 }
1196
1197                 switch (ret) {
1198                 case 0:
1199                         break;
1200                 case -EFAULT:
1201                         double_unlock_hb(hb1, hb2);
1202                         put_futex_key(fshared, &key2);
1203                         put_futex_key(fshared, &key1);
1204                         ret = get_user(curval2, uaddr2);
1205                         if (!ret)
1206                                 goto retry;
1207                         goto out;
1208                 case -EAGAIN:
1209                         /* The owner was exiting, try again. */
1210                         double_unlock_hb(hb1, hb2);
1211                         put_futex_key(fshared, &key2);
1212                         put_futex_key(fshared, &key1);
1213                         cond_resched();
1214                         goto retry;
1215                 default:
1216                         goto out_unlock;
1217                 }
1218         }
1219
1220         head1 = &hb1->chain;
1221         plist_for_each_entry_safe(this, next, head1, list) {
1222                 if (task_count - nr_wake >= nr_requeue)
1223                         break;
1224
1225                 if (!match_futex(&this->key, &key1))
1226                         continue;
1227
1228                 WARN_ON(!requeue_pi && this->rt_waiter);
1229                 WARN_ON(requeue_pi && !this->rt_waiter);
1230
1231                 /*
1232                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1233                  * lock, we already woke the top_waiter.  If not, it will be
1234                  * woken by futex_unlock_pi().
1235                  */
1236                 if (++task_count <= nr_wake && !requeue_pi) {
1237                         wake_futex(this);
1238                         continue;
1239                 }
1240
1241                 /*
1242                  * Requeue nr_requeue waiters and possibly one more in the case
1243                  * of requeue_pi if we couldn't acquire the lock atomically.
1244                  */
1245                 if (requeue_pi) {
1246                         /* Prepare the waiter to take the rt_mutex. */
1247                         atomic_inc(&pi_state->refcount);
1248                         this->pi_state = pi_state;
1249                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1250                                                         this->rt_waiter,
1251                                                         this->task, 1);
1252                         if (ret == 1) {
1253                                 /* We got the lock. */
1254                                 requeue_pi_wake_futex(this, &key2);
1255                                 continue;
1256                         } else if (ret) {
1257                                 /* -EDEADLK */
1258                                 this->pi_state = NULL;
1259                                 free_pi_state(pi_state);
1260                                 goto out_unlock;
1261                         }
1262                 }
1263                 requeue_futex(this, hb1, hb2, &key2);
1264                 drop_count++;
1265         }
1266
1267 out_unlock:
1268         double_unlock_hb(hb1, hb2);
1269
1270         /* drop_futex_key_refs() must be called outside the spinlocks. */
1271         while (--drop_count >= 0)
1272                 drop_futex_key_refs(&key1);
1273
1274 out_put_keys:
1275         put_futex_key(fshared, &key2);
1276 out_put_key1:
1277         put_futex_key(fshared, &key1);
1278 out:
1279         if (pi_state != NULL)
1280                 free_pi_state(pi_state);
1281         return ret ? ret : task_count;
1282 }
1283
1284 /* The key must be already stored in q->key. */
1285 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1286 {
1287         struct futex_hash_bucket *hb;
1288
1289         get_futex_key_refs(&q->key);
1290         hb = hash_futex(&q->key);
1291         q->lock_ptr = &hb->lock;
1292
1293         spin_lock(&hb->lock);
1294         return hb;
1295 }
1296
1297 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1298 {
1299         int prio;
1300
1301         /*
1302          * The priority used to register this element is
1303          * - either the real thread-priority for the real-time threads
1304          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1305          * - or MAX_RT_PRIO for non-RT threads.
1306          * Thus, all RT-threads are woken first in priority order, and
1307          * the others are woken last, in FIFO order.
1308          */
1309         prio = min(current->normal_prio, MAX_RT_PRIO);
1310
1311         plist_node_init(&q->list, prio);
1312 #ifdef CONFIG_DEBUG_PI_LIST
1313         q->list.plist.lock = &hb->lock;
1314 #endif
1315         plist_add(&q->list, &hb->chain);
1316         q->task = current;
1317         spin_unlock(&hb->lock);
1318 }
1319
1320 static inline void
1321 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1322 {
1323         spin_unlock(&hb->lock);
1324         drop_futex_key_refs(&q->key);
1325 }
1326
1327 /*
1328  * queue_me and unqueue_me must be called as a pair, each
1329  * exactly once.  They are called with the hashed spinlock held.
1330  */
1331
1332 /* Return 1 if we were still queued (ie. 0 means we were woken) */
1333 static int unqueue_me(struct futex_q *q)
1334 {
1335         spinlock_t *lock_ptr;
1336         int ret = 0;
1337
1338         /* In the common case we don't take the spinlock, which is nice. */
1339 retry:
1340         lock_ptr = q->lock_ptr;
1341         barrier();
1342         if (lock_ptr != NULL) {
1343                 spin_lock(lock_ptr);
1344                 /*
1345                  * q->lock_ptr can change between reading it and
1346                  * spin_lock(), causing us to take the wrong lock.  This
1347                  * corrects the race condition.
1348                  *
1349                  * Reasoning goes like this: if we have the wrong lock,
1350                  * q->lock_ptr must have changed (maybe several times)
1351                  * between reading it and the spin_lock().  It can
1352                  * change again after the spin_lock() but only if it was
1353                  * already changed before the spin_lock().  It cannot,
1354                  * however, change back to the original value.  Therefore
1355                  * we can detect whether we acquired the correct lock.
1356                  */
1357                 if (unlikely(lock_ptr != q->lock_ptr)) {
1358                         spin_unlock(lock_ptr);
1359                         goto retry;
1360                 }
1361                 WARN_ON(plist_node_empty(&q->list));
1362                 plist_del(&q->list, &q->list.plist);
1363
1364                 BUG_ON(q->pi_state);
1365
1366                 spin_unlock(lock_ptr);
1367                 ret = 1;
1368         }
1369
1370         drop_futex_key_refs(&q->key);
1371         return ret;
1372 }
1373
1374 /*
1375  * PI futexes can not be requeued and must remove themself from the
1376  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1377  * and dropped here.
