futex: clean up futex_(un)lock_pi fault handling
[safe/jmp/linux-2.6] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23  *  enough at me, Linus for the original (flawed) idea, Matthew
24  *  Kirkwood for proof-of-concept implementation.
25  *
26  *  "The futexes are also cursed."
27  *  "But they come in a choice of three flavours!"
28  *
29  *  This program is free software; you can redistribute it and/or modify
30  *  it under the terms of the GNU General Public License as published by
31  *  the Free Software Foundation; either version 2 of the License, or
32  *  (at your option) any later version.
33  *
34  *  This program is distributed in the hope that it will be useful,
35  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
36  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
37  *  GNU General Public License for more details.
38  *
39  *  You should have received a copy of the GNU General Public License
40  *  along with this program; if not, write to the Free Software
41  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
42  */
43 #include <linux/slab.h>
44 #include <linux/poll.h>
45 #include <linux/fs.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <linux/magic.h>
56 #include <linux/pid.h>
57 #include <linux/nsproxy.h>
58
59 #include <asm/futex.h>
60
61 #include "rtmutex_common.h"
62
63 int __read_mostly futex_cmpxchg_enabled;
64
65 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66
67 /*
68  * Priority Inheritance state:
69  */
70 struct futex_pi_state {
71         /*
72          * list of 'owned' pi_state instances - these have to be
73          * cleaned up in do_exit() if the task exits prematurely:
74          */
75         struct list_head list;
76
77         /*
78          * The PI object:
79          */
80         struct rt_mutex pi_mutex;
81
82         struct task_struct *owner;
83         atomic_t refcount;
84
85         union futex_key key;
86 };
87
88 /*
89  * We use this hashed waitqueue instead of a normal wait_queue_t, so
90  * we can wake only the relevant ones (hashed queues may be shared).
91  *
92  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
93  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
94  * The order of wakup is always to make the first condition true, then
95  * wake up q->waiter, then make the second condition true.
96  */
97 struct futex_q {
98         struct plist_node list;
99         /* There can only be a single waiter */
100         wait_queue_head_t waiter;
101
102         /* Which hash list lock to use: */
103         spinlock_t *lock_ptr;
104
105         /* Key which the futex is hashed on: */
106         union futex_key key;
107
108         /* Optional priority inheritance state: */
109         struct futex_pi_state *pi_state;
110         struct task_struct *task;
111
112         /* Bitset for the optional bitmasked wakeup */
113         u32 bitset;
114 };
115
116 /*
117  * Split the global futex_lock into every hash list lock.
118  */
119 struct futex_hash_bucket {
120         spinlock_t lock;
121         struct plist_head chain;
122 };
123
124 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
125
126 /*
127  * We hash on the keys returned from get_futex_key (see below).
128  */
129 static struct futex_hash_bucket *hash_futex(union futex_key *key)
130 {
131         u32 hash = jhash2((u32*)&key->both.word,
132                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
133                           key->both.offset);
134         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
135 }
136
137 /*
138  * Return 1 if two futex_keys are equal, 0 otherwise.
139  */
140 static inline int match_futex(union futex_key *key1, union futex_key *key2)
141 {
142         return (key1->both.word == key2->both.word
143                 && key1->both.ptr == key2->both.ptr
144                 && key1->both.offset == key2->both.offset);
145 }
146
147 /*
148  * Take a reference to the resource addressed by a key.
149  * Can be called while holding spinlocks.
150  *
151  */
152 static void get_futex_key_refs(union futex_key *key)
153 {
154         if (!key->both.ptr)
155                 return;
156
157         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
158         case FUT_OFF_INODE:
159                 atomic_inc(&key->shared.inode->i_count);
160                 break;
161         case FUT_OFF_MMSHARED:
162                 atomic_inc(&key->private.mm->mm_count);
163                 break;
164         }
165 }
166
167 /*
168  * Drop a reference to the resource addressed by a key.
169  * The hash bucket spinlock must not be held.
170  */
171 static void drop_futex_key_refs(union futex_key *key)
172 {
173         if (!key->both.ptr)
174                 return;
175
176         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
177         case FUT_OFF_INODE:
178                 iput(key->shared.inode);
179                 break;
180         case FUT_OFF_MMSHARED:
181                 mmdrop(key->private.mm);
182                 break;
183         }
184 }
185
186 /**
187  * get_futex_key - Get parameters which are the keys for a futex.
188  * @uaddr: virtual address of the futex
189  * @shared: NULL for a PROCESS_PRIVATE futex,
190  *      &current->mm->mmap_sem for a PROCESS_SHARED futex
191  * @key: address where result is stored.
192  *
193  * Returns a negative error code or 0
194  * The key words are stored in *key on success.
195  *
196  * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
197  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
198  * We can usually work out the index without swapping in the page.
199  *
200  * fshared is NULL for PROCESS_PRIVATE futexes
201  * For other futexes, it points to &current->mm->mmap_sem and
202  * caller must have taken the reader lock. but NOT any spinlocks.
203  */
204 static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
205 {
206         unsigned long address = (unsigned long)uaddr;
207         struct mm_struct *mm = current->mm;
208         struct page *page;
209         int err;
210
211         /*
212          * The futex address must be "naturally" aligned.
213          */
214         key->both.offset = address % PAGE_SIZE;
215         if (unlikely((address % sizeof(u32)) != 0))
216                 return -EINVAL;
217         address -= key->both.offset;
218
219         /*
220          * PROCESS_PRIVATE futexes are fast.
221          * As the mm cannot disappear under us and the 'key' only needs
222          * virtual address, we dont even have to find the underlying vma.
223          * Note : We do have to check 'uaddr' is a valid user address,
224          *        but access_ok() should be faster than find_vma()
225          */
226         if (!fshared) {
227                 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
228                         return -EFAULT;
229                 key->private.mm = mm;
230                 key->private.address = address;
231                 get_futex_key_refs(key);
232                 return 0;
233         }
234
235 again:
236         err = get_user_pages_fast(address, 1, 0, &page);
237         if (err < 0)
238                 return err;
239
240         lock_page(page);
241         if (!page->mapping) {
242                 unlock_page(page);
243                 put_page(page);
244                 goto again;
245         }
246
247         /*
248          * Private mappings are handled in a simple way.
249          *
250          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
251          * it's a read-only handle, it's expected that futexes attach to
252          * the object not the particular process.
253          */
254         if (PageAnon(page)) {
255                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
256                 key->private.mm = mm;
257                 key->private.address = address;
258         } else {
259                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
260                 key->shared.inode = page->mapping->host;
261                 key->shared.pgoff = page->index;
262         }
263
264         get_futex_key_refs(key);
265
266         unlock_page(page);
267         put_page(page);
268         return 0;
269 }
270
271 static inline
272 void put_futex_key(int fshared, union futex_key *key)
273 {
274         drop_futex_key_refs(key);
275 }
276
277 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
278 {
279         u32 curval;
280
281         pagefault_disable();
282         curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
283         pagefault_enable();
284
285         return curval;
286 }
287
288 static int get_futex_value_locked(u32 *dest, u32 __user *from)
289 {
290         int ret;
291
292         pagefault_disable();
293         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
294         pagefault_enable();
295
296         return ret ? -EFAULT : 0;
297 }
298
299 /*
300  * Fault handling.
