futex: Correct queue_me and unqueue_me commentary
[safe/jmp/linux-2.6] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/module.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62
63 #include <asm/futex.h>
64
65 #include "rtmutex_common.h"
66
67 int __read_mostly futex_cmpxchg_enabled;
68
69 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
70
71 /*
72  * Priority Inheritance state:
73  */
74 struct futex_pi_state {
75         /*
76          * list of 'owned' pi_state instances - these have to be
77          * cleaned up in do_exit() if the task exits prematurely:
78          */
79         struct list_head list;
80
81         /*
82          * The PI object:
83          */
84         struct rt_mutex pi_mutex;
85
86         struct task_struct *owner;
87         atomic_t refcount;
88
89         union futex_key key;
90 };
91
92 /*
93  * We use this hashed waitqueue instead of a normal wait_queue_t, so
94  * we can wake only the relevant ones (hashed queues may be shared).
95  *
96  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
97  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
98  * The order of wakup is always to make the first condition true, then
99  * wake up q->waiter, then make the second condition true.
100  */
101 struct futex_q {
102         struct plist_node list;
103         /* Waiter reference */
104         struct task_struct *task;
105
106         /* Which hash list lock to use: */
107         spinlock_t *lock_ptr;
108
109         /* Key which the futex is hashed on: */
110         union futex_key key;
111
112         /* Optional priority inheritance state: */
113         struct futex_pi_state *pi_state;
114
115         /* rt_waiter storage for requeue_pi: */
116         struct rt_mutex_waiter *rt_waiter;
117
118         /* The expected requeue pi target futex key: */
119         union futex_key *requeue_pi_key;
120
121         /* Bitset for the optional bitmasked wakeup */
122         u32 bitset;
123 };
124
125 /*
126  * Hash buckets are shared by all the futex_keys that hash to the same
127  * location.  Each key may have multiple futex_q structures, one for each task
128  * waiting on a futex.
129  */
130 struct futex_hash_bucket {
131         spinlock_t lock;
132         struct plist_head chain;
133 };
134
135 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
136
137 /*
138  * We hash on the keys returned from get_futex_key (see below).
139  */
140 static struct futex_hash_bucket *hash_futex(union futex_key *key)
141 {
142         u32 hash = jhash2((u32*)&key->both.word,
143                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
144                           key->both.offset);
145         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
146 }
147
148 /*
149  * Return 1 if two futex_keys are equal, 0 otherwise.
150  */
151 static inline int match_futex(union futex_key *key1, union futex_key *key2)
152 {
153         return (key1->both.word == key2->both.word
154                 && key1->both.ptr == key2->both.ptr
155                 && key1->both.offset == key2->both.offset);
156 }
157
158 /*
159  * Take a reference to the resource addressed by a key.
160  * Can be called while holding spinlocks.
161  *
162  */
163 static void get_futex_key_refs(union futex_key *key)
164 {
165         if (!key->both.ptr)
166                 return;
167
168         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
169         case FUT_OFF_INODE:
170                 atomic_inc(&key->shared.inode->i_count);
171                 break;
172         case FUT_OFF_MMSHARED:
173                 atomic_inc(&key->private.mm->mm_count);
174                 break;
175         }
176 }
177
178 /*
179  * Drop a reference to the resource addressed by a key.
180  * The hash bucket spinlock must not be held.
181  */
182 static void drop_futex_key_refs(union futex_key *key)
183 {
184         if (!key->both.ptr) {
185                 /* If we're here then we tried to put a key we failed to get */
186                 WARN_ON_ONCE(1);
187                 return;
188         }
189
190         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
191         case FUT_OFF_INODE:
192                 iput(key->shared.inode);
193                 break;
194         case FUT_OFF_MMSHARED:
195                 mmdrop(key->private.mm);
196                 break;
197         }
198 }
199
200 /**
201  * get_futex_key - Get parameters which are the keys for a futex.
202  * @uaddr: virtual address of the futex
203  * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
204  * @key: address where result is stored.
205  * @rw: mapping needs to be read/write (values: VERIFY_READ, VERIFY_WRITE)
206  *
207  * Returns a negative error code or 0
208  * The key words are stored in *key on success.
209  *
210  * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
211  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
212  * We can usually work out the index without swapping in the page.
213  *
214  * lock_page() might sleep, the caller should not hold a spinlock.
215  */
216 static int
217 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
218 {
219         unsigned long address = (unsigned long)uaddr;
220         struct mm_struct *mm = current->mm;
221         struct page *page;
222         int err;
223
224         /*
225          * The futex address must be "naturally" aligned.
226          */
227         key->both.offset = address % PAGE_SIZE;
228         if (unlikely((address % sizeof(u32)) != 0))
229                 return -EINVAL;
230         address -= key->both.offset;
231
232         /*
233          * PROCESS_PRIVATE futexes are fast.
234          * As the mm cannot disappear under us and the 'key' only needs
235          * virtual address, we dont even have to find the underlying vma.
236          * Note : We do have to check 'uaddr' is a valid user address,
237          *        but access_ok() should be faster than find_vma()
238          */
239         if (!fshared) {
240                 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
241                         return -EFAULT;
242                 key->private.mm = mm;
243                 key->private.address = address;
244                 get_futex_key_refs(key);
245                 return 0;
246         }
247
248 again:
249         err = get_user_pages_fast(address, 1, rw == VERIFY_WRITE, &page);
250         if (err < 0)
251                 return err;
252
253         page = compound_head(page);
254         lock_page(page);
255         if (!page->mapping) {
256                 unlock_page(page);
257                 put_page(page);
258                 goto again;
259         }
260
261         /*
262          * Private mappings are handled in a simple way.
263          *
264          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
265          * it's a read-only handle, it's expected that futexes attach to
266          * the object not the particular process.
267          */
268         if (PageAnon(page)) {
269                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
270                 key->private.mm = mm;
271                 key->private.address = address;
272         } else {
273                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
274                 key->shared.inode = page->mapping->host;
275                 key->shared.pgoff = page->index;
276         }
277
278         get_futex_key_refs(key);
279
280         unlock_page(page);
281         put_page(page);
282         return 0;
283 }
284
285 static inline
286 void put_futex_key(int fshared, union futex_key *key)
287 {
288         drop_futex_key_refs(key);
289 }
290
291 /*
292  * fault_in_user_writeable - fault in user address and verify RW access
293  * @uaddr:      pointer to faulting user space address
294  *
295  * Slow path to fixup the fault we just took in the atomic write
296  * access to @uaddr.
297  *
298  * We have no generic implementation of a non destructive write to the
299  * user address. We know that we faulted in the atomic pagefault
300  * disabled section so we can as well avoid the #PF overhead by
301  * calling get_user_pages() right away.
302  */
303 static int fault_in_user_writeable(u32 __user *uaddr)
304 {
305         int ret = get_user_pages(current, current->mm, (unsigned long)uaddr,
306                                  1, 1, 0, NULL, NULL);
307         return ret < 0 ? ret : 0;
308 }
309
310 /**
311  * futex_top_waiter() - Return the highest priority waiter on a futex
312  * @hb:     the hash bucket the futex_q's reside in
313  * @key:    the futex key (to distinguish it from other futex futex_q's)
314  *
315  * Must be called with the hb lock held.
316  */
317 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
318                                         union futex_key *key)
319 {
320         struct futex_q *this;
321
322         plist_for_each_entry(this, &hb->chain, list) {
323                 if (match_futex(&this->key, key))
324                         return this;
325         }
326         return NULL;
327 }
328
329 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
330 {
331         u32 curval;
332
333         pagefault_disable();
334         curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
335         pagefault_enable();
336
337         return curval;
338 }
339
340 static int get_futex_value_locked(u32 *dest, u32 __user *from)
341 {
342         int ret;
343
344         pagefault_disable();
345         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
346         pagefault_enable();
347
348         return ret ? -EFAULT : 0;
349 }
350
351
352 /*
353  * PI code:
354  */
355 static int refill_pi_state_cache(void)
356 {
357         struct futex_pi_state *pi_state;
358
359         if (likely(current->pi_state_cache))
360                 return 0;
361
362         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
363
364         if (!pi_state)
365                 return -ENOMEM;
366
367         INIT_LIST_HEAD(&pi_state->list);
368         /* pi_mutex gets initialized later */
369         pi_state->owner = NULL;
370         atomic_set(&pi_state->refcount, 1);
371         pi_state->key = FUTEX_KEY_INIT;
372
373         current->pi_state_cache = pi_state;
374
375         return 0;
376 }
377
378 static struct futex_pi_state * alloc_pi_state(void)
379 {
380         struct futex_pi_state *pi_state = current->pi_state_cache;
381
382         WARN_ON(!pi_state);
383         current->pi_state_cache = NULL;
384
385         return pi_state;
386 }
387
388 static void free_pi_state(struct futex_pi_state *pi_state)
389 {
390         if (!atomic_dec_and_test(&pi_state->refcount))
391                 return;
392
393         /*
394          * If pi_state->owner is NULL, the owner is most probably dying
395          * and has cleaned up the pi_state already
396          */
397         if (pi_state->owner) {
398                 spin_lock_irq(&pi_state->owner->pi_lock);
399                 list_del_init(&pi_state->list);
400                 spin_unlock_irq(&pi_state->owner->pi_lock);
401
402                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
403         }
404
405         if (current->pi_state_cache)
406                 kfree(pi_state);
407         else {
408                 /*
409                  * pi_state->list is already empty.
410                  * clear pi_state->owner.
411                  * refcount is at 0 - put it back to 1.
412                  */
413                 pi_state->owner = NULL;
414                 atomic_set(&pi_state->refcount, 1);
415                 current->pi_state_cache = pi_state;
416         }
417 }
418
419 /*
420  * Look up the task based on what TID userspace gave us.
421  * We dont trust it.