1378  */
1379 static void unqueue_me_pi(struct futex_q *q)
1380 {
1381         WARN_ON(plist_node_empty(&q->list));
1382         plist_del(&q->list, &q->list.plist);
1383
1384         BUG_ON(!q->pi_state);
1385         free_pi_state(q->pi_state);
1386         q->pi_state = NULL;
1387
1388         spin_unlock(q->lock_ptr);
1389
1390         drop_futex_key_refs(&q->key);
1391 }
1392
1393 /*
1394  * Fixup the pi_state owner with the new owner.
1395  *
1396  * Must be called with hash bucket lock held and mm->sem held for non
1397  * private futexes.
1398  */
1399 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1400                                 struct task_struct *newowner, int fshared)
1401 {
1402         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1403         struct futex_pi_state *pi_state = q->pi_state;
1404         struct task_struct *oldowner = pi_state->owner;
1405         u32 uval, curval, newval;
1406         int ret;
1407
1408         /* Owner died? */
1409         if (!pi_state->owner)
1410                 newtid |= FUTEX_OWNER_DIED;
1411
1412         /*
1413          * We are here either because we stole the rtmutex from the
1414          * pending owner or we are the pending owner which failed to
1415          * get the rtmutex. We have to replace the pending owner TID
1416          * in the user space variable. This must be atomic as we have
1417          * to preserve the owner died bit here.
1418          *
1419          * Note: We write the user space value _before_ changing the pi_state
1420          * because we can fault here. Imagine swapped out pages or a fork
1421          * that marked all the anonymous memory readonly for cow.
1422          *
1423          * Modifying pi_state _before_ the user space value would
1424          * leave the pi_state in an inconsistent state when we fault
1425          * here, because we need to drop the hash bucket lock to
1426          * handle the fault. This might be observed in the PID check
1427          * in lookup_pi_state.
1428          */
1429 retry:
1430         if (get_futex_value_locked(&uval, uaddr))
1431                 goto handle_fault;
1432
1433         while (1) {
1434                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1435
1436                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1437
1438                 if (curval == -EFAULT)
1439                         goto handle_fault;
1440                 if (curval == uval)
1441                         break;
1442                 uval = curval;
1443         }
1444
1445         /*
1446          * We fixed up user space. Now we need to fix the pi_state
1447          * itself.
1448          */
1449         if (pi_state->owner != NULL) {
1450                 spin_lock_irq(&pi_state->owner->pi_lock);
1451                 WARN_ON(list_empty(&pi_state->list));
1452                 list_del_init(&pi_state->list);
1453                 spin_unlock_irq(&pi_state->owner->pi_lock);
1454         }
1455
1456         pi_state->owner = newowner;
1457
1458         spin_lock_irq(&newowner->pi_lock);
1459         WARN_ON(!list_empty(&pi_state->list));
1460         list_add(&pi_state->list, &newowner->pi_state_list);
1461         spin_unlock_irq(&newowner->pi_lock);
1462         return 0;
1463
1464         /*
1465          * To handle the page fault we need to drop the hash bucket
1466          * lock here. That gives the other task (either the pending
1467          * owner itself or the task which stole the rtmutex) the
1468          * chance to try the fixup of the pi_state. So once we are
1469          * back from handling the fault we need to check the pi_state
1470          * after reacquiring the hash bucket lock and before trying to
1471          * do another fixup. When the fixup has been done already we
1472          * simply return.
1473          */
1474 handle_fault:
1475         spin_unlock(q->lock_ptr);
1476
1477         ret = get_user(uval, uaddr);
1478
1479         spin_lock(q->lock_ptr);
1480
1481         /*
1482          * Check if someone else fixed it for us:
1483          */
1484         if (pi_state->owner != oldowner)
1485                 return 0;
1486
1487         if (ret)
1488                 return ret;
1489
1490         goto retry;
1491 }
1492
1493 /*
1494  * In case we must use restart_block to restart a futex_wait,
1495  * we encode in the 'flags' shared capability
1496  */
1497 #define FLAGS_SHARED            0x01
1498 #define FLAGS_CLOCKRT           0x02
1499 #define FLAGS_HAS_TIMEOUT       0x04
1500
1501 static long futex_wait_restart(struct restart_block *restart);
1502 static long futex_lock_pi_restart(struct restart_block *restart);
1503
1504 /**
1505  * fixup_owner() - Post lock pi_state and corner case management
1506  * @uaddr:      user address of the futex
1507  * @fshared:    whether the futex is shared (1) or not (0)
1508  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1509  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1510  *
1511  * After attempting to lock an rt_mutex, this function is called to cleanup
1512  * the pi_state owner as well as handle race conditions that may allow us to
1513  * acquire the lock. Must be called with the hb lock held.
1514  *
1515  * Returns:
1516  *  1 - success, lock taken
1517  *  0 - success, lock not taken
1518  * <0 - on error (-EFAULT)
1519  */
1520 static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
1521                        int locked)
1522 {
1523         struct task_struct *owner;
1524         int ret = 0;
1525
1526         if (locked) {
1527                 /*
1528                  * Got the lock. We might not be the anticipated owner if we
1529                  * did a lock-steal - fix up the PI-state in that case:
1530                  */
1531                 if (q->pi_state->owner != current)
1532                         ret = fixup_pi_state_owner(uaddr, q, current, fshared);
1533                 goto out;
1534         }
1535
1536         /*
1537          * Catch the rare case, where the lock was released when we were on the
1538          * way back before we locked the hash bucket.
