futex: cleanup fshared
[safe/jmp/linux-2.6] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23  *  enough at me, Linus for the original (flawed) idea, Matthew
24  *  Kirkwood for proof-of-concept implementation.
25  *
26  *  "The futexes are also cursed."
27  *  "But they come in a choice of three flavours!"
28  *
29  *  This program is free software; you can redistribute it and/or modify
30  *  it under the terms of the GNU General Public License as published by
31  *  the Free Software Foundation; either version 2 of the License, or
32  *  (at your option) any later version.
33  *
34  *  This program is distributed in the hope that it will be useful,
35  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
36  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
37  *  GNU General Public License for more details.
38  *
39  *  You should have received a copy of the GNU General Public License
40  *  along with this program; if not, write to the Free Software
41  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
42  */
43 #include <linux/slab.h>
44 #include <linux/poll.h>
45 #include <linux/fs.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <linux/magic.h>
56 #include <linux/pid.h>
57 #include <linux/nsproxy.h>
58
59 #include <asm/futex.h>
60
61 #include "rtmutex_common.h"
62
63 int __read_mostly futex_cmpxchg_enabled;
64
65 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66
67 /*
68  * Priority Inheritance state:
69  */
70 struct futex_pi_state {
71         /*
72          * list of 'owned' pi_state instances - these have to be
73          * cleaned up in do_exit() if the task exits prematurely:
74          */
75         struct list_head list;
76
77         /*
78          * The PI object:
79          */
80         struct rt_mutex pi_mutex;
81
82         struct task_struct *owner;
83         atomic_t refcount;
84
85         union futex_key key;
86 };
87
88 /*
89  * We use this hashed waitqueue instead of a normal wait_queue_t, so
90  * we can wake only the relevant ones (hashed queues may be shared).
91  *
92  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
93  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
94  * The order of wakup is always to make the first condition true, then
95  * wake up q->waiters, then make the second condition true.
96  */
97 struct futex_q {
98         struct plist_node list;
99         wait_queue_head_t waiters;
100
101         /* Which hash list lock to use: */
102         spinlock_t *lock_ptr;
103
104         /* Key which the futex is hashed on: */
105         union futex_key key;
106
107         /* Optional priority inheritance state: */
108         struct futex_pi_state *pi_state;
109         struct task_struct *task;
110
111         /* Bitset for the optional bitmasked wakeup */
112         u32 bitset;
113 };
114
115 /*
116  * Split the global futex_lock into every hash list lock.
117  */
118 struct futex_hash_bucket {
119         spinlock_t lock;
120         struct plist_head chain;
121 };
122
123 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
124
125 /*
126  * We hash on the keys returned from get_futex_key (see below).
127  */
128 static struct futex_hash_bucket *hash_futex(union futex_key *key)
129 {
130         u32 hash = jhash2((u32*)&key->both.word,
131                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
132                           key->both.offset);
133         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
134 }
135
136 /*
137  * Return 1 if two futex_keys are equal, 0 otherwise.
138  */
139 static inline int match_futex(union futex_key *key1, union futex_key *key2)
140 {
141         return (key1->both.word == key2->both.word
142                 && key1->both.ptr == key2->both.ptr
143                 && key1->both.offset == key2->both.offset);
144 }
145
146 /*
147  * Take a reference to the resource addressed by a key.
148  * Can be called while holding spinlocks.
149  *
150  */
151 static void get_futex_key_refs(union futex_key *key)
152 {
153         if (!key->both.ptr)
154                 return;
155
156         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
157         case FUT_OFF_INODE:
158                 atomic_inc(&key->shared.inode->i_count);
159                 break;
160         case FUT_OFF_MMSHARED:
161                 atomic_inc(&key->private.mm->mm_count);
162                 break;
163         }
164 }
165
166 /*
167  * Drop a reference to the resource addressed by a key.
168  * The hash bucket spinlock must not be held.
169  */
170 static void drop_futex_key_refs(union futex_key *key)
171 {
172         if (!key->both.ptr)
173                 return;
174
175         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
176         case FUT_OFF_INODE:
177                 iput(key->shared.inode);
178                 break;
179         case FUT_OFF_MMSHARED:
180                 mmdrop(key->private.mm);
181                 break;
182         }
183 }
184
185 /**
186  * get_futex_key - Get parameters which are the keys for a futex.
187  * @uaddr: virtual address of the futex
188  * @shared: NULL for a PROCESS_PRIVATE futex,
189  *      &current->mm->mmap_sem for a PROCESS_SHARED futex
190  * @key: address where result is stored.
191  *
192  * Returns a negative error code or 0
193  * The key words are stored in *key on success.
194  *
195  * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
196  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
197  * We can usually work out the index without swapping in the page.
198  *
199  * fshared is NULL for PROCESS_PRIVATE futexes
200  * For other futexes, it points to &current->mm->mmap_sem and
201  * caller must have taken the reader lock. but NOT any spinlocks.
202  */
203 static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
204 {
205         unsigned long address = (unsigned long)uaddr;
206         struct mm_struct *mm = current->mm;
207         struct page *page;
208         int err;
209
210         /*
211          * The futex address must be "naturally" aligned.
212          */
213         key->both.offset = address % PAGE_SIZE;
214         if (unlikely((address % sizeof(u32)) != 0))
215                 return -EINVAL;
216         address -= key->both.offset;
217
218         /*
219          * PROCESS_PRIVATE futexes are fast.
220          * As the mm cannot disappear under us and the 'key' only needs
221          * virtual address, we dont even have to find the underlying vma.
222          * Note : We do have to check 'uaddr' is a valid user address,
223          *        but access_ok() should be faster than find_vma()
224          */
225         if (!fshared) {
226                 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
227                         return -EFAULT;
228                 key->private.mm = mm;
229                 key->private.address = address;
230                 return 0;
231         }
232
233 again:
234         err = get_user_pages_fast(address, 1, 0, &page);
235         if (err < 0)
236                 return err;
237
238         lock_page(page);
239         if (!page->mapping) {
240                 unlock_page(page);
241                 put_page(page);
242                 goto again;
243         }
244
245         /*
246          * Private mappings are handled in a simple way.
247          *
248          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
249          * it's a read-only handle, it's expected that futexes attach to
250          * the object not the particular process.
251          */
252         if (PageAnon(page)) {
253                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
254                 key->private.mm = mm;
255                 key->private.address = address;
256         } else {
257                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
258                 key->shared.inode = page->mapping->host;
259                 key->shared.pgoff = page->index;
260         }
261
262         get_futex_key_refs(key);
263
264         unlock_page(page);
265         put_page(page);
266         return 0;
267 }
268
269 static inline
270 void put_futex_key(int fshared, union futex_key *key)
271 {
272         drop_futex_key_refs(key);
273 }
274
275 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
276 {
277         u32 curval;
278
279         pagefault_disable();
280         curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
281         pagefault_enable();
282
283         return curval;
284 }
285
286 static int get_futex_value_locked(u32 *dest, u32 __user *from)
287 {
288         int ret;
289
290         pagefault_disable();
291         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
292         pagefault_enable();
293
294         return ret ? -EFAULT : 0;
295 }
296
297 /*
298  * Fault handling.