301  */
302 static int futex_handle_fault(unsigned long address, int attempt)
303 {
304         struct vm_area_struct * vma;
305         struct mm_struct *mm = current->mm;
306         int ret = -EFAULT;
307
308         if (attempt > 2)
309                 return ret;
310
311         down_read(&mm->mmap_sem);
312         vma = find_vma(mm, address);
313         if (vma && address >= vma->vm_start &&
314             (vma->vm_flags & VM_WRITE)) {
315                 int fault;
316                 fault = handle_mm_fault(mm, vma, address, 1);
317                 if (unlikely((fault & VM_FAULT_ERROR))) {
318 #if 0
319                         /* XXX: let's do this when we verify it is OK */
320                         if (ret & VM_FAULT_OOM)
321                                 ret = -ENOMEM;
322 #endif
323                 } else {
324                         ret = 0;
325                         if (fault & VM_FAULT_MAJOR)
326                                 current->maj_flt++;
327                         else
328                                 current->min_flt++;
329                 }
330         }
331         up_read(&mm->mmap_sem);
332         return ret;
333 }
334
335 /*
336  * PI code:
337  */
338 static int refill_pi_state_cache(void)
339 {
340         struct futex_pi_state *pi_state;
341
342         if (likely(current->pi_state_cache))
343                 return 0;
344
345         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
346
347         if (!pi_state)
348                 return -ENOMEM;
349
350         INIT_LIST_HEAD(&pi_state->list);
351         /* pi_mutex gets initialized later */
352         pi_state->owner = NULL;
353         atomic_set(&pi_state->refcount, 1);
354         pi_state->key = FUTEX_KEY_INIT;
355
356         current->pi_state_cache = pi_state;
357
358         return 0;
359 }
360
361 static struct futex_pi_state * alloc_pi_state(void)
362 {
363         struct futex_pi_state *pi_state = current->pi_state_cache;
364
365         WARN_ON(!pi_state);
366         current->pi_state_cache = NULL;
367
368         return pi_state;
369 }
370
371 static void free_pi_state(struct futex_pi_state *pi_state)
372 {
373         if (!atomic_dec_and_test(&pi_state->refcount))
374                 return;
375
376         /*
377          * If pi_state->owner is NULL, the owner is most probably dying
378          * and has cleaned up the pi_state already
379          */
380         if (pi_state->owner) {
381                 spin_lock_irq(&pi_state->owner->pi_lock);
382                 list_del_init(&pi_state->list);
383                 spin_unlock_irq(&pi_state->owner->pi_lock);
384
385                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
386         }
387
388         if (current->pi_state_cache)
389                 kfree(pi_state);
390         else {
391                 /*
392                  * pi_state->list is already empty.
393                  * clear pi_state->owner.
394                  * refcount is at 0 - put it back to 1.
395                  */
396                 pi_state->owner = NULL;
397                 atomic_set(&pi_state->refcount, 1);
398                 current->pi_state_cache = pi_state;
399         }
400 }
401
402 /*
403  * Look up the task based on what TID userspace gave us.
404  * We dont trust it.
405  */
406 static struct task_struct * futex_find_get_task(pid_t pid)
407 {
408         struct task_struct *p;
409
410         rcu_read_lock();
411         p = find_task_by_vpid(pid);
412         if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
413                 p = ERR_PTR(-ESRCH);
414         else
415                 get_task_struct(p);
416
417         rcu_read_unlock();
418
419         return p;
420 }
421
422 /*
423  * This task is holding PI mutexes at exit time => bad.
424  * Kernel cleans up PI-state, but userspace is likely hosed.
425  * (Robust-futex cleanup is separate and might save the day for userspace.)
426  */
427 void exit_pi_state_list(struct task_struct *curr)
428 {
429         struct list_head *next, *head = &curr->pi_state_list;
430         struct futex_pi_state *pi_state;
431         struct futex_hash_bucket *hb;
432         union futex_key key = FUTEX_KEY_INIT;
433
434         if (!futex_cmpxchg_enabled)
435                 return;
436         /*
437          * We are a ZOMBIE and nobody can enqueue itself on
438          * pi_state_list anymore, but we have to be careful
439          * versus waiters unqueueing themselves:
440          */
441         spin_lock_irq(&curr->pi_lock);
442         while (!list_empty(head)) {
443
444                 next = head->next;
445                 pi_state = list_entry(next, struct futex_pi_state, list);
446                 key = pi_state->key;
447                 hb = hash_futex(&key);
448                 spin_unlock_irq(&curr->pi_lock);
449
450                 spin_lock(&hb->lock);
451
452                 spin_lock_irq(&curr->pi_lock);
453                 /*
454                  * We dropped the pi-lock, so re-check whether this
455                  * task still owns the PI-state:
456                  */
457                 if (head->next != next) {
458                         spin_unlock(&hb->lock);
459                         continue;
460                 }
461
462                 WARN_ON(pi_state->owner != curr);
463                 WARN_ON(list_empty(&pi_state->list));
464                 list_del_init(&pi_state->list);
465                 pi_state->owner = NULL;
466                 spin_unlock_irq(&curr->pi_lock);
467
468                 rt_mutex_unlock(&pi_state->pi_mutex);
469
470                 spin_unlock(&hb->lock);
471
472                 spin_lock_irq(&curr->pi_lock);
473         }
474         spin_unlock_irq(&curr->pi_lock);
475 }
476
477 static int
478 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
479                 union futex_key *key, struct futex_pi_state **ps)
480 {
481         struct futex_pi_state *pi_state = NULL;
482         struct futex_q *this, *next;
483         struct plist_head *head;
484         struct task_struct *p;
485         pid_t pid = uval & FUTEX_TID_MASK;
486
487         head = &hb->chain;
488
489         plist_for_each_entry_safe(this, next, head, list) {
490                 if (match_futex(&this->key, key)) {
491                         /*
492                          * Another waiter already exists - bump up
493                          * the refcount and return its pi_state:
494                          */
495                         pi_state = this->pi_state;
496                         /*
497                          * Userspace might have messed up non PI and PI futexes
498                          */
499                         if (unlikely(!pi_state))
500                                 return -EINVAL;
501
502                         WARN_ON(!atomic_read(&pi_state->refcount));
503                         WARN_ON(pid && pi_state->owner &&
504                                 pi_state->owner->pid != pid);
505
506                         atomic_inc(&pi_state->refcount);
507                         *ps = pi_state;
508
509                         return 0;
510                 }
511         }
512
513         /*
514          * We are the first waiter - try to look up the real owner and attach
515          * the new pi_state to it, but bail out when TID = 0
516          */
517         if (!pid)
518                 return -ESRCH;
519         p = futex_find_get_task(pid);
520         if (IS_ERR(p))
521                 return PTR_ERR(p);
522
523         /*
524          * We need to look at the task state flags to figure out,
525          * whether the task is exiting. To protect against the do_exit
526          * change of the task flags, we do this protected by
527          * p->pi_lock:
528          */
529         spin_lock_irq(&p->pi_lock);
530         if (unlikely(p->flags & PF_EXITING)) {
531                 /*
532                  * The task is on the way out. When PF_EXITPIDONE is
533                  * set, we know that the task has finished the
534                  * cleanup:
535                  */
536                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
537
538                 spin_unlock_irq(&p->pi_lock);
539                 put_task_struct(p);
540                 return ret;
541         }
542
543         pi_state = alloc_pi_state();
544
545         /*
546          * Initialize the pi_mutex in locked state and make 'p'
547          * the owner of it:
548          */
549         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
550
551         /* Store the key for possible exit cleanups: */
552         pi_state->key = *key;
553
554         WARN_ON(!list_empty(&pi_state->list));
555         list_add(&pi_state->list, &p->pi_state_list);
556         pi_state->owner = p;
557         spin_unlock_irq(&p->pi_lock);
558
559         put_task_struct(p);
560
561         *ps = pi_state;
562
563         return 0;
564 }
565
566 /*
567  * The hash bucket lock must be held when this is called.