1539          */
1540         if (q->pi_state->owner == current) {
1541                 /*
1542                  * Try to get the rt_mutex now. This might fail as some other
1543                  * task acquired the rt_mutex after we removed ourself from the
1544                  * rt_mutex waiters list.
1545                  */
1546                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1547                         locked = 1;
1548                         goto out;
1549                 }
1550
1551                 /*
1552                  * pi_state is incorrect, some other task did a lock steal and
1553                  * we returned due to timeout or signal without taking the
1554                  * rt_mutex. Too late. We can access the rt_mutex_owner without
1555                  * locking, as the other task is now blocked on the hash bucket
1556                  * lock. Fix the state up.
1557                  */
1558                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1559                 ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
1560                 goto out;
1561         }
1562
1563         /*
1564          * Paranoia check. If we did not take the lock, then we should not be
1565          * the owner, nor the pending owner, of the rt_mutex.
1566          */
1567         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1568                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1569                                 "pi-state %p\n", ret,
1570                                 q->pi_state->pi_mutex.owner,
1571                                 q->pi_state->owner);
1572
1573 out:
1574         return ret ? ret : locked;
1575 }
1576
1577 /**
1578  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1579  * @hb:         the futex hash bucket, must be locked by the caller
1580  * @q:          the futex_q to queue up on
1581  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1582  */
1583 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1584                                 struct hrtimer_sleeper *timeout)
1585 {
1586         queue_me(q, hb);
1587
1588         /*
1589          * There might have been scheduling since the queue_me(), as we
1590          * cannot hold a spinlock across the get_user() in case it
1591          * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1592          * queueing ourselves into the futex hash. This code thus has to
1593          * rely on the futex_wake() code removing us from hash when it
1594          * wakes us up.
1595          */
1596         set_current_state(TASK_INTERRUPTIBLE);
1597
1598         /* Arm the timer */
1599         if (timeout) {
1600                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1601                 if (!hrtimer_active(&timeout->timer))
1602                         timeout->task = NULL;
1603         }
1604
1605         /*
1606          * !plist_node_empty() is safe here without any lock.
1607          * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1608          */
1609         if (likely(!plist_node_empty(&q->list))) {
1610                 /*
1611                  * If the timer has already expired, current will already be
1612                  * flagged for rescheduling. Only call schedule if there
1613                  * is no timeout, or if it has yet to expire.
1614                  */
1615                 if (!timeout || timeout->task)
1616                         schedule();
1617         }
1618         __set_current_state(TASK_RUNNING);
1619 }
1620
1621 /**
1622  * futex_wait_setup() - Prepare to wait on a futex
1623  * @uaddr:      the futex userspace address
1624  * @val:        the expected value
1625  * @fshared:    whether the futex is shared (1) or not (0)
1626  * @q:          the associated futex_q
1627  * @hb:         storage for hash_bucket pointer to be returned to caller
1628  *
1629  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1630  * compare it with the expected value.  Handle atomic faults internally.
1631  * Return with the hb lock held and a q.key reference on success, and unlocked
1632  * with no q.key reference on failure.
1633  *
1634  * Returns:
1635  *  0 - uaddr contains val and hb has been locked
1636  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1637  */
1638 static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
1639                            struct futex_q *q, struct futex_hash_bucket **hb)
1640 {
1641         u32 uval;
1642         int ret;
1643
1644         /*
1645          * Access the page AFTER the hash-bucket is locked.
1646          * Order is important:
1647          *
1648          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1649          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1650          *
1651          * The basic logical guarantee of a futex is that it blocks ONLY
1652          * if cond(var) is known to be true at the time of blocking, for
1653          * any cond.  If we queued after testing *uaddr, that would open
1654          * a race condition where we could block indefinitely with
1655          * cond(var) false, which would violate the guarantee.
1656          *
1657          * A consequence is that futex_wait() can return zero and absorb
1658          * a wakeup when *uaddr != val on entry to the syscall.  This is
1659          * rare, but normal.
1660          */
1661 retry:
1662         q->key = FUTEX_KEY_INIT;
1663         ret = get_futex_key(uaddr, fshared, &q->key);
1664         if (unlikely(ret != 0))
1665                 return ret;
1666
1667 retry_private:
1668         *hb = queue_lock(q);
1669
1670         ret = get_futex_value_locked(&uval, uaddr);
1671
1672         if (ret) {
1673                 queue_unlock(q, *hb);
1674
1675                 ret = get_user(uval, uaddr);
1676                 if (ret)
1677                         goto out;
1678
1679                 if (!fshared)
1680                         goto retry_private;
1681
1682                 put_futex_key(fshared, &q->key);
1683                 goto retry;
1684         }
1685
1686         if (uval != val) {
1687                 queue_unlock(q, *hb);
1688                 ret = -EWOULDBLOCK;
1689         }
1690
1691 out:
1692         if (ret)
1693                 put_futex_key(fshared, &q->key);
1694         return ret;
1695 }
1696
1697 static int futex_wait(u32 __user *uaddr, int fshared,
1698                       u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1699 {
1700         struct hrtimer_sleeper timeout, *to = NULL;
1701         struct restart_block *restart;
1702         struct futex_hash_bucket *hb;
1703         struct futex_q q;
1704         int ret;
1705
1706         if (!bitset)
1707                 return -EINVAL;
1708
1709         q.pi_state = NULL;
1710         q.bitset = bitset;
1711         q.rt_waiter = NULL;
1712
1713         if (abs_time) {
1714                 to = &timeout;
1715
1716                 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1717                                       CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1718                 hrtimer_init_sleeper(to, current);
1719                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1720                                              current->timer_slack_ns);
1721         }
1722
1723         /* Prepare to wait on uaddr. */
1724         ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
1725         if (ret)
1726                 goto out;
1727
1728         /* queue_me and wait for wakeup, timeout, or a signal. */
1729         futex_wait_queue_me(hb, &q, to);
1730
1731         /* If we were woken (and unqueued), we succeeded, whatever. */
1732         ret = 0;
1733         if (!unqueue_me(&q))
1734                 goto out_put_key;
1735         ret = -ETIMEDOUT;
1736         if (to && !to->task)
1737                 goto out_put_key;
1738
1739         /*
1740          * We expect signal_pending(current), but another thread may
1741          * have handled it for us already.