299  */
300 static int futex_handle_fault(unsigned long address, int attempt)
301 {
302         struct vm_area_struct * vma;
303         struct mm_struct *mm = current->mm;
304         int ret = -EFAULT;
305
306         if (attempt > 2)
307                 return ret;
308
309         down_read(&mm->mmap_sem);
310         vma = find_vma(mm, address);
311         if (vma && address >= vma->vm_start &&
312             (vma->vm_flags & VM_WRITE)) {
313                 int fault;
314                 fault = handle_mm_fault(mm, vma, address, 1);
315                 if (unlikely((fault & VM_FAULT_ERROR))) {
316 #if 0
317                         /* XXX: let's do this when we verify it is OK */
318                         if (ret & VM_FAULT_OOM)
319                                 ret = -ENOMEM;
320 #endif
321                 } else {
322                         ret = 0;
323                         if (fault & VM_FAULT_MAJOR)
324                                 current->maj_flt++;
325                         else
326                                 current->min_flt++;
327                 }
328         }
329         up_read(&mm->mmap_sem);
330         return ret;
331 }
332
333 /*
334  * PI code:
335  */
336 static int refill_pi_state_cache(void)
337 {
338         struct futex_pi_state *pi_state;
339
340         if (likely(current->pi_state_cache))
341                 return 0;
342
343         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
344
345         if (!pi_state)
346                 return -ENOMEM;
347
348         INIT_LIST_HEAD(&pi_state->list);
349         /* pi_mutex gets initialized later */
350         pi_state->owner = NULL;
351         atomic_set(&pi_state->refcount, 1);
352         pi_state->key = FUTEX_KEY_INIT;
353
354         current->pi_state_cache = pi_state;
355
356         return 0;
357 }
358
359 static struct futex_pi_state * alloc_pi_state(void)
360 {
361         struct futex_pi_state *pi_state = current->pi_state_cache;
362
363         WARN_ON(!pi_state);
364         current->pi_state_cache = NULL;
365
366         return pi_state;
367 }
368
369 static void free_pi_state(struct futex_pi_state *pi_state)
370 {
371         if (!atomic_dec_and_test(&pi_state->refcount))
372                 return;
373
374         /*
375          * If pi_state->owner is NULL, the owner is most probably dying
376          * and has cleaned up the pi_state already
377          */
378         if (pi_state->owner) {
379                 spin_lock_irq(&pi_state->owner->pi_lock);
380                 list_del_init(&pi_state->list);
381                 spin_unlock_irq(&pi_state->owner->pi_lock);
382
383                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
384         }
385
386         if (current->pi_state_cache)
387                 kfree(pi_state);
388         else {
389                 /*
390                  * pi_state->list is already empty.
391                  * clear pi_state->owner.
392                  * refcount is at 0 - put it back to 1.
393                  */
394                 pi_state->owner = NULL;
395                 atomic_set(&pi_state->refcount, 1);
396                 current->pi_state_cache = pi_state;
397         }
398 }
399
400 /*
401  * Look up the task based on what TID userspace gave us.
402  * We dont trust it.
403  */
404 static struct task_struct * futex_find_get_task(pid_t pid)
405 {
406         struct task_struct *p;
407
408         rcu_read_lock();
409         p = find_task_by_vpid(pid);
410         if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
411                 p = ERR_PTR(-ESRCH);
412         else
413                 get_task_struct(p);
414
415         rcu_read_unlock();
416
417         return p;
418 }
419
420 /*
421  * This task is holding PI mutexes at exit time => bad.
422  * Kernel cleans up PI-state, but userspace is likely hosed.
423  * (Robust-futex cleanup is separate and might save the day for userspace.)
424  */
425 void exit_pi_state_list(struct task_struct *curr)
426 {
427         struct list_head *next, *head = &curr->pi_state_list;
428         struct futex_pi_state *pi_state;
429         struct futex_hash_bucket *hb;
430         union futex_key key = FUTEX_KEY_INIT;
431
432         if (!futex_cmpxchg_enabled)
433                 return;
434         /*
435          * We are a ZOMBIE and nobody can enqueue itself on
436          * pi_state_list anymore, but we have to be careful
437          * versus waiters unqueueing themselves:
438          */
439         spin_lock_irq(&curr->pi_lock);
440         while (!list_empty(head)) {
441
442                 next = head->next;
443                 pi_state = list_entry(next, struct futex_pi_state, list);
444                 key = pi_state->key;
445                 hb = hash_futex(&key);
446                 spin_unlock_irq(&curr->pi_lock);
447
448                 spin_lock(&hb->lock);
449
450                 spin_lock_irq(&curr->pi_lock);
451                 /*
452                  * We dropped the pi-lock, so re-check whether this
453                  * task still owns the PI-state:
454                  */
455                 if (head->next != next) {
456                         spin_unlock(&hb->lock);
457                         continue;
458                 }
459
460                 WARN_ON(pi_state->owner != curr);
461                 WARN_ON(list_empty(&pi_state->list));
462                 list_del_init(&pi_state->list);
463                 pi_state->owner = NULL;
464                 spin_unlock_irq(&curr->pi_lock);
465
466                 rt_mutex_unlock(&pi_state->pi_mutex);
467
468                 spin_unlock(&hb->lock);
469
470                 spin_lock_irq(&curr->pi_lock);
471         }
472         spin_unlock_irq(&curr->pi_lock);
473 }
474
475 static int
476 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
477                 union futex_key *key, struct futex_pi_state **ps)
478 {
479         struct futex_pi_state *pi_state = NULL;
480         struct futex_q *this, *next;
481         struct plist_head *head;
482         struct task_struct *p;
483         pid_t pid = uval & FUTEX_TID_MASK;
484
485         head = &hb->chain;
486
487         plist_for_each_entry_safe(this, next, head, list) {
488                 if (match_futex(&this->key, key)) {
489                         /*
490                          * Another waiter already exists - bump up
491                          * the refcount and return its pi_state:
492                          */
493                         pi_state = this->pi_state;
494                         /*
495                          * Userspace might have messed up non PI and PI futexes
496                          */
497                         if (unlikely(!pi_state))
498                                 return -EINVAL;
499
500                         WARN_ON(!atomic_read(&pi_state->refcount));
501                         WARN_ON(pid && pi_state->owner &&
502                                 pi_state->owner->pid != pid);
503
504                         atomic_inc(&pi_state->refcount);
505                         *ps = pi_state;
506
507                         return 0;
508                 }
509         }
510
511         /*
512          * We are the first waiter - try to look up the real owner and attach
513          * the new pi_state to it, but bail out when TID = 0
514          */
515         if (!pid)
516                 return -ESRCH;
517         p = futex_find_get_task(pid);
518         if (IS_ERR(p))
519                 return PTR_ERR(p);
520
521         /*
522          * We need to look at the task state flags to figure out,
523          * whether the task is exiting. To protect against the do_exit
524          * change of the task flags, we do this protected by
525          * p->pi_lock:
526          */
527         spin_lock_irq(&p->pi_lock);
528         if (unlikely(p->flags & PF_EXITING)) {
529                 /*
530                  * The task is on the way out. When PF_EXITPIDONE is
531                  * set, we know that the task has finished the
532                  * cleanup:
533                  */
534                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
535
536                 spin_unlock_irq(&p->pi_lock);
537                 put_task_struct(p);
538                 return ret;
539         }
540
541         pi_state = alloc_pi_state();
542
543         /*
544          * Initialize the pi_mutex in locked state and make 'p'
545          * the owner of it:
546          */
547         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
548
549         /* Store the key for possible exit cleanups: */
550         pi_state->key = *key;
551
552         WARN_ON(!list_empty(&pi_state->list));
553         list_add(&pi_state->list, &p->pi_state_list);
554         pi_state->owner = p;
555         spin_unlock_irq(&p->pi_lock);
556
557         put_task_struct(p);
558
559         *ps = pi_state;
560
561         return 0;
562 }
563
564 /*
565  * The hash bucket lock must be held when this is called.