568  * Afterwards, the futex_q must not be accessed.
569  */
570 static void wake_futex(struct futex_q *q)
571 {
572         plist_del(&q->list, &q->list.plist);
573         /*
574          * The lock in wake_up_all() is a crucial memory barrier after the
575          * plist_del() and also before assigning to q->lock_ptr.
576          */
577         wake_up(&q->waiter);
578         /*
579          * The waiting task can free the futex_q as soon as this is written,
580          * without taking any locks.  This must come last.
581          *
582          * A memory barrier is required here to prevent the following store
583          * to lock_ptr from getting ahead of the wakeup. Clearing the lock
584          * at the end of wake_up_all() does not prevent this store from
585          * moving.
586          */
587         smp_wmb();
588         q->lock_ptr = NULL;
589 }
590
591 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
592 {
593         struct task_struct *new_owner;
594         struct futex_pi_state *pi_state = this->pi_state;
595         u32 curval, newval;
596
597         if (!pi_state)
598                 return -EINVAL;
599
600         spin_lock(&pi_state->pi_mutex.wait_lock);
601         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
602
603         /*
604          * This happens when we have stolen the lock and the original
605          * pending owner did not enqueue itself back on the rt_mutex.
606          * Thats not a tragedy. We know that way, that a lock waiter
607          * is on the fly. We make the futex_q waiter the pending owner.
608          */
609         if (!new_owner)
610                 new_owner = this->task;
611
612         /*
613          * We pass it to the next owner. (The WAITERS bit is always
614          * kept enabled while there is PI state around. We must also
615          * preserve the owner died bit.)
616          */
617         if (!(uval & FUTEX_OWNER_DIED)) {
618                 int ret = 0;
619
620                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
621
622                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
623
624                 if (curval == -EFAULT)
625                         ret = -EFAULT;
626                 else if (curval != uval)
627                         ret = -EINVAL;
628                 if (ret) {
629                         spin_unlock(&pi_state->pi_mutex.wait_lock);
630                         return ret;
631                 }
632         }
633
634         spin_lock_irq(&pi_state->owner->pi_lock);
635         WARN_ON(list_empty(&pi_state->list));
636         list_del_init(&pi_state->list);
637         spin_unlock_irq(&pi_state->owner->pi_lock);
638
639         spin_lock_irq(&new_owner->pi_lock);
640         WARN_ON(!list_empty(&pi_state->list));
641         list_add(&pi_state->list, &new_owner->pi_state_list);
642         pi_state->owner = new_owner;
643         spin_unlock_irq(&new_owner->pi_lock);
644
645         spin_unlock(&pi_state->pi_mutex.wait_lock);
646         rt_mutex_unlock(&pi_state->pi_mutex);
647
648         return 0;
649 }
650
651 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
652 {
653         u32 oldval;
654
655         /*
656          * There is no waiter, so we unlock the futex. The owner died
657          * bit has not to be preserved here. We are the owner:
658          */
659         oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
660
661         if (oldval == -EFAULT)
662                 return oldval;
663         if (oldval != uval)
664                 return -EAGAIN;
665
666         return 0;
667 }
668
669 /*
670  * Express the locking dependencies for lockdep:
671  */
672 static inline void
673 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
674 {
675         if (hb1 <= hb2) {
676                 spin_lock(&hb1->lock);
677                 if (hb1 < hb2)
678                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
679         } else { /* hb1 > hb2 */
680                 spin_lock(&hb2->lock);
681                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
682         }
683 }
684
685 /*
686  * Wake up all waiters hashed on the physical page that is mapped
687  * to this virtual address:
688  */
689 static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
690 {
691         struct futex_hash_bucket *hb;
692         struct futex_q *this, *next;
693         struct plist_head *head;
694         union futex_key key = FUTEX_KEY_INIT;
695         int ret;
696
697         if (!bitset)
698                 return -EINVAL;
699
700         ret = get_futex_key(uaddr, fshared, &key);
701         if (unlikely(ret != 0))
702                 goto out;
703
704         hb = hash_futex(&key);
705         spin_lock(&hb->lock);
706         head = &hb->chain;
707
708         plist_for_each_entry_safe(this, next, head, list) {
709                 if (match_futex (&this->key, &key)) {
710                         if (this->pi_state) {
711                                 ret = -EINVAL;
712                                 break;
713                         }
714
715                         /* Check if one of the bits is set in both bitsets */
716                         if (!(this->bitset & bitset))
717                                 continue;
718
719                         wake_futex(this);
720                         if (++ret >= nr_wake)
721                                 break;
722                 }
723         }
724
725         spin_unlock(&hb->lock);
726 out:
727         put_futex_key(fshared, &key);
728         return ret;
729 }
730
731 /*
732  * Wake up all waiters hashed on the physical page that is mapped
733  * to this virtual address:
734  */
735 static int
736 futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
737               int nr_wake, int nr_wake2, int op)
738 {
739         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
740         struct futex_hash_bucket *hb1, *hb2;
741         struct plist_head *head;
742         struct futex_q *this, *next;
743         int ret, op_ret, attempt = 0;
744
745 retryfull:
746         ret = get_futex_key(uaddr1, fshared, &key1);
747         if (unlikely(ret != 0))
748                 goto out;
749         ret = get_futex_key(uaddr2, fshared, &key2);
750         if (unlikely(ret != 0))
751                 goto out;
752
753         hb1 = hash_futex(&key1);
754         hb2 = hash_futex(&key2);
755
756 retry:
757         double_lock_hb(hb1, hb2);
758
759         op_ret = futex_atomic_op_inuser(op, uaddr2);
760         if (unlikely(op_ret < 0)) {
761                 u32 dummy;
762
763                 spin_unlock(&hb1->lock);
764                 if (hb1 != hb2)
765                         spin_unlock(&hb2->lock);
766
767 #ifndef CONFIG_MMU
768                 /*
769                  * we don't get EFAULT from MMU faults if we don't have an MMU,
770                  * but we might get them from range checking
771                  */
772                 ret = op_ret;
773                 goto out;
774 #endif
775
776                 if (unlikely(op_ret != -EFAULT)) {
777                         ret = op_ret;
778                         goto out;
779                 }
780
781                 /*
782                  * futex_atomic_op_inuser needs to both read and write
783                  * *(int __user *)uaddr2, but we can't modify it
784                  * non-atomically.  Therefore, if get_user below is not
785                  * enough, we need to handle the fault ourselves, while
786                  * still holding the mmap_sem.
787                  */
788                 if (attempt++) {
789                         ret = futex_handle_fault((unsigned long)uaddr2,
790                                                  attempt);
791                         if (ret)
792                                 goto out;
793                         goto retry;
794                 }
795
796                 ret = get_user(dummy, uaddr2);
797                 if (ret)
798                         return ret;
799
800                 goto retryfull;
801         }
802
803         head = &hb1->chain;
804
805         plist_for_each_entry_safe(this, next, head, list) {
806                 if (match_futex (&this->key, &key1)) {
807                         wake_futex(this);
808                         if (++ret >= nr_wake)
809                                 break;
810                 }
811         }
812
813         if (op_ret > 0) {
814                 head = &hb2->chain;
815
816                 op_ret = 0;
817                 plist_for_each_entry_safe(this, next, head, list) {
818                         if (match_futex (&this->key, &key2)) {
819                                 wake_futex(this);
820                                 if (++op_ret >= nr_wake2)
821                                         break;
822                         }
823                 }
824                 ret += op_ret;
825         }
826
827         spin_unlock(&hb1->lock);
828         if (hb1 != hb2)
829                 spin_unlock(&hb2->lock);
830 out:
831         put_futex_key(fshared, &key2);
832         put_futex_key(fshared, &key1);
833
834         return ret;
835 }
836
837 /*
838  * Requeue all waiters hashed on one physical page to another
839  * physical page.