1742          */
1743         ret = -ERESTARTSYS;
1744         if (!abs_time)
1745                 goto out_put_key;
1746
1747         restart = &current_thread_info()->restart_block;
1748         restart->fn = futex_wait_restart;
1749         restart->futex.uaddr = (u32 *)uaddr;
1750         restart->futex.val = val;
1751         restart->futex.time = abs_time->tv64;
1752         restart->futex.bitset = bitset;
1753         restart->futex.flags = FLAGS_HAS_TIMEOUT;
1754
1755         if (fshared)
1756                 restart->futex.flags |= FLAGS_SHARED;
1757         if (clockrt)
1758                 restart->futex.flags |= FLAGS_CLOCKRT;
1759
1760         ret = -ERESTART_RESTARTBLOCK;
1761
1762 out_put_key:
1763         put_futex_key(fshared, &q.key);
1764 out:
1765         if (to) {
1766                 hrtimer_cancel(&to->timer);
1767                 destroy_hrtimer_on_stack(&to->timer);
1768         }
1769         return ret;
1770 }
1771
1772
1773 static long futex_wait_restart(struct restart_block *restart)
1774 {
1775         u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1776         int fshared = 0;
1777         ktime_t t, *tp = NULL;
1778
1779         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1780                 t.tv64 = restart->futex.time;
1781                 tp = &t;
1782         }
1783         restart->fn = do_no_restart_syscall;
1784         if (restart->futex.flags & FLAGS_SHARED)
1785                 fshared = 1;
1786         return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1787                                 restart->futex.bitset,
1788                                 restart->futex.flags & FLAGS_CLOCKRT);
1789 }
1790
1791
1792 /*
1793  * Userspace tried a 0 -> TID atomic transition of the futex value
1794  * and failed. The kernel side here does the whole locking operation:
1795  * if there are waiters then it will block, it does PI, etc. (Due to
1796  * races the kernel might see a 0 value of the futex too.)
1797  */
1798 static int futex_lock_pi(u32 __user *uaddr, int fshared,
1799                          int detect, ktime_t *time, int trylock)
1800 {
1801         struct hrtimer_sleeper timeout, *to = NULL;
1802         struct futex_hash_bucket *hb;
1803         u32 uval;
1804         struct futex_q q;
1805         int res, ret;
1806
1807         if (refill_pi_state_cache())
1808                 return -ENOMEM;
1809
1810         if (time) {
1811                 to = &timeout;
1812                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1813                                       HRTIMER_MODE_ABS);
1814                 hrtimer_init_sleeper(to, current);
1815                 hrtimer_set_expires(&to->timer, *time);
1816         }
1817
1818         q.pi_state = NULL;
1819         q.rt_waiter = NULL;
1820 retry:
1821         q.key = FUTEX_KEY_INIT;
1822         ret = get_futex_key(uaddr, fshared, &q.key);
1823         if (unlikely(ret != 0))
1824                 goto out;
1825
1826 retry_private:
1827         hb = queue_lock(&q);
1828
1829         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1830         if (unlikely(ret)) {
1831                 switch (ret) {
1832                 case 1:
1833                         /* We got the lock. */
1834                         ret = 0;
1835                         goto out_unlock_put_key;
1836                 case -EFAULT:
1837                         goto uaddr_faulted;
1838                 case -EAGAIN:
1839                         /*
1840                          * Task is exiting and we just wait for the
1841                          * exit to complete.
1842                          */
1843                         queue_unlock(&q, hb);
1844                         put_futex_key(fshared, &q.key);
1845                         cond_resched();
1846                         goto retry;
1847                 default:
1848                         goto out_unlock_put_key;
1849                 }
1850         }
1851
1852         /*
1853          * Only actually queue now that the atomic ops are done:
1854          */
1855         queue_me(&q, hb);
1856
1857         WARN_ON(!q.pi_state);
1858         /*
1859          * Block on the PI mutex:
1860          */
1861         if (!trylock)
1862                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1863         else {
1864                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1865                 /* Fixup the trylock return value: */
1866                 ret = ret ? 0 : -EWOULDBLOCK;
1867         }
1868
1869         spin_lock(q.lock_ptr);
1870         /*
1871          * Fixup the pi_state owner and possibly acquire the lock if we
1872          * haven't already.
1873          */
1874         res = fixup_owner(uaddr, fshared, &q, !ret);
1875         /*
1876          * If fixup_owner() returned an error, proprogate that.  If it acquired
1877          * the lock, clear our -ETIMEDOUT or -EINTR.
1878          */
1879         if (res)
1880                 ret = (res < 0) ? res : 0;
1881
1882         /*
1883          * If fixup_owner() faulted and was unable to handle the fault, unlock
1884          * it and return the fault to userspace.
1885          */
1886         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
1887                 rt_mutex_unlock(&q.pi_state->pi_mutex);
1888
1889         /* Unqueue and drop the lock */
1890         unqueue_me_pi(&q);
1891
1892         goto out;
1893
1894 out_unlock_put_key:
1895         queue_unlock(&q, hb);
1896
1897 out_put_key:
1898         put_futex_key(fshared, &q.key);
1899 out:
1900         if (to)
1901                 destroy_hrtimer_on_stack(&to->timer);
1902         return ret != -EINTR ? ret : -ERESTARTNOINTR;
1903
1904 uaddr_faulted:
1905         /*
1906          * We have to r/w  *(int __user *)uaddr, and we have to modify it
1907          * atomically.  Therefore, if we continue to fault after get_user()
1908          * below, we need to handle the fault ourselves, while still holding
1909          * the mmap_sem.  This can occur if the uaddr is under contention as
1910          * we have to drop the mmap_sem in order to call get_user().