566  * Afterwards, the futex_q must not be accessed.
567  */
568 static void wake_futex(struct futex_q *q)
569 {
570         plist_del(&q->list, &q->list.plist);
571         /*
572          * The lock in wake_up_all() is a crucial memory barrier after the
573          * plist_del() and also before assigning to q->lock_ptr.
574          */
575         wake_up_all(&q->waiters);
576         /*
577          * The waiting task can free the futex_q as soon as this is written,
578          * without taking any locks.  This must come last.
579          *
580          * A memory barrier is required here to prevent the following store
581          * to lock_ptr from getting ahead of the wakeup. Clearing the lock
582          * at the end of wake_up_all() does not prevent this store from
583          * moving.
584          */
585         smp_wmb();
586         q->lock_ptr = NULL;
587 }
588
589 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
590 {
591         struct task_struct *new_owner;
592         struct futex_pi_state *pi_state = this->pi_state;
593         u32 curval, newval;
594
595         if (!pi_state)
596                 return -EINVAL;
597
598         spin_lock(&pi_state->pi_mutex.wait_lock);
599         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
600
601         /*
602          * This happens when we have stolen the lock and the original
603          * pending owner did not enqueue itself back on the rt_mutex.
604          * Thats not a tragedy. We know that way, that a lock waiter
605          * is on the fly. We make the futex_q waiter the pending owner.
606          */
607         if (!new_owner)
608                 new_owner = this->task;
609
610         /*
611          * We pass it to the next owner. (The WAITERS bit is always
612          * kept enabled while there is PI state around. We must also
613          * preserve the owner died bit.)
614          */
615         if (!(uval & FUTEX_OWNER_DIED)) {
616                 int ret = 0;
617
618                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
619
620                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
621
622                 if (curval == -EFAULT)
623                         ret = -EFAULT;
624                 else if (curval != uval)
625                         ret = -EINVAL;
626                 if (ret) {
627                         spin_unlock(&pi_state->pi_mutex.wait_lock);
628                         return ret;
629                 }
630         }
631
632         spin_lock_irq(&pi_state->owner->pi_lock);
633         WARN_ON(list_empty(&pi_state->list));
634         list_del_init(&pi_state->list);
635         spin_unlock_irq(&pi_state->owner->pi_lock);
636
637         spin_lock_irq(&new_owner->pi_lock);
638         WARN_ON(!list_empty(&pi_state->list));
639         list_add(&pi_state->list, &new_owner->pi_state_list);
640         pi_state->owner = new_owner;
641         spin_unlock_irq(&new_owner->pi_lock);
642
643         spin_unlock(&pi_state->pi_mutex.wait_lock);
644         rt_mutex_unlock(&pi_state->pi_mutex);
645
646         return 0;
647 }
648
649 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
650 {
651         u32 oldval;
652
653         /*
654          * There is no waiter, so we unlock the futex. The owner died
655          * bit has not to be preserved here. We are the owner:
656          */
657         oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
658
659         if (oldval == -EFAULT)
660                 return oldval;
661         if (oldval != uval)
662                 return -EAGAIN;
663
664         return 0;
665 }
666
667 /*
668  * Express the locking dependencies for lockdep:
669  */
670 static inline void
671 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
672 {
673         if (hb1 <= hb2) {
674                 spin_lock(&hb1->lock);
675                 if (hb1 < hb2)
676                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
677         } else { /* hb1 > hb2 */
678                 spin_lock(&hb2->lock);
679                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
680         }
681 }
682
683 /*
684  * Wake up all waiters hashed on the physical page that is mapped
685  * to this virtual address:
686  */
687 static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
688 {
689         struct futex_hash_bucket *hb;
690         struct futex_q *this, *next;
691         struct plist_head *head;
692         union futex_key key = FUTEX_KEY_INIT;
693         int ret;
694
695         if (!bitset)
696                 return -EINVAL;
697
698         ret = get_futex_key(uaddr, fshared, &key);
699         if (unlikely(ret != 0))
700                 goto out;
701
702         hb = hash_futex(&key);
703         spin_lock(&hb->lock);
704         head = &hb->chain;
705
706         plist_for_each_entry_safe(this, next, head, list) {
707                 if (match_futex (&this->key, &key)) {
708                         if (this->pi_state) {
709                                 ret = -EINVAL;
710                                 break;
711                         }
712
713                         /* Check if one of the bits is set in both bitsets */
714                         if (!(this->bitset & bitset))
715                                 continue;
716
717                         wake_futex(this);
718                         if (++ret >= nr_wake)
719                                 break;
720                 }
721         }
722
723         spin_unlock(&hb->lock);
724 out:
725         put_futex_key(fshared, &key);
726         return ret;
727 }
728
729 /*
730  * Wake up all waiters hashed on the physical page that is mapped
731  * to this virtual address:
732  */
733 static int
734 futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
735               int nr_wake, int nr_wake2, int op)
736 {
737         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
738         struct futex_hash_bucket *hb1, *hb2;
739         struct plist_head *head;
740         struct futex_q *this, *next;
741         int ret, op_ret, attempt = 0;
742
743 retryfull:
744         ret = get_futex_key(uaddr1, fshared, &key1);
745         if (unlikely(ret != 0))
746                 goto out;
747         ret = get_futex_key(uaddr2, fshared, &key2);
748         if (unlikely(ret != 0))
749                 goto out;
750
751         hb1 = hash_futex(&key1);
752         hb2 = hash_futex(&key2);
753
754 retry:
755         double_lock_hb(hb1, hb2);
756
757         op_ret = futex_atomic_op_inuser(op, uaddr2);
758         if (unlikely(op_ret < 0)) {
759                 u32 dummy;
760
761                 spin_unlock(&hb1->lock);
762                 if (hb1 != hb2)
763                         spin_unlock(&hb2->lock);
764
765 #ifndef CONFIG_MMU
766                 /*
767                  * we don't get EFAULT from MMU faults if we don't have an MMU,
768                  * but we might get them from range checking
769                  */
770                 ret = op_ret;
771                 goto out;
772 #endif
773
774                 if (unlikely(op_ret != -EFAULT)) {
775                         ret = op_ret;
776                         goto out;
777                 }
778
779                 /*
780                  * futex_atomic_op_inuser needs to both read and write
781                  * *(int __user *)uaddr2, but we can't modify it
782                  * non-atomically.  Therefore, if get_user below is not
783                  * enough, we need to handle the fault ourselves, while
784                  * still holding the mmap_sem.
785                  */
786                 if (attempt++) {
787                         ret = futex_handle_fault((unsigned long)uaddr2,
788                                                  attempt);
789                         if (ret)
790                                 goto out;
791                         goto retry;
792                 }
793
794                 ret = get_user(dummy, uaddr2);
795                 if (ret)
796                         return ret;
797
798                 goto retryfull;
799         }
800
801         head = &hb1->chain;
802
803         plist_for_each_entry_safe(this, next, head, list) {
804                 if (match_futex (&this->key, &key1)) {
805                         wake_futex(this);
806                         if (++ret >= nr_wake)
807                                 break;
808                 }
809         }
810
811         if (op_ret > 0) {
812                 head = &hb2->chain;
813
814                 op_ret = 0;
815                 plist_for_each_entry_safe(this, next, head, list) {
816                         if (match_futex (&this->key, &key2)) {
817                                 wake_futex(this);
818                                 if (++op_ret >= nr_wake2)
819                                         break;
820                         }
821                 }
822                 ret += op_ret;
823         }
824
825         spin_unlock(&hb1->lock);
826         if (hb1 != hb2)
827                 spin_unlock(&hb2->lock);
828 out:
829         put_futex_key(fshared, &key2);
830         put_futex_key(fshared, &key1);
831
832         return ret;
833 }
834
835 /*
836  * Requeue all waiters hashed on one physical page to another
837  * physical page.