840  */
841 static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
842                          int nr_wake, int nr_requeue, u32 *cmpval)
843 {
844         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
845         struct futex_hash_bucket *hb1, *hb2;
846         struct plist_head *head1;
847         struct futex_q *this, *next;
848         int ret, drop_count = 0;
849
850  retry:
851         ret = get_futex_key(uaddr1, fshared, &key1);
852         if (unlikely(ret != 0))
853                 goto out;
854         ret = get_futex_key(uaddr2, fshared, &key2);
855         if (unlikely(ret != 0))
856                 goto out;
857
858         hb1 = hash_futex(&key1);
859         hb2 = hash_futex(&key2);
860
861         double_lock_hb(hb1, hb2);
862
863         if (likely(cmpval != NULL)) {
864                 u32 curval;
865
866                 ret = get_futex_value_locked(&curval, uaddr1);
867
868                 if (unlikely(ret)) {
869                         spin_unlock(&hb1->lock);
870                         if (hb1 != hb2)
871                                 spin_unlock(&hb2->lock);
872
873                         ret = get_user(curval, uaddr1);
874
875                         if (!ret)
876                                 goto retry;
877
878                         return ret;
879                 }
880                 if (curval != *cmpval) {
881                         ret = -EAGAIN;
882                         goto out_unlock;
883                 }
884         }
885
886         head1 = &hb1->chain;
887         plist_for_each_entry_safe(this, next, head1, list) {
888                 if (!match_futex (&this->key, &key1))
889                         continue;
890                 if (++ret <= nr_wake) {
891                         wake_futex(this);
892                 } else {
893                         /*
894                          * If key1 and key2 hash to the same bucket, no need to
895                          * requeue.
896                          */
897                         if (likely(head1 != &hb2->chain)) {
898                                 plist_del(&this->list, &hb1->chain);
899                                 plist_add(&this->list, &hb2->chain);
900                                 this->lock_ptr = &hb2->lock;
901 #ifdef CONFIG_DEBUG_PI_LIST
902                                 this->list.plist.lock = &hb2->lock;
903 #endif
904                         }
905                         this->key = key2;
906                         get_futex_key_refs(&key2);
907                         drop_count++;
908
909                         if (ret - nr_wake >= nr_requeue)
910                                 break;
911                 }
912         }
913
914 out_unlock:
915         spin_unlock(&hb1->lock);
916         if (hb1 != hb2)
917                 spin_unlock(&hb2->lock);
918
919         /* drop_futex_key_refs() must be called outside the spinlocks. */
920         while (--drop_count >= 0)
921                 drop_futex_key_refs(&key1);
922
923 out:
924         put_futex_key(fshared, &key2);
925         put_futex_key(fshared, &key1);
926         return ret;
927 }
928
929 /* The key must be already stored in q->key. */
930 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
931 {
932         struct futex_hash_bucket *hb;
933
934         init_waitqueue_head(&q->waiter);
935
936         get_futex_key_refs(&q->key);
937         hb = hash_futex(&q->key);
938         q->lock_ptr = &hb->lock;
939
940         spin_lock(&hb->lock);
941         return hb;
942 }
943
944 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
945 {
946         int prio;
947
948         /*
949          * The priority used to register this element is
950          * - either the real thread-priority for the real-time threads
951          * (i.e. threads with a priority lower than MAX_RT_PRIO)
952          * - or MAX_RT_PRIO for non-RT threads.
953          * Thus, all RT-threads are woken first in priority order, and
954          * the others are woken last, in FIFO order.
955          */
956         prio = min(current->normal_prio, MAX_RT_PRIO);
957
958         plist_node_init(&q->list, prio);
959 #ifdef CONFIG_DEBUG_PI_LIST
960         q->list.plist.lock = &hb->lock;
961 #endif
962         plist_add(&q->list, &hb->chain);
963         q->task = current;
964         spin_unlock(&hb->lock);
965 }
966
967 static inline void
968 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
969 {
970         spin_unlock(&hb->lock);
971         drop_futex_key_refs(&q->key);
972 }
973
974 /*
975  * queue_me and unqueue_me must be called as a pair, each
976  * exactly once.  They are called with the hashed spinlock held.
977  */
978
979 /* Return 1 if we were still queued (ie. 0 means we were woken) */
980 static int unqueue_me(struct futex_q *q)
981 {
982         spinlock_t *lock_ptr;
983         int ret = 0;
984
985         /* In the common case we don't take the spinlock, which is nice. */
986  retry:
987         lock_ptr = q->lock_ptr;
988         barrier();
989         if (lock_ptr != NULL) {
990                 spin_lock(lock_ptr);
991                 /*
992                  * q->lock_ptr can change between reading it and
993                  * spin_lock(), causing us to take the wrong lock.  This
994                  * corrects the race condition.
995                  *
996                  * Reasoning goes like this: if we have the wrong lock,
997                  * q->lock_ptr must have changed (maybe several times)
998                  * between reading it and the spin_lock().  It can
999                  * change again after the spin_lock() but only if it was
1000                  * already changed before the spin_lock().  It cannot,
1001                  * however, change back to the original value.  Therefore
1002                  * we can detect whether we acquired the correct lock.
1003                  */
1004                 if (unlikely(lock_ptr != q->lock_ptr)) {
1005                         spin_unlock(lock_ptr);
1006                         goto retry;
1007                 }
1008                 WARN_ON(plist_node_empty(&q->list));
1009                 plist_del(&q->list, &q->list.plist);
1010
1011                 BUG_ON(q->pi_state);
1012
1013                 spin_unlock(lock_ptr);
1014                 ret = 1;
1015         }
1016
1017         drop_futex_key_refs(&q->key);
1018         return ret;
1019 }
1020
1021 /*
1022  * PI futexes can not be requeued and must remove themself from the
1023  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1024  * and dropped here.
1025  */
1026 static void unqueue_me_pi(struct futex_q *q)
1027 {
1028         WARN_ON(plist_node_empty(&q->list));
1029         plist_del(&q->list, &q->list.plist);
1030
1031         BUG_ON(!q->pi_state);
1032         free_pi_state(q->pi_state);
1033         q->pi_state = NULL;
1034
1035         spin_unlock(q->lock_ptr);
1036
1037         drop_futex_key_refs(&q->key);
1038 }
1039
1040 /*
1041  * Fixup the pi_state owner with the new owner.
1042  *
1043  * Must be called with hash bucket lock held and mm->sem held for non
1044  * private futexes.
1045  */
1046 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1047                                 struct task_struct *newowner, int fshared)
1048 {
1049         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1050         struct futex_pi_state *pi_state = q->pi_state;
1051         struct task_struct *oldowner = pi_state->owner;
1052         u32 uval, curval, newval;
1053         int ret, attempt = 0;
1054
1055         /* Owner died? */
1056         if (!pi_state->owner)
1057                 newtid |= FUTEX_OWNER_DIED;
1058
1059         /*
1060          * We are here either because we stole the rtmutex from the
1061          * pending owner or we are the pending owner which failed to
1062          * get the rtmutex. We have to replace the pending owner TID
1063          * in the user space variable. This must be atomic as we have
1064          * to preserve the owner died bit here.
1065          *
1066          * Note: We write the user space value _before_ changing the
1067          * pi_state because we can fault here. Imagine swapped out
1068          * pages or a fork, which was running right before we acquired
1069          * mmap_sem, that marked all the anonymous memory readonly for
1070          * cow.