1911          */
1912         queue_unlock(&q, hb);
1913
1914         ret = get_user(uval, uaddr);
1915         if (ret)
1916                 goto out_put_key;
1917
1918         if (!fshared)
1919                 goto retry_private;
1920
1921         put_futex_key(fshared, &q.key);
1922         goto retry;
1923 }
1924
1925 static long futex_lock_pi_restart(struct restart_block *restart)
1926 {
1927         u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1928         ktime_t t, *tp = NULL;
1929         int fshared = restart->futex.flags & FLAGS_SHARED;
1930
1931         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1932                 t.tv64 = restart->futex.time;
1933                 tp = &t;
1934         }
1935         restart->fn = do_no_restart_syscall;
1936
1937         return (long)futex_lock_pi(uaddr, fshared, restart->futex.val, tp, 0);
1938 }
1939
1940 /*
1941  * Userspace attempted a TID -> 0 atomic transition, and failed.
1942  * This is the in-kernel slowpath: we look up the PI state (if any),
1943  * and do the rt-mutex unlock.
1944  */
1945 static int futex_unlock_pi(u32 __user *uaddr, int fshared)
1946 {
1947         struct futex_hash_bucket *hb;
1948         struct futex_q *this, *next;
1949         u32 uval;
1950         struct plist_head *head;
1951         union futex_key key = FUTEX_KEY_INIT;
1952         int ret;
1953
1954 retry:
1955         if (get_user(uval, uaddr))
1956                 return -EFAULT;
1957         /*
1958          * We release only a lock we actually own:
1959          */
1960         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1961                 return -EPERM;
1962
1963         ret = get_futex_key(uaddr, fshared, &key);
1964         if (unlikely(ret != 0))
1965                 goto out;
1966
1967         hb = hash_futex(&key);
1968         spin_lock(&hb->lock);
1969
1970         /*
1971          * To avoid races, try to do the TID -> 0 atomic transition
1972          * again. If it succeeds then we can return without waking
1973          * anyone else up:
1974          */
1975         if (!(uval & FUTEX_OWNER_DIED))
1976                 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
1977
1978
1979         if (unlikely(uval == -EFAULT))
1980                 goto pi_faulted;
1981         /*
1982          * Rare case: we managed to release the lock atomically,
1983          * no need to wake anyone else up:
1984          */
1985         if (unlikely(uval == task_pid_vnr(current)))
1986                 goto out_unlock;
1987
1988         /*
1989          * Ok, other tasks may need to be woken up - check waiters
1990          * and do the wakeup if necessary:
1991          */
1992         head = &hb->chain;
1993
1994         plist_for_each_entry_safe(this, next, head, list) {
1995                 if (!match_futex (&this->key, &key))
1996                         continue;
1997                 ret = wake_futex_pi(uaddr, uval, this);
1998                 /*
1999                  * The atomic access to the futex value
2000                  * generated a pagefault, so retry the
2001                  * user-access and the wakeup:
2002                  */
2003                 if (ret == -EFAULT)
2004                         goto pi_faulted;
2005                 goto out_unlock;
2006         }
2007         /*
2008          * No waiters - kernel unlocks the futex:
2009          */
2010         if (!(uval & FUTEX_OWNER_DIED)) {
2011                 ret = unlock_futex_pi(uaddr, uval);
2012                 if (ret == -EFAULT)
2013                         goto pi_faulted;
2014         }
2015
2016 out_unlock:
2017         spin_unlock(&hb->lock);
2018         put_futex_key(fshared, &key);
2019
2020 out:
2021         return ret;
2022
2023 pi_faulted:
2024         /*
2025          * We have to r/w  *(int __user *)uaddr, and we have to modify it
2026          * atomically.  Therefore, if we continue to fault after get_user()
2027          * below, we need to handle the fault ourselves, while still holding
2028          * the mmap_sem.  This can occur if the uaddr is under contention as
2029          * we have to drop the mmap_sem in order to call get_user().
2030          */
2031         spin_unlock(&hb->lock);
2032         put_futex_key(fshared, &key);
2033
2034         ret = get_user(uval, uaddr);
2035         if (!ret)
2036                 goto retry;
2037
2038         return ret;
2039 }
2040
2041 /**
2042  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2043  * @hb:         the hash_bucket futex_q was original enqueued on
2044  * @q:          the futex_q woken while waiting to be requeued
2045  * @key2:       the futex_key of the requeue target futex
2046  * @timeout:    the timeout associated with the wait (NULL if none)
2047  *
2048  * Detect if the task was woken on the initial futex as opposed to the requeue
2049  * target futex.  If so, determine if it was a timeout or a signal that caused
2050  * the wakeup and return the appropriate error code to the caller.  Must be
2051  * called with the hb lock held.
2052  *
2053  * Returns
2054  *  0 - no early wakeup detected
2055  * <0 - -ETIMEDOUT or -ERESTARTSYS (FIXME: or ERESTARTNOINTR?)
2056  */
2057 static inline
2058 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2059                                    struct futex_q *q, union futex_key *key2,
2060                                    struct hrtimer_sleeper *timeout)
2061 {
2062         int ret = 0;
2063
2064         /*
2065          * With the hb lock held, we avoid races while we process the wakeup.
2066          * We only need to hold hb (and not hb2) to ensure atomicity as the
2067          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2068          * It can't be requeued from uaddr2 to something else since we don't
2069          * support a PI aware source futex for requeue.
2070          */
2071         if (!match_futex(&q->key, key2)) {
2072                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2073                 /*
2074                  * We were woken prior to requeue by a timeout or a signal.
2075                  * Unqueue the futex_q and determine which it was.
2076                  */
2077                 plist_del(&q->list, &q->list.plist);
2078                 drop_futex_key_refs(&q->key);
2079
2080                 if (timeout && !timeout->task)
2081                         ret = -ETIMEDOUT;
2082                 else {
2083                         /*
2084                          * We expect signal_pending(current), but another
2085                          * thread may have handled it for us already.
2086                          */
2087                         /* FIXME: ERESTARTSYS or ERESTARTNOINTR?  Do we care if
2088                          * the user specified SA_RESTART or not? */
2089                         ret = -ERESTARTSYS;
2090                 }
2091         }
2092         return ret;
2093 }
2094
2095 /**
2096  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2097  * @uaddr:      the futex we initialyl wait on (non-pi)
2098  * @fshared:    whether the futexes are shared (1) or not (0).  They must be
2099  *              the same type, no requeueing from private to shared, etc.
2100  * @val:        the expected value of uaddr
2101  * @abs_time:   absolute timeout
2102  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all.
2103  * @clockrt:    whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2104  * @uaddr2:     the pi futex we will take prior to returning to user-space
2105  *
2106  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2107  * uaddr2 which must be PI aware.  Normal wakeup will wake on uaddr2 and
2108  * complete the acquisition of the rt_mutex prior to returning to userspace.
2109  * This ensures the rt_mutex maintains an owner when it has waiters; without
2110  * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2111  * need to.
2112  *
2113  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2114  * via the following:
2115  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2116  * 2) wakeup on uaddr2 after a requeue and subsequent unlock
2117  * 3) signal (before or after requeue)
2118  * 4) timeout (before or after requeue)
2119  *
2120  * If 3, we setup a restart_block with futex_wait_requeue_pi() as the function.
2121  *
2122  * If 2, we may then block on trying to take the rt_mutex and return via:
2123  * 5) successful lock
2124  * 6) signal
2125  * 7) timeout
2126  * 8) other lock acquisition failure
2127  *
2128  * If 6, we setup a restart_block with futex_lock_pi() as the function.
2129  *
2130  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2131  *
2132  * Returns:
2133  *  0 - On success
2134  * <0 - On error
2135  */
2136 static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2137                                  u32 val, ktime_t *abs_time, u32 bitset,
2138                                  int clockrt, u32 __user *uaddr2)
2139 {
2140         struct hrtimer_sleeper timeout, *to = NULL;
2141         struct rt_mutex_waiter rt_waiter;
2142         struct rt_mutex *pi_mutex = NULL;
2143         struct restart_block *restart;
2144         struct futex_hash_bucket *hb;
2145         union futex_key key2;
2146         struct futex_q q;
2147         int res, ret;
2148         u32 uval;
2149
2150         if (!bitset)
2151                 return -EINVAL;
2152
2153         if (abs_time) {
2154                 to = &timeout;
2155                 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
2156                                       CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2157                 hrtimer_init_sleeper(to, current);
2158                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2159                                              current->timer_slack_ns);
2160         }
2161
2162         /*
2163          * The waiter is allocated on our stack, manipulated by the requeue
2164          * code while we sleep on uaddr.
2165          */
2166         debug_rt_mutex_init_waiter(&rt_waiter);
2167         rt_waiter.task = NULL;
2168
2169         q.pi_state = NULL;
2170         q.bitset = bitset;
2171         q.rt_waiter = &rt_waiter;
2172
2173         key2 = FUTEX_KEY_INIT;
2174         ret = get_futex_key(uaddr2, fshared, &key2);
2175         if (unlikely(ret != 0))
2176                 goto out;
2177
2178         /* Prepare to wait on uaddr. */
2179         ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
2180         if (ret) {
2181                 put_futex_key(fshared, &key2);
2182                 goto out;
2183         }
2184
2185         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2186         futex_wait_queue_me(hb, &q, to);
2187
2188         spin_lock(&hb->lock);
2189         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2190         spin_unlock(&hb->lock);
2191         if (ret)
2192                 goto out_put_keys;
2193
2194         /*
2195          * In order for us to be here, we know our q.key == key2, and since
2196          * we took the hb->lock above, we also know that futex_requeue() has
2197          * completed and we no longer have to concern ourselves with a wakeup
2198          * race with the atomic proxy lock acquition by the requeue code.
2199          */
2200
2201         /* Check if the requeue code acquired the second futex for us. */
2202         if (!q.rt_waiter) {
2203                 /*
2204                  * Got the lock. We might not be the anticipated owner if we
2205                  * did a lock-steal - fix up the PI-state in that case.
2206                  */
2207                 if (q.pi_state && (q.pi_state->owner != current)) {
2208                         spin_lock(q.lock_ptr);
2209                         ret = fixup_pi_state_owner(uaddr2, &q, current,
2210                                                    fshared);
2211                         spin_unlock(q.lock_ptr);
2212                 }
2213         } else {
2214                 /*
2215                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2216                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2217                  * the pi_state.
2218                  */
2219                 WARN_ON(!&q.pi_state);
2220                 pi_mutex = &q.pi_state->pi_mutex;
2221                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2222                 debug_rt_mutex_free_waiter(&rt_waiter);
2223
2224                 spin_lock(q.lock_ptr);
2225                 /*
2226                  * Fixup the pi_state owner and possibly acquire the lock if we
2227                  * haven't already.
2228                  */
2229                 res = fixup_owner(uaddr2, fshared, &q, !ret);
2230                 /*
2231                  * If fixup_owner() returned an error, proprogate that.  If it
2232                  * acquired the lock, clear our -ETIMEDOUT or -EINTR.
2233                  */
2234                 if (res)
2235                         ret = (res < 0) ? res : 0;
2236
2237                 /* Unqueue and drop the lock. */
2238                 unqueue_me_pi(&q);
2239         }
2240
2241         /*
2242          * If fixup_pi_state_owner() faulted and was unable to handle the
2243          * fault, unlock the rt_mutex and return the fault to userspace.
2244          */
2245         if (ret == -EFAULT) {
2246                 if (rt_mutex_owner(pi_mutex) == current)
2247                         rt_mutex_unlock(pi_mutex);
2248         } else if (ret == -EINTR) {
2249                 ret = -EFAULT;
2250                 if (get_user(uval, uaddr2))
2251                         goto out_put_keys;
2252
2253                 /*
2254                  * We've already been requeued, so restart by calling
2255                  * futex_lock_pi() directly, rather then returning to this
2256                  * function.
2257                  */
2258                 ret = -ERESTART_RESTARTBLOCK;
2259                 restart = &current_thread_info()->restart_block;
2260                 restart->fn = futex_lock_pi_restart;
2261                 restart->futex.uaddr = (u32 *)uaddr2;
2262                 restart->futex.val = uval;
2263                 restart->futex.flags = 0;
2264                 if (abs_time) {
2265                         restart->futex.flags |= FLAGS_HAS_TIMEOUT;
2266                         restart->futex.time = abs_time->tv64;
2267                 }
2268
2269                 if (fshared)
2270                         restart->futex.flags |= FLAGS_SHARED;
2271                 if (clockrt)
2272                         restart->futex.flags |= FLAGS_CLOCKRT;
2273         }
2274
2275 out_put_keys:
2276         put_futex_key(fshared, &q.key);
2277         put_futex_key(fshared, &key2);
2278
2279 out:
2280         if (to) {
2281                 hrtimer_cancel(&to->timer);
2282                 destroy_hrtimer_on_stack(&to->timer);
2283         }
2284         return ret;
2285 }
2286
2287 /*
2288  * Support for robust futexes: the kernel cleans up held futexes at
2289  * thread exit time.
2290  *
2291  * Implementation: user-space maintains a per-thread list of locks it
2292  * is holding. Upon do_exit(), the kernel carefully walks this list,
2293  * and marks all locks that are owned by this thread with the
2294  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2295  * always manipulated with the lock held, so the list is private and
2296  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2297  * field, to allow the kernel to clean up if the thread dies after
2298  * acquiring the lock, but just before it could have added itself to
2299  * the list. There can only be one such pending lock.
2300  */
2301
2302 /**
2303  * sys_set_robust_list - set the robust-futex list head of a task
2304  * @head: pointer to the list-head
2305  * @len: length of the list-head, as userspace expects
2306  */
2307 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2308                 size_t, len)
2309 {
2310         if (!futex_cmpxchg_enabled)
2311                 return -ENOSYS;
2312         /*
2313          * The kernel knows only one size for now:
2314          */
2315         if (unlikely(len != sizeof(*head)))
2316                 return -EINVAL;
2317
2318         current->robust_list = head;
2319
2320         return 0;
2321 }
2322
2323 /**
2324  * sys_get_robust_list - get the robust-futex list head of a task
2325  * @pid: pid of the process [zero for current task]
2326  * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2327  * @len_ptr: pointer to a length field, the kernel fills in the header size
2328  */
2329 SYSCALL_DEFINE3(get_robust_list, int, pid,
2330                 struct robust_list_head __user * __user *, head_ptr,
2331                 size_t __user *, len_ptr)
2332 {
2333         struct robust_list_head __user *head;
2334         unsigned long ret;
2335         const struct cred *cred = current_cred(), *pcred;
2336
2337         if (!futex_cmpxchg_enabled)
2338                 return -ENOSYS;
2339
2340         if (!pid)
2341                 head = current->robust_list;
2342         else {
2343                 struct task_struct *p;
2344
2345                 ret = -ESRCH;
2346                 rcu_read_lock();
2347                 p = find_task_by_vpid(pid);
2348                 if (!p)
2349                         goto err_unlock;
2350                 ret = -EPERM;
2351                 pcred = __task_cred(p);
2352                 if (cred->euid != pcred->euid &&
2353                     cred->euid != pcred->uid &&
2354                     !capable(CAP_SYS_PTRACE))
2355                         goto err_unlock;
2356                 head = p->robust_list;
2357                 rcu_read_unlock();
2358         }
2359
2360         if (put_user(sizeof(*head), len_ptr))
2361                 return -EFAULT;
2362         return put_user(head, head_ptr);
2363
2364 err_unlock:
2365         rcu_read_unlock();
2366
2367         return ret;
2368 }
2369
2370 /*
2371  * Process a futex-list entry, check whether it's owned by the
2372  * dying task, and do notification if so:
2373  */
2374 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2375 {
2376         u32 uval, nval, mval;
2377
2378 retry:
2379         if (get_user(uval, uaddr))
2380                 return -1;
2381
2382         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2383                 /*
2384                  * Ok, this dying thread is truly holding a futex
2385                  * of interest. Set the OWNER_DIED bit atomically
2386                  * via cmpxchg, and if the value had FUTEX_WAITERS
2387                  * set, wake up a waiter (if any). (We have to do a
2388                  * futex_wake() even if OWNER_DIED is already set -
2389                  * to handle the rare but possible case of recursive
2390                  * thread-death.) The rest of the cleanup is done in
2391                  * userspace.
2392                  */
2393                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2394                 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2395
2396                 if (nval == -EFAULT)
2397                         return -1;
2398
2399                 if (nval != uval)
2400                         goto retry;
2401
2402                 /*
2403                  * Wake robust non-PI futexes here. The wakeup of
2404                  * PI futexes happens in exit_pi_state():
2405                  */
2406                 if (!pi && (uval & FUTEX_WAITERS))
2407                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2408         }
2409         return 0;
2410 }
2411
2412 /*
2413  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2414  */
2415 static inline int fetch_robust_entry(struct robust_list __user **entry,
2416                                      struct robust_list __user * __user *head,
2417                                      int *pi)
2418 {
2419         unsigned long uentry;
2420
2421         if (get_user(uentry, (unsigned long __user *)head))
2422                 return -EFAULT;
2423
2424         *entry = (void __user *)(uentry & ~1UL);
2425         *pi = uentry & 1;
2426
2427         return 0;
2428 }
2429
2430 /*
2431  * Walk curr->robust_list (very carefully, it's a userspace list!)
2432  * and mark any locks found there dead, and notify any waiters.
2433  *
2434  * We silently return on any sign of list-walking problem.
2435  */
2436 void exit_robust_list(struct task_struct *curr)
2437 {
2438         struct robust_list_head __user *head = curr->robust_list;
2439         struct robust_list __user *entry, *next_entry, *pending;
2440         unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
2441         unsigned long futex_offset;
2442         int rc;
2443
2444         if (!futex_cmpxchg_enabled)
2445                 return;
2446
2447         /*
2448          * Fetch the list head (which was registered earlier, via
2449          * sys_set_robust_list()):
2450          */
2451         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2452                 return;
2453         /*
2454          * Fetch the relative futex offset:
2455          */
2456         if (get_user(futex_offset, &head->futex_offset))
2457                 return;
2458         /*
2459          * Fetch any possibly pending lock-add first, and handle it
2460          * if it exists:
2461          */
2462         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2463                 return;
2464
2465         next_entry = NULL;      /* avoid warning with gcc */
2466         while (entry != &head->list) {
2467                 /*
2468                  * Fetch the next entry in the list before calling
2469                  * handle_futex_death:
2470                  */
2471                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2472                 /*
2473                  * A pending lock might already be on the list, so
2474                  * don't process it twice:
2475                  */
2476                 if (entry != pending)
2477                         if (handle_futex_death((void __user *)entry + futex_offset,
2478                                                 curr, pi))
2479                                 return;
2480                 if (rc)
2481                         return;
2482                 entry = next_entry;
2483                 pi = next_pi;
2484                 /*
2485                  * Avoid excessively long or circular lists:
2486                  */
2487                 if (!--limit)
2488                         break;
2489
2490                 cond_resched();
2491         }
2492
2493         if (pending)
2494                 handle_futex_death((void __user *)pending + futex_offset,
2495                                    curr, pip);
2496 }
2497
2498 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2499                 u32 __user *uaddr2, u32 val2, u32 val3)
2500 {
2501         int clockrt, ret = -ENOSYS;
2502         int cmd = op & FUTEX_CMD_MASK;
2503         int fshared = 0;
2504
2505         if (!(op & FUTEX_PRIVATE_FLAG))
2506                 fshared = 1;
2507
2508         clockrt = op & FUTEX_CLOCK_REALTIME;
2509         if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2510                 return -ENOSYS;
2511
2512         switch (cmd) {
2513         case FUTEX_WAIT:
2514                 val3 = FUTEX_BITSET_MATCH_ANY;
2515         case FUTEX_WAIT_BITSET:
2516                 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
2517                 break;
2518         case FUTEX_WAKE:
2519                 val3 = FUTEX_BITSET_MATCH_ANY;
2520         case FUTEX_WAKE_BITSET:
2521                 ret = futex_wake(uaddr, fshared, val, val3);
2522                 break;
2523         case FUTEX_REQUEUE:
2524                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
2525                 break;
2526         case FUTEX_CMP_REQUEUE:
2527                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2528                                     0);
2529                 break;
2530         case FUTEX_WAKE_OP:
2531                 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2532                 break;
2533         case FUTEX_LOCK_PI:
2534                 if (futex_cmpxchg_enabled)
2535                         ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2536                 break;
2537         case FUTEX_UNLOCK_PI:
2538                 if (futex_cmpxchg_enabled)
2539                         ret = futex_unlock_pi(uaddr, fshared);
2540                 break;
2541         case FUTEX_TRYLOCK_PI:
2542                 if (futex_cmpxchg_enabled)
2543                         ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2544                 break;
2545         case FUTEX_WAIT_REQUEUE_PI:
2546                 val3 = FUTEX_BITSET_MATCH_ANY;
2547                 ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
2548                                             clockrt, uaddr2);
2549                 break;
2550         case FUTEX_CMP_REQUEUE_PI:
2551                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2552                                     1);
2553                 break;
2554         default:
2555                 ret = -ENOSYS;
2556         }
2557         return ret;
2558 }
2559
2560
2561 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2562                 struct timespec __user *, utime, u32 __user *, uaddr2,
2563                 u32, val3)
2564 {
2565         struct timespec ts;
2566         ktime_t t, *tp = NULL;
2567         u32 val2 = 0;
2568         int cmd = op & FUTEX_CMD_MASK;
2569
2570         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2571                       cmd == FUTEX_WAIT_BITSET ||
2572                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2573                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2574                         return -EFAULT;
2575                 if (!timespec_valid(&ts))
2576                         return -EINVAL;
2577
2578                 t = timespec_to_ktime(ts);
2579                 if (cmd == FUTEX_WAIT)
2580                         t = ktime_add_safe(ktime_get(), t);
2581                 tp = &t;
2582         }
2583         /*
2584          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2585          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2586          */
2587         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2588             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2589                 val2 = (u32) (unsigned long) utime;
2590
2591         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2592 }
2593
2594 static int __init futex_init(void)
2595 {
2596         u32 curval;
2597         int i;
2598
2599         /*
2600          * This will fail and we want it. Some arch implementations do
2601          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2602          * functionality. We want to know that before we call in any
2603          * of the complex code paths. Also we want to prevent
2604          * registration of robust lists in that case. NULL is
2605          * guaranteed to fault and we get -EFAULT on functional
2606          * implementation, the non functional ones will return
2607          * -ENOSYS.
2608          */
2609         curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2610         if (curval == -EFAULT)
2611                 futex_cmpxchg_enabled = 1;
2612
2613         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2614                 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2615                 spin_lock_init(&futex_queues[i].lock);
2616         }
2617
2618         return 0;
2619 }
2620 __initcall(futex_init);