838  */
839 static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
840                          int nr_wake, int nr_requeue, u32 *cmpval)
841 {
842         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
843         struct futex_hash_bucket *hb1, *hb2;
844         struct plist_head *head1;
845         struct futex_q *this, *next;
846         int ret, drop_count = 0;
847
848  retry:
849         ret = get_futex_key(uaddr1, fshared, &key1);
850         if (unlikely(ret != 0))
851                 goto out;
852         ret = get_futex_key(uaddr2, fshared, &key2);
853         if (unlikely(ret != 0))
854                 goto out;
855
856         hb1 = hash_futex(&key1);
857         hb2 = hash_futex(&key2);
858
859         double_lock_hb(hb1, hb2);
860
861         if (likely(cmpval != NULL)) {
862                 u32 curval;
863
864                 ret = get_futex_value_locked(&curval, uaddr1);
865
866                 if (unlikely(ret)) {
867                         spin_unlock(&hb1->lock);
868                         if (hb1 != hb2)
869                                 spin_unlock(&hb2->lock);
870
871                         ret = get_user(curval, uaddr1);
872
873                         if (!ret)
874                                 goto retry;
875
876                         return ret;
877                 }
878                 if (curval != *cmpval) {
879                         ret = -EAGAIN;
880                         goto out_unlock;
881                 }
882         }
883
884         head1 = &hb1->chain;
885         plist_for_each_entry_safe(this, next, head1, list) {
886                 if (!match_futex (&this->key, &key1))
887                         continue;
888                 if (++ret <= nr_wake) {
889                         wake_futex(this);
890                 } else {
891                         /*
892                          * If key1 and key2 hash to the same bucket, no need to
893                          * requeue.
894                          */
895                         if (likely(head1 != &hb2->chain)) {
896                                 plist_del(&this->list, &hb1->chain);
897                                 plist_add(&this->list, &hb2->chain);
898                                 this->lock_ptr = &hb2->lock;
899 #ifdef CONFIG_DEBUG_PI_LIST
900                                 this->list.plist.lock = &hb2->lock;
901 #endif
902                         }
903                         this->key = key2;
904                         get_futex_key_refs(&key2);
905                         drop_count++;
906
907                         if (ret - nr_wake >= nr_requeue)
908                                 break;
909                 }
910         }
911
912 out_unlock:
913         spin_unlock(&hb1->lock);
914         if (hb1 != hb2)
915                 spin_unlock(&hb2->lock);
916
917         /* drop_futex_key_refs() must be called outside the spinlocks. */
918         while (--drop_count >= 0)
919                 drop_futex_key_refs(&key1);
920
921 out:
922         put_futex_key(fshared, &key2);
923         put_futex_key(fshared, &key1);
924         return ret;
925 }
926
927 /* The key must be already stored in q->key. */
928 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
929 {
930         struct futex_hash_bucket *hb;
931
932         init_waitqueue_head(&q->waiters);
933
934         get_futex_key_refs(&q->key);
935         hb = hash_futex(&q->key);
936         q->lock_ptr = &hb->lock;
937
938         spin_lock(&hb->lock);
939         return hb;
940 }
941
942 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
943 {
944         int prio;
945
946         /*
947          * The priority used to register this element is
948          * - either the real thread-priority for the real-time threads
949          * (i.e. threads with a priority lower than MAX_RT_PRIO)
950          * - or MAX_RT_PRIO for non-RT threads.
951          * Thus, all RT-threads are woken first in priority order, and
952          * the others are woken last, in FIFO order.
953          */
954         prio = min(current->normal_prio, MAX_RT_PRIO);
955
956         plist_node_init(&q->list, prio);
957 #ifdef CONFIG_DEBUG_PI_LIST
958         q->list.plist.lock = &hb->lock;
959 #endif
960         plist_add(&q->list, &hb->chain);
961         q->task = current;
962         spin_unlock(&hb->lock);
963 }
964
965 static inline void
966 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
967 {
968         spin_unlock(&hb->lock);
969         drop_futex_key_refs(&q->key);
970 }
971
972 /*
973  * queue_me and unqueue_me must be called as a pair, each
974  * exactly once.  They are called with the hashed spinlock held.
975  */
976
977 /* Return 1 if we were still queued (ie. 0 means we were woken) */
978 static int unqueue_me(struct futex_q *q)
979 {
980         spinlock_t *lock_ptr;
981         int ret = 0;
982
983         /* In the common case we don't take the spinlock, which is nice. */
984  retry:
985         lock_ptr = q->lock_ptr;
986         barrier();
987         if (lock_ptr != NULL) {
988                 spin_lock(lock_ptr);
989                 /*
990                  * q->lock_ptr can change between reading it and
991                  * spin_lock(), causing us to take the wrong lock.  This
992                  * corrects the race condition.
993                  *
994                  * Reasoning goes like this: if we have the wrong lock,
995                  * q->lock_ptr must have changed (maybe several times)
996                  * between reading it and the spin_lock().  It can
997                  * change again after the spin_lock() but only if it was
998                  * already changed before the spin_lock().  It cannot,
999                  * however, change back to the original value.  Therefore
1000                  * we can detect whether we acquired the correct lock.
1001                  */
1002                 if (unlikely(lock_ptr != q->lock_ptr)) {
1003                         spin_unlock(lock_ptr);
1004                         goto retry;
1005                 }
1006                 WARN_ON(plist_node_empty(&q->list));
1007                 plist_del(&q->list, &q->list.plist);
1008
1009                 BUG_ON(q->pi_state);
1010
1011                 spin_unlock(lock_ptr);
1012                 ret = 1;
1013         }
1014
1015         drop_futex_key_refs(&q->key);
1016         return ret;
1017 }
1018
1019 /*
1020  * PI futexes can not be requeued and must remove themself from the
1021  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1022  * and dropped here.
1023  */
1024 static void unqueue_me_pi(struct futex_q *q)
1025 {
1026         WARN_ON(plist_node_empty(&q->list));
1027         plist_del(&q->list, &q->list.plist);
1028
1029         BUG_ON(!q->pi_state);
1030         free_pi_state(q->pi_state);
1031         q->pi_state = NULL;
1032
1033         spin_unlock(q->lock_ptr);
1034
1035         drop_futex_key_refs(&q->key);
1036 }
1037
1038 /*
1039  * Fixup the pi_state owner with the new owner.
1040  *
1041  * Must be called with hash bucket lock held and mm->sem held for non
1042  * private futexes.
1043  */
1044 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1045                                 struct task_struct *newowner, int fshared)
1046 {
1047         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1048         struct futex_pi_state *pi_state = q->pi_state;
1049         struct task_struct *oldowner = pi_state->owner;
1050         u32 uval, curval, newval;
1051         int ret, attempt = 0;
1052
1053         /* Owner died? */
1054         if (!pi_state->owner)
1055                 newtid |= FUTEX_OWNER_DIED;
1056
1057         /*
1058          * We are here either because we stole the rtmutex from the
1059          * pending owner or we are the pending owner which failed to
1060          * get the rtmutex. We have to replace the pending owner TID
1061          * in the user space variable. This must be atomic as we have
1062          * to preserve the owner died bit here.
1063          *
1064          * Note: We write the user space value _before_ changing the
1065          * pi_state because we can fault here. Imagine swapped out
1066          * pages or a fork, which was running right before we acquired
1067          * mmap_sem, that marked all the anonymous memory readonly for
1068          * cow.
1069          *
1070          * Modifying pi_state _before_ the user space value would
1071          * leave the pi_state in an inconsistent state when we fault
1072          * here, because we need to drop the hash bucket lock to
1073          * handle the fault. This might be observed in the PID check
1074          * in lookup_pi_state.
1075          */
1076 retry:
1077         if (get_futex_value_locked(&uval, uaddr))
1078                 goto handle_fault;
1079
1080         while (1) {
1081                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1082
1083                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1084
1085                 if (curval == -EFAULT)
1086                         goto handle_fault;
1087                 if (curval == uval)
1088                         break;
1089                 uval = curval;
1090         }
1091
1092         /*
1093          * We fixed up user space. Now we need to fix the pi_state
1094          * itself.
1095          */
1096         if (pi_state->owner != NULL) {
1097                 spin_lock_irq(&pi_state->owner->pi_lock);
1098                 WARN_ON(list_empty(&pi_state->list));
1099                 list_del_init(&pi_state->list);
1100                 spin_unlock_irq(&pi_state->owner->pi_lock);
1101         }
1102
1103         pi_state->owner = newowner;
1104
1105         spin_lock_irq(&newowner->pi_lock);
1106         WARN_ON(!list_empty(&pi_state->list));
1107         list_add(&pi_state->list, &newowner->pi_state_list);
1108         spin_unlock_irq(&newowner->pi_lock);
1109         return 0;
1110
1111         /*
1112          * To handle the page fault we need to drop the hash bucket
1113          * lock here. That gives the other task (either the pending
1114          * owner itself or the task which stole the rtmutex) the
1115          * chance to try the fixup of the pi_state. So once we are
1116          * back from handling the fault we need to check the pi_state
1117          * after reacquiring the hash bucket lock and before trying to
1118          * do another fixup. When the fixup has been done already we
1119          * simply return.
1120          */
1121 handle_fault:
1122         spin_unlock(q->lock_ptr);
1123
1124         ret = futex_handle_fault((unsigned long)uaddr, attempt++);
1125
1126         spin_lock(q->lock_ptr);
1127
1128         /*
1129          * Check if someone else fixed it for us:
1130          */
1131         if (pi_state->owner != oldowner)
1132                 return 0;
1133
1134         if (ret)
1135                 return ret;
1136
1137         goto retry;
1138 }
1139
1140 /*
1141  * In case we must use restart_block to restart a futex_wait,
1142  * we encode in the 'flags' shared capability
1143  */
1144 #define FLAGS_SHARED  1
1145
1146 static long futex_wait_restart(struct restart_block *restart);
1147
1148 static int futex_wait(u32 __user *uaddr, int fshared,
1149                       u32 val, ktime_t *abs_time, u32 bitset)
1150 {
1151         struct task_struct *curr = current;
1152         DECLARE_WAITQUEUE(wait, curr);
1153         struct futex_hash_bucket *hb;
1154         struct futex_q q;
1155         u32 uval;
1156         int ret;
1157         struct hrtimer_sleeper t;
1158         int rem = 0;
1159
1160         if (!bitset)
1161                 return -EINVAL;
1162
1163         q.pi_state = NULL;
1164         q.bitset = bitset;
1165  retry:
1166         q.key = FUTEX_KEY_INIT;
1167         ret = get_futex_key(uaddr, fshared, &q.key);
1168         if (unlikely(ret != 0))
1169                 goto out_release_sem;
1170
1171         hb = queue_lock(&q);
1172
1173         /*
1174          * Access the page AFTER the futex is queued.
1175          * Order is important:
1176          *
1177          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1178          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1179          *
1180          * The basic logical guarantee of a futex is that it blocks ONLY
1181          * if cond(var) is known to be true at the time of blocking, for
1182          * any cond.  If we queued after testing *uaddr, that would open
1183          * a race condition where we could block indefinitely with
1184          * cond(var) false, which would violate the guarantee.
1185          *
1186          * A consequence is that futex_wait() can return zero and absorb
1187          * a wakeup when *uaddr != val on entry to the syscall.  This is
1188          * rare, but normal.
1189          *
1190          * for shared futexes, we hold the mmap semaphore, so the mapping
1191          * cannot have changed since we looked it up in get_futex_key.
1192          */
1193         ret = get_futex_value_locked(&uval, uaddr);
1194
1195         if (unlikely(ret)) {
1196                 queue_unlock(&q, hb);
1197
1198                 ret = get_user(uval, uaddr);
1199
1200                 if (!ret)
1201                         goto retry;
1202                 return ret;
1203         }
1204         ret = -EWOULDBLOCK;
1205         if (uval != val)
1206                 goto out_unlock_release_sem;
1207
1208         /* Only actually queue if *uaddr contained val.  */
1209         queue_me(&q, hb);
1210
1211         /*
1212          * There might have been scheduling since the queue_me(), as we
1213          * cannot hold a spinlock across the get_user() in case it
1214          * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1215          * queueing ourselves into the futex hash.  This code thus has to
1216          * rely on the futex_wake() code removing us from hash when it
1217          * wakes us up.
1218          */
1219
1220         /* add_wait_queue is the barrier after __set_current_state. */
1221         __set_current_state(TASK_INTERRUPTIBLE);
1222         add_wait_queue(&q.waiters, &wait);
1223         /*
1224          * !plist_node_empty() is safe here without any lock.
1225          * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1226          */
1227         if (likely(!plist_node_empty(&q.list))) {
1228                 if (!abs_time)
1229                         schedule();
1230                 else {
1231                         hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC,
1232                                                 HRTIMER_MODE_ABS);
1233                         hrtimer_init_sleeper(&t, current);
1234                         t.timer.expires = *abs_time;
1235
1236                         hrtimer_start(&t.timer, t.timer.expires,
1237                                                 HRTIMER_MODE_ABS);
1238                         if (!hrtimer_active(&t.timer))
1239                                 t.task = NULL;
1240
1241                         /*
1242                          * the timer could have already expired, in which
1243                          * case current would be flagged for rescheduling.
1244                          * Don't bother calling schedule.
1245                          */
1246                         if (likely(t.task))
1247                                 schedule();
1248
1249                         hrtimer_cancel(&t.timer);
1250
1251                         /* Flag if a timeout occured */
1252                         rem = (t.task == NULL);
1253
1254                         destroy_hrtimer_on_stack(&t.timer);
1255                 }
1256         }
1257         __set_current_state(TASK_RUNNING);
1258
1259         /*
1260          * NOTE: we don't remove ourselves from the waitqueue because
1261          * we are the only user of it.
1262          */
1263
1264         /* If we were woken (and unqueued), we succeeded, whatever. */
1265         if (!unqueue_me(&q))
1266                 return 0;
1267         if (rem)
1268                 return -ETIMEDOUT;
1269
1270         /*
1271          * We expect signal_pending(current), but another thread may
1272          * have handled it for us already.
1273          */
1274         if (!abs_time)
1275                 return -ERESTARTSYS;
1276         else {
1277                 struct restart_block *restart;
1278                 restart = &current_thread_info()->restart_block;
1279                 restart->fn = futex_wait_restart;
1280                 restart->futex.uaddr = (u32 *)uaddr;
1281                 restart->futex.val = val;
1282                 restart->futex.time = abs_time->tv64;
1283                 restart->futex.bitset = bitset;
1284                 restart->futex.flags = 0;
1285
1286                 if (fshared)
1287                         restart->futex.flags |= FLAGS_SHARED;
1288                 return -ERESTART_RESTARTBLOCK;
1289         }
1290
1291  out_unlock_release_sem:
1292         queue_unlock(&q, hb);
1293
1294  out_release_sem:
1295         put_futex_key(fshared, &q.key);
1296         return ret;
1297 }
1298
1299
1300 static long futex_wait_restart(struct restart_block *restart)
1301 {
1302         u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1303         int fshared = 0;
1304         ktime_t t;
1305
1306         t.tv64 = restart->futex.time;
1307         restart->fn = do_no_restart_syscall;
1308         if (restart->futex.flags & FLAGS_SHARED)
1309                 fshared = 1;
1310         return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1311                                 restart->futex.bitset);
1312 }
1313
1314
1315 /*
1316  * Userspace tried a 0 -> TID atomic transition of the futex value
1317  * and failed. The kernel side here does the whole locking operation:
1318  * if there are waiters then it will block, it does PI, etc. (Due to
1319  * races the kernel might see a 0 value of the futex too.)
1320  */
1321 static int futex_lock_pi(u32 __user *uaddr, int fshared,
1322                          int detect, ktime_t *time, int trylock)
1323 {
1324         struct hrtimer_sleeper timeout, *to = NULL;
1325         struct task_struct *curr = current;
1326         struct futex_hash_bucket *hb;
1327         u32 uval, newval, curval;
1328         struct futex_q q;
1329         int ret, lock_taken, ownerdied = 0, attempt = 0;
1330
1331         if (refill_pi_state_cache())
1332                 return -ENOMEM;
1333
1334         if (time) {
1335                 to = &timeout;
1336                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1337                                       HRTIMER_MODE_ABS);
1338                 hrtimer_init_sleeper(to, current);
1339                 to->timer.expires = *time;
1340         }
1341
1342         q.pi_state = NULL;
1343  retry:
1344         q.key = FUTEX_KEY_INIT;
1345         ret = get_futex_key(uaddr, fshared, &q.key);
1346         if (unlikely(ret != 0))
1347                 goto out_release_sem;
1348
1349  retry_unlocked:
1350         hb = queue_lock(&q);
1351
1352  retry_locked:
1353         ret = lock_taken = 0;
1354
1355         /*
1356          * To avoid races, we attempt to take the lock here again
1357          * (by doing a 0 -> TID atomic cmpxchg), while holding all
1358          * the locks. It will most likely not succeed.
1359          */
1360         newval = task_pid_vnr(current);
1361
1362         curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
1363
1364         if (unlikely(curval == -EFAULT))
1365                 goto uaddr_faulted;
1366
1367         /*
1368          * Detect deadlocks. In case of REQUEUE_PI this is a valid
1369          * situation and we return success to user space.
1370          */
1371         if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
1372                 ret = -EDEADLK;
1373                 goto out_unlock_release_sem;
1374         }
1375
1376         /*
1377          * Surprise - we got the lock. Just return to userspace:
1378          */
1379         if (unlikely(!curval))
1380                 goto out_unlock_release_sem;
1381
1382         uval = curval;
1383
1384         /*
1385          * Set the WAITERS flag, so the owner will know it has someone
1386          * to wake at next unlock
1387          */
1388         newval = curval | FUTEX_WAITERS;
1389
1390         /*
1391          * There are two cases, where a futex might have no owner (the
1392          * owner TID is 0): OWNER_DIED. We take over the futex in this
1393          * case. We also do an unconditional take over, when the owner
1394          * of the futex died.
1395          *
1396          * This is safe as we are protected by the hash bucket lock !
1397          */
1398         if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
1399                 /* Keep the OWNER_DIED bit */
1400                 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
1401                 ownerdied = 0;
1402                 lock_taken = 1;
1403         }
1404
1405         curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1406
1407         if (unlikely(curval == -EFAULT))
1408                 goto uaddr_faulted;
1409         if (unlikely(curval != uval))
1410                 goto retry_locked;
1411
1412         /*
1413          * We took the lock due to owner died take over.
1414          */
1415         if (unlikely(lock_taken))
1416                 goto out_unlock_release_sem;
1417
1418         /*
1419          * We dont have the lock. Look up the PI state (or create it if
1420          * we are the first waiter):
1421          */
1422         ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
1423
1424         if (unlikely(ret)) {
1425                 switch (ret) {
1426
1427                 case -EAGAIN:
1428                         /*
1429                          * Task is exiting and we just wait for the
1430                          * exit to complete.
1431                          */
1432                         queue_unlock(&q, hb);
1433                         cond_resched();
1434                         goto retry;
1435
1436                 case -ESRCH:
1437                         /*
1438                          * No owner found for this futex. Check if the
1439                          * OWNER_DIED bit is set to figure out whether
1440                          * this is a robust futex or not.
1441                          */
1442                         if (get_futex_value_locked(&curval, uaddr))
1443                                 goto uaddr_faulted;
1444
1445                         /*
1446                          * We simply start over in case of a robust
1447                          * futex. The code above will take the futex
1448                          * and return happy.
1449                          */
1450                         if (curval & FUTEX_OWNER_DIED) {
1451                                 ownerdied = 1;
1452                                 goto retry_locked;
1453                         }
1454                 default:
1455                         goto out_unlock_release_sem;
1456                 }
1457         }
1458
1459         /*
1460          * Only actually queue now that the atomic ops are done:
1461          */
1462         queue_me(&q, hb);
1463
1464         WARN_ON(!q.pi_state);
1465         /*
1466          * Block on the PI mutex:
1467          */
1468         if (!trylock)
1469                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1470         else {
1471                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1472                 /* Fixup the trylock return value: */
1473                 ret = ret ? 0 : -EWOULDBLOCK;
1474         }
1475
1476         spin_lock(q.lock_ptr);
1477
1478         if (!ret) {
1479                 /*
1480                  * Got the lock. We might not be the anticipated owner
1481                  * if we did a lock-steal - fix up the PI-state in
1482                  * that case:
1483                  */
1484                 if (q.pi_state->owner != curr)
1485                         ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
1486         } else {
1487                 /*
1488                  * Catch the rare case, where the lock was released
1489                  * when we were on the way back before we locked the
1490                  * hash bucket.
1491                  */
1492                 if (q.pi_state->owner == curr) {
1493                         /*
1494                          * Try to get the rt_mutex now. This might
1495                          * fail as some other task acquired the
1496                          * rt_mutex after we removed ourself from the
1497                          * rt_mutex waiters list.
1498                          */
1499                         if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1500                                 ret = 0;
1501                         else {
1502                                 /*
1503                                  * pi_state is incorrect, some other
1504                                  * task did a lock steal and we
1505                                  * returned due to timeout or signal
1506                                  * without taking the rt_mutex. Too
1507                                  * late. We can access the
1508                                  * rt_mutex_owner without locking, as
1509                                  * the other task is now blocked on
1510                                  * the hash bucket lock. Fix the state
1511                                  * up.
1512                                  */
1513                                 struct task_struct *owner;
1514                                 int res;
1515
1516                                 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1517                                 res = fixup_pi_state_owner(uaddr, &q, owner,
1518                                                            fshared);
1519
1520                                 /* propagate -EFAULT, if the fixup failed */
1521                                 if (res)
1522                                         ret = res;
1523                         }
1524                 } else {
1525                         /*
1526                          * Paranoia check. If we did not take the lock
1527                          * in the trylock above, then we should not be
1528                          * the owner of the rtmutex, neither the real
1529                          * nor the pending one:
1530                          */
1531                         if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1532                                 printk(KERN_ERR "futex_lock_pi: ret = %d "
1533                                        "pi-mutex: %p pi-state %p\n", ret,
1534                                        q.pi_state->pi_mutex.owner,
1535                                        q.pi_state->owner);
1536                 }
1537         }
1538
1539         /* Unqueue and drop the lock */
1540         unqueue_me_pi(&q);
1541
1542         if (to)
1543                 destroy_hrtimer_on_stack(&to->timer);
1544         return ret != -EINTR ? ret : -ERESTARTNOINTR;
1545
1546  out_unlock_release_sem:
1547         queue_unlock(&q, hb);
1548
1549  out_release_sem:
1550         put_futex_key(fshared, &q.key);
1551         if (to)
1552                 destroy_hrtimer_on_stack(&to->timer);
1553         return ret;
1554
1555  uaddr_faulted:
1556         /*
1557          * We have to r/w  *(int __user *)uaddr, but we can't modify it
1558          * non-atomically.  Therefore, if get_user below is not
1559          * enough, we need to handle the fault ourselves, while
1560          * still holding the mmap_sem.
1561          *
1562          * ... and hb->lock. :-) --ANK
1563          */
1564         queue_unlock(&q, hb);
1565
1566         if (attempt++) {
1567                 ret = futex_handle_fault((unsigned long)uaddr, attempt);
1568                 if (ret)
1569                         goto out_release_sem;
1570                 goto retry_unlocked;
1571         }
1572
1573         ret = get_user(uval, uaddr);
1574         if (!ret && (uval != -EFAULT))
1575                 goto retry;
1576
1577         if (to)
1578                 destroy_hrtimer_on_stack(&to->timer);
1579         return ret;
1580 }
1581
1582 /*
1583  * Userspace attempted a TID -> 0 atomic transition, and failed.
1584  * This is the in-kernel slowpath: we look up the PI state (if any),
1585  * and do the rt-mutex unlock.
1586  */
1587 static int futex_unlock_pi(u32 __user *uaddr, int fshared)
1588 {
1589         struct futex_hash_bucket *hb;
1590         struct futex_q *this, *next;
1591         u32 uval;
1592         struct plist_head *head;
1593         union futex_key key = FUTEX_KEY_INIT;
1594         int ret, attempt = 0;
1595
1596 retry:
1597         if (get_user(uval, uaddr))
1598                 return -EFAULT;
1599         /*
1600          * We release only a lock we actually own:
1601          */
1602         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1603                 return -EPERM;
1604
1605         ret = get_futex_key(uaddr, fshared, &key);
1606         if (unlikely(ret != 0))
1607                 goto out;
1608
1609         hb = hash_futex(&key);
1610 retry_unlocked:
1611         spin_lock(&hb->lock);
1612
1613         /*
1614          * To avoid races, try to do the TID -> 0 atomic transition
1615          * again. If it succeeds then we can return without waking
1616          * anyone else up:
1617          */
1618         if (!(uval & FUTEX_OWNER_DIED))
1619                 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
1620
1621
1622         if (unlikely(uval == -EFAULT))
1623                 goto pi_faulted;
1624         /*
1625          * Rare case: we managed to release the lock atomically,
1626          * no need to wake anyone else up:
1627          */
1628         if (unlikely(uval == task_pid_vnr(current)))
1629                 goto out_unlock;
1630
1631         /*
1632          * Ok, other tasks may need to be woken up - check waiters
1633          * and do the wakeup if necessary:
1634          */
1635         head = &hb->chain;
1636
1637         plist_for_each_entry_safe(this, next, head, list) {
1638                 if (!match_futex (&this->key, &key))
1639                         continue;
1640                 ret = wake_futex_pi(uaddr, uval, this);
1641                 /*
1642                  * The atomic access to the futex value
1643                  * generated a pagefault, so retry the
1644                  * user-access and the wakeup:
1645                  */
1646                 if (ret == -EFAULT)
1647                         goto pi_faulted;
1648                 goto out_unlock;
1649         }
1650         /*
1651          * No waiters - kernel unlocks the futex:
1652          */
1653         if (!(uval & FUTEX_OWNER_DIED)) {
1654                 ret = unlock_futex_pi(uaddr, uval);
1655                 if (ret == -EFAULT)
1656                         goto pi_faulted;
1657         }
1658
1659 out_unlock:
1660         spin_unlock(&hb->lock);
1661 out:
1662         put_futex_key(fshared, &key);
1663
1664         return ret;
1665
1666 pi_faulted:
1667         /*
1668          * We have to r/w  *(int __user *)uaddr, but we can't modify it
1669          * non-atomically.  Therefore, if get_user below is not
1670          * enough, we need to handle the fault ourselves, while
1671          * still holding the mmap_sem.
1672          *
1673          * ... and hb->lock. --ANK
1674          */
1675         spin_unlock(&hb->lock);
1676
1677         if (attempt++) {
1678                 ret = futex_handle_fault((unsigned long)uaddr, attempt);
1679                 if (ret)
1680                         goto out;
1681                 uval = 0;
1682                 goto retry_unlocked;
1683         }
1684
1685         ret = get_user(uval, uaddr);
1686         if (!ret && (uval != -EFAULT))
1687                 goto retry;
1688
1689         return ret;
1690 }
1691
1692 /*
1693  * Support for robust futexes: the kernel cleans up held futexes at
1694  * thread exit time.
1695  *
1696  * Implementation: user-space maintains a per-thread list of locks it
1697  * is holding. Upon do_exit(), the kernel carefully walks this list,
1698  * and marks all locks that are owned by this thread with the
1699  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1700  * always manipulated with the lock held, so the list is private and
1701  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1702  * field, to allow the kernel to clean up if the thread dies after
1703  * acquiring the lock, but just before it could have added itself to
1704  * the list. There can only be one such pending lock.
1705  */
1706
1707 /**
1708  * sys_set_robust_list - set the robust-futex list head of a task
1709  * @head: pointer to the list-head
1710  * @len: length of the list-head, as userspace expects
1711  */
1712 asmlinkage long
1713 sys_set_robust_list(struct robust_list_head __user *head,
1714                     size_t len)
1715 {
1716         if (!futex_cmpxchg_enabled)
1717                 return -ENOSYS;
1718         /*
1719          * The kernel knows only one size for now:
1720          */
1721         if (unlikely(len != sizeof(*head)))
1722                 return -EINVAL;
1723
1724         current->robust_list = head;
1725
1726         return 0;
1727 }
1728
1729 /**
1730  * sys_get_robust_list - get the robust-futex list head of a task
1731  * @pid: pid of the process [zero for current task]
1732  * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1733  * @len_ptr: pointer to a length field, the kernel fills in the header size
1734  */
1735 asmlinkage long
1736 sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
1737                     size_t __user *len_ptr)
1738 {
1739         struct robust_list_head __user *head;
1740         unsigned long ret;
1741
1742         if (!futex_cmpxchg_enabled)
1743                 return -ENOSYS;
1744
1745         if (!pid)
1746                 head = current->robust_list;
1747         else {
1748                 struct task_struct *p;
1749
1750                 ret = -ESRCH;
1751                 rcu_read_lock();
1752                 p = find_task_by_vpid(pid);
1753                 if (!p)
1754                         goto err_unlock;
1755                 ret = -EPERM;
1756                 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1757                                 !capable(CAP_SYS_PTRACE))
1758                         goto err_unlock;
1759                 head = p->robust_list;
1760                 rcu_read_unlock();
1761         }
1762
1763         if (put_user(sizeof(*head), len_ptr))
1764                 return -EFAULT;
1765         return put_user(head, head_ptr);
1766
1767 err_unlock:
1768         rcu_read_unlock();
1769
1770         return ret;
1771 }
1772
1773 /*
1774  * Process a futex-list entry, check whether it's owned by the
1775  * dying task, and do notification if so:
1776  */
1777 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1778 {
1779         u32 uval, nval, mval;
1780
1781 retry:
1782         if (get_user(uval, uaddr))
1783                 return -1;
1784
1785         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
1786                 /*
1787                  * Ok, this dying thread is truly holding a futex
1788                  * of interest. Set the OWNER_DIED bit atomically
1789                  * via cmpxchg, and if the value had FUTEX_WAITERS
1790                  * set, wake up a waiter (if any). (We have to do a
1791                  * futex_wake() even if OWNER_DIED is already set -
1792                  * to handle the rare but possible case of recursive
1793                  * thread-death.) The rest of the cleanup is done in
1794                  * userspace.
1795                  */
1796                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1797                 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1798
1799                 if (nval == -EFAULT)
1800                         return -1;
1801
1802                 if (nval != uval)
1803                         goto retry;
1804
1805                 /*
1806                  * Wake robust non-PI futexes here. The wakeup of
1807                  * PI futexes happens in exit_pi_state():
1808                  */
1809                 if (!pi && (uval & FUTEX_WAITERS))
1810                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
1811         }
1812         return 0;
1813 }
1814
1815 /*
1816  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1817  */
1818 static inline int fetch_robust_entry(struct robust_list __user **entry,
1819                                      struct robust_list __user * __user *head,
1820                                      int *pi)
1821 {
1822         unsigned long uentry;
1823
1824         if (get_user(uentry, (unsigned long __user *)head))
1825                 return -EFAULT;
1826
1827         *entry = (void __user *)(uentry & ~1UL);
1828         *pi = uentry & 1;
1829
1830         return 0;
1831 }
1832
1833 /*
1834  * Walk curr->robust_list (very carefully, it's a userspace list!)
1835  * and mark any locks found there dead, and notify any waiters.
1836  *
1837  * We silently return on any sign of list-walking problem.
1838  */
1839 void exit_robust_list(struct task_struct *curr)
1840 {
1841         struct robust_list_head __user *head = curr->robust_list;
1842         struct robust_list __user *entry, *next_entry, *pending;
1843         unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
1844         unsigned long futex_offset;
1845         int rc;
1846
1847         if (!futex_cmpxchg_enabled)
1848                 return;
1849
1850         /*
1851          * Fetch the list head (which was registered earlier, via
1852          * sys_set_robust_list()):
1853          */
1854         if (fetch_robust_entry(&entry, &head->list.next, &pi))
1855                 return;
1856         /*
1857          * Fetch the relative futex offset:
1858          */
1859         if (get_user(futex_offset, &head->futex_offset))
1860                 return;
1861         /*
1862          * Fetch any possibly pending lock-add first, and handle it
1863          * if it exists:
1864          */
1865         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1866                 return;
1867
1868         next_entry = NULL;      /* avoid warning with gcc */
1869         while (entry != &head->list) {
1870                 /*
1871                  * Fetch the next entry in the list before calling
1872                  * handle_futex_death:
1873                  */
1874                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
1875                 /*
1876                  * A pending lock might already be on the list, so
1877                  * don't process it twice:
1878                  */
1879                 if (entry != pending)
1880                         if (handle_futex_death((void __user *)entry + futex_offset,
1881                                                 curr, pi))
1882                                 return;
1883                 if (rc)
1884                         return;
1885                 entry = next_entry;
1886                 pi = next_pi;
1887                 /*
1888                  * Avoid excessively long or circular lists:
1889                  */
1890                 if (!--limit)
1891                         break;
1892
1893                 cond_resched();
1894         }
1895
1896         if (pending)
1897                 handle_futex_death((void __user *)pending + futex_offset,
1898                                    curr, pip);
1899 }
1900
1901 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
1902                 u32 __user *uaddr2, u32 val2, u32 val3)
1903 {
1904         int ret = -ENOSYS;
1905         int cmd = op & FUTEX_CMD_MASK;
1906         int fshared = 0;
1907
1908         if (!(op & FUTEX_PRIVATE_FLAG))
1909                 fshared = 1;
1910
1911         switch (cmd) {
1912         case FUTEX_WAIT:
1913                 val3 = FUTEX_BITSET_MATCH_ANY;
1914         case FUTEX_WAIT_BITSET:
1915                 ret = futex_wait(uaddr, fshared, val, timeout, val3);
1916                 break;
1917         case FUTEX_WAKE:
1918                 val3 = FUTEX_BITSET_MATCH_ANY;
1919         case FUTEX_WAKE_BITSET:
1920                 ret = futex_wake(uaddr, fshared, val, val3);
1921                 break;
1922         case FUTEX_REQUEUE:
1923                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
1924                 break;
1925         case FUTEX_CMP_REQUEUE:
1926                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
1927                 break;
1928         case FUTEX_WAKE_OP:
1929                 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
1930                 break;
1931         case FUTEX_LOCK_PI:
1932                 if (futex_cmpxchg_enabled)
1933                         ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
1934                 break;
1935         case FUTEX_UNLOCK_PI:
1936                 if (futex_cmpxchg_enabled)
1937                         ret = futex_unlock_pi(uaddr, fshared);
1938                 break;
1939         case FUTEX_TRYLOCK_PI:
1940                 if (futex_cmpxchg_enabled)
1941                         ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
1942                 break;
1943         default:
1944                 ret = -ENOSYS;
1945         }
1946         return ret;
1947 }
1948
1949
1950 asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1951                           struct timespec __user *utime, u32 __user *uaddr2,
1952                           u32 val3)
1953 {
1954         struct timespec ts;
1955         ktime_t t, *tp = NULL;
1956         u32 val2 = 0;
1957         int cmd = op & FUTEX_CMD_MASK;
1958
1959         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
1960                       cmd == FUTEX_WAIT_BITSET)) {
1961                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1962                         return -EFAULT;
1963                 if (!timespec_valid(&ts))
1964                         return -EINVAL;
1965
1966                 t = timespec_to_ktime(ts);
1967                 if (cmd == FUTEX_WAIT)
1968                         t = ktime_add_safe(ktime_get(), t);
1969                 tp = &t;
1970         }
1971         /*
1972          * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
1973          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1974          */
1975         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
1976             cmd == FUTEX_WAKE_OP)
1977                 val2 = (u32) (unsigned long) utime;
1978
1979         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1980 }
1981
1982 static int __init futex_init(void)
1983 {
1984         u32 curval;
1985         int i;
1986
1987         /*
1988          * This will fail and we want it. Some arch implementations do
1989          * runtime detection of the futex_atomic_cmpxchg_inatomic()
1990          * functionality. We want to know that before we call in any
1991          * of the complex code paths. Also we want to prevent
1992          * registration of robust lists in that case. NULL is
1993          * guaranteed to fault and we get -EFAULT on functional
1994          * implementation, the non functional ones will return
1995          * -ENOSYS.
1996          */
1997         curval = cmpxchg_futex_value_locked(NULL, 0, 0);
1998         if (curval == -EFAULT)
1999                 futex_cmpxchg_enabled = 1;
2000
2001         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2002                 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2003                 spin_lock_init(&futex_queues[i].lock);
2004         }
2005
2006         return 0;
2007 }
2008 __initcall(futex_init);