1071          *
1072          * Modifying pi_state _before_ the user space value would
1073          * leave the pi_state in an inconsistent state when we fault
1074          * here, because we need to drop the hash bucket lock to
1075          * handle the fault. This might be observed in the PID check
1076          * in lookup_pi_state.
1077          */
1078 retry:
1079         if (get_futex_value_locked(&uval, uaddr))
1080                 goto handle_fault;
1081
1082         while (1) {
1083                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1084
1085                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1086
1087                 if (curval == -EFAULT)
1088                         goto handle_fault;
1089                 if (curval == uval)
1090                         break;
1091                 uval = curval;
1092         }
1093
1094         /*
1095          * We fixed up user space. Now we need to fix the pi_state
1096          * itself.
1097          */
1098         if (pi_state->owner != NULL) {
1099                 spin_lock_irq(&pi_state->owner->pi_lock);
1100                 WARN_ON(list_empty(&pi_state->list));
1101                 list_del_init(&pi_state->list);
1102                 spin_unlock_irq(&pi_state->owner->pi_lock);
1103         }
1104
1105         pi_state->owner = newowner;
1106
1107         spin_lock_irq(&newowner->pi_lock);
1108         WARN_ON(!list_empty(&pi_state->list));
1109         list_add(&pi_state->list, &newowner->pi_state_list);
1110         spin_unlock_irq(&newowner->pi_lock);
1111         return 0;
1112
1113         /*
1114          * To handle the page fault we need to drop the hash bucket
1115          * lock here. That gives the other task (either the pending
1116          * owner itself or the task which stole the rtmutex) the
1117          * chance to try the fixup of the pi_state. So once we are
1118          * back from handling the fault we need to check the pi_state
1119          * after reacquiring the hash bucket lock and before trying to
1120          * do another fixup. When the fixup has been done already we
1121          * simply return.
1122          */
1123 handle_fault:
1124         spin_unlock(q->lock_ptr);
1125
1126         ret = futex_handle_fault((unsigned long)uaddr, attempt++);
1127
1128         spin_lock(q->lock_ptr);
1129
1130         /*
1131          * Check if someone else fixed it for us:
1132          */
1133         if (pi_state->owner != oldowner)
1134                 return 0;
1135
1136         if (ret)
1137                 return ret;
1138
1139         goto retry;
1140 }
1141
1142 /*
1143  * In case we must use restart_block to restart a futex_wait,
1144  * we encode in the 'flags' shared capability
1145  */
1146 #define FLAGS_SHARED            0x01
1147 #define FLAGS_CLOCKRT           0x02
1148
1149 static long futex_wait_restart(struct restart_block *restart);
1150
1151 static int futex_wait(u32 __user *uaddr, int fshared,
1152                       u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1153 {
1154         struct task_struct *curr = current;
1155         DECLARE_WAITQUEUE(wait, curr);
1156         struct futex_hash_bucket *hb;
1157         struct futex_q q;
1158         u32 uval;
1159         int ret;
1160         struct hrtimer_sleeper t;
1161         int rem = 0;
1162
1163         if (!bitset)
1164                 return -EINVAL;
1165
1166         q.pi_state = NULL;
1167         q.bitset = bitset;
1168  retry:
1169         q.key = FUTEX_KEY_INIT;
1170         ret = get_futex_key(uaddr, fshared, &q.key);
1171         if (unlikely(ret != 0))
1172                 goto out_release_sem;
1173
1174         hb = queue_lock(&q);
1175
1176         /*
1177          * Access the page AFTER the futex is queued.
1178          * Order is important:
1179          *
1180          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1181          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1182          *
1183          * The basic logical guarantee of a futex is that it blocks ONLY
1184          * if cond(var) is known to be true at the time of blocking, for
1185          * any cond.  If we queued after testing *uaddr, that would open
1186          * a race condition where we could block indefinitely with
1187          * cond(var) false, which would violate the guarantee.
1188          *
1189          * A consequence is that futex_wait() can return zero and absorb
1190          * a wakeup when *uaddr != val on entry to the syscall.  This is
1191          * rare, but normal.
1192          *
1193          * for shared futexes, we hold the mmap semaphore, so the mapping
1194          * cannot have changed since we looked it up in get_futex_key.
1195          */
1196         ret = get_futex_value_locked(&uval, uaddr);
1197
1198         if (unlikely(ret)) {
1199                 queue_unlock(&q, hb);
1200
1201                 ret = get_user(uval, uaddr);
1202
1203                 if (!ret)
1204                         goto retry;
1205                 return ret;
1206         }
1207         ret = -EWOULDBLOCK;
1208         if (uval != val)
1209                 goto out_unlock_release_sem;
1210
1211         /* Only actually queue if *uaddr contained val.  */
1212         queue_me(&q, hb);
1213
1214         /*
1215          * There might have been scheduling since the queue_me(), as we
1216          * cannot hold a spinlock across the get_user() in case it
1217          * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1218          * queueing ourselves into the futex hash.  This code thus has to
1219          * rely on the futex_wake() code removing us from hash when it
1220          * wakes us up.
1221          */
1222
1223         /* add_wait_queue is the barrier after __set_current_state. */
1224         __set_current_state(TASK_INTERRUPTIBLE);
1225         add_wait_queue(&q.waiter, &wait);
1226         /*
1227          * !plist_node_empty() is safe here without any lock.
1228          * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1229          */
1230         if (likely(!plist_node_empty(&q.list))) {
1231                 if (!abs_time)
1232                         schedule();
1233                 else {
1234                         unsigned long slack;
1235                         slack = current->timer_slack_ns;
1236                         if (rt_task(current))
1237                                 slack = 0;
1238                         hrtimer_init_on_stack(&t.timer,
1239                                               clockrt ? CLOCK_REALTIME :
1240                                               CLOCK_MONOTONIC,
1241                                               HRTIMER_MODE_ABS);
1242                         hrtimer_init_sleeper(&t, current);
1243                         hrtimer_set_expires_range_ns(&t.timer, *abs_time, slack);
1244
1245                         hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS);
1246                         if (!hrtimer_active(&t.timer))
1247                                 t.task = NULL;
1248
1249                         /*
1250                          * the timer could have already expired, in which
1251                          * case current would be flagged for rescheduling.
1252                          * Don't bother calling schedule.
1253                          */
1254                         if (likely(t.task))
1255                                 schedule();
1256
1257                         hrtimer_cancel(&t.timer);
1258
1259                         /* Flag if a timeout occured */
1260                         rem = (t.task == NULL);
1261
1262                         destroy_hrtimer_on_stack(&t.timer);
1263                 }
1264         }
1265         __set_current_state(TASK_RUNNING);
1266
1267         /*
1268          * NOTE: we don't remove ourselves from the waitqueue because
1269          * we are the only user of it.
1270          */
1271
1272         /* If we were woken (and unqueued), we succeeded, whatever. */
1273         if (!unqueue_me(&q))
1274                 return 0;
1275         if (rem)
1276                 return -ETIMEDOUT;
1277
1278         /*
1279          * We expect signal_pending(current), but another thread may
1280          * have handled it for us already.