422  */
423 static struct task_struct * futex_find_get_task(pid_t pid)
424 {
425         struct task_struct *p;
426         const struct cred *cred = current_cred(), *pcred;
427
428         rcu_read_lock();
429         p = find_task_by_vpid(pid);
430         if (!p) {
431                 p = ERR_PTR(-ESRCH);
432         } else {
433                 pcred = __task_cred(p);
434                 if (cred->euid != pcred->euid &&
435                     cred->euid != pcred->uid)
436                         p = ERR_PTR(-ESRCH);
437                 else
438                         get_task_struct(p);
439         }
440
441         rcu_read_unlock();
442
443         return p;
444 }
445
446 /*
447  * This task is holding PI mutexes at exit time => bad.
448  * Kernel cleans up PI-state, but userspace is likely hosed.
449  * (Robust-futex cleanup is separate and might save the day for userspace.)
450  */
451 void exit_pi_state_list(struct task_struct *curr)
452 {
453         struct list_head *next, *head = &curr->pi_state_list;
454         struct futex_pi_state *pi_state;
455         struct futex_hash_bucket *hb;
456         union futex_key key = FUTEX_KEY_INIT;
457
458         if (!futex_cmpxchg_enabled)
459                 return;
460         /*
461          * We are a ZOMBIE and nobody can enqueue itself on
462          * pi_state_list anymore, but we have to be careful
463          * versus waiters unqueueing themselves:
464          */
465         spin_lock_irq(&curr->pi_lock);
466         while (!list_empty(head)) {
467
468                 next = head->next;
469                 pi_state = list_entry(next, struct futex_pi_state, list);
470                 key = pi_state->key;
471                 hb = hash_futex(&key);
472                 spin_unlock_irq(&curr->pi_lock);
473
474                 spin_lock(&hb->lock);
475
476                 spin_lock_irq(&curr->pi_lock);
477                 /*
478                  * We dropped the pi-lock, so re-check whether this
479                  * task still owns the PI-state:
480                  */
481                 if (head->next != next) {
482                         spin_unlock(&hb->lock);
483                         continue;
484                 }
485
486                 WARN_ON(pi_state->owner != curr);
487                 WARN_ON(list_empty(&pi_state->list));
488                 list_del_init(&pi_state->list);
489                 pi_state->owner = NULL;
490                 spin_unlock_irq(&curr->pi_lock);
491
492                 rt_mutex_unlock(&pi_state->pi_mutex);
493
494                 spin_unlock(&hb->lock);
495
496                 spin_lock_irq(&curr->pi_lock);
497         }
498         spin_unlock_irq(&curr->pi_lock);
499 }
500
501 static int
502 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
503                 union futex_key *key, struct futex_pi_state **ps)
504 {
505         struct futex_pi_state *pi_state = NULL;
506         struct futex_q *this, *next;
507         struct plist_head *head;
508         struct task_struct *p;
509         pid_t pid = uval & FUTEX_TID_MASK;
510
511         head = &hb->chain;
512
513         plist_for_each_entry_safe(this, next, head, list) {
514                 if (match_futex(&this->key, key)) {
515                         /*
516                          * Another waiter already exists - bump up
517                          * the refcount and return its pi_state:
518                          */
519                         pi_state = this->pi_state;
520                         /*
521                          * Userspace might have messed up non PI and PI futexes
522                          */
523                         if (unlikely(!pi_state))
524                                 return -EINVAL;
525
526                         WARN_ON(!atomic_read(&pi_state->refcount));
527                         WARN_ON(pid && pi_state->owner &&
528                                 pi_state->owner->pid != pid);
529
530                         atomic_inc(&pi_state->refcount);
531                         *ps = pi_state;
532
533                         return 0;
534                 }
535         }
536
537         /*
538          * We are the first waiter - try to look up the real owner and attach
539          * the new pi_state to it, but bail out when TID = 0
540          */
541         if (!pid)
542                 return -ESRCH;
543         p = futex_find_get_task(pid);
544         if (IS_ERR(p))
545                 return PTR_ERR(p);
546
547         /*
548          * We need to look at the task state flags to figure out,
549          * whether the task is exiting. To protect against the do_exit
550          * change of the task flags, we do this protected by
551          * p->pi_lock:
552          */
553         spin_lock_irq(&p->pi_lock);
554         if (unlikely(p->flags & PF_EXITING)) {
555                 /*
556                  * The task is on the way out. When PF_EXITPIDONE is
557                  * set, we know that the task has finished the
558                  * cleanup:
559                  */
560                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
561
562                 spin_unlock_irq(&p->pi_lock);
563                 put_task_struct(p);
564                 return ret;
565         }
566
567         pi_state = alloc_pi_state();
568
569         /*
570          * Initialize the pi_mutex in locked state and make 'p'
571          * the owner of it:
572          */
573         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
574
575         /* Store the key for possible exit cleanups: */
576         pi_state->key = *key;
577
578         WARN_ON(!list_empty(&pi_state->list));
579         list_add(&pi_state->list, &p->pi_state_list);
580         pi_state->owner = p;
581         spin_unlock_irq(&p->pi_lock);
582
583         put_task_struct(p);
584
585         *ps = pi_state;
586
587         return 0;
588 }
589
590 /**
591  * futex_lock_pi_atomic() - atomic work required to acquire a pi aware futex
592  * @uaddr:              the pi futex user address
593  * @hb:                 the pi futex hash bucket
594  * @key:                the futex key associated with uaddr and hb
595  * @ps:                 the pi_state pointer where we store the result of the
596  *                      lookup
597  * @task:               the task to perform the atomic lock work for.  This will
598  *                      be "current" except in the case of requeue pi.
599  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
600  *
601  * Returns:
602  *  0 - ready to wait
603  *  1 - acquired the lock
604  * <0 - error
605  *
606  * The hb->lock and futex_key refs shall be held by the caller.
607  */
608 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
609                                 union futex_key *key,
610                                 struct futex_pi_state **ps,
611                                 struct task_struct *task, int set_waiters)
612 {
613         int lock_taken, ret, ownerdied = 0;
614         u32 uval, newval, curval;
615
616 retry:
617         ret = lock_taken = 0;
618
619         /*
620          * To avoid races, we attempt to take the lock here again
621          * (by doing a 0 -> TID atomic cmpxchg), while holding all
622          * the locks. It will most likely not succeed.
623          */
624         newval = task_pid_vnr(task);
625         if (set_waiters)
626                 newval |= FUTEX_WAITERS;
627
628         curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
629
630         if (unlikely(curval == -EFAULT))
631                 return -EFAULT;
632
633         /*
634          * Detect deadlocks.
635          */
636         if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
637                 return -EDEADLK;
638
639         /*
640          * Surprise - we got the lock. Just return to userspace:
641          */
642         if (unlikely(!curval))
643                 return 1;
644
645         uval = curval;
646
647         /*
648          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
649          * to wake at the next unlock.
650          */
651         newval = curval | FUTEX_WAITERS;
652
653         /*
654          * There are two cases, where a futex might have no owner (the
655          * owner TID is 0): OWNER_DIED. We take over the futex in this
656          * case. We also do an unconditional take over, when the owner
657          * of the futex died.
658          *
659          * This is safe as we are protected by the hash bucket lock !
660          */
661         if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
662                 /* Keep the OWNER_DIED bit */
663                 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
664                 ownerdied = 0;
665                 lock_taken = 1;
666         }
667
668         curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
669
670         if (unlikely(curval == -EFAULT))
671                 return -EFAULT;
672         if (unlikely(curval != uval))
673                 goto retry;
674
675         /*
676          * We took the lock due to owner died take over.
677          */
678         if (unlikely(lock_taken))
679                 return 1;
680
681         /*
682          * We dont have the lock. Look up the PI state (or create it if
683          * we are the first waiter):
684          */
685         ret = lookup_pi_state(uval, hb, key, ps);
686
687         if (unlikely(ret)) {
688                 switch (ret) {
689                 case -ESRCH:
690                         /*
691                          * No owner found for this futex. Check if the
692                          * OWNER_DIED bit is set to figure out whether
693                          * this is a robust futex or not.
694                          */
695                         if (get_futex_value_locked(&curval, uaddr))
696                                 return -EFAULT;
697
698                         /*
699                          * We simply start over in case of a robust
700                          * futex. The code above will take the futex
701                          * and return happy.
702                          */
703                         if (curval & FUTEX_OWNER_DIED) {
704                                 ownerdied = 1;
705                                 goto retry;
706                         }
707                 default:
708                         break;
709                 }
710         }
711
712         return ret;
713 }
714
715 /*
716  * The hash bucket lock must be held when this is called.
717  * Afterwards, the futex_q must not be accessed.
718  */
719 static void wake_futex(struct futex_q *q)
720 {
721         struct task_struct *p = q->task;
722
723         /*
724          * We set q->lock_ptr = NULL _before_ we wake up the task. If
725          * a non futex wake up happens on another CPU then the task
726          * might exit and p would dereference a non existing task
727          * struct. Prevent this by holding a reference on p across the
728          * wake up.
729          */
730         get_task_struct(p);
731
732         plist_del(&q->list, &q->list.plist);
733         /*
734          * The waiting task can free the futex_q as soon as
735          * q->lock_ptr = NULL is written, without taking any locks. A
736          * memory barrier is required here to prevent the following
737          * store to lock_ptr from getting ahead of the plist_del.
738          */
739         smp_wmb();
740         q->lock_ptr = NULL;
741
742         wake_up_state(p, TASK_NORMAL);
743         put_task_struct(p);
744 }
745
746 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
747 {
748         struct task_struct *new_owner;
749         struct futex_pi_state *pi_state = this->pi_state;
750         u32 curval, newval;
751
752         if (!pi_state)
753                 return -EINVAL;
754
755         spin_lock(&pi_state->pi_mutex.wait_lock);
756         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
757
758         /*
759          * This happens when we have stolen the lock and the original
760          * pending owner did not enqueue itself back on the rt_mutex.
761          * Thats not a tragedy. We know that way, that a lock waiter
762          * is on the fly. We make the futex_q waiter the pending owner.
763          */
764         if (!new_owner)
765                 new_owner = this->task;
766
767         /*
768          * We pass it to the next owner. (The WAITERS bit is always
769          * kept enabled while there is PI state around. We must also
770          * preserve the owner died bit.)
771          */
772         if (!(uval & FUTEX_OWNER_DIED)) {
773                 int ret = 0;
774
775                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
776
777                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
778
779                 if (curval == -EFAULT)
780                         ret = -EFAULT;
781                 else if (curval != uval)
782                         ret = -EINVAL;
783                 if (ret) {
784                         spin_unlock(&pi_state->pi_mutex.wait_lock);
785                         return ret;
786                 }
787         }
788
789         spin_lock_irq(&pi_state->owner->pi_lock);
790         WARN_ON(list_empty(&pi_state->list));
791         list_del_init(&pi_state->list);
792         spin_unlock_irq(&pi_state->owner->pi_lock);
793
794         spin_lock_irq(&new_owner->pi_lock);
795         WARN_ON(!list_empty(&pi_state->list));
796         list_add(&pi_state->list, &new_owner->pi_state_list);
797         pi_state->owner = new_owner;
798         spin_unlock_irq(&new_owner->pi_lock);
799
800         spin_unlock(&pi_state->pi_mutex.wait_lock);
801         rt_mutex_unlock(&pi_state->pi_mutex);
802
803         return 0;
804 }
805
806 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
807 {
808         u32 oldval;
809
810         /*
811          * There is no waiter, so we unlock the futex. The owner died
812          * bit has not to be preserved here. We are the owner:
813          */
814         oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
815
816         if (oldval == -EFAULT)
817                 return oldval;
818         if (oldval != uval)
819                 return -EAGAIN;
820
821         return 0;
822 }
823
824 /*
825  * Express the locking dependencies for lockdep:
826  */
827 static inline void
828 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
829 {
830         if (hb1 <= hb2) {
831                 spin_lock(&hb1->lock);
832                 if (hb1 < hb2)
833                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
834         } else { /* hb1 > hb2 */
835                 spin_lock(&hb2->lock);
836                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
837         }
838 }
839
840 static inline void
841 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
842 {
843         spin_unlock(&hb1->lock);
844         if (hb1 != hb2)
845                 spin_unlock(&hb2->lock);
846 }
847
848 /*
849  * Wake up waiters matching bitset queued on this futex (uaddr).
850  */
851 static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
852 {
853         struct futex_hash_bucket *hb;
854         struct futex_q *this, *next;
855         struct plist_head *head;
856         union futex_key key = FUTEX_KEY_INIT;
857         int ret;
858
859         if (!bitset)
860                 return -EINVAL;
861
862         ret = get_futex_key(uaddr, fshared, &key, VERIFY_READ);
863         if (unlikely(ret != 0))
864                 goto out;
865
866         hb = hash_futex(&key);
867         spin_lock(&hb->lock);
868         head = &hb->chain;
869
870         plist_for_each_entry_safe(this, next, head, list) {
871                 if (match_futex (&this->key, &key)) {
872                         if (this->pi_state || this->rt_waiter) {
873                                 ret = -EINVAL;
874                                 break;
875                         }
876
877                         /* Check if one of the bits is set in both bitsets */
878                         if (!(this->bitset & bitset))
879                                 continue;
880
881                         wake_futex(this);
882                         if (++ret >= nr_wake)
883                                 break;
884                 }
885         }
886
887         spin_unlock(&hb->lock);
888         put_futex_key(fshared, &key);
889 out:
890         return ret;
891 }
892
893 /*
894  * Wake up all waiters hashed on the physical page that is mapped
895  * to this virtual address:
896  */
897 static int
898 futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
899               int nr_wake, int nr_wake2, int op)
900 {
901         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
902         struct futex_hash_bucket *hb1, *hb2;
903         struct plist_head *head;
904         struct futex_q *this, *next;
905         int ret, op_ret;
906
907 retry:
908         ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
909         if (unlikely(ret != 0))
910                 goto out;
911         ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
912         if (unlikely(ret != 0))
913                 goto out_put_key1;
914
915         hb1 = hash_futex(&key1);
916         hb2 = hash_futex(&key2);
917
918         double_lock_hb(hb1, hb2);
919 retry_private:
920         op_ret = futex_atomic_op_inuser(op, uaddr2);
921         if (unlikely(op_ret < 0)) {
922
923                 double_unlock_hb(hb1, hb2);
924
925 #ifndef CONFIG_MMU
926                 /*
927                  * we don't get EFAULT from MMU faults if we don't have an MMU,
928                  * but we might get them from range checking
929                  */
930                 ret = op_ret;
931                 goto out_put_keys;
932 #endif
933
934                 if (unlikely(op_ret != -EFAULT)) {
935                         ret = op_ret;
936                         goto out_put_keys;
937                 }
938
939                 ret = fault_in_user_writeable(uaddr2);
940                 if (ret)
941                         goto out_put_keys;
942
943                 if (!fshared)
944                         goto retry_private;
945
946                 put_futex_key(fshared, &key2);
947                 put_futex_key(fshared, &key1);
948                 goto retry;
949         }
950
951         head = &hb1->chain;
952
953         plist_for_each_entry_safe(this, next, head, list) {
954                 if (match_futex (&this->key, &key1)) {
955                         wake_futex(this);
956                         if (++ret >= nr_wake)
957                                 break;
958                 }
959         }
960
961         if (op_ret > 0) {
962                 head = &hb2->chain;
963
964                 op_ret = 0;
965                 plist_for_each_entry_safe(this, next, head, list) {
966                         if (match_futex (&this->key, &key2)) {
967                                 wake_futex(this);
968                                 if (++op_ret >= nr_wake2)
969                                         break;
970                         }
971                 }
972                 ret += op_ret;
973         }
974
975         double_unlock_hb(hb1, hb2);
976 out_put_keys:
977         put_futex_key(fshared, &key2);
978 out_put_key1:
979         put_futex_key(fshared, &key1);
980 out:
981         return ret;
982 }
983
984 /**
985  * requeue_futex() - Requeue a futex_q from one hb to another
986  * @q:          the futex_q to requeue
987  * @hb1:        the source hash_bucket
988  * @hb2:        the target hash_bucket
989  * @key2:       the new key for the requeued futex_q
990  */
991 static inline
992 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
993                    struct futex_hash_bucket *hb2, union futex_key *key2)
994 {
995
996         /*
997          * If key1 and key2 hash to the same bucket, no need to
998          * requeue.
999          */
1000         if (likely(&hb1->chain != &hb2->chain)) {
1001                 plist_del(&q->list, &hb1->chain);
1002                 plist_add(&q->list, &hb2->chain);
1003                 q->lock_ptr = &hb2->lock;
1004 #ifdef CONFIG_DEBUG_PI_LIST
1005                 q->list.plist.lock = &hb2->lock;
1006 #endif
1007         }
1008         get_futex_key_refs(key2);
1009         q->key = *key2;
1010 }
1011
1012 /**
1013  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1014  * q:   the futex_q
1015  * key: the key of the requeue target futex
1016  * hb:  the hash_bucket of the requeue target futex
1017  *
1018  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1019  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1020  * to the requeue target futex so the waiter can detect the wakeup on the right
1021  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1022  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1023  * to protect access to the pi_state to fixup the owner later.  Must be called
1024  * with both q->lock_ptr and hb->lock held.
1025  */
1026 static inline
1027 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1028                            struct futex_hash_bucket *hb)
1029 {
1030         drop_futex_key_refs(&q->key);
1031         get_futex_key_refs(key);
1032         q->key = *key;
1033
1034         WARN_ON(plist_node_empty(&q->list));
1035         plist_del(&q->list, &q->list.plist);
1036
1037         WARN_ON(!q->rt_waiter);
1038         q->rt_waiter = NULL;
1039
1040         q->lock_ptr = &hb->lock;
1041 #ifdef CONFIG_DEBUG_PI_LIST
1042         q->list.plist.lock = &hb->lock;
1043 #endif
1044
1045         wake_up_state(q->task, TASK_NORMAL);
1046 }
1047
1048 /**
1049  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1050  * @pifutex:            the user address of the to futex
1051  * @hb1:                the from futex hash bucket, must be locked by the caller
1052  * @hb2:                the to futex hash bucket, must be locked by the caller
1053  * @key1:               the from futex key
1054  * @key2:               the to futex key
1055  * @ps:                 address to store the pi_state pointer
1056  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1057  *
1058  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1059  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1060  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1061  * hb1 and hb2 must be held by the caller.
1062  *
1063  * Returns:
1064  *  0 - failed to acquire the lock atomicly
1065  *  1 - acquired the lock
1066  * <0 - error
1067  */
1068 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1069                                  struct futex_hash_bucket *hb1,
1070                                  struct futex_hash_bucket *hb2,
1071                                  union futex_key *key1, union futex_key *key2,
1072                                  struct futex_pi_state **ps, int set_waiters)
1073 {
1074         struct futex_q *top_waiter = NULL;
1075         u32 curval;
1076         int ret;
1077
1078         if (get_futex_value_locked(&curval, pifutex))
1079                 return -EFAULT;
1080
1081         /*
1082          * Find the top_waiter and determine if there are additional waiters.
1083          * If the caller intends to requeue more than 1 waiter to pifutex,
1084          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1085          * as we have means to handle the possible fault.  If not, don't set
1086          * the bit unecessarily as it will force the subsequent unlock to enter
1087          * the kernel.
1088          */
1089         top_waiter = futex_top_waiter(hb1, key1);
1090
1091         /* There are no waiters, nothing for us to do. */
1092         if (!top_waiter)
1093                 return 0;
1094
1095         /* Ensure we requeue to the expected futex. */
1096         if (!match_futex(top_waiter->requeue_pi_key, key2))
1097                 return -EINVAL;
1098
1099         /*
1100          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1101          * the contended case or if set_waiters is 1.  The pi_state is returned
1102          * in ps in contended cases.
1103          */
1104         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1105                                    set_waiters);
1106         if (ret == 1)
1107                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1108
1109         return ret;
1110 }
1111
1112 /**
1113  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1114  * uaddr1:      source futex user address
1115  * uaddr2:      target futex user address
1116  * nr_wake:     number of waiters to wake (must be 1 for requeue_pi)
1117  * nr_requeue:  number of waiters to requeue (0-INT_MAX)
1118  * requeue_pi:  if we are attempting to requeue from a non-pi futex to a
1119  *              pi futex (pi to pi requeue is not supported)
1120  *
1121  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1122  * uaddr2 atomically on behalf of the top waiter.
1123  *
1124  * Returns:
1125  * >=0 - on success, the number of tasks requeued or woken
1126  *  <0 - on error
1127  */
1128 static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
1129                          int nr_wake, int nr_requeue, u32 *cmpval,
1130                          int requeue_pi)
1131 {
1132         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1133         int drop_count = 0, task_count = 0, ret;
1134         struct futex_pi_state *pi_state = NULL;
1135         struct futex_hash_bucket *hb1, *hb2;
1136         struct plist_head *head1;
1137         struct futex_q *this, *next;
1138         u32 curval2;
1139
1140         if (requeue_pi) {
1141                 /*
1142                  * requeue_pi requires a pi_state, try to allocate it now
1143                  * without any locks in case it fails.
1144                  */
1145                 if (refill_pi_state_cache())
1146                         return -ENOMEM;
1147                 /*
1148                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1149                  * + nr_requeue, since it acquires the rt_mutex prior to
1150                  * returning to userspace, so as to not leave the rt_mutex with
1151                  * waiters and no owner.  However, second and third wake-ups
1152                  * cannot be predicted as they involve race conditions with the
1153                  * first wake and a fault while looking up the pi_state.  Both
1154                  * pthread_cond_signal() and pthread_cond_broadcast() should
1155                  * use nr_wake=1.
1156                  */
1157                 if (nr_wake != 1)
1158                         return -EINVAL;
1159         }
1160
1161 retry:
1162         if (pi_state != NULL) {
1163                 /*
1164                  * We will have to lookup the pi_state again, so free this one
1165                  * to keep the accounting correct.
1166                  */
1167                 free_pi_state(pi_state);
1168                 pi_state = NULL;
1169         }
1170
1171         ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
1172         if (unlikely(ret != 0))
1173                 goto out;
1174         ret = get_futex_key(uaddr2, fshared, &key2,
1175                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1176         if (unlikely(ret != 0))
1177                 goto out_put_key1;
1178
1179         hb1 = hash_futex(&key1);
1180         hb2 = hash_futex(&key2);
1181
1182 retry_private:
1183         double_lock_hb(hb1, hb2);
1184
1185         if (likely(cmpval != NULL)) {
1186                 u32 curval;
1187
1188                 ret = get_futex_value_locked(&curval, uaddr1);
1189
1190                 if (unlikely(ret)) {
1191                         double_unlock_hb(hb1, hb2);
1192
1193                         ret = get_user(curval, uaddr1);
1194                         if (ret)
1195                                 goto out_put_keys;
1196
1197                         if (!fshared)
1198                                 goto retry_private;
1199
1200                         put_futex_key(fshared, &key2);
1201                         put_futex_key(fshared, &key1);
1202                         goto retry;
1203                 }
1204                 if (curval != *cmpval) {
1205                         ret = -EAGAIN;
1206                         goto out_unlock;
1207                 }
1208         }
1209
1210         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1211                 /*
1212                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1213                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1214                  * bit.  We force this here where we are able to easily handle
1215                  * faults rather in the requeue loop below.
1216                  */
1217                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1218                                                  &key2, &pi_state, nr_requeue);
1219
1220                 /*
1221                  * At this point the top_waiter has either taken uaddr2 or is
1222                  * waiting on it.  If the former, then the pi_state will not
1223                  * exist yet, look it up one more time to ensure we have a
1224                  * reference to it.
1225                  */
1226                 if (ret == 1) {
1227                         WARN_ON(pi_state);
1228                         task_count++;
1229                         ret = get_futex_value_locked(&curval2, uaddr2);
1230                         if (!ret)
1231                                 ret = lookup_pi_state(curval2, hb2, &key2,
1232                                                       &pi_state);
1233                 }
1234
1235                 switch (ret) {
1236                 case 0:
1237                         break;
1238                 case -EFAULT:
1239                         double_unlock_hb(hb1, hb2);
1240                         put_futex_key(fshared, &key2);
1241                         put_futex_key(fshared, &key1);
1242                         ret = fault_in_user_writeable(uaddr2);
1243                         if (!ret)
1244                                 goto retry;
1245                         goto out;
1246                 case -EAGAIN:
1247                         /* The owner was exiting, try again. */
1248                         double_unlock_hb(hb1, hb2);
1249                         put_futex_key(fshared, &key2);
1250                         put_futex_key(fshared, &key1);
1251                         cond_resched();
1252                         goto retry;
1253                 default:
1254                         goto out_unlock;
1255                 }
1256         }
1257
1258         head1 = &hb1->chain;
1259         plist_for_each_entry_safe(this, next, head1, list) {
1260                 if (task_count - nr_wake >= nr_requeue)
1261                         break;
1262
1263                 if (!match_futex(&this->key, &key1))
1264                         continue;
1265
1266                 /*
1267                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1268                  * be paired with each other and no other futex ops.
1269                  */
1270                 if ((requeue_pi && !this->rt_waiter) ||
1271                     (!requeue_pi && this->rt_waiter)) {
1272                         ret = -EINVAL;
1273                         break;
1274                 }
1275
1276                 /*
1277                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1278                  * lock, we already woke the top_waiter.  If not, it will be
1279                  * woken by futex_unlock_pi().
1280                  */
1281                 if (++task_count <= nr_wake && !requeue_pi) {
1282                         wake_futex(this);
1283                         continue;
1284                 }
1285
1286                 /* Ensure we requeue to the expected futex for requeue_pi. */
1287                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1288                         ret = -EINVAL;
1289                         break;
1290                 }
1291
1292                 /*
1293                  * Requeue nr_requeue waiters and possibly one more in the case
1294                  * of requeue_pi if we couldn't acquire the lock atomically.
1295                  */
1296                 if (requeue_pi) {
1297                         /* Prepare the waiter to take the rt_mutex. */
1298                         atomic_inc(&pi_state->refcount);
1299                         this->pi_state = pi_state;
1300                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1301                                                         this->rt_waiter,
1302                                                         this->task, 1);
1303                         if (ret == 1) {
1304                                 /* We got the lock. */
1305                                 requeue_pi_wake_futex(this, &key2, hb2);
1306                                 continue;
1307                         } else if (ret) {
1308                                 /* -EDEADLK */
1309                                 this->pi_state = NULL;
1310                                 free_pi_state(pi_state);
1311                                 goto out_unlock;
1312                         }
1313                 }
1314                 requeue_futex(this, hb1, hb2, &key2);
1315                 drop_count++;
1316         }
1317
1318 out_unlock:
1319         double_unlock_hb(hb1, hb2);
1320
1321         /*
1322          * drop_futex_key_refs() must be called outside the spinlocks. During
1323          * the requeue we moved futex_q's from the hash bucket at key1 to the
1324          * one at key2 and updated their key pointer.  We no longer need to
1325          * hold the references to key1.
1326          */
1327         while (--drop_count >= 0)
1328                 drop_futex_key_refs(&key1);
1329
1330 out_put_keys:
1331         put_futex_key(fshared, &key2);
1332 out_put_key1:
1333         put_futex_key(fshared, &key1);
1334 out:
1335         if (pi_state != NULL)
1336                 free_pi_state(pi_state);
1337         return ret ? ret : task_count;
1338 }
1339
1340 /* The key must be already stored in q->key. */
1341 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1342 {
1343         struct futex_hash_bucket *hb;
1344
1345         get_futex_key_refs(&q->key);
1346         hb = hash_futex(&q->key);
1347         q->lock_ptr = &hb->lock;
1348
1349         spin_lock(&hb->lock);
1350         return hb;
1351 }
1352
1353 static inline void
1354 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1355 {
1356         spin_unlock(&hb->lock);
1357         drop_futex_key_refs(&q->key);
1358 }
1359
1360 /**
1361  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1362  * @q:  The futex_q to enqueue
1363  * @hb: The destination hash bucket
1364  *
1365  * The hb->lock must be held by the caller, and is released here. A call to
1366  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1367  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1368  * or nothing if the unqueue is done as part of the wake process and the unqueue
1369  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1370  * an example).
1371  */
1372 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1373 {
1374         int prio;
1375
1376         /*
1377          * The priority used to register this element is
1378          * - either the real thread-priority for the real-time threads
1379          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1380          * - or MAX_RT_PRIO for non-RT threads.
1381          * Thus, all RT-threads are woken first in priority order, and
1382          * the others are woken last, in FIFO order.
1383          */
1384         prio = min(current->normal_prio, MAX_RT_PRIO);
1385
1386         plist_node_init(&q->list, prio);
1387 #ifdef CONFIG_DEBUG_PI_LIST
1388         q->list.plist.lock = &hb->lock;
1389 #endif
1390         plist_add(&q->list, &hb->chain);
1391         q->task = current;
1392         spin_unlock(&hb->lock);
1393 }
1394
1395 /**
1396  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1397  * @q:  The futex_q to unqueue
1398  *
1399  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1400  * be paired with exactly one earlier call to queue_me().
1401  *
1402  * Returns:
1403  *   1 - if the futex_q was still queued (and we removed unqueued it)
1404  *   0 - if the futex_q was already removed by the waking thread
1405  */
1406 static int unqueue_me(struct futex_q *q)
1407 {
1408         spinlock_t *lock_ptr;
1409         int ret = 0;
1410
1411         /* In the common case we don't take the spinlock, which is nice. */
1412 retry:
1413         lock_ptr = q->lock_ptr;
1414         barrier();
1415         if (lock_ptr != NULL) {
1416                 spin_lock(lock_ptr);
1417                 /*
1418                  * q->lock_ptr can change between reading it and
1419                  * spin_lock(), causing us to take the wrong lock.  This
1420                  * corrects the race condition.
1421                  *
1422                  * Reasoning goes like this: if we have the wrong lock,
1423                  * q->lock_ptr must have changed (maybe several times)
1424                  * between reading it and the spin_lock().  It can
1425                  * change again after the spin_lock() but only if it was
1426                  * already changed before the spin_lock().  It cannot,
1427                  * however, change back to the original value.  Therefore
1428                  * we can detect whether we acquired the correct lock.
1429                  */
1430                 if (unlikely(lock_ptr != q->lock_ptr)) {
1431                         spin_unlock(lock_ptr);
1432                         goto retry;
1433                 }
1434                 WARN_ON(plist_node_empty(&q->list));
1435                 plist_del(&q->list, &q->list.plist);
1436
1437                 BUG_ON(q->pi_state);
1438
1439                 spin_unlock(lock_ptr);
1440                 ret = 1;
1441         }
1442
1443         drop_futex_key_refs(&q->key);
1444         return ret;
1445 }
1446
1447 /*
1448  * PI futexes can not be requeued and must remove themself from the
1449  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1450  * and dropped here.
1451  */
1452 static void unqueue_me_pi(struct futex_q *q)
1453 {
1454         WARN_ON(plist_node_empty(&q->list));
1455         plist_del(&q->list, &q->list.plist);
1456
1457         BUG_ON(!q->pi_state);
1458         free_pi_state(q->pi_state);
1459         q->pi_state = NULL;
1460
1461         spin_unlock(q->lock_ptr);
1462
1463         drop_futex_key_refs(&q->key);
1464 }
1465
1466 /*
1467  * Fixup the pi_state owner with the new owner.
1468  *
1469  * Must be called with hash bucket lock held and mm->sem held for non
1470  * private futexes.
1471  */
1472 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1473                                 struct task_struct *newowner, int fshared)
1474 {
1475         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1476         struct futex_pi_state *pi_state = q->pi_state;
1477         struct task_struct *oldowner = pi_state->owner;
1478         u32 uval, curval, newval;
1479         int ret;
1480
1481         /* Owner died? */
1482         if (!pi_state->owner)
1483                 newtid |= FUTEX_OWNER_DIED;
1484
1485         /*
1486          * We are here either because we stole the rtmutex from the
1487          * pending owner or we are the pending owner which failed to
1488          * get the rtmutex. We have to replace the pending owner TID
1489          * in the user space variable. This must be atomic as we have
1490          * to preserve the owner died bit here.
1491          *
1492          * Note: We write the user space value _before_ changing the pi_state
1493          * because we can fault here. Imagine swapped out pages or a fork
1494          * that marked all the anonymous memory readonly for cow.
1495          *
1496          * Modifying pi_state _before_ the user space value would
1497          * leave the pi_state in an inconsistent state when we fault
1498          * here, because we need to drop the hash bucket lock to
1499          * handle the fault. This might be observed in the PID check
1500          * in lookup_pi_state.
1501          */
1502 retry:
1503         if (get_futex_value_locked(&uval, uaddr))
1504                 goto handle_fault;
1505
1506         while (1) {
1507                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1508
1509                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1510
1511                 if (curval == -EFAULT)
1512                         goto handle_fault;
1513                 if (curval == uval)
1514                         break;
1515                 uval = curval;
1516         }
1517
1518         /*
1519          * We fixed up user space. Now we need to fix the pi_state
1520          * itself.
1521          */
1522         if (pi_state->owner != NULL) {
1523                 spin_lock_irq(&pi_state->owner->pi_lock);
1524                 WARN_ON(list_empty(&pi_state->list));
1525                 list_del_init(&pi_state->list);
1526                 spin_unlock_irq(&pi_state->owner->pi_lock);
1527         }
1528
1529         pi_state->owner = newowner;
1530
1531         spin_lock_irq(&newowner->pi_lock);
1532         WARN_ON(!list_empty(&pi_state->list));
1533         list_add(&pi_state->list, &newowner->pi_state_list);
1534         spin_unlock_irq(&newowner->pi_lock);
1535         return 0;
1536
1537         /*
1538          * To handle the page fault we need to drop the hash bucket
1539          * lock here. That gives the other task (either the pending
1540          * owner itself or the task which stole the rtmutex) the
1541          * chance to try the fixup of the pi_state. So once we are
1542          * back from handling the fault we need to check the pi_state
1543          * after reacquiring the hash bucket lock and before trying to
1544          * do another fixup. When the fixup has been done already we
1545          * simply return.
1546          */
1547 handle_fault:
1548         spin_unlock(q->lock_ptr);
1549
1550         ret = fault_in_user_writeable(uaddr);
1551
1552         spin_lock(q->lock_ptr);
1553
1554         /*
1555          * Check if someone else fixed it for us:
1556          */
1557         if (pi_state->owner != oldowner)
1558                 return 0;
1559
1560         if (ret)
1561                 return ret;
1562
1563         goto retry;
1564 }
1565
1566 /*
1567  * In case we must use restart_block to restart a futex_wait,
1568  * we encode in the 'flags' shared capability
1569  */
1570 #define FLAGS_SHARED            0x01
1571 #define FLAGS_CLOCKRT           0x02
1572 #define FLAGS_HAS_TIMEOUT       0x04
1573
1574 static long futex_wait_restart(struct restart_block *restart);
1575
1576 /**
1577  * fixup_owner() - Post lock pi_state and corner case management
1578  * @uaddr:      user address of the futex
1579  * @fshared:    whether the futex is shared (1) or not (0)
1580  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1581  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1582  *
1583  * After attempting to lock an rt_mutex, this function is called to cleanup
1584  * the pi_state owner as well as handle race conditions that may allow us to
1585  * acquire the lock. Must be called with the hb lock held.
1586  *
1587  * Returns:
1588  *  1 - success, lock taken
1589  *  0 - success, lock not taken
1590  * <0 - on error (-EFAULT)
1591  */
1592 static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
1593                        int locked)
1594 {
1595         struct task_struct *owner;
1596         int ret = 0;
1597
1598         if (locked) {
1599                 /*
1600                  * Got the lock. We might not be the anticipated owner if we
1601                  * did a lock-steal - fix up the PI-state in that case:
1602                  */
1603                 if (q->pi_state->owner != current)
1604                         ret = fixup_pi_state_owner(uaddr, q, current, fshared);
1605                 goto out;
1606         }
1607
1608         /*
1609          * Catch the rare case, where the lock was released when we were on the
1610          * way back before we locked the hash bucket.
1611          */
1612         if (q->pi_state->owner == current) {
1613                 /*
1614                  * Try to get the rt_mutex now. This might fail as some other
1615                  * task acquired the rt_mutex after we removed ourself from the
1616                  * rt_mutex waiters list.
1617                  */
1618                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1619                         locked = 1;
1620                         goto out;
1621                 }
1622
1623                 /*
1624                  * pi_state is incorrect, some other task did a lock steal and
1625                  * we returned due to timeout or signal without taking the
1626                  * rt_mutex. Too late. We can access the rt_mutex_owner without
1627                  * locking, as the other task is now blocked on the hash bucket
1628                  * lock. Fix the state up.
1629                  */
1630                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1631                 ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
1632                 goto out;
1633         }
1634
1635         /*
1636          * Paranoia check. If we did not take the lock, then we should not be
1637          * the owner, nor the pending owner, of the rt_mutex.
1638          */
1639         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1640                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1641                                 "pi-state %p\n", ret,
1642                                 q->pi_state->pi_mutex.owner,
1643                                 q->pi_state->owner);
1644
1645 out:
1646         return ret ? ret : locked;
1647 }
1648
1649 /**
1650  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1651  * @hb:         the futex hash bucket, must be locked by the caller
1652  * @q:          the futex_q to queue up on
1653  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1654  */
1655 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1656                                 struct hrtimer_sleeper *timeout)
1657 {
1658         queue_me(q, hb);
1659
1660         /*
1661          * There might have been scheduling since the queue_me(), as we
1662          * cannot hold a spinlock across the get_user() in case it
1663          * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1664          * queueing ourselves into the futex hash. This code thus has to
1665          * rely on the futex_wake() code removing us from hash when it
1666          * wakes us up.
1667          */
1668         set_current_state(TASK_INTERRUPTIBLE);
1669
1670         /* Arm the timer */
1671         if (timeout) {
1672                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1673                 if (!hrtimer_active(&timeout->timer))
1674                         timeout->task = NULL;
1675         }
1676
1677         /*
1678          * !plist_node_empty() is safe here without any lock.
1679          * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1680          */
1681         if (likely(!plist_node_empty(&q->list))) {
1682                 /*
1683                  * If the timer has already expired, current will already be
1684                  * flagged for rescheduling. Only call schedule if there
1685                  * is no timeout, or if it has yet to expire.
1686                  */
1687                 if (!timeout || timeout->task)
1688                         schedule();
1689         }
1690         __set_current_state(TASK_RUNNING);
1691 }
1692
1693 /**
1694  * futex_wait_setup() - Prepare to wait on a futex
1695  * @uaddr:      the futex userspace address
1696  * @val:        the expected value
1697  * @fshared:    whether the futex is shared (1) or not (0)
1698  * @q:          the associated futex_q
1699  * @hb:         storage for hash_bucket pointer to be returned to caller
1700  *
1701  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1702  * compare it with the expected value.  Handle atomic faults internally.
1703  * Return with the hb lock held and a q.key reference on success, and unlocked
1704  * with no q.key reference on failure.
1705  *
1706  * Returns:
1707  *  0 - uaddr contains val and hb has been locked
1708  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1709  */
1710 static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
1711                            struct futex_q *q, struct futex_hash_bucket **hb)
1712 {
1713         u32 uval;
1714         int ret;
1715
1716         /*
1717          * Access the page AFTER the hash-bucket is locked.
1718          * Order is important:
1719          *
1720          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1721          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1722          *
1723          * The basic logical guarantee of a futex is that it blocks ONLY
1724          * if cond(var) is known to be true at the time of blocking, for
1725          * any cond.  If we queued after testing *uaddr, that would open
1726          * a race condition where we could block indefinitely with
1727          * cond(var) false, which would violate the guarantee.
1728          *
1729          * A consequence is that futex_wait() can return zero and absorb
1730          * a wakeup when *uaddr != val on entry to the syscall.  This is
1731          * rare, but normal.
1732          */
1733 retry:
1734         q->key = FUTEX_KEY_INIT;
1735         ret = get_futex_key(uaddr, fshared, &q->key, VERIFY_READ);
1736         if (unlikely(ret != 0))
1737                 return ret;
1738
1739 retry_private:
1740         *hb = queue_lock(q);
1741
1742         ret = get_futex_value_locked(&uval, uaddr);
1743
1744         if (ret) {
1745                 queue_unlock(q, *hb);
1746
1747                 ret = get_user(uval, uaddr);
1748                 if (ret)
1749                         goto out;
1750
1751                 if (!fshared)
1752                         goto retry_private;
1753
1754                 put_futex_key(fshared, &q->key);
1755                 goto retry;
1756         }
1757
1758         if (uval != val) {
1759                 queue_unlock(q, *hb);
1760                 ret = -EWOULDBLOCK;
1761         }
1762
1763 out:
1764         if (ret)
1765                 put_futex_key(fshared, &q->key);
1766         return ret;
1767 }
1768
1769 static int futex_wait(u32 __user *uaddr, int fshared,
1770                       u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1771 {
1772         struct hrtimer_sleeper timeout, *to = NULL;
1773         struct restart_block *restart;
1774         struct futex_hash_bucket *hb;
1775         struct futex_q q;
1776         int ret;
1777
1778         if (!bitset)
1779                 return -EINVAL;
1780
1781         q.pi_state = NULL;
1782         q.bitset = bitset;
1783         q.rt_waiter = NULL;
1784         q.requeue_pi_key = NULL;
1785
1786         if (abs_time) {
1787                 to = &timeout;
1788
1789                 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1790                                       CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1791                 hrtimer_init_sleeper(to, current);
1792                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1793                                              current->timer_slack_ns);
1794         }
1795
1796         /* Prepare to wait on uaddr. */
1797         ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
1798         if (ret)
1799                 goto out;
1800
1801         /* queue_me and wait for wakeup, timeout, or a signal. */
1802         futex_wait_queue_me(hb, &q, to);
1803
1804         /* If we were woken (and unqueued), we succeeded, whatever. */
1805         ret = 0;
1806         if (!unqueue_me(&q))
1807                 goto out_put_key;
1808         ret = -ETIMEDOUT;
1809         if (to && !to->task)
1810                 goto out_put_key;
1811
1812         /*
1813          * We expect signal_pending(current), but another thread may
1814          * have handled it for us already.
1815          */
1816         ret = -ERESTARTSYS;
1817         if (!abs_time)
1818                 goto out_put_key;
1819
1820         restart = &current_thread_info()->restart_block;
1821         restart->fn = futex_wait_restart;
1822         restart->futex.uaddr = (u32 *)uaddr;
1823         restart->futex.val = val;
1824         restart->futex.time = abs_time->tv64;
1825         restart->futex.bitset = bitset;
1826         restart->futex.flags = FLAGS_HAS_TIMEOUT;
1827
1828         if (fshared)
1829                 restart->futex.flags |= FLAGS_SHARED;
1830         if (clockrt)
1831                 restart->futex.flags |= FLAGS_CLOCKRT;
1832
1833         ret = -ERESTART_RESTARTBLOCK;
1834
1835 out_put_key:
1836         put_futex_key(fshared, &q.key);
1837 out:
1838         if (to) {
1839                 hrtimer_cancel(&to->timer);
1840                 destroy_hrtimer_on_stack(&to->timer);
1841         }
1842         return ret;
1843 }
1844
1845
1846 static long futex_wait_restart(struct restart_block *restart)
1847 {
1848         u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1849         int fshared = 0;
1850         ktime_t t, *tp = NULL;
1851
1852         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1853                 t.tv64 = restart->futex.time;
1854                 tp = &t;
1855         }
1856         restart->fn = do_no_restart_syscall;
1857         if (restart->futex.flags & FLAGS_SHARED)
1858                 fshared = 1;
1859         return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1860                                 restart->futex.bitset,
1861                                 restart->futex.flags & FLAGS_CLOCKRT);
1862 }
1863
1864
1865 /*
1866  * Userspace tried a 0 -> TID atomic transition of the futex value
1867  * and failed. The kernel side here does the whole locking operation:
1868  * if there are waiters then it will block, it does PI, etc. (Due to
1869  * races the kernel might see a 0 value of the futex too.)
1870  */
1871 static int futex_lock_pi(u32 __user *uaddr, int fshared,
1872                          int detect, ktime_t *time, int trylock)
1873 {
1874         struct hrtimer_sleeper timeout, *to = NULL;
1875         struct futex_hash_bucket *hb;
1876         struct futex_q q;
1877         int res, ret;
1878
1879         if (refill_pi_state_cache())
1880                 return -ENOMEM;
1881
1882         if (time) {
1883                 to = &timeout;
1884                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1885                                       HRTIMER_MODE_ABS);
1886                 hrtimer_init_sleeper(to, current);
1887                 hrtimer_set_expires(&to->timer, *time);
1888         }
1889
1890         q.pi_state = NULL;
1891         q.rt_waiter = NULL;
1892         q.requeue_pi_key = NULL;
1893 retry:
1894         q.key = FUTEX_KEY_INIT;
1895         ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE);
1896         if (unlikely(ret != 0))
1897                 goto out;
1898
1899 retry_private:
1900         hb = queue_lock(&q);
1901
1902         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1903         if (unlikely(ret)) {
1904                 switch (ret) {
1905                 case 1:
1906                         /* We got the lock. */
1907                         ret = 0;
1908                         goto out_unlock_put_key;
1909                 case -EFAULT:
1910                         goto uaddr_faulted;
1911                 case -EAGAIN:
1912                         /*
1913                          * Task is exiting and we just wait for the
1914                          * exit to complete.
1915                          */
1916                         queue_unlock(&q, hb);
1917                         put_futex_key(fshared, &q.key);
1918                         cond_resched();
1919                         goto retry;
1920                 default:
1921                         goto out_unlock_put_key;
1922                 }
1923         }
1924
1925         /*
1926          * Only actually queue now that the atomic ops are done:
1927          */
1928         queue_me(&q, hb);
1929
1930         WARN_ON(!q.pi_state);
1931         /*
1932          * Block on the PI mutex:
1933          */
1934         if (!trylock)
1935                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1936         else {
1937                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1938                 /* Fixup the trylock return value: */
1939                 ret = ret ? 0 : -EWOULDBLOCK;
1940         }
1941
1942         spin_lock(q.lock_ptr);
1943         /*
1944          * Fixup the pi_state owner and possibly acquire the lock if we
1945          * haven't already.
1946          */
1947         res = fixup_owner(uaddr, fshared, &q, !ret);
1948         /*
1949          * If fixup_owner() returned an error, proprogate that.  If it acquired
1950          * the lock, clear our -ETIMEDOUT or -EINTR.
1951          */
1952         if (res)
1953                 ret = (res < 0) ? res : 0;
1954
1955         /*
1956          * If fixup_owner() faulted and was unable to handle the fault, unlock
1957          * it and return the fault to userspace.
1958          */
1959         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
1960                 rt_mutex_unlock(&q.pi_state->pi_mutex);
1961
1962         /* Unqueue and drop the lock */
1963         unqueue_me_pi(&q);
1964
1965         goto out;
1966
1967 out_unlock_put_key:
1968         queue_unlock(&q, hb);
1969
1970 out_put_key:
1971         put_futex_key(fshared, &q.key);
1972 out:
1973         if (to)
1974                 destroy_hrtimer_on_stack(&to->timer);
1975         return ret != -EINTR ? ret : -ERESTARTNOINTR;
1976
1977 uaddr_faulted:
1978         queue_unlock(&q, hb);
1979
1980         ret = fault_in_user_writeable(uaddr);
1981         if (ret)
1982                 goto out_put_key;
1983
1984         if (!fshared)
1985                 goto retry_private;
1986
1987         put_futex_key(fshared, &q.key);
1988         goto retry;
1989 }
1990
1991 /*
1992  * Userspace attempted a TID -> 0 atomic transition, and failed.
1993  * This is the in-kernel slowpath: we look up the PI state (if any),
1994  * and do the rt-mutex unlock.
1995  */
1996 static int futex_unlock_pi(u32 __user *uaddr, int fshared)
1997 {
1998         struct futex_hash_bucket *hb;
1999         struct futex_q *this, *next;
2000         u32 uval;
2001         struct plist_head *head;
2002         union futex_key key = FUTEX_KEY_INIT;
2003         int ret;
2004
2005 retry:
2006         if (get_user(uval, uaddr))
2007                 return -EFAULT;
2008         /*
2009          * We release only a lock we actually own:
2010          */
2011         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
2012                 return -EPERM;
2013
2014         ret = get_futex_key(uaddr, fshared, &key, VERIFY_WRITE);
2015         if (unlikely(ret != 0))
2016                 goto out;
2017
2018         hb = hash_futex(&key);
2019         spin_lock(&hb->lock);
2020
2021         /*
2022          * To avoid races, try to do the TID -> 0 atomic transition
2023          * again. If it succeeds then we can return without waking
2024          * anyone else up:
2025          */
2026         if (!(uval & FUTEX_OWNER_DIED))
2027                 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
2028
2029
2030         if (unlikely(uval == -EFAULT))
2031                 goto pi_faulted;
2032         /*
2033          * Rare case: we managed to release the lock atomically,
2034          * no need to wake anyone else up:
2035          */
2036         if (unlikely(uval == task_pid_vnr(current)))
2037                 goto out_unlock;
2038
2039         /*
2040          * Ok, other tasks may need to be woken up - check waiters
2041          * and do the wakeup if necessary:
2042          */
2043         head = &hb->chain;
2044
2045         plist_for_each_entry_safe(this, next, head, list) {
2046                 if (!match_futex (&this->key, &key))
2047                         continue;
2048                 ret = wake_futex_pi(uaddr, uval, this);
2049                 /*
2050                  * The atomic access to the futex value
2051                  * generated a pagefault, so retry the
2052                  * user-access and the wakeup:
2053                  */
2054                 if (ret == -EFAULT)
2055                         goto pi_faulted;
2056                 goto out_unlock;
2057         }
2058         /*
2059          * No waiters - kernel unlocks the futex:
2060          */
2061         if (!(uval & FUTEX_OWNER_DIED)) {
2062                 ret = unlock_futex_pi(uaddr, uval);
2063                 if (ret == -EFAULT)
2064                         goto pi_faulted;
2065         }
2066
2067 out_unlock:
2068         spin_unlock(&hb->lock);
2069         put_futex_key(fshared, &key);
2070
2071 out:
2072         return ret;
2073
2074 pi_faulted:
2075         spin_unlock(&hb->lock);
2076         put_futex_key(fshared, &key);
2077
2078         ret = fault_in_user_writeable(uaddr);
2079         if (!ret)
2080                 goto retry;
2081
2082         return ret;
2083 }
2084
2085 /**
2086  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2087  * @hb:         the hash_bucket futex_q was original enqueued on
2088  * @q:          the futex_q woken while waiting to be requeued
2089  * @key2:       the futex_key of the requeue target futex
2090  * @timeout:    the timeout associated with the wait (NULL if none)
2091  *
2092  * Detect if the task was woken on the initial futex as opposed to the requeue
2093  * target futex.  If so, determine if it was a timeout or a signal that caused
2094  * the wakeup and return the appropriate error code to the caller.  Must be
2095  * called with the hb lock held.
2096  *
2097  * Returns
2098  *  0 - no early wakeup detected
2099  * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2100  */
2101 static inline
2102 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2103                                    struct futex_q *q, union futex_key *key2,
2104                                    struct hrtimer_sleeper *timeout)
2105 {
2106         int ret = 0;
2107
2108         /*
2109          * With the hb lock held, we avoid races while we process the wakeup.
2110          * We only need to hold hb (and not hb2) to ensure atomicity as the
2111          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2112          * It can't be requeued from uaddr2 to something else since we don't
2113          * support a PI aware source futex for requeue.
2114          */
2115         if (!match_futex(&q->key, key2)) {
2116                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2117                 /*
2118                  * We were woken prior to requeue by a timeout or a signal.
2119                  * Unqueue the futex_q and determine which it was.
2120                  */
2121                 plist_del(&q->list, &q->list.plist);
2122                 drop_futex_key_refs(&q->key);
2123
2124                 if (timeout && !timeout->task)
2125                         ret = -ETIMEDOUT;
2126                 else
2127                         ret = -ERESTARTNOINTR;
2128         }
2129         return ret;
2130 }
2131
2132 /**
2133  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2134  * @uaddr:      the futex we initially wait on (non-pi)
2135  * @fshared:    whether the futexes are shared (1) or not (0).  They must be
2136  *              the same type, no requeueing from private to shared, etc.
2137  * @val:        the expected value of uaddr
2138  * @abs_time:   absolute timeout
2139  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2140  * @clockrt:    whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2141  * @uaddr2:     the pi futex we will take prior to returning to user-space
2142  *
2143  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2144  * uaddr2 which must be PI aware.  Normal wakeup will wake on uaddr2 and
2145  * complete the acquisition of the rt_mutex prior to returning to userspace.
2146  * This ensures the rt_mutex maintains an owner when it has waiters; without
2147  * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2148  * need to.
2149  *
2150  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2151  * via the following:
2152  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2153  * 2) wakeup on uaddr2 after a requeue
2154  * 3) signal
2155  * 4) timeout
2156  *
2157  * If 3, cleanup and return -ERESTARTNOINTR.
2158  *
2159  * If 2, we may then block on trying to take the rt_mutex and return via:
2160  * 5) successful lock
2161  * 6) signal
2162  * 7) timeout
2163  * 8) other lock acquisition failure
2164  *
2165  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2166  *
2167  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2168  *
2169  * Returns:
2170  *  0 - On success
2171  * <0 - On error
2172  */
2173 static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2174                                  u32 val, ktime_t *abs_time, u32 bitset,
2175                                  int clockrt, u32 __user *uaddr2)
2176 {
2177         struct hrtimer_sleeper timeout, *to = NULL;
2178         struct rt_mutex_waiter rt_waiter;
2179         struct rt_mutex *pi_mutex = NULL;
2180         struct futex_hash_bucket *hb;
2181         union futex_key key2;
2182         struct futex_q q;
2183         int res, ret;
2184
2185         if (!bitset)
2186                 return -EINVAL;
2187
2188         if (abs_time) {
2189                 to = &timeout;
2190                 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
2191                                       CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2192                 hrtimer_init_sleeper(to, current);
2193                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2194                                              current->timer_slack_ns);
2195         }
2196
2197         /*
2198          * The waiter is allocated on our stack, manipulated by the requeue
2199          * code while we sleep on uaddr.
2200          */
2201         debug_rt_mutex_init_waiter(&rt_waiter);
2202         rt_waiter.task = NULL;
2203
2204         key2 = FUTEX_KEY_INIT;
2205         ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
2206         if (unlikely(ret != 0))
2207                 goto out;
2208
2209         q.pi_state = NULL;
2210         q.bitset = bitset;
2211         q.rt_waiter = &rt_waiter;
2212         q.requeue_pi_key = &key2;
2213
2214         /* Prepare to wait on uaddr. */
2215         ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
2216         if (ret)
2217                 goto out_key2;
2218
2219         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2220         futex_wait_queue_me(hb, &q, to);
2221
2222         spin_lock(&hb->lock);
2223         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2224         spin_unlock(&hb->lock);
2225         if (ret)
2226                 goto out_put_keys;
2227
2228         /*
2229          * In order for us to be here, we know our q.key == key2, and since
2230          * we took the hb->lock above, we also know that futex_requeue() has
2231          * completed and we no longer have to concern ourselves with a wakeup
2232          * race with the atomic proxy lock acquition by the requeue code.
2233          */
2234
2235         /* Check if the requeue code acquired the second futex for us. */
2236         if (!q.rt_waiter) {
2237                 /*
2238                  * Got the lock. We might not be the anticipated owner if we
2239                  * did a lock-steal - fix up the PI-state in that case.
2240                  */
2241                 if (q.pi_state && (q.pi_state->owner != current)) {
2242                         spin_lock(q.lock_ptr);
2243                         ret = fixup_pi_state_owner(uaddr2, &q, current,
2244                                                    fshared);
2245                         spin_unlock(q.lock_ptr);
2246                 }
2247         } else {
2248                 /*
2249                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2250                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2251                  * the pi_state.
2252                  */
2253                 WARN_ON(!&q.pi_state);
2254                 pi_mutex = &q.pi_state->pi_mutex;
2255                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2256                 debug_rt_mutex_free_waiter(&rt_waiter);
2257
2258                 spin_lock(q.lock_ptr);
2259                 /*
2260                  * Fixup the pi_state owner and possibly acquire the lock if we
2261                  * haven't already.
2262                  */
2263                 res = fixup_owner(uaddr2, fshared, &q, !ret);
2264                 /*
2265                  * If fixup_owner() returned an error, proprogate that.  If it
2266                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2267                  */
2268                 if (res)
2269                         ret = (res < 0) ? res : 0;
2270
2271                 /* Unqueue and drop the lock. */
2272                 unqueue_me_pi(&q);
2273         }
2274
2275         /*
2276          * If fixup_pi_state_owner() faulted and was unable to handle the
2277          * fault, unlock the rt_mutex and return the fault to userspace.
2278          */
2279         if (ret == -EFAULT) {
2280                 if (rt_mutex_owner(pi_mutex) == current)
2281                         rt_mutex_unlock(pi_mutex);
2282         } else if (ret == -EINTR) {
2283                 /*
2284                  * We've already been requeued, but cannot restart by calling
2285                  * futex_lock_pi() directly. We could restart this syscall, but
2286                  * it would detect that the user space "val" changed and return
2287                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2288                  * -EWOULDBLOCK directly.
2289                  */
2290                 ret = -EWOULDBLOCK;
2291         }
2292
2293 out_put_keys:
2294         put_futex_key(fshared, &q.key);
2295 out_key2:
2296         put_futex_key(fshared, &key2);
2297
2298 out:
2299         if (to) {
2300                 hrtimer_cancel(&to->timer);
2301                 destroy_hrtimer_on_stack(&to->timer);
2302         }
2303         return ret;
2304 }
2305
2306 /*
2307  * Support for robust futexes: the kernel cleans up held futexes at
2308  * thread exit time.
2309  *
2310  * Implementation: user-space maintains a per-thread list of locks it
2311  * is holding. Upon do_exit(), the kernel carefully walks this list,
2312  * and marks all locks that are owned by this thread with the
2313  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2314  * always manipulated with the lock held, so the list is private and
2315  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2316  * field, to allow the kernel to clean up if the thread dies after
2317  * acquiring the lock, but just before it could have added itself to
2318  * the list. There can only be one such pending lock.
2319  */
2320
2321 /**
2322  * sys_set_robust_list - set the robust-futex list head of a task
2323  * @head: pointer to the list-head
2324  * @len: length of the list-head, as userspace expects
2325  */
2326 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2327                 size_t, len)
2328 {
2329         if (!futex_cmpxchg_enabled)
2330                 return -ENOSYS;
2331         /*
2332          * The kernel knows only one size for now:
2333          */
2334         if (unlikely(len != sizeof(*head)))
2335                 return -EINVAL;
2336
2337         current->robust_list = head;
2338
2339         return 0;
2340 }
2341
2342 /**
2343  * sys_get_robust_list - get the robust-futex list head of a task
2344  * @pid: pid of the process [zero for current task]
2345  * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2346  * @len_ptr: pointer to a length field, the kernel fills in the header size
2347  */
2348 SYSCALL_DEFINE3(get_robust_list, int, pid,
2349                 struct robust_list_head __user * __user *, head_ptr,
2350                 size_t __user *, len_ptr)
2351 {
2352         struct robust_list_head __user *head;
2353         unsigned long ret;
2354         const struct cred *cred = current_cred(), *pcred;
2355
2356         if (!futex_cmpxchg_enabled)
2357                 return -ENOSYS;
2358
2359         if (!pid)
2360                 head = current->robust_list;
2361         else {
2362                 struct task_struct *p;
2363
2364                 ret = -ESRCH;
2365                 rcu_read_lock();
2366                 p = find_task_by_vpid(pid);
2367                 if (!p)
2368                         goto err_unlock;
2369                 ret = -EPERM;
2370                 pcred = __task_cred(p);
2371                 if (cred->euid != pcred->euid &&
2372                     cred->euid != pcred->uid &&
2373                     !capable(CAP_SYS_PTRACE))
2374                         goto err_unlock;
2375                 head = p->robust_list;
2376                 rcu_read_unlock();
2377         }
2378
2379         if (put_user(sizeof(*head), len_ptr))
2380                 return -EFAULT;
2381         return put_user(head, head_ptr);
2382
2383 err_unlock:
2384         rcu_read_unlock();
2385
2386         return ret;
2387 }
2388
2389 /*
2390  * Process a futex-list entry, check whether it's owned by the
2391  * dying task, and do notification if so:
2392  */
2393 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2394 {
2395         u32 uval, nval, mval;
2396
2397 retry:
2398         if (get_user(uval, uaddr))
2399                 return -1;
2400
2401         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2402                 /*
2403                  * Ok, this dying thread is truly holding a futex
2404                  * of interest. Set the OWNER_DIED bit atomically
2405                  * via cmpxchg, and if the value had FUTEX_WAITERS
2406                  * set, wake up a waiter (if any). (We have to do a
2407                  * futex_wake() even if OWNER_DIED is already set -
2408                  * to handle the rare but possible case of recursive
2409                  * thread-death.) The rest of the cleanup is done in
2410                  * userspace.
2411                  */
2412                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2413                 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2414
2415                 if (nval == -EFAULT)
2416                         return -1;
2417
2418                 if (nval != uval)
2419                         goto retry;
2420
2421                 /*
2422                  * Wake robust non-PI futexes here. The wakeup of
2423                  * PI futexes happens in exit_pi_state():
2424                  */
2425                 if (!pi && (uval & FUTEX_WAITERS))
2426                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2427         }
2428         return 0;
2429 }
2430
2431 /*
2432  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2433  */
2434 static inline int fetch_robust_entry(struct robust_list __user **entry,
2435                                      struct robust_list __user * __user *head,
2436                                      int *pi)
2437 {
2438         unsigned long uentry;
2439
2440         if (get_user(uentry, (unsigned long __user *)head))
2441                 return -EFAULT;
2442
2443         *entry = (void __user *)(uentry & ~1UL);
2444         *pi = uentry & 1;
2445
2446         return 0;
2447 }
2448
2449 /*
2450  * Walk curr->robust_list (very carefully, it's a userspace list!)
2451  * and mark any locks found there dead, and notify any waiters.
2452  *
2453  * We silently return on any sign of list-walking problem.
2454  */
2455 void exit_robust_list(struct task_struct *curr)
2456 {
2457         struct robust_list_head __user *head = curr->robust_list;
2458         struct robust_list __user *entry, *next_entry, *pending;
2459         unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
2460         unsigned long futex_offset;
2461         int rc;
2462
2463         if (!futex_cmpxchg_enabled)
2464                 return;
2465
2466         /*
2467          * Fetch the list head (which was registered earlier, via
2468          * sys_set_robust_list()):
2469          */
2470         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2471                 return;
2472         /*
2473          * Fetch the relative futex offset:
2474          */
2475         if (get_user(futex_offset, &head->futex_offset))
2476                 return;
2477         /*
2478          * Fetch any possibly pending lock-add first, and handle it
2479          * if it exists:
2480          */
2481         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2482                 return;
2483
2484         next_entry = NULL;      /* avoid warning with gcc */
2485         while (entry != &head->list) {
2486                 /*
2487                  * Fetch the next entry in the list before calling
2488                  * handle_futex_death:
2489                  */
2490                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2491                 /*
2492                  * A pending lock might already be on the list, so
2493                  * don't process it twice:
2494                  */
2495                 if (entry != pending)
2496                         if (handle_futex_death((void __user *)entry + futex_offset,
2497                                                 curr, pi))
2498                                 return;
2499                 if (rc)
2500                         return;
2501                 entry = next_entry;
2502                 pi = next_pi;
2503                 /*
2504                  * Avoid excessively long or circular lists:
2505                  */
2506                 if (!--limit)
2507                         break;
2508
2509                 cond_resched();
2510         }
2511
2512         if (pending)
2513                 handle_futex_death((void __user *)pending + futex_offset,
2514                                    curr, pip);
2515 }
2516
2517 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2518                 u32 __user *uaddr2, u32 val2, u32 val3)
2519 {
2520         int clockrt, ret = -ENOSYS;
2521         int cmd = op & FUTEX_CMD_MASK;
2522         int fshared = 0;
2523
2524         if (!(op & FUTEX_PRIVATE_FLAG))
2525                 fshared = 1;
2526
2527         clockrt = op & FUTEX_CLOCK_REALTIME;
2528         if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2529                 return -ENOSYS;
2530
2531         switch (cmd) {
2532         case FUTEX_WAIT:
2533                 val3 = FUTEX_BITSET_MATCH_ANY;
2534         case FUTEX_WAIT_BITSET:
2535                 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
2536                 break;
2537         case FUTEX_WAKE:
2538                 val3 = FUTEX_BITSET_MATCH_ANY;
2539         case FUTEX_WAKE_BITSET:
2540                 ret = futex_wake(uaddr, fshared, val, val3);
2541                 break;
2542         case FUTEX_REQUEUE:
2543                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
2544                 break;
2545         case FUTEX_CMP_REQUEUE:
2546                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2547                                     0);
2548                 break;
2549         case FUTEX_WAKE_OP:
2550                 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2551                 break;
2552         case FUTEX_LOCK_PI:
2553                 if (futex_cmpxchg_enabled)
2554                         ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2555                 break;
2556         case FUTEX_UNLOCK_PI:
2557                 if (futex_cmpxchg_enabled)
2558                         ret = futex_unlock_pi(uaddr, fshared);
2559                 break;
2560         case FUTEX_TRYLOCK_PI:
2561                 if (futex_cmpxchg_enabled)
2562                         ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2563                 break;
2564         case FUTEX_WAIT_REQUEUE_PI:
2565                 val3 = FUTEX_BITSET_MATCH_ANY;
2566                 ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
2567                                             clockrt, uaddr2);
2568                 break;
2569         case FUTEX_CMP_REQUEUE_PI:
2570                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2571                                     1);
2572                 break;
2573         default:
2574                 ret = -ENOSYS;
2575         }
2576         return ret;
2577 }
2578
2579
2580 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2581                 struct timespec __user *, utime, u32 __user *, uaddr2,
2582                 u32, val3)
2583 {
2584         struct timespec ts;
2585         ktime_t t, *tp = NULL;
2586         u32 val2 = 0;
2587         int cmd = op & FUTEX_CMD_MASK;
2588
2589         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2590                       cmd == FUTEX_WAIT_BITSET ||
2591                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2592                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2593                         return -EFAULT;
2594                 if (!timespec_valid(&ts))
2595                         return -EINVAL;
2596
2597                 t = timespec_to_ktime(ts);
2598                 if (cmd == FUTEX_WAIT)
2599                         t = ktime_add_safe(ktime_get(), t);
2600                 tp = &t;
2601         }
2602         /*
2603          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2604          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2605          */
2606         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2607             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2608                 val2 = (u32) (unsigned long) utime;
2609
2610         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2611 }
2612
2613 static int __init futex_init(void)
2614 {
2615         u32 curval;
2616         int i;
2617
2618         /*
2619          * This will fail and we want it. Some arch implementations do
2620          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2621          * functionality. We want to know that before we call in any
2622          * of the complex code paths. Also we want to prevent
2623          * registration of robust lists in that case. NULL is
2624          * guaranteed to fault and we get -EFAULT on functional
2625          * implementation, the non functional ones will return
2626          * -ENOSYS.
2627          */
2628         curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2629         if (curval == -EFAULT)
2630                 futex_cmpxchg_enabled = 1;
2631
2632         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2633                 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2634                 spin_lock_init(&futex_queues[i].lock);
2635         }
2636
2637         return 0;
2638 }
2639 __initcall(futex_init);