futex: separate futex_wait_queue_me() logic from futex_wait()
[safe/jmp/linux-2.6] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23  *  enough at me, Linus for the original (flawed) idea, Matthew
24  *  Kirkwood for proof-of-concept implementation.
25  *
26  *  "The futexes are also cursed."
27  *  "But they come in a choice of three flavours!"
28  *
29  *  This program is free software; you can redistribute it and/or modify
30  *  it under the terms of the GNU General Public License as published by
31  *  the Free Software Foundation; either version 2 of the License, or
32  *  (at your option) any later version.
33  *
34  *  This program is distributed in the hope that it will be useful,
35  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
36  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
37  *  GNU General Public License for more details.
38  *
39  *  You should have received a copy of the GNU General Public License
40  *  along with this program; if not, write to the Free Software
41  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
42  */
43 #include <linux/slab.h>
44 #include <linux/poll.h>
45 #include <linux/fs.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <linux/magic.h>
56 #include <linux/pid.h>
57 #include <linux/nsproxy.h>
58
59 #include <asm/futex.h>
60
61 #include "rtmutex_common.h"
62
63 int __read_mostly futex_cmpxchg_enabled;
64
65 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66
67 /*
68  * Priority Inheritance state:
69  */
70 struct futex_pi_state {
71         /*
72          * list of 'owned' pi_state instances - these have to be
73          * cleaned up in do_exit() if the task exits prematurely:
74          */
75         struct list_head list;
76
77         /*
78          * The PI object:
79          */
80         struct rt_mutex pi_mutex;
81
82         struct task_struct *owner;
83         atomic_t refcount;
84
85         union futex_key key;
86 };
87
88 /*
89  * We use this hashed waitqueue instead of a normal wait_queue_t, so
90  * we can wake only the relevant ones (hashed queues may be shared).
91  *
92  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
93  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
94  * The order of wakup is always to make the first condition true, then
95  * wake up q->waiter, then make the second condition true.
96  */
97 struct futex_q {
98         struct plist_node list;
99         /* There can only be a single waiter */
100         wait_queue_head_t waiter;
101
102         /* Which hash list lock to use: */
103         spinlock_t *lock_ptr;
104
105         /* Key which the futex is hashed on: */
106         union futex_key key;
107
108         /* Optional priority inheritance state: */
109         struct futex_pi_state *pi_state;
110         struct task_struct *task;
111
112         /* Bitset for the optional bitmasked wakeup */
113         u32 bitset;
114 };
115
116 /*
117  * Hash buckets are shared by all the futex_keys that hash to the same
118  * location.  Each key may have multiple futex_q structures, one for each task
119  * waiting on a futex.
120  */
121 struct futex_hash_bucket {
122         spinlock_t lock;
123         struct plist_head chain;
124 };
125
126 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
127
128 /*
129  * We hash on the keys returned from get_futex_key (see below).
130  */
131 static struct futex_hash_bucket *hash_futex(union futex_key *key)
132 {
133         u32 hash = jhash2((u32*)&key->both.word,
134                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
135                           key->both.offset);
136         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
137 }
138
139 /*
140  * Return 1 if two futex_keys are equal, 0 otherwise.
141  */
142 static inline int match_futex(union futex_key *key1, union futex_key *key2)
143 {
144         return (key1->both.word == key2->both.word
145                 && key1->both.ptr == key2->both.ptr
146                 && key1->both.offset == key2->both.offset);
147 }
148
149 /*
150  * Take a reference to the resource addressed by a key.
151  * Can be called while holding spinlocks.
152  *
153  */
154 static void get_futex_key_refs(union futex_key *key)
155 {
156         if (!key->both.ptr)
157                 return;
158
159         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
160         case FUT_OFF_INODE:
161                 atomic_inc(&key->shared.inode->i_count);
162                 break;
163         case FUT_OFF_MMSHARED:
164                 atomic_inc(&key->private.mm->mm_count);
165                 break;
166         }
167 }
168
169 /*
170  * Drop a reference to the resource addressed by a key.
171  * The hash bucket spinlock must not be held.
172  */
173 static void drop_futex_key_refs(union futex_key *key)
174 {
175         if (!key->both.ptr) {
176                 /* If we're here then we tried to put a key we failed to get */
177                 WARN_ON_ONCE(1);
178                 return;
179         }
180
181         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
182         case FUT_OFF_INODE:
183                 iput(key->shared.inode);
184                 break;
185         case FUT_OFF_MMSHARED:
186                 mmdrop(key->private.mm);
187                 break;
188         }
189 }
190
191 /**
192  * get_futex_key - Get parameters which are the keys for a futex.
193  * @uaddr: virtual address of the futex
194  * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
195  * @key: address where result is stored.
196  *
197  * Returns a negative error code or 0
198  * The key words are stored in *key on success.
199  *
200  * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
201  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
202  * We can usually work out the index without swapping in the page.
203  *
204  * lock_page() might sleep, the caller should not hold a spinlock.
205  */
206 static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
207 {
208         unsigned long address = (unsigned long)uaddr;
209         struct mm_struct *mm = current->mm;
210         struct page *page;
211         int err;
212
213         /*
214          * The futex address must be "naturally" aligned.
215          */
216         key->both.offset = address % PAGE_SIZE;
217         if (unlikely((address % sizeof(u32)) != 0))
218                 return -EINVAL;
219         address -= key->both.offset;
220
221         /*
222          * PROCESS_PRIVATE futexes are fast.
223          * As the mm cannot disappear under us and the 'key' only needs
224          * virtual address, we dont even have to find the underlying vma.
225          * Note : We do have to check 'uaddr' is a valid user address,
226          *        but access_ok() should be faster than find_vma()
227          */
228         if (!fshared) {
229                 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
230                         return -EFAULT;
231                 key->private.mm = mm;
232                 key->private.address = address;
233                 get_futex_key_refs(key);
234                 return 0;
235         }
236
237 again:
238         err = get_user_pages_fast(address, 1, 0, &page);
239         if (err < 0)
240                 return err;
241
242         lock_page(page);
243         if (!page->mapping) {
244                 unlock_page(page);
245                 put_page(page);
246                 goto again;
247         }
248
249         /*
250          * Private mappings are handled in a simple way.
251          *
252          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
253          * it's a read-only handle, it's expected that futexes attach to
254          * the object not the particular process.
255          */
256         if (PageAnon(page)) {
257                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
258                 key->private.mm = mm;
259                 key->private.address = address;
260         } else {
261                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
262                 key->shared.inode = page->mapping->host;
263                 key->shared.pgoff = page->index;
264         }
265
266         get_futex_key_refs(key);
267
268         unlock_page(page);
269         put_page(page);
270         return 0;
271 }
272
273 static inline
274 void put_futex_key(int fshared, union futex_key *key)
275 {
276         drop_futex_key_refs(key);
277 }
278
279 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
280 {
281         u32 curval;
282
283         pagefault_disable();
284         curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
285         pagefault_enable();
286
287         return curval;
288 }
289
290 static int get_futex_value_locked(u32 *dest, u32 __user *from)
291 {
292         int ret;
293
294         pagefault_disable();
295         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
296         pagefault_enable();
297
298         return ret ? -EFAULT : 0;
299 }
300
301
302 /*
303  * PI code:
304  */
305 static int refill_pi_state_cache(void)
306 {
307         struct futex_pi_state *pi_state;
308
309         if (likely(current->pi_state_cache))
310                 return 0;
311
312         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
313
314         if (!pi_state)
315                 return -ENOMEM;
316
317         INIT_LIST_HEAD(&pi_state->list);
318         /* pi_mutex gets initialized later */
319         pi_state->owner = NULL;
320         atomic_set(&pi_state->refcount, 1);
321         pi_state->key = FUTEX_KEY_INIT;
322
323         current->pi_state_cache = pi_state;
324
325         return 0;
326 }
327
328 static struct futex_pi_state * alloc_pi_state(void)
329 {
330         struct futex_pi_state *pi_state = current->pi_state_cache;
331
332         WARN_ON(!pi_state);
333         current->pi_state_cache = NULL;
334
335         return pi_state;
336 }
337
338 static void free_pi_state(struct futex_pi_state *pi_state)
339 {
340         if (!atomic_dec_and_test(&pi_state->refcount))
341                 return;
342
343         /*
344          * If pi_state->owner is NULL, the owner is most probably dying
345          * and has cleaned up the pi_state already
346          */
347         if (pi_state->owner) {
348                 spin_lock_irq(&pi_state->owner->pi_lock);
349                 list_del_init(&pi_state->list);
350                 spin_unlock_irq(&pi_state->owner->pi_lock);
351
352                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
353         }
354
355         if (current->pi_state_cache)
356                 kfree(pi_state);
357         else {
358                 /*
359                  * pi_state->list is already empty.
360                  * clear pi_state->owner.
361                  * refcount is at 0 - put it back to 1.
362                  */
363                 pi_state->owner = NULL;
364                 atomic_set(&pi_state->refcount, 1);
365                 current->pi_state_cache = pi_state;
366         }
367 }
368
369 /*
370  * Look up the task based on what TID userspace gave us.
371  * We dont trust it.
372  */
373 static struct task_struct * futex_find_get_task(pid_t pid)
374 {
375         struct task_struct *p;
376         const struct cred *cred = current_cred(), *pcred;
377
378         rcu_read_lock();
379         p = find_task_by_vpid(pid);
380         if (!p) {
381                 p = ERR_PTR(-ESRCH);
382         } else {
383                 pcred = __task_cred(p);
384                 if (cred->euid != pcred->euid &&
385                     cred->euid != pcred->uid)
386                         p = ERR_PTR(-ESRCH);
387                 else
388                         get_task_struct(p);
389         }
390
391         rcu_read_unlock();
392
393         return p;
394 }
395
396 /*
397  * This task is holding PI mutexes at exit time => bad.
398  * Kernel cleans up PI-state, but userspace is likely hosed.
399  * (Robust-futex cleanup is separate and might save the day for userspace.)
400  */
401 void exit_pi_state_list(struct task_struct *curr)
402 {
403         struct list_head *next, *head = &curr->pi_state_list;
404         struct futex_pi_state *pi_state;
405         struct futex_hash_bucket *hb;
406         union futex_key key = FUTEX_KEY_INIT;
407
408         if (!futex_cmpxchg_enabled)
409                 return;
410         /*
411          * We are a ZOMBIE and nobody can enqueue itself on
412          * pi_state_list anymore, but we have to be careful
413          * versus waiters unqueueing themselves:
414          */
415         spin_lock_irq(&curr->pi_lock);
416         while (!list_empty(head)) {
417
418                 next = head->next;
419                 pi_state = list_entry(next, struct futex_pi_state, list);
420                 key = pi_state->key;
421                 hb = hash_futex(&key);
422                 spin_unlock_irq(&curr->pi_lock);
423
424                 spin_lock(&hb->lock);
425
426                 spin_lock_irq(&curr->pi_lock);
427                 /*
428                  * We dropped the pi-lock, so re-check whether this
429                  * task still owns the PI-state:
430                  */
431                 if (head->next != next) {
432                         spin_unlock(&hb->lock);
433                         continue;
434                 }
435
436                 WARN_ON(pi_state->owner != curr);
437                 WARN_ON(list_empty(&pi_state->list));
438                 list_del_init(&pi_state->list);
439                 pi_state->owner = NULL;
440                 spin_unlock_irq(&curr->pi_lock);
441
442                 rt_mutex_unlock(&pi_state->pi_mutex);
443
444                 spin_unlock(&hb->lock);
445
446                 spin_lock_irq(&curr->pi_lock);
447         }
448         spin_unlock_irq(&curr->pi_lock);
449 }
450
451 static int
452 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
453                 union futex_key *key, struct futex_pi_state **ps)
454 {
455         struct futex_pi_state *pi_state = NULL;
456         struct futex_q *this, *next;
457         struct plist_head *head;
458         struct task_struct *p;
459         pid_t pid = uval & FUTEX_TID_MASK;
460
461         head = &hb->chain;
462
463         plist_for_each_entry_safe(this, next, head, list) {
464                 if (match_futex(&this->key, key)) {
465                         /*
466                          * Another waiter already exists - bump up
467                          * the refcount and return its pi_state:
468                          */
469                         pi_state = this->pi_state;
470                         /*
471                          * Userspace might have messed up non PI and PI futexes
472                          */
473                         if (unlikely(!pi_state))
474                                 return -EINVAL;
475
476                         WARN_ON(!atomic_read(&pi_state->refcount));
477                         WARN_ON(pid && pi_state->owner &&
478                                 pi_state->owner->pid != pid);
479
480                         atomic_inc(&pi_state->refcount);
481                         *ps = pi_state;
482
483                         return 0;
484                 }
485         }
486
487         /*
488          * We are the first waiter - try to look up the real owner and attach
489          * the new pi_state to it, but bail out when TID = 0
490          */
491         if (!pid)
492                 return -ESRCH;
493         p = futex_find_get_task(pid);
494         if (IS_ERR(p))
495                 return PTR_ERR(p);
496
497         /*
498          * We need to look at the task state flags to figure out,
499          * whether the task is exiting. To protect against the do_exit
500          * change of the task flags, we do this protected by
501          * p->pi_lock:
502          */
503         spin_lock_irq(&p->pi_lock);
504         if (unlikely(p->flags & PF_EXITING)) {
505                 /*
506                  * The task is on the way out. When PF_EXITPIDONE is
507                  * set, we know that the task has finished the
508                  * cleanup:
509                  */
510                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
511
512                 spin_unlock_irq(&p->pi_lock);
513                 put_task_struct(p);
514                 return ret;
515         }
516
517         pi_state = alloc_pi_state();
518
519         /*
520          * Initialize the pi_mutex in locked state and make 'p'
521          * the owner of it:
522          */
523         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
524
525         /* Store the key for possible exit cleanups: */
526         pi_state->key = *key;
527
528         WARN_ON(!list_empty(&pi_state->list));
529         list_add(&pi_state->list, &p->pi_state_list);
530         pi_state->owner = p;
531         spin_unlock_irq(&p->pi_lock);
532
533         put_task_struct(p);
534
535         *ps = pi_state;
536
537         return 0;
538 }
539
540 /*
541  * The hash bucket lock must be held when this is called.
542  * Afterwards, the futex_q must not be accessed.
543  */
544 static void wake_futex(struct futex_q *q)
545 {
546         plist_del(&q->list, &q->list.plist);
547         /*
548          * The lock in wake_up_all() is a crucial memory barrier after the
549          * plist_del() and also before assigning to q->lock_ptr.
550          */
551         wake_up(&q->waiter);
552         /*
553          * The waiting task can free the futex_q as soon as this is written,
554          * without taking any locks.  This must come last.
555          *
556          * A memory barrier is required here to prevent the following store to
557          * lock_ptr from getting ahead of the wakeup. Clearing the lock at the
558          * end of wake_up() does not prevent this store from moving.
559          */
560         smp_wmb();
561         q->lock_ptr = NULL;
562 }
563
564 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
565 {
566         struct task_struct *new_owner;
567         struct futex_pi_state *pi_state = this->pi_state;
568         u32 curval, newval;
569
570         if (!pi_state)
571                 return -EINVAL;
572
573         spin_lock(&pi_state->pi_mutex.wait_lock);
574         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
575
576         /*
577          * This happens when we have stolen the lock and the original
578          * pending owner did not enqueue itself back on the rt_mutex.
579          * Thats not a tragedy. We know that way, that a lock waiter
580          * is on the fly. We make the futex_q waiter the pending owner.
581          */
582         if (!new_owner)
583                 new_owner = this->task;
584
585         /*
586          * We pass it to the next owner. (The WAITERS bit is always
587          * kept enabled while there is PI state around. We must also
588          * preserve the owner died bit.)
589          */
590         if (!(uval & FUTEX_OWNER_DIED)) {
591                 int ret = 0;
592
593                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
594
595                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
596
597                 if (curval == -EFAULT)
598                         ret = -EFAULT;
599                 else if (curval != uval)
600                         ret = -EINVAL;
601                 if (ret) {
602                         spin_unlock(&pi_state->pi_mutex.wait_lock);
603                         return ret;
604                 }
605         }
606
607         spin_lock_irq(&pi_state->owner->pi_lock);
608         WARN_ON(list_empty(&pi_state->list));
609         list_del_init(&pi_state->list);
610         spin_unlock_irq(&pi_state->owner->pi_lock);
611
612         spin_lock_irq(&new_owner->pi_lock);
613         WARN_ON(!list_empty(&pi_state->list));
614         list_add(&pi_state->list, &new_owner->pi_state_list);
615         pi_state->owner = new_owner;
616         spin_unlock_irq(&new_owner->pi_lock);
617
618         spin_unlock(&pi_state->pi_mutex.wait_lock);
619         rt_mutex_unlock(&pi_state->pi_mutex);
620
621         return 0;
622 }
623
624 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
625 {
626         u32 oldval;
627
628         /*
629          * There is no waiter, so we unlock the futex. The owner died
630          * bit has not to be preserved here. We are the owner:
631          */
632         oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
633
634         if (oldval == -EFAULT)
635                 return oldval;
636         if (oldval != uval)
637                 return -EAGAIN;
638
639         return 0;
640 }
641
642 /*
643  * Express the locking dependencies for lockdep:
644  */
645 static inline void
646 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
647 {
648         if (hb1 <= hb2) {
649                 spin_lock(&hb1->lock);
650                 if (hb1 < hb2)
651                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
652         } else { /* hb1 > hb2 */
653                 spin_lock(&hb2->lock);
654                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
655         }
656 }
657
658 static inline void
659 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
660 {
661         spin_unlock(&hb1->lock);
662         if (hb1 != hb2)
663                 spin_unlock(&hb2->lock);
664 }
665
666 /*
667  * Wake up waiters matching bitset queued on this futex (uaddr).
668  */
669 static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
670 {
671         struct futex_hash_bucket *hb;
672         struct futex_q *this, *next;
673         struct plist_head *head;
674         union futex_key key = FUTEX_KEY_INIT;
675         int ret;
676
677         if (!bitset)
678                 return -EINVAL;
679
680         ret = get_futex_key(uaddr, fshared, &key);
681         if (unlikely(ret != 0))
682                 goto out;
683
684         hb = hash_futex(&key);
685         spin_lock(&hb->lock);
686         head = &hb->chain;
687
688         plist_for_each_entry_safe(this, next, head, list) {
689                 if (match_futex (&this->key, &key)) {
690                         if (this->pi_state) {
691                                 ret = -EINVAL;
692                                 break;
693                         }
694
695                         /* Check if one of the bits is set in both bitsets */
696                         if (!(this->bitset & bitset))
697                                 continue;
698
699                         wake_futex(this);
700                         if (++ret >= nr_wake)
701                                 break;
702                 }
703         }
704
705         spin_unlock(&hb->lock);
706         put_futex_key(fshared, &key);
707 out:
708         return ret;
709 }
710
711 /*
712  * Wake up all waiters hashed on the physical page that is mapped
713  * to this virtual address:
714  */
715 static int
716 futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
717               int nr_wake, int nr_wake2, int op)
718 {
719         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
720         struct futex_hash_bucket *hb1, *hb2;
721         struct plist_head *head;
722         struct futex_q *this, *next;
723         int ret, op_ret;
724
725 retry:
726         ret = get_futex_key(uaddr1, fshared, &key1);
727         if (unlikely(ret != 0))
728                 goto out;
729         ret = get_futex_key(uaddr2, fshared, &key2);
730         if (unlikely(ret != 0))
731                 goto out_put_key1;
732
733         hb1 = hash_futex(&key1);
734         hb2 = hash_futex(&key2);
735
736         double_lock_hb(hb1, hb2);
737 retry_private:
738         op_ret = futex_atomic_op_inuser(op, uaddr2);
739         if (unlikely(op_ret < 0)) {
740                 u32 dummy;
741
742                 double_unlock_hb(hb1, hb2);
743
744 #ifndef CONFIG_MMU
745                 /*
746                  * we don't get EFAULT from MMU faults if we don't have an MMU,
747                  * but we might get them from range checking
748                  */
749                 ret = op_ret;
750                 goto out_put_keys;
751 #endif
752
753                 if (unlikely(op_ret != -EFAULT)) {
754                         ret = op_ret;
755                         goto out_put_keys;
756                 }
757
758                 ret = get_user(dummy, uaddr2);
759                 if (ret)
760                         goto out_put_keys;
761
762                 if (!fshared)
763                         goto retry_private;
764
765                 put_futex_key(fshared, &key2);
766                 put_futex_key(fshared, &key1);
767                 goto retry;
768         }
769
770         head = &hb1->chain;
771
772         plist_for_each_entry_safe(this, next, head, list) {
773                 if (match_futex (&this->key, &key1)) {
774                         wake_futex(this);
775                         if (++ret >= nr_wake)
776                                 break;
777                 }
778         }
779
780         if (op_ret > 0) {
781                 head = &hb2->chain;
782
783                 op_ret = 0;
784                 plist_for_each_entry_safe(this, next, head, list) {
785                         if (match_futex (&this->key, &key2)) {
786                                 wake_futex(this);
787                                 if (++op_ret >= nr_wake2)
788                                         break;
789                         }
790                 }
791                 ret += op_ret;
792         }
793
794         double_unlock_hb(hb1, hb2);
795 out_put_keys:
796         put_futex_key(fshared, &key2);
797 out_put_key1:
798         put_futex_key(fshared, &key1);
799 out:
800         return ret;
801 }
802
803 /*
804  * Requeue all waiters hashed on one physical page to another
805  * physical page.
806  */
807 static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
808                          int nr_wake, int nr_requeue, u32 *cmpval)
809 {
810         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
811         struct futex_hash_bucket *hb1, *hb2;
812         struct plist_head *head1;
813         struct futex_q *this, *next;
814         int ret, drop_count = 0;
815
816 retry:
817         ret = get_futex_key(uaddr1, fshared, &key1);
818         if (unlikely(ret != 0))
819                 goto out;
820         ret = get_futex_key(uaddr2, fshared, &key2);
821         if (unlikely(ret != 0))
822                 goto out_put_key1;
823
824         hb1 = hash_futex(&key1);
825         hb2 = hash_futex(&key2);
826
827 retry_private:
828         double_lock_hb(hb1, hb2);
829
830         if (likely(cmpval != NULL)) {
831                 u32 curval;
832
833                 ret = get_futex_value_locked(&curval, uaddr1);
834
835                 if (unlikely(ret)) {
836                         double_unlock_hb(hb1, hb2);
837
838                         ret = get_user(curval, uaddr1);
839                         if (ret)
840                                 goto out_put_keys;
841
842                         if (!fshared)
843                                 goto retry_private;
844
845                         put_futex_key(fshared, &key2);
846                         put_futex_key(fshared, &key1);
847                         goto retry;
848                 }
849                 if (curval != *cmpval) {
850                         ret = -EAGAIN;
851                         goto out_unlock;
852                 }
853         }
854
855         head1 = &hb1->chain;
856         plist_for_each_entry_safe(this, next, head1, list) {
857                 if (!match_futex (&this->key, &key1))
858                         continue;
859                 if (++ret <= nr_wake) {
860                         wake_futex(this);
861                 } else {
862                         /*
863                          * If key1 and key2 hash to the same bucket, no need to
864                          * requeue.
865                          */
866                         if (likely(head1 != &hb2->chain)) {
867                                 plist_del(&this->list, &hb1->chain);
868                                 plist_add(&this->list, &hb2->chain);
869                                 this->lock_ptr = &hb2->lock;
870 #ifdef CONFIG_DEBUG_PI_LIST
871                                 this->list.plist.lock = &hb2->lock;
872 #endif
873                         }
874                         this->key = key2;
875                         get_futex_key_refs(&key2);
876                         drop_count++;
877
878                         if (ret - nr_wake >= nr_requeue)
879                                 break;
880                 }
881         }
882
883 out_unlock:
884         double_unlock_hb(hb1, hb2);
885
886         /* drop_futex_key_refs() must be called outside the spinlocks. */
887         while (--drop_count >= 0)
888                 drop_futex_key_refs(&key1);
889
890 out_put_keys:
891         put_futex_key(fshared, &key2);
892 out_put_key1:
893         put_futex_key(fshared, &key1);
894 out:
895         return ret;
896 }
897
898 /* The key must be already stored in q->key. */
899 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
900 {
901         struct futex_hash_bucket *hb;
902
903         init_waitqueue_head(&q->waiter);
904
905         get_futex_key_refs(&q->key);
906         hb = hash_futex(&q->key);
907         q->lock_ptr = &hb->lock;
908
909         spin_lock(&hb->lock);
910         return hb;
911 }
912
913 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
914 {
915         int prio;
916
917         /*
918          * The priority used to register this element is
919          * - either the real thread-priority for the real-time threads
920          * (i.e. threads with a priority lower than MAX_RT_PRIO)
921          * - or MAX_RT_PRIO for non-RT threads.
922          * Thus, all RT-threads are woken first in priority order, and
923          * the others are woken last, in FIFO order.
924          */
925         prio = min(current->normal_prio, MAX_RT_PRIO);
926
927         plist_node_init(&q->list, prio);
928 #ifdef CONFIG_DEBUG_PI_LIST
929         q->list.plist.lock = &hb->lock;
930 #endif
931         plist_add(&q->list, &hb->chain);
932         q->task = current;
933         spin_unlock(&hb->lock);
934 }
935
936 static inline void
937 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
938 {
939         spin_unlock(&hb->lock);
940         drop_futex_key_refs(&q->key);
941 }
942
943 /*
944  * queue_me and unqueue_me must be called as a pair, each
945  * exactly once.  They are called with the hashed spinlock held.
946  */
947
948 /* Return 1 if we were still queued (ie. 0 means we were woken) */
949 static int unqueue_me(struct futex_q *q)
950 {
951         spinlock_t *lock_ptr;
952         int ret = 0;
953
954         /* In the common case we don't take the spinlock, which is nice. */
955 retry:
956         lock_ptr = q->lock_ptr;
957         barrier();
958         if (lock_ptr != NULL) {
959                 spin_lock(lock_ptr);
960                 /*
961                  * q->lock_ptr can change between reading it and
962                  * spin_lock(), causing us to take the wrong lock.  This
963                  * corrects the race condition.
964                  *
965                  * Reasoning goes like this: if we have the wrong lock,
966                  * q->lock_ptr must have changed (maybe several times)
967                  * between reading it and the spin_lock().  It can
968                  * change again after the spin_lock() but only if it was
969                  * already changed before the spin_lock().  It cannot,
970                  * however, change back to the original value.  Therefore
971                  * we can detect whether we acquired the correct lock.
972                  */
973                 if (unlikely(lock_ptr != q->lock_ptr)) {
974                         spin_unlock(lock_ptr);
975                         goto retry;
976                 }
977                 WARN_ON(plist_node_empty(&q->list));
978                 plist_del(&q->list, &q->list.plist);
979
980                 BUG_ON(q->pi_state);
981
982                 spin_unlock(lock_ptr);
983                 ret = 1;
984         }
985
986         drop_futex_key_refs(&q->key);
987         return ret;
988 }
989
990 /*
991  * PI futexes can not be requeued and must remove themself from the
992  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
993  * and dropped here.
994  */
995 static void unqueue_me_pi(struct futex_q *q)
996 {
997         WARN_ON(plist_node_empty(&q->list));
998         plist_del(&q->list, &q->list.plist);
999
1000         BUG_ON(!q->pi_state);
1001         free_pi_state(q->pi_state);
1002         q->pi_state = NULL;
1003
1004         spin_unlock(q->lock_ptr);
1005
1006         drop_futex_key_refs(&q->key);
1007 }
1008
1009 /*
1010  * Fixup the pi_state owner with the new owner.
1011  *
1012  * Must be called with hash bucket lock held and mm->sem held for non
1013  * private futexes.
1014  */
1015 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1016                                 struct task_struct *newowner, int fshared)
1017 {
1018         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1019         struct futex_pi_state *pi_state = q->pi_state;
1020         struct task_struct *oldowner = pi_state->owner;
1021         u32 uval, curval, newval;
1022         int ret;
1023
1024         /* Owner died? */
1025         if (!pi_state->owner)
1026                 newtid |= FUTEX_OWNER_DIED;
1027
1028         /*
1029          * We are here either because we stole the rtmutex from the
1030          * pending owner or we are the pending owner which failed to
1031          * get the rtmutex. We have to replace the pending owner TID
1032          * in the user space variable. This must be atomic as we have
1033          * to preserve the owner died bit here.
1034          *
1035          * Note: We write the user space value _before_ changing the pi_state
1036          * because we can fault here. Imagine swapped out pages or a fork
1037          * that marked all the anonymous memory readonly for cow.
1038          *
1039          * Modifying pi_state _before_ the user space value would
1040          * leave the pi_state in an inconsistent state when we fault
1041          * here, because we need to drop the hash bucket lock to
1042          * handle the fault. This might be observed in the PID check
1043          * in lookup_pi_state.
1044          */
1045 retry:
1046         if (get_futex_value_locked(&uval, uaddr))
1047                 goto handle_fault;
1048
1049         while (1) {
1050                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1051
1052                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1053
1054                 if (curval == -EFAULT)
1055                         goto handle_fault;
1056                 if (curval == uval)
1057                         break;
1058                 uval = curval;
1059         }
1060
1061         /*
1062          * We fixed up user space. Now we need to fix the pi_state
1063          * itself.
1064          */
1065         if (pi_state->owner != NULL) {
1066                 spin_lock_irq(&pi_state->owner->pi_lock);
1067                 WARN_ON(list_empty(&pi_state->list));
1068                 list_del_init(&pi_state->list);
1069                 spin_unlock_irq(&pi_state->owner->pi_lock);
1070         }
1071
1072         pi_state->owner = newowner;
1073
1074         spin_lock_irq(&newowner->pi_lock);
1075         WARN_ON(!list_empty(&pi_state->list));
1076         list_add(&pi_state->list, &newowner->pi_state_list);
1077         spin_unlock_irq(&newowner->pi_lock);
1078         return 0;
1079
1080         /*
1081          * To handle the page fault we need to drop the hash bucket
1082          * lock here. That gives the other task (either the pending
1083          * owner itself or the task which stole the rtmutex) the
1084          * chance to try the fixup of the pi_state. So once we are
1085          * back from handling the fault we need to check the pi_state
1086          * after reacquiring the hash bucket lock and before trying to
1087          * do another fixup. When the fixup has been done already we
1088          * simply return.
1089          */
1090 handle_fault:
1091         spin_unlock(q->lock_ptr);
1092
1093         ret = get_user(uval, uaddr);
1094
1095         spin_lock(q->lock_ptr);
1096
1097         /*
1098          * Check if someone else fixed it for us:
1099          */
1100         if (pi_state->owner != oldowner)
1101                 return 0;
1102
1103         if (ret)
1104                 return ret;
1105
1106         goto retry;
1107 }
1108
1109 /*
1110  * In case we must use restart_block to restart a futex_wait,
1111  * we encode in the 'flags' shared capability
1112  */
1113 #define FLAGS_SHARED            0x01
1114 #define FLAGS_CLOCKRT           0x02
1115
1116 static long futex_wait_restart(struct restart_block *restart);
1117
1118 /**
1119  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1120  * @hb:         the futex hash bucket, must be locked by the caller
1121  * @q:          the futex_q to queue up on
1122  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1123  * @wait:       the wait_queue to add to the futex_q after queueing in the hb
1124  */
1125 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1126                                 struct hrtimer_sleeper *timeout,
1127                                 wait_queue_t *wait)
1128 {
1129         queue_me(q, hb);
1130
1131         /*
1132          * There might have been scheduling since the queue_me(), as we
1133          * cannot hold a spinlock across the get_user() in case it
1134          * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1135          * queueing ourselves into the futex hash.  This code thus has to
1136          * rely on the futex_wake() code removing us from hash when it
1137          * wakes us up.
1138          */
1139
1140         /* add_wait_queue is the barrier after __set_current_state. */
1141         __set_current_state(TASK_INTERRUPTIBLE);
1142
1143         /*
1144          * Add current as the futex_q waiter.  We don't remove ourselves from
1145          * the wait_queue because we are the only user of it.
1146          */
1147         add_wait_queue(&q->waiter, wait);
1148
1149         /* Arm the timer */
1150         if (timeout) {
1151                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1152                 if (!hrtimer_active(&timeout->timer))
1153                         timeout->task = NULL;
1154         }
1155
1156         /*
1157          * !plist_node_empty() is safe here without any lock.
1158          * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1159          */
1160         if (likely(!plist_node_empty(&q->list))) {
1161                 /*
1162                  * If the timer has already expired, current will already be
1163                  * flagged for rescheduling. Only call schedule if there
1164                  * is no timeout, or if it has yet to expire.
1165                  */
1166                 if (!timeout || timeout->task)
1167                         schedule();
1168         }
1169         __set_current_state(TASK_RUNNING);
1170 }
1171
1172 static int futex_wait(u32 __user *uaddr, int fshared,
1173                       u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1174 {
1175         struct hrtimer_sleeper timeout, *to = NULL;
1176         DECLARE_WAITQUEUE(wait, current);
1177         struct restart_block *restart;
1178         struct futex_hash_bucket *hb;
1179         struct futex_q q;
1180         u32 uval;
1181         int ret;
1182
1183         if (!bitset)
1184                 return -EINVAL;
1185
1186         q.pi_state = NULL;
1187         q.bitset = bitset;
1188
1189         if (abs_time) {
1190                 to = &timeout;
1191
1192                 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1193                                       CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1194                 hrtimer_init_sleeper(to, current);
1195                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1196                                              current->timer_slack_ns);
1197         }
1198
1199 retry:
1200         q.key = FUTEX_KEY_INIT;
1201         ret = get_futex_key(uaddr, fshared, &q.key);
1202         if (unlikely(ret != 0))
1203                 goto out;
1204
1205 retry_private:
1206         hb = queue_lock(&q);
1207
1208         /*
1209          * Access the page AFTER the hash-bucket is locked.
1210          * Order is important:
1211          *
1212          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1213          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1214          *
1215          * The basic logical guarantee of a futex is that it blocks ONLY
1216          * if cond(var) is known to be true at the time of blocking, for
1217          * any cond.  If we queued after testing *uaddr, that would open
1218          * a race condition where we could block indefinitely with
1219          * cond(var) false, which would violate the guarantee.
1220          *
1221          * A consequence is that futex_wait() can return zero and absorb
1222          * a wakeup when *uaddr != val on entry to the syscall.  This is
1223          * rare, but normal.
1224          *
1225          * For shared futexes, we hold the mmap semaphore, so the mapping
1226          * cannot have changed since we looked it up in get_futex_key.
1227          */
1228         ret = get_futex_value_locked(&uval, uaddr);
1229
1230         if (unlikely(ret)) {
1231                 queue_unlock(&q, hb);
1232
1233                 ret = get_user(uval, uaddr);
1234                 if (ret)
1235                         goto out_put_key;
1236
1237                 if (!fshared)
1238                         goto retry_private;
1239
1240                 put_futex_key(fshared, &q.key);
1241                 goto retry;
1242         }
1243         ret = -EWOULDBLOCK;
1244
1245         /* Only actually queue if *uaddr contained val.  */
1246         if (unlikely(uval != val)) {
1247                 queue_unlock(&q, hb);
1248                 goto out_put_key;
1249         }
1250
1251         /* queue_me and wait for wakeup, timeout, or a signal. */
1252         futex_wait_queue_me(hb, &q, to, &wait);
1253
1254         /* If we were woken (and unqueued), we succeeded, whatever. */
1255         ret = 0;
1256         if (!unqueue_me(&q))
1257                 goto out_put_key;
1258         ret = -ETIMEDOUT;
1259         if (to && !to->task)
1260                 goto out_put_key;
1261
1262         /*
1263          * We expect signal_pending(current), but another thread may
1264          * have handled it for us already.
1265          */
1266         ret = -ERESTARTSYS;
1267         if (!abs_time)
1268                 goto out_put_key;
1269
1270         restart = &current_thread_info()->restart_block;
1271         restart->fn = futex_wait_restart;
1272         restart->futex.uaddr = (u32 *)uaddr;
1273         restart->futex.val = val;
1274         restart->futex.time = abs_time->tv64;
1275         restart->futex.bitset = bitset;
1276         restart->futex.flags = 0;
1277
1278         if (fshared)
1279                 restart->futex.flags |= FLAGS_SHARED;
1280         if (clockrt)
1281                 restart->futex.flags |= FLAGS_CLOCKRT;
1282
1283         ret = -ERESTART_RESTARTBLOCK;
1284
1285 out_put_key:
1286         put_futex_key(fshared, &q.key);
1287 out:
1288         if (to) {
1289                 hrtimer_cancel(&to->timer);
1290                 destroy_hrtimer_on_stack(&to->timer);
1291         }
1292         return ret;
1293 }
1294
1295
1296 static long futex_wait_restart(struct restart_block *restart)
1297 {
1298         u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1299         int fshared = 0;
1300         ktime_t t;
1301
1302         t.tv64 = restart->futex.time;
1303         restart->fn = do_no_restart_syscall;
1304         if (restart->futex.flags & FLAGS_SHARED)
1305                 fshared = 1;
1306         return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1307                                 restart->futex.bitset,
1308                                 restart->futex.flags & FLAGS_CLOCKRT);
1309 }
1310
1311
1312 /*
1313  * Userspace tried a 0 -> TID atomic transition of the futex value
1314  * and failed. The kernel side here does the whole locking operation:
1315  * if there are waiters then it will block, it does PI, etc. (Due to
1316  * races the kernel might see a 0 value of the futex too.)
1317  */
1318 static int futex_lock_pi(u32 __user *uaddr, int fshared,
1319                          int detect, ktime_t *time, int trylock)
1320 {
1321         struct hrtimer_sleeper timeout, *to = NULL;
1322         struct task_struct *curr = current;
1323         struct futex_hash_bucket *hb;
1324         u32 uval, newval, curval;
1325         struct futex_q q;
1326         int ret, lock_taken, ownerdied = 0;
1327
1328         if (refill_pi_state_cache())
1329                 return -ENOMEM;
1330
1331         if (time) {
1332                 to = &timeout;
1333                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1334                                       HRTIMER_MODE_ABS);
1335                 hrtimer_init_sleeper(to, current);
1336                 hrtimer_set_expires(&to->timer, *time);
1337         }
1338
1339         q.pi_state = NULL;
1340 retry:
1341         q.key = FUTEX_KEY_INIT;
1342         ret = get_futex_key(uaddr, fshared, &q.key);
1343         if (unlikely(ret != 0))
1344                 goto out;
1345
1346 retry_private:
1347         hb = queue_lock(&q);
1348
1349 retry_locked:
1350         ret = lock_taken = 0;
1351
1352         /*
1353          * To avoid races, we attempt to take the lock here again
1354          * (by doing a 0 -> TID atomic cmpxchg), while holding all
1355          * the locks. It will most likely not succeed.
1356          */
1357         newval = task_pid_vnr(current);
1358
1359         curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
1360
1361         if (unlikely(curval == -EFAULT))
1362                 goto uaddr_faulted;
1363
1364         /*
1365          * Detect deadlocks. In case of REQUEUE_PI this is a valid
1366          * situation and we return success to user space.
1367          */
1368         if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
1369                 ret = -EDEADLK;
1370                 goto out_unlock_put_key;
1371         }
1372
1373         /*
1374          * Surprise - we got the lock. Just return to userspace:
1375          */
1376         if (unlikely(!curval))
1377                 goto out_unlock_put_key;
1378
1379         uval = curval;
1380
1381         /*
1382          * Set the WAITERS flag, so the owner will know it has someone
1383          * to wake at next unlock
1384          */
1385         newval = curval | FUTEX_WAITERS;
1386
1387         /*
1388          * There are two cases, where a futex might have no owner (the
1389          * owner TID is 0): OWNER_DIED. We take over the futex in this
1390          * case. We also do an unconditional take over, when the owner
1391          * of the futex died.
1392          *
1393          * This is safe as we are protected by the hash bucket lock !
1394          */
1395         if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
1396                 /* Keep the OWNER_DIED bit */
1397                 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
1398                 ownerdied = 0;
1399                 lock_taken = 1;
1400         }
1401
1402         curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1403
1404         if (unlikely(curval == -EFAULT))
1405                 goto uaddr_faulted;
1406         if (unlikely(curval != uval))
1407                 goto retry_locked;
1408
1409         /*
1410          * We took the lock due to owner died take over.
1411          */
1412         if (unlikely(lock_taken))
1413                 goto out_unlock_put_key;
1414
1415         /*
1416          * We dont have the lock. Look up the PI state (or create it if
1417          * we are the first waiter):
1418          */
1419         ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
1420
1421         if (unlikely(ret)) {
1422                 switch (ret) {
1423
1424                 case -EAGAIN:
1425                         /*
1426                          * Task is exiting and we just wait for the
1427                          * exit to complete.
1428                          */
1429                         queue_unlock(&q, hb);
1430                         put_futex_key(fshared, &q.key);
1431                         cond_resched();
1432                         goto retry;
1433
1434                 case -ESRCH:
1435                         /*
1436                          * No owner found for this futex. Check if the
1437                          * OWNER_DIED bit is set to figure out whether
1438                          * this is a robust futex or not.
1439                          */
1440                         if (get_futex_value_locked(&curval, uaddr))
1441                                 goto uaddr_faulted;
1442
1443                         /*
1444                          * We simply start over in case of a robust
1445                          * futex. The code above will take the futex
1446                          * and return happy.
1447                          */
1448                         if (curval & FUTEX_OWNER_DIED) {
1449                                 ownerdied = 1;
1450                                 goto retry_locked;
1451                         }
1452                 default:
1453                         goto out_unlock_put_key;
1454                 }
1455         }
1456
1457         /*
1458          * Only actually queue now that the atomic ops are done:
1459          */
1460         queue_me(&q, hb);
1461
1462         WARN_ON(!q.pi_state);
1463         /*
1464          * Block on the PI mutex:
1465          */
1466         if (!trylock)
1467                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1468         else {
1469                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1470                 /* Fixup the trylock return value: */
1471                 ret = ret ? 0 : -EWOULDBLOCK;
1472         }
1473
1474         spin_lock(q.lock_ptr);
1475
1476         if (!ret) {
1477                 /*
1478                  * Got the lock. We might not be the anticipated owner
1479                  * if we did a lock-steal - fix up the PI-state in
1480                  * that case:
1481                  */
1482                 if (q.pi_state->owner != curr)
1483                         ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
1484         } else {
1485                 /*
1486                  * Catch the rare case, where the lock was released
1487                  * when we were on the way back before we locked the
1488                  * hash bucket.
1489                  */
1490                 if (q.pi_state->owner == curr) {
1491                         /*
1492                          * Try to get the rt_mutex now. This might
1493                          * fail as some other task acquired the
1494                          * rt_mutex after we removed ourself from the
1495                          * rt_mutex waiters list.
1496                          */
1497                         if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1498                                 ret = 0;
1499                         else {
1500                                 /*
1501                                  * pi_state is incorrect, some other
1502                                  * task did a lock steal and we
1503                                  * returned due to timeout or signal
1504                                  * without taking the rt_mutex. Too
1505                                  * late. We can access the
1506                                  * rt_mutex_owner without locking, as
1507                                  * the other task is now blocked on
1508                                  * the hash bucket lock. Fix the state
1509                                  * up.
1510                                  */
1511                                 struct task_struct *owner;
1512                                 int res;
1513
1514                                 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1515                                 res = fixup_pi_state_owner(uaddr, &q, owner,
1516                                                            fshared);
1517
1518                                 /* propagate -EFAULT, if the fixup failed */
1519                                 if (res)
1520                                         ret = res;
1521                         }
1522                 } else {
1523                         /*
1524                          * Paranoia check. If we did not take the lock
1525                          * in the trylock above, then we should not be
1526                          * the owner of the rtmutex, neither the real
1527                          * nor the pending one:
1528                          */
1529                         if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1530                                 printk(KERN_ERR "futex_lock_pi: ret = %d "
1531                                        "pi-mutex: %p pi-state %p\n", ret,
1532                                        q.pi_state->pi_mutex.owner,
1533                                        q.pi_state->owner);
1534                 }
1535         }
1536
1537         /*
1538          * If fixup_pi_state_owner() faulted and was unable to handle the
1539          * fault, unlock it and return the fault to userspace.
1540          */
1541         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
1542                 rt_mutex_unlock(&q.pi_state->pi_mutex);
1543
1544         /* Unqueue and drop the lock */
1545         unqueue_me_pi(&q);
1546
1547         if (to)
1548                 destroy_hrtimer_on_stack(&to->timer);
1549         return ret != -EINTR ? ret : -ERESTARTNOINTR;
1550
1551 out_unlock_put_key:
1552         queue_unlock(&q, hb);
1553
1554 out_put_key:
1555         put_futex_key(fshared, &q.key);
1556 out:
1557         if (to)
1558                 destroy_hrtimer_on_stack(&to->timer);
1559         return ret;
1560
1561 uaddr_faulted:
1562         /*
1563          * We have to r/w  *(int __user *)uaddr, and we have to modify it
1564          * atomically.  Therefore, if we continue to fault after get_user()
1565          * below, we need to handle the fault ourselves, while still holding
1566          * the mmap_sem.  This can occur if the uaddr is under contention as
1567          * we have to drop the mmap_sem in order to call get_user().
1568          */
1569         queue_unlock(&q, hb);
1570
1571         ret = get_user(uval, uaddr);
1572         if (ret)
1573                 goto out_put_key;
1574
1575         if (!fshared)
1576                 goto retry_private;
1577
1578         put_futex_key(fshared, &q.key);
1579         goto retry;
1580 }
1581
1582
1583 /*
1584  * Userspace attempted a TID -> 0 atomic transition, and failed.
1585  * This is the in-kernel slowpath: we look up the PI state (if any),
1586  * and do the rt-mutex unlock.
1587  */
1588 static int futex_unlock_pi(u32 __user *uaddr, int fshared)
1589 {
1590         struct futex_hash_bucket *hb;
1591         struct futex_q *this, *next;
1592         u32 uval;
1593         struct plist_head *head;
1594         union futex_key key = FUTEX_KEY_INIT;
1595         int ret;
1596
1597 retry:
1598         if (get_user(uval, uaddr))
1599                 return -EFAULT;
1600         /*
1601          * We release only a lock we actually own:
1602          */
1603         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1604                 return -EPERM;
1605
1606         ret = get_futex_key(uaddr, fshared, &key);
1607         if (unlikely(ret != 0))
1608                 goto out;
1609
1610         hb = hash_futex(&key);
1611         spin_lock(&hb->lock);
1612
1613         /*
1614          * To avoid races, try to do the TID -> 0 atomic transition
1615          * again. If it succeeds then we can return without waking
1616          * anyone else up:
1617          */
1618         if (!(uval & FUTEX_OWNER_DIED))
1619                 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
1620
1621
1622         if (unlikely(uval == -EFAULT))
1623                 goto pi_faulted;
1624         /*
1625          * Rare case: we managed to release the lock atomically,
1626          * no need to wake anyone else up:
1627          */
1628         if (unlikely(uval == task_pid_vnr(current)))
1629                 goto out_unlock;
1630
1631         /*
1632          * Ok, other tasks may need to be woken up - check waiters
1633          * and do the wakeup if necessary:
1634          */
1635         head = &hb->chain;
1636
1637         plist_for_each_entry_safe(this, next, head, list) {
1638                 if (!match_futex (&this->key, &key))
1639                         continue;
1640                 ret = wake_futex_pi(uaddr, uval, this);
1641                 /*
1642                  * The atomic access to the futex value
1643                  * generated a pagefault, so retry the
1644                  * user-access and the wakeup:
1645                  */
1646                 if (ret == -EFAULT)
1647                         goto pi_faulted;
1648                 goto out_unlock;
1649         }
1650         /*
1651          * No waiters - kernel unlocks the futex:
1652          */
1653         if (!(uval & FUTEX_OWNER_DIED)) {
1654                 ret = unlock_futex_pi(uaddr, uval);
1655                 if (ret == -EFAULT)
1656                         goto pi_faulted;
1657         }
1658
1659 out_unlock:
1660         spin_unlock(&hb->lock);
1661         put_futex_key(fshared, &key);
1662
1663 out:
1664         return ret;
1665
1666 pi_faulted:
1667         /*
1668          * We have to r/w  *(int __user *)uaddr, and we have to modify it
1669          * atomically.  Therefore, if we continue to fault after get_user()
1670          * below, we need to handle the fault ourselves, while still holding
1671          * the mmap_sem.  This can occur if the uaddr is under contention as
1672          * we have to drop the mmap_sem in order to call get_user().
1673          */
1674         spin_unlock(&hb->lock);
1675         put_futex_key(fshared, &key);
1676
1677         ret = get_user(uval, uaddr);
1678         if (!ret)
1679                 goto retry;
1680
1681         return ret;
1682 }
1683
1684 /*
1685  * Support for robust futexes: the kernel cleans up held futexes at
1686  * thread exit time.
1687  *
1688  * Implementation: user-space maintains a per-thread list of locks it
1689  * is holding. Upon do_exit(), the kernel carefully walks this list,
1690  * and marks all locks that are owned by this thread with the
1691  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1692  * always manipulated with the lock held, so the list is private and
1693  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1694  * field, to allow the kernel to clean up if the thread dies after
1695  * acquiring the lock, but just before it could have added itself to
1696  * the list. There can only be one such pending lock.
1697  */
1698
1699 /**
1700  * sys_set_robust_list - set the robust-futex list head of a task
1701  * @head: pointer to the list-head
1702  * @len: length of the list-head, as userspace expects
1703  */
1704 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
1705                 size_t, len)
1706 {
1707         if (!futex_cmpxchg_enabled)
1708                 return -ENOSYS;
1709         /*
1710          * The kernel knows only one size for now:
1711          */
1712         if (unlikely(len != sizeof(*head)))
1713                 return -EINVAL;
1714
1715         current->robust_list = head;
1716
1717         return 0;
1718 }
1719
1720 /**
1721  * sys_get_robust_list - get the robust-futex list head of a task
1722  * @pid: pid of the process [zero for current task]
1723  * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1724  * @len_ptr: pointer to a length field, the kernel fills in the header size
1725  */
1726 SYSCALL_DEFINE3(get_robust_list, int, pid,
1727                 struct robust_list_head __user * __user *, head_ptr,
1728                 size_t __user *, len_ptr)
1729 {
1730         struct robust_list_head __user *head;
1731         unsigned long ret;
1732         const struct cred *cred = current_cred(), *pcred;
1733
1734         if (!futex_cmpxchg_enabled)
1735                 return -ENOSYS;
1736
1737         if (!pid)
1738                 head = current->robust_list;
1739         else {
1740                 struct task_struct *p;
1741
1742                 ret = -ESRCH;
1743                 rcu_read_lock();
1744                 p = find_task_by_vpid(pid);
1745                 if (!p)
1746                         goto err_unlock;
1747                 ret = -EPERM;
1748                 pcred = __task_cred(p);
1749                 if (cred->euid != pcred->euid &&
1750                     cred->euid != pcred->uid &&
1751                     !capable(CAP_SYS_PTRACE))
1752                         goto err_unlock;
1753                 head = p->robust_list;
1754                 rcu_read_unlock();
1755         }
1756
1757         if (put_user(sizeof(*head), len_ptr))
1758                 return -EFAULT;
1759         return put_user(head, head_ptr);
1760
1761 err_unlock:
1762         rcu_read_unlock();
1763
1764         return ret;
1765 }
1766
1767 /*
1768  * Process a futex-list entry, check whether it's owned by the
1769  * dying task, and do notification if so:
1770  */
1771 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1772 {
1773         u32 uval, nval, mval;
1774
1775 retry:
1776         if (get_user(uval, uaddr))
1777                 return -1;
1778
1779         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
1780                 /*
1781                  * Ok, this dying thread is truly holding a futex
1782                  * of interest. Set the OWNER_DIED bit atomically
1783                  * via cmpxchg, and if the value had FUTEX_WAITERS
1784                  * set, wake up a waiter (if any). (We have to do a
1785                  * futex_wake() even if OWNER_DIED is already set -
1786                  * to handle the rare but possible case of recursive
1787                  * thread-death.) The rest of the cleanup is done in
1788                  * userspace.
1789                  */
1790                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1791                 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1792
1793                 if (nval == -EFAULT)
1794                         return -1;
1795
1796                 if (nval != uval)
1797                         goto retry;
1798
1799                 /*
1800                  * Wake robust non-PI futexes here. The wakeup of
1801                  * PI futexes happens in exit_pi_state():
1802                  */
1803                 if (!pi && (uval & FUTEX_WAITERS))
1804                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
1805         }
1806         return 0;
1807 }
1808
1809 /*
1810  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1811  */
1812 static inline int fetch_robust_entry(struct robust_list __user **entry,
1813                                      struct robust_list __user * __user *head,
1814                                      int *pi)
1815 {
1816         unsigned long uentry;
1817
1818         if (get_user(uentry, (unsigned long __user *)head))
1819                 return -EFAULT;
1820
1821         *entry = (void __user *)(uentry & ~1UL);
1822         *pi = uentry & 1;
1823
1824         return 0;
1825 }
1826
1827 /*
1828  * Walk curr->robust_list (very carefully, it's a userspace list!)
1829  * and mark any locks found there dead, and notify any waiters.
1830  *
1831  * We silently return on any sign of list-walking problem.
1832  */
1833 void exit_robust_list(struct task_struct *curr)
1834 {
1835         struct robust_list_head __user *head = curr->robust_list;
1836         struct robust_list __user *entry, *next_entry, *pending;
1837         unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
1838         unsigned long futex_offset;
1839         int rc;
1840
1841         if (!futex_cmpxchg_enabled)
1842                 return;
1843
1844         /*
1845          * Fetch the list head (which was registered earlier, via
1846          * sys_set_robust_list()):
1847          */
1848         if (fetch_robust_entry(&entry, &head->list.next, &pi))
1849                 return;
1850         /*
1851          * Fetch the relative futex offset:
1852          */
1853         if (get_user(futex_offset, &head->futex_offset))
1854                 return;
1855         /*
1856          * Fetch any possibly pending lock-add first, and handle it
1857          * if it exists:
1858          */
1859         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1860                 return;
1861
1862         next_entry = NULL;      /* avoid warning with gcc */
1863         while (entry != &head->list) {
1864                 /*
1865                  * Fetch the next entry in the list before calling
1866                  * handle_futex_death:
1867                  */
1868                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
1869                 /*
1870                  * A pending lock might already be on the list, so
1871                  * don't process it twice:
1872                  */
1873                 if (entry != pending)
1874                         if (handle_futex_death((void __user *)entry + futex_offset,
1875                                                 curr, pi))
1876                                 return;
1877                 if (rc)
1878                         return;
1879                 entry = next_entry;
1880                 pi = next_pi;
1881                 /*
1882                  * Avoid excessively long or circular lists:
1883                  */
1884                 if (!--limit)
1885                         break;
1886
1887                 cond_resched();
1888         }
1889
1890         if (pending)
1891                 handle_futex_death((void __user *)pending + futex_offset,
1892                                    curr, pip);
1893 }
1894
1895 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
1896                 u32 __user *uaddr2, u32 val2, u32 val3)
1897 {
1898         int clockrt, ret = -ENOSYS;
1899         int cmd = op & FUTEX_CMD_MASK;
1900         int fshared = 0;
1901
1902         if (!(op & FUTEX_PRIVATE_FLAG))
1903                 fshared = 1;
1904
1905         clockrt = op & FUTEX_CLOCK_REALTIME;
1906         if (clockrt && cmd != FUTEX_WAIT_BITSET)
1907                 return -ENOSYS;
1908
1909         switch (cmd) {
1910         case FUTEX_WAIT:
1911                 val3 = FUTEX_BITSET_MATCH_ANY;
1912         case FUTEX_WAIT_BITSET:
1913                 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
1914                 break;
1915         case FUTEX_WAKE:
1916                 val3 = FUTEX_BITSET_MATCH_ANY;
1917         case FUTEX_WAKE_BITSET:
1918                 ret = futex_wake(uaddr, fshared, val, val3);
1919                 break;
1920         case FUTEX_REQUEUE:
1921                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
1922                 break;
1923         case FUTEX_CMP_REQUEUE:
1924                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
1925                 break;
1926         case FUTEX_WAKE_OP:
1927                 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
1928                 break;
1929         case FUTEX_LOCK_PI:
1930                 if (futex_cmpxchg_enabled)
1931                         ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
1932                 break;
1933         case FUTEX_UNLOCK_PI:
1934                 if (futex_cmpxchg_enabled)
1935                         ret = futex_unlock_pi(uaddr, fshared);
1936                 break;
1937         case FUTEX_TRYLOCK_PI:
1938                 if (futex_cmpxchg_enabled)
1939                         ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
1940                 break;
1941         default:
1942                 ret = -ENOSYS;
1943         }
1944         return ret;
1945 }
1946
1947
1948 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
1949                 struct timespec __user *, utime, u32 __user *, uaddr2,
1950                 u32, val3)
1951 {
1952         struct timespec ts;
1953         ktime_t t, *tp = NULL;
1954         u32 val2 = 0;
1955         int cmd = op & FUTEX_CMD_MASK;
1956
1957         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
1958                       cmd == FUTEX_WAIT_BITSET)) {
1959                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1960                         return -EFAULT;
1961                 if (!timespec_valid(&ts))
1962                         return -EINVAL;
1963
1964                 t = timespec_to_ktime(ts);
1965                 if (cmd == FUTEX_WAIT)
1966                         t = ktime_add_safe(ktime_get(), t);
1967                 tp = &t;
1968         }
1969         /*
1970          * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
1971          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1972          */
1973         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
1974             cmd == FUTEX_WAKE_OP)
1975                 val2 = (u32) (unsigned long) utime;
1976
1977         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1978 }
1979
1980 static int __init futex_init(void)
1981 {
1982         u32 curval;
1983         int i;
1984
1985         /*
1986          * This will fail and we want it. Some arch implementations do
1987          * runtime detection of the futex_atomic_cmpxchg_inatomic()
1988          * functionality. We want to know that before we call in any
1989          * of the complex code paths. Also we want to prevent
1990          * registration of robust lists in that case. NULL is
1991          * guaranteed to fault and we get -EFAULT on functional
1992          * implementation, the non functional ones will return
1993          * -ENOSYS.
1994          */
1995         curval = cmpxchg_futex_value_locked(NULL, 0, 0);
1996         if (curval == -EFAULT)
1997                 futex_cmpxchg_enabled = 1;
1998
1999         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2000                 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2001                 spin_lock_init(&futex_queues[i].lock);
2002         }
2003
2004         return 0;
2005 }
2006 __initcall(futex_init);