1281          */
1282         if (!abs_time)
1283                 return -ERESTARTSYS;
1284         else {
1285                 struct restart_block *restart;
1286                 restart = &current_thread_info()->restart_block;
1287                 restart->fn = futex_wait_restart;
1288                 restart->futex.uaddr = (u32 *)uaddr;
1289                 restart->futex.val = val;
1290                 restart->futex.time = abs_time->tv64;
1291                 restart->futex.bitset = bitset;
1292                 restart->futex.flags = 0;
1293
1294                 if (fshared)
1295                         restart->futex.flags |= FLAGS_SHARED;
1296                 if (clockrt)
1297                         restart->futex.flags |= FLAGS_CLOCKRT;
1298                 return -ERESTART_RESTARTBLOCK;
1299         }
1300
1301  out_unlock_release_sem:
1302         queue_unlock(&q, hb);
1303
1304  out_release_sem:
1305         put_futex_key(fshared, &q.key);
1306         return ret;
1307 }
1308
1309
1310 static long futex_wait_restart(struct restart_block *restart)
1311 {
1312         u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1313         int fshared = 0;
1314         ktime_t t;
1315
1316         t.tv64 = restart->futex.time;
1317         restart->fn = do_no_restart_syscall;
1318         if (restart->futex.flags & FLAGS_SHARED)
1319                 fshared = 1;
1320         return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1321                                 restart->futex.bitset,
1322                                 restart->futex.flags & FLAGS_CLOCKRT);
1323 }
1324
1325
1326 /*
1327  * Userspace tried a 0 -> TID atomic transition of the futex value
1328  * and failed. The kernel side here does the whole locking operation:
1329  * if there are waiters then it will block, it does PI, etc. (Due to
1330  * races the kernel might see a 0 value of the futex too.)
1331  */
1332 static int futex_lock_pi(u32 __user *uaddr, int fshared,
1333                          int detect, ktime_t *time, int trylock)
1334 {
1335         struct hrtimer_sleeper timeout, *to = NULL;
1336         struct task_struct *curr = current;
1337         struct futex_hash_bucket *hb;
1338         u32 uval, newval, curval;
1339         struct futex_q q;
1340         int ret, lock_taken, ownerdied = 0, attempt = 0;
1341
1342         if (refill_pi_state_cache())
1343                 return -ENOMEM;
1344
1345         if (time) {
1346                 to = &timeout;
1347                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1348                                       HRTIMER_MODE_ABS);
1349                 hrtimer_init_sleeper(to, current);
1350                 hrtimer_set_expires(&to->timer, *time);
1351         }
1352
1353         q.pi_state = NULL;
1354  retry:
1355         q.key = FUTEX_KEY_INIT;
1356         ret = get_futex_key(uaddr, fshared, &q.key);
1357         if (unlikely(ret != 0))
1358                 goto out_release_sem;
1359
1360  retry_unlocked:
1361         hb = queue_lock(&q);
1362
1363  retry_locked:
1364         ret = lock_taken = 0;
1365
1366         /*
1367          * To avoid races, we attempt to take the lock here again
1368          * (by doing a 0 -> TID atomic cmpxchg), while holding all
1369          * the locks. It will most likely not succeed.
1370          */
1371         newval = task_pid_vnr(current);
1372
1373         curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
1374
1375         if (unlikely(curval == -EFAULT))
1376                 goto uaddr_faulted;
1377
1378         /*
1379          * Detect deadlocks. In case of REQUEUE_PI this is a valid
1380          * situation and we return success to user space.
1381          */
1382         if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
1383                 ret = -EDEADLK;
1384                 goto out_unlock_release_sem;
1385         }
1386
1387         /*
1388          * Surprise - we got the lock. Just return to userspace:
1389          */
1390         if (unlikely(!curval))
1391                 goto out_unlock_release_sem;
1392
1393         uval = curval;
1394
1395         /*
1396          * Set the WAITERS flag, so the owner will know it has someone
1397          * to wake at next unlock
1398          */
1399         newval = curval | FUTEX_WAITERS;
1400
1401         /*
1402          * There are two cases, where a futex might have no owner (the
1403          * owner TID is 0): OWNER_DIED. We take over the futex in this
1404          * case. We also do an unconditional take over, when the owner
1405          * of the futex died.
1406          *
1407          * This is safe as we are protected by the hash bucket lock !
1408          */
1409         if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
1410                 /* Keep the OWNER_DIED bit */
1411                 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
1412                 ownerdied = 0;
1413                 lock_taken = 1;
1414         }
1415
1416         curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1417
1418         if (unlikely(curval == -EFAULT))
1419                 goto uaddr_faulted;
1420         if (unlikely(curval != uval))
1421                 goto retry_locked;
1422
1423         /*
1424          * We took the lock due to owner died take over.
1425          */
1426         if (unlikely(lock_taken))
1427                 goto out_unlock_release_sem;
1428
1429         /*
1430          * We dont have the lock. Look up the PI state (or create it if
1431          * we are the first waiter):
1432          */
1433         ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
1434
1435         if (unlikely(ret)) {
1436                 switch (ret) {
1437
1438                 case -EAGAIN:
1439                         /*
1440                          * Task is exiting and we just wait for the
1441                          * exit to complete.
1442                          */
1443                         queue_unlock(&q, hb);
1444                         cond_resched();
1445                         goto retry;
1446
1447                 case -ESRCH:
1448                         /*
1449                          * No owner found for this futex. Check if the
1450                          * OWNER_DIED bit is set to figure out whether
1451                          * this is a robust futex or not.
1452                          */
1453                         if (get_futex_value_locked(&curval, uaddr))
1454                                 goto uaddr_faulted;
1455
1456                         /*
1457                          * We simply start over in case of a robust
1458                          * futex. The code above will take the futex
1459                          * and return happy.
1460                          */
1461                         if (curval & FUTEX_OWNER_DIED) {
1462                                 ownerdied = 1;
1463                                 goto retry_locked;
1464                         }
1465                 default:
1466                         goto out_unlock_release_sem;
1467                 }
1468         }
1469
1470         /*
1471          * Only actually queue now that the atomic ops are done:
1472          */
1473         queue_me(&q, hb);
1474
1475         WARN_ON(!q.pi_state);
1476         /*
1477          * Block on the PI mutex:
1478          */
1479         if (!trylock)
1480                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1481         else {
1482                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1483                 /* Fixup the trylock return value: */
1484                 ret = ret ? 0 : -EWOULDBLOCK;
1485         }
1486
1487         spin_lock(q.lock_ptr);
1488
1489         if (!ret) {
1490                 /*
1491                  * Got the lock. We might not be the anticipated owner
1492                  * if we did a lock-steal - fix up the PI-state in
1493                  * that case:
1494                  */
1495                 if (q.pi_state->owner != curr)
1496                         ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
1497         } else {
1498                 /*
1499                  * Catch the rare case, where the lock was released
1500                  * when we were on the way back before we locked the
1501                  * hash bucket.
1502                  */
1503                 if (q.pi_state->owner == curr) {
1504                         /*
1505                          * Try to get the rt_mutex now. This might
1506                          * fail as some other task acquired the
1507                          * rt_mutex after we removed ourself from the
1508                          * rt_mutex waiters list.
1509                          */
1510                         if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1511                                 ret = 0;
1512                         else {
1513                                 /*
1514                                  * pi_state is incorrect, some other
1515                                  * task did a lock steal and we
1516                                  * returned due to timeout or signal
1517                                  * without taking the rt_mutex. Too
1518                                  * late. We can access the
1519                                  * rt_mutex_owner without locking, as
1520                                  * the other task is now blocked on
1521                                  * the hash bucket lock. Fix the state
1522                                  * up.
1523                                  */
1524                                 struct task_struct *owner;
1525                                 int res;
1526
1527                                 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1528                                 res = fixup_pi_state_owner(uaddr, &q, owner,
1529                                                            fshared);
1530
1531                                 /* propagate -EFAULT, if the fixup failed */
1532                                 if (res)
1533                                         ret = res;
1534                         }
1535                 } else {
1536                         /*
1537                          * Paranoia check. If we did not take the lock
1538                          * in the trylock above, then we should not be
1539                          * the owner of the rtmutex, neither the real
1540                          * nor the pending one:
1541                          */
1542                         if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1543                                 printk(KERN_ERR "futex_lock_pi: ret = %d "
1544                                        "pi-mutex: %p pi-state %p\n", ret,
1545                                        q.pi_state->pi_mutex.owner,
1546                                        q.pi_state->owner);
1547                 }
1548         }
1549
1550         /* Unqueue and drop the lock */
1551         unqueue_me_pi(&q);
1552
1553         if (to)
1554                 destroy_hrtimer_on_stack(&to->timer);
1555         return ret != -EINTR ? ret : -ERESTARTNOINTR;
1556
1557  out_unlock_release_sem:
1558         queue_unlock(&q, hb);
1559
1560  out_release_sem:
1561         put_futex_key(fshared, &q.key);
1562         if (to)
1563                 destroy_hrtimer_on_stack(&to->timer);
1564         return ret;
1565
1566  uaddr_faulted:
1567         /*
1568          * We have to r/w  *(int __user *)uaddr, and we have to modify it
1569          * atomically.  Therefore, if we continue to fault after get_user()
1570          * below, we need to handle the fault ourselves, while still holding
1571          * the mmap_sem.  This can occur if the uaddr is under contention as
1572          * we have to drop the mmap_sem in order to call get_user().
1573          */
1574         queue_unlock(&q, hb);
1575
1576         if (attempt++) {
1577                 ret = futex_handle_fault((unsigned long)uaddr, attempt);
1578                 if (ret)
1579                         goto out_release_sem;
1580                 goto retry_unlocked;
1581         }
1582
1583         ret = get_user(uval, uaddr);
1584         if (!ret)
1585                 goto retry;
1586
1587         if (to)
1588                 destroy_hrtimer_on_stack(&to->timer);
1589         return ret;
1590 }
1591
1592 /*
1593  * Userspace attempted a TID -> 0 atomic transition, and failed.
1594  * This is the in-kernel slowpath: we look up the PI state (if any),
1595  * and do the rt-mutex unlock.
1596  */
1597 static int futex_unlock_pi(u32 __user *uaddr, int fshared)
1598 {
1599         struct futex_hash_bucket *hb;
1600         struct futex_q *this, *next;
1601         u32 uval;
1602         struct plist_head *head;
1603         union futex_key key = FUTEX_KEY_INIT;
1604         int ret, attempt = 0;
1605
1606 retry:
1607         if (get_user(uval, uaddr))
1608                 return -EFAULT;
1609         /*
1610          * We release only a lock we actually own:
1611          */
1612         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1613                 return -EPERM;
1614
1615         ret = get_futex_key(uaddr, fshared, &key);
1616         if (unlikely(ret != 0))
1617                 goto out;
1618
1619         hb = hash_futex(&key);
1620 retry_unlocked:
1621         spin_lock(&hb->lock);
1622
1623         /*
1624          * To avoid races, try to do the TID -> 0 atomic transition
1625          * again. If it succeeds then we can return without waking
1626          * anyone else up:
1627          */
1628         if (!(uval & FUTEX_OWNER_DIED))
1629                 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
1630
1631
1632         if (unlikely(uval == -EFAULT))
1633                 goto pi_faulted;
1634         /*
1635          * Rare case: we managed to release the lock atomically,
1636          * no need to wake anyone else up:
1637          */
1638         if (unlikely(uval == task_pid_vnr(current)))
1639                 goto out_unlock;
1640
1641         /*
1642          * Ok, other tasks may need to be woken up - check waiters
1643          * and do the wakeup if necessary:
1644          */
1645         head = &hb->chain;
1646
1647         plist_for_each_entry_safe(this, next, head, list) {
1648                 if (!match_futex (&this->key, &key))
1649                         continue;
1650                 ret = wake_futex_pi(uaddr, uval, this);
1651                 /*
1652                  * The atomic access to the futex value
1653                  * generated a pagefault, so retry the
1654                  * user-access and the wakeup:
1655                  */
1656                 if (ret == -EFAULT)
1657                         goto pi_faulted;
1658                 goto out_unlock;
1659         }
1660         /*
1661          * No waiters - kernel unlocks the futex:
1662          */
1663         if (!(uval & FUTEX_OWNER_DIED)) {
1664                 ret = unlock_futex_pi(uaddr, uval);
1665                 if (ret == -EFAULT)
1666                         goto pi_faulted;
1667         }
1668
1669 out_unlock:
1670         spin_unlock(&hb->lock);
1671 out:
1672         put_futex_key(fshared, &key);
1673
1674         return ret;
1675
1676 pi_faulted:
1677         /*
1678          * We have to r/w  *(int __user *)uaddr, and we have to modify it
1679          * atomically.  Therefore, if we continue to fault after get_user()
1680          * below, we need to handle the fault ourselves, while still holding
1681          * the mmap_sem.  This can occur if the uaddr is under contention as
1682          * we have to drop the mmap_sem in order to call get_user().
1683          */
1684         spin_unlock(&hb->lock);
1685
1686         if (attempt++) {
1687                 ret = futex_handle_fault((unsigned long)uaddr, attempt);
1688                 if (ret)
1689                         goto out;
1690                 uval = 0;
1691                 goto retry_unlocked;
1692         }
1693
1694         ret = get_user(uval, uaddr);
1695         if (!ret)
1696                 goto retry;
1697
1698         return ret;
1699 }
1700
1701 /*
1702  * Support for robust futexes: the kernel cleans up held futexes at
1703  * thread exit time.
1704  *
1705  * Implementation: user-space maintains a per-thread list of locks it
1706  * is holding. Upon do_exit(), the kernel carefully walks this list,
1707  * and marks all locks that are owned by this thread with the
1708  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1709  * always manipulated with the lock held, so the list is private and
1710  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1711  * field, to allow the kernel to clean up if the thread dies after
1712  * acquiring the lock, but just before it could have added itself to
1713  * the list. There can only be one such pending lock.
1714  */
1715
1716 /**
1717  * sys_set_robust_list - set the robust-futex list head of a task
1718  * @head: pointer to the list-head
1719  * @len: length of the list-head, as userspace expects
1720  */
1721 asmlinkage long
1722 sys_set_robust_list(struct robust_list_head __user *head,
1723                     size_t len)
1724 {
1725         if (!futex_cmpxchg_enabled)
1726                 return -ENOSYS;
1727         /*
1728          * The kernel knows only one size for now:
1729          */
1730         if (unlikely(len != sizeof(*head)))
1731                 return -EINVAL;
1732
1733         current->robust_list = head;
1734
1735         return 0;
1736 }
1737
1738 /**
1739  * sys_get_robust_list - get the robust-futex list head of a task
1740  * @pid: pid of the process [zero for current task]
1741  * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1742  * @len_ptr: pointer to a length field, the kernel fills in the header size
1743  */
1744 asmlinkage long
1745 sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
1746                     size_t __user *len_ptr)
1747 {
1748         struct robust_list_head __user *head;
1749         unsigned long ret;
1750
1751         if (!futex_cmpxchg_enabled)
1752                 return -ENOSYS;
1753
1754         if (!pid)
1755                 head = current->robust_list;
1756         else {
1757                 struct task_struct *p;
1758
1759                 ret = -ESRCH;
1760                 rcu_read_lock();
1761                 p = find_task_by_vpid(pid);
1762                 if (!p)
1763                         goto err_unlock;
1764                 ret = -EPERM;
1765                 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1766                                 !capable(CAP_SYS_PTRACE))
1767                         goto err_unlock;
1768                 head = p->robust_list;
1769                 rcu_read_unlock();
1770         }
1771
1772         if (put_user(sizeof(*head), len_ptr))
1773                 return -EFAULT;
1774         return put_user(head, head_ptr);
1775
1776 err_unlock:
1777         rcu_read_unlock();
1778
1779         return ret;
1780 }
1781
1782 /*
1783  * Process a futex-list entry, check whether it's owned by the
1784  * dying task, and do notification if so:
1785  */
1786 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1787 {
1788         u32 uval, nval, mval;
1789
1790 retry:
1791         if (get_user(uval, uaddr))
1792                 return -1;
1793
1794         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
1795                 /*
1796                  * Ok, this dying thread is truly holding a futex
1797                  * of interest. Set the OWNER_DIED bit atomically
1798                  * via cmpxchg, and if the value had FUTEX_WAITERS
1799                  * set, wake up a waiter (if any). (We have to do a
1800                  * futex_wake() even if OWNER_DIED is already set -
1801                  * to handle the rare but possible case of recursive
1802                  * thread-death.) The rest of the cleanup is done in
1803                  * userspace.
1804                  */
1805                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1806                 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1807
1808                 if (nval == -EFAULT)
1809                         return -1;
1810
1811                 if (nval != uval)
1812                         goto retry;
1813
1814                 /*
1815                  * Wake robust non-PI futexes here. The wakeup of
1816                  * PI futexes happens in exit_pi_state():
1817                  */
1818                 if (!pi && (uval & FUTEX_WAITERS))
1819                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
1820         }
1821         return 0;
1822 }
1823
1824 /*
1825  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1826  */
1827 static inline int fetch_robust_entry(struct robust_list __user **entry,
1828                                      struct robust_list __user * __user *head,
1829                                      int *pi)
1830 {
1831         unsigned long uentry;
1832
1833         if (get_user(uentry, (unsigned long __user *)head))
1834                 return -EFAULT;
1835
1836         *entry = (void __user *)(uentry & ~1UL);
1837         *pi = uentry & 1;
1838
1839         return 0;
1840 }
1841
1842 /*
1843  * Walk curr->robust_list (very carefully, it's a userspace list!)
1844  * and mark any locks found there dead, and notify any waiters.
1845  *
1846  * We silently return on any sign of list-walking problem.
1847  */
1848 void exit_robust_list(struct task_struct *curr)
1849 {
1850         struct robust_list_head __user *head = curr->robust_list;
1851         struct robust_list __user *entry, *next_entry, *pending;
1852         unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
1853         unsigned long futex_offset;
1854         int rc;
1855
1856         if (!futex_cmpxchg_enabled)
1857                 return;
1858
1859         /*
1860          * Fetch the list head (which was registered earlier, via
1861          * sys_set_robust_list()):
1862          */
1863         if (fetch_robust_entry(&entry, &head->list.next, &pi))
1864                 return;
1865         /*
1866          * Fetch the relative futex offset:
1867          */
1868         if (get_user(futex_offset, &head->futex_offset))
1869                 return;
1870         /*
1871          * Fetch any possibly pending lock-add first, and handle it
1872          * if it exists:
1873          */
1874         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1875                 return;
1876
1877         next_entry = NULL;      /* avoid warning with gcc */
1878         while (entry != &head->list) {
1879                 /*
1880                  * Fetch the next entry in the list before calling
1881                  * handle_futex_death:
1882                  */
1883                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
1884                 /*
1885                  * A pending lock might already be on the list, so
1886                  * don't process it twice:
1887                  */
1888                 if (entry != pending)
1889                         if (handle_futex_death((void __user *)entry + futex_offset,
1890                                                 curr, pi))
1891                                 return;
1892                 if (rc)
1893                         return;
1894                 entry = next_entry;
1895                 pi = next_pi;
1896                 /*
1897                  * Avoid excessively long or circular lists:
1898                  */
1899                 if (!--limit)
1900                         break;
1901
1902                 cond_resched();
1903         }
1904
1905         if (pending)
1906                 handle_futex_death((void __user *)pending + futex_offset,
1907                                    curr, pip);
1908 }
1909
1910 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
1911                 u32 __user *uaddr2, u32 val2, u32 val3)
1912 {
1913         int clockrt, ret = -ENOSYS;
1914         int cmd = op & FUTEX_CMD_MASK;
1915         int fshared = 0;
1916
1917         if (!(op & FUTEX_PRIVATE_FLAG))
1918                 fshared = 1;
1919
1920         clockrt = op & FUTEX_CLOCK_REALTIME;
1921         if (clockrt && cmd != FUTEX_WAIT_BITSET)
1922                 return -ENOSYS;
1923
1924         switch (cmd) {
1925         case FUTEX_WAIT:
1926                 val3 = FUTEX_BITSET_MATCH_ANY;
1927         case FUTEX_WAIT_BITSET:
1928                 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
1929                 break;
1930         case FUTEX_WAKE:
1931                 val3 = FUTEX_BITSET_MATCH_ANY;
1932         case FUTEX_WAKE_BITSET:
1933                 ret = futex_wake(uaddr, fshared, val, val3);
1934                 break;
1935         case FUTEX_REQUEUE:
1936                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
1937                 break;
1938         case FUTEX_CMP_REQUEUE:
1939                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
1940                 break;
1941         case FUTEX_WAKE_OP:
1942                 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
1943                 break;
1944         case FUTEX_LOCK_PI:
1945                 if (futex_cmpxchg_enabled)
1946                         ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
1947                 break;
1948         case FUTEX_UNLOCK_PI:
1949                 if (futex_cmpxchg_enabled)
1950                         ret = futex_unlock_pi(uaddr, fshared);
1951                 break;
1952         case FUTEX_TRYLOCK_PI:
1953                 if (futex_cmpxchg_enabled)
1954                         ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
1955                 break;
1956         default:
1957                 ret = -ENOSYS;
1958         }
1959         return ret;
1960 }
1961
1962
1963 asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1964                           struct timespec __user *utime, u32 __user *uaddr2,
1965                           u32 val3)
1966 {
1967         struct timespec ts;
1968         ktime_t t, *tp = NULL;
1969         u32 val2 = 0;
1970         int cmd = op & FUTEX_CMD_MASK;
1971
1972         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
1973                       cmd == FUTEX_WAIT_BITSET)) {
1974                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1975                         return -EFAULT;
1976                 if (!timespec_valid(&ts))
1977                         return -EINVAL;
1978
1979                 t = timespec_to_ktime(ts);
1980                 if (cmd == FUTEX_WAIT)
1981                         t = ktime_add_safe(ktime_get(), t);
1982                 tp = &t;
1983         }
1984         /*
1985          * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
1986          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1987          */
1988         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
1989             cmd == FUTEX_WAKE_OP)
1990                 val2 = (u32) (unsigned long) utime;
1991
1992         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1993 }
1994
1995 static int __init futex_init(void)
1996 {
1997         u32 curval;
1998         int i;
1999
2000         /*
2001          * This will fail and we want it. Some arch implementations do
2002          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2003          * functionality. We want to know that before we call in any
2004          * of the complex code paths. Also we want to prevent
2005          * registration of robust lists in that case. NULL is
2006          * guaranteed to fault and we get -EFAULT on functional
2007          * implementation, the non functional ones will return
2008          * -ENOSYS.
2009          */
2010         curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2011         if (curval == -EFAULT)
2012                 futex_cmpxchg_enabled = 1;
2013
2014         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2015                 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2016                 spin_lock_init(&futex_queues[i].lock);
2017         }
2018
2019         return 0;
2020 }
2021 __initcall(futex